

Duke University
Department of Physics

Physics 271

Spring Term 2017

HOMEWORK 6

Available: February 16

Due: February 23, at the beginning of class.

Reading: Eggleston 2.8, 3.1-3.2

Problem 1:

Show that the form of the Fourier theorem,

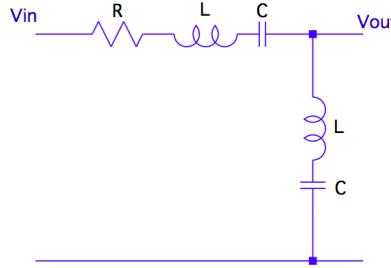
$f(t) = a_0 + 2 \sum_{n=1}^{\infty} [a_n \cos(n\omega_1 t) - b_n \sin(n\omega_1 t)]$, where the Fourier coefficients are given by $a_n = \frac{1}{T} \int_{t'}^{t'+T} f(t) \cos(n\omega_1 t) dt$ (even contributions) and $b_n = -\frac{1}{T} \int_{t'}^{t'+T} f(t) \sin(n\omega_1 t) dt$ (odd contributions), where $\omega_1 = \frac{2\pi}{T}$,

is equivalent to

$$f(t) = \sum_{n=-\infty}^{\infty} \hat{c}_n e^{j\omega_n t},$$

where the Fourier coefficients are given by $\hat{c}_n = \frac{1}{T} \int_{t'}^{t'+T} f(t) e^{-j\omega_n t} dt$.

Problem 2: For $R = 2\sqrt{\frac{L}{C}}$, write the transfer function for the network shown. Find the zeroes and poles and draw them on the complex plane. Draw the Bode plot.



Text Problems:

Eggleston 2.18, 3.1