Review Problems
for
Introductory Physics 1

August 12, 2011

Robert G. Brown, Instructor
Duke University Physics Department
Durham, NC 27708-0305
rgb@phy.duke.edu
Copyright Notice

This document is Copyright Robert G. Brown 2011. The specific date of last modification is determinable by examining the original document sources.
Contents

1 Preface 3

2 Short Math Review Problems 5

3 Essential Laws, Theorems, and Principles 17

4 Short/Concept Problems 25

5 Long Problems 99

A License Terms for “Review Problems for Introductory Physics” 297

A.1 General Terms . 297

A.2 The “One Dollar” Modification to the OPL 298

A.3 OPEN PUBLICATION LICENSE Draft v0.4, 8 June 1999 298
Chapter 1

Preface

The problem in this review guide are provided as is *without any guarantee of being correct!* That’s not to suggest that they are all broken – on the contrary, most of them are well-tested and have been used as homework, quiz and exam problems for decades if not centuries. It is to suggest that they have typos in them, errors of other sorts, bad figures, and one or two of them are really too difficult for this course but haven’t been sorted out or altered to make them doable.

Leaving these in just adds to the fun. Physics problems are *not* all cut and dried; physics itself isn’t. One thing you should be building up as you work is an appreciation for what is easy, what is difficult, what is correct and what is incorrect. If you find an error and bring it to my attention, I’ll do my best to correct it, of course, but in the meantime, be warned!

Note also that while a *few* of the problems have (rather detailed!) solutions (due to Prof. Ronen Plesser), most do not, and *there never will be*, at least in *this* review guide. I am actually philosophically opposed to providing students with solutions that they are then immediately tempted to memorize instead of learning to solve problems and work sufficiently carefully that they can trust the solutions.

Students invariably then ask: “But how are we to know if we’ve solved the problems correctly?”

The answer is simple. The same way you would *in the real world!* You should work on them in groups. Check your answers against one another’s. Build a consensus. Solve them with mentoring (there are many course TAs and professors all of whom are happy to help you). Find answers through research on the web or in the literature.

To be honest, almost any of these ways are good ways to learn to solve physics
problems. The only bad way to learn this is to have it all laid out, cut and dried, so that you don’t have to struggle to learn, so that you don’t have to work hard and thereby permanently imprint the knowledge on your brain as you go. Physics requires engagement and investment of time and energy like no subject you have ever taken, if only because it is one of the most difficult subjects you’ve ever tried to learn (at the same time it is remarkably simple, paradoxically enough).

In any event, to use this guide most effectively, first skim through the whole thing to see what is there, then start in at the beginning and work through it, again and again, reviewing repeatedly all of the problems and material you’ve covered so far as you go on to what you are working on currently in class and on the homework and for the upcoming exam(s). Don’t be afraid to solve problems more than once, or even more than three or four times.

And work in groups! Seriously! With pizza and beer...
Chapter 2

Short Math Review
Problems

The problems below are a diagnostic for what you are likely to need in order to work physics problems. There aren’t really enough of them to constitute “practice”, but if you have difficulty with any of them, you should probably find a math review (there is usually one in almost any introductory physics text and there are a number available online) and work through it.

Weakness in geometry, trigonometry, algebra, calculus, solving simultaneous equations, or general visualization and graphing will all negatively impact your physics performance and, if uncorrected, your grade.
Short Problem 1.

Write down the binomial expansion for the following expressions, given the conditions indicated. FYI, the binomial expansion is:

\[(1 + x)^n = 1 + nx + \frac{n(n - 1)}{2!}x^2 + \frac{n(n - 1)(n - 2)}{3!}x^3 + \ldots\]

where \(x\) can be positive or negative and \(n\) is any real number and only converges if \(|x| < 1\). Write at least the first three non-zero terms in the expansion:

a) For \(x > a\):

\[\frac{1}{(x + a)^2}\]

b) For \(x > a\):

\[\frac{1}{(x + a)^{3/2}}\]

c) For \(x > a\):

\[(x + a)^{1/2}\]

d) For \(x > a\):

\[\frac{1}{(x + a)^{1/2}} - \frac{1}{(x - a)^{1/2}}\]

e) For \(r > a\):

\[\frac{1}{(r^2 + a^2 - 2ar \cos(\theta))^{1/2}}\]

Short Problem 2.

problems/short-math-differentiate-expressions.tex

Evaluate the following expressions:

a) \[\frac{d}{dt} (at^5 + be^{-ct^2} + \sin(dt)) = \]

b) \[\frac{d}{dt} e^{\alpha t} = \]

c) \[\frac{d}{dt} e^{\alpha t^2} = \]

d) \[\frac{d}{dt} \tan(\omega t) = \]
Short Problem 3.

The position of a particle as a function of time is given by:

\[\vec{x}(t) = x_0 \cos(\omega t) \hat{x} + y_0 \sin(\omega t) \hat{y} \]

where \(x_0 > y_0 \).

a) What is \(\vec{v}(t) \) for this particle?

b) What is \(\vec{a}(t) \) for this particle?

c) Draw a generic plot of the trajectory function for the particle. What kind of shape is this? In what direction/sense is the particle moving (indicate with arrow on trajectory)?

d) Draw separate plots of \(x(t) \) and \(y(t) \) on the same axes.
Short Problem 4.

Evaluate the following vector expressions.

a) Express the dot product in terms of its Cartesian components e.g. \(\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \):
\[
\vec{A} \cdot \vec{B} =
\]
b) Express the dot product in terms of the magnitudes \(A, B \) and \(\theta \):
\[
\vec{A} \cdot \vec{B} =
\]
c) Express the cross product in terms of its Cartesian components e.g. \(\vec{A} = A_x \hat{x} + A_y \hat{y} + A_z \hat{z} \) (this has a lot of terms):
\[
\vec{A} \times \vec{B} =
\]
d) Express the magnitude of cross product in terms of the magnitudes \(A, B \) and \(\theta \) and indicate its direction:
\[
\vec{A} \times \vec{B} =
\]
Short Problem 5.
problems/short-math-integrate-expressions.tex

Evaluate the following (indefinite) integrals. Don’t forget the constant of integration!

a) \[\int \sin(\theta) \, d\theta = \]
b) \[\int \cos(\theta) \, d\theta = \]
c) \[\int \sin^3(\theta) \, d\theta = \]
d) \[\int e^{i\omega t} \, dt = \]
e) \[\int \cos(\omega t) \, dt = \]
f) \[\int x^n \, dx = \]
g) \[\int \frac{1}{x} \, dx = \]
h) \[v(t) = \int -g \, dt = \]
i) \[x(t) = \int (-\frac{1}{2}gt + v_0) \, dt = \]
Short Problem 6.

Solve for t:

a) \hspace{2cm} v_0 t - x_0 = 0

b) \hspace{2cm} -\frac{1}{2} gt^2 + v_0 t = 0

c) \hspace{2cm} -\frac{1}{2} gt^2 + v_0 t + x_0 = 0
Short Problem 7.

Solve the following system of simultaneous equations for x, y and z:

\begin{align*}
5x + 5y &= 10 \\
5x - 2z &= 4 \\
2z - y &= 0
\end{align*}
Short Problem 8.

(3 points) Vector $\vec{A} = 3\hat{x} + 6\hat{y}$. Vector $\vec{B} = -7\hat{x} - 3\hat{y}$. The vector $\vec{C} = \vec{A} + \vec{B}$:

a) is in the first quadrant (x+,y+) and has magnitude 7.
b) is in the second quadrant (x-,y+) and has magnitude 7.
c) is in the second quadrant (x-,y+) and has magnitude 5.
d) is in the fourth quadrant (x+,y-) and has magnitude 5.
e) is in the third quadrant (x-,y-) and has magnitude 6.
Short Problem 9.

(3 points) Vector $\vec{A} = -4\hat{x} + 6\hat{y}$. Vector $\vec{B} = 9\hat{x} + 6\hat{y}$. The vector $\vec{C} = \vec{A} + \vec{B}$:

a) is in the first quadrant (x+,y+) and has magnitude 17.

b) is in the fourth quadrant (x+,y-) and has magnitude 12.

c) is in the first quadrant (x+,y+) and has magnitude 13.

d) is in the second quadrant (x-,y+) and has magnitude 17.

e) is in the third quadrant (x-,y-) and has magnitude 13.
Short Problem 10.

Evaluate the first three nonzero terms for the Taylor series for the following expressions. Expand about the indicated point:

a) Expand about $x = 0$:
 $$(1 + x)^n \approx$$

b) Expand about $x = 0$:
 $$\sin(x) \approx$$

c) Expand about $x = 0$:
 $$\cos(x) \approx$$

d) Expand about $x = 0$:
 $$e^x \approx$$

e) Expand about $x = 0$ (note: $i^2 = -1$):
 $$e^{ix} \approx$$

Verify that the expansions of both sides of the following expression match:

$$e^{i\theta} = \cos(\theta) + i \sin(\theta)$$
Short Problem 11.

Fill in the following in terms of the marked sides:

a) \(\sin(\theta) = \)

b) \(\cos(\theta) = \)

c) \(\tan(\theta) = \)
Chapter 3

Essential Laws, Theorems, and Principles

The questions below guide you through basic physical laws and concepts. They are the stuff that one way or another you should know” going into any exam or quiz following the lecture in which they are covered. Note that there aren’t really all that many of them, and a lot of them are actually easily derived from the most important ones.

There is absolutely no point in memorizing solutions to all of the problems in this guide. In fact, for all but truly prodigious memories, memorizing them all would be impossible (presuming that one could work out all of the solutions into an even larger book to memorize!). However, every student should memorize, internalize, learn, know the principles, laws, and and theorems covered in this section (and perhaps a few that haven’t yet been added). These are things upon which all the rest of the solutions are based.
True Fact 1.
problems/true-facts-ALMDC.tex

What is Ampere’s Law with the Maxwell displacement current? (Equation and figure, please; circle the displacement current only.)

True Fact 2.
problems/true-facts-AL.tex

What is Ampere’s Law? (Equation and figure please. Your answer does not need to have the Maxwell Displacement Current in it yet, as it has not yet been covered in class, but if you put it in (correctly) anyway, you may have two points of extra credit.)

True Fact 3.
problems/true-facts-Biot-Savart-law.tex

What is the Biot-Savart Law? (Equation and figure, please.)

True Fact 4.
problems/true-facts-Coulombs-Law.tex

What is Coulomb’s Law? (Equation and figure ok, or in words.)

True Fact 5.
problems/true-facts-critical-angle.tex

What is the formula for the critical angle (of total internal reflection) for a beam of light going from medium 1 to medium 2 with \(n_1 > n_2 \)? (Equation and figure, please.)

True Fact 6.
problems/true-facts-definition-of-capacitance.tex

What is the defining relation for the capacitance of an arrangement of charge
True Fact 7.
problems/true-facts-energy-density-of-b-field.tex
What is the energy density η_M of the magnetic field \vec{B}? (Equation.)

True Fact 8.
problems/true-facts-energy-density-of-e-field.tex
What is the energy density η_E of the electric field \vec{E}? (Equation.)

True Fact 9.
problems/true-facts-energy-in-capacitor.tex
Give three equivalent expressions for the total energy stored on a capacitor in terms of any two of Q, C, V (at a time).

True Fact 10.
problems/true-facts-fermat-principle.tex
What is the Fermat Principle (from which e.g. Snell’s Law follows)? (Statement in words, possible with illustrating figure.)

True Fact 11.
problems/true-facts-FL.tex
What is Faraday’s Law? Circle Lenz’s Law within. (Equation and figure, please.)

True Fact 12.
problems/true-facts-force-on-dipole-in-uniform-electric-field.tex
What is the force \vec{F} acting on an electric dipole \vec{p} in a uniform electric field \vec{E}? (Equation and figure, please.)

True Fact 13.

problems/true-facts-fraunhofer-diffraction.tex

What is Fraunhofer diffraction? (Short statement in words, plus picture.)

True Fact 14.

problems/true-facts-fresnel-diffraction.tex

What is Fresnel diffraction? (Short statement in words, plus picture.)

True Fact 15.

problems/true-facts-GLE.tex

What is Gauss’s Law for Electricity? (Equation and figure, please.)

True Fact 16.

problems/true-facts-GLM.tex

What is Gauss’s Law for Magnetism? What important experimental result does it represent? (Equation and figure, please.)

True Fact 17.

problems/true-facts-index-of-refraction-dispersion.tex

What is the “dispersion” of refracted light passing through some medium? (Short statement, but please relate the phenomenon in some way to a particular property of the index of refraction of the medium.)

True Fact 18.

problems/true-facts-intensity-of-dipole-source.tex
What is the formula for the intensity of radiation from an oscillating dipole oriented along the \hat{z}-direction, as a function of r and θ, in the limit that one is far from the dipole? (Equation and figure, please.)

True Fact 19.

problems/true-facts-kirchoffs-rules.tex

What are Kirchoff’s Rules? Also (and still for credit!) what physical principle does each rule corresponds to?

a)

b)

True Fact 20.

problems/true-facts-lensmakers-formula.tex

What is the “lensmakers formula” that predicts the focal length of a lens made of a material with index of refraction n in air (with index of refraction approximately equal to 1), given the radii of curvature r_1 and r_2 of its two refracting surfaces? (Equation and figure, please.)

True Fact 21.

problems/true-facts-lorentz-force-law.tex

What is the “Lorentz Force Law” (the law that relates the electromagnetic force on a charged particle q moving at velocity \vec{v} in an electric field \vec{E} and magnetic field \vec{B}? (Give equation and draw a figure with vE, \vec{B} and \vec{v} to illustrate the relative directions).

True Fact 22.
What is the net force on a charged particle \(q \) moving with velocity \(\vec{v} \) in a magnetic field \(\vec{B} \)? (Give equation and draw a figure to illustrate its relative direction.)

True Fact 23.

If vertically polarized light of intensity \(I_0 \) strikes a polarizing filter with a transmission axis at an angle \(\theta \) with respect to the vertical, what is the intensity of the transmitted light (Malus’ Law)? (Equation and figure, please.)

True Fact 24.

What is the near point distance of the human eye (both what is it and what is its presumed/approximate value)? (Answer in words and of course a length in appropriate units.)

True Fact 25.

What is Ohm’s Law? (Equation.)

True Fact 26.

What is the equation one uses to locate the image of an object a distance \(s \) in front of a spherical mirror with radius \(r \) (in the limit that the rays are all paraxial, that is the object height \(y \ll r \) for an object on the axis)? (Equation and figure, please.)

True Fact 27.
What is the potential energy of a magnetic dipole \vec{m} in a magnetic field \vec{B}? (Equation and figure, please.)

True Fact 28.

What is the potential energy of an electric dipole \vec{p} in an electric field \vec{E}? (Equation and figure, please.)

True Fact 29.

What is the Poynting vector? (Equation and figure, please.) What do we call its absolute magnitude? (Single word.)

True Fact 30.

What is the Rayleigh criterion for resolution (of, say, two diffraction limited images of stars seen through a telescope or viruses seen through a microscope)? (Equation and figure, please.)

True Fact 31.

What is Snell’s Law? (Equation and figure, please.)

True Fact 32.

What is the speed of light in terms of $\epsilon - 0$ and μ_0? (Equation.)

True Fact 33.
problems/true-facts-thin-lens-equation.tex
What is the “thin lens equation”? (Equation and figure, please.)

True Fact 34.

problems/true-facts-torque-on-dipole-in-electric-field.tex
What is the torque $\vec{\tau}$ acting on an electric dipole \vec{p} in an electric field \vec{E}? (Equation and figure, please.)

True Fact 35.

problems/true-facts-transformer.tex
A transformer has N_1 turns in its primary winding and N_2 turns in its secondary winding. If it has an alternating voltage V_1 applied across its primary, what would one expect to measure for V_2 across its secondary? (Equation and schematic/figure, please.)

True Fact 36.

problems/true-facts-transverse-wave-E-and-B.tex
What is the relation between \vec{E} and \vec{B} in a transverse electromagnetic wave? (Equation relating amplitudes, figure indicating directions including direction of wave propagation.)

True Fact 37.

problems/true-facts-waves-in-medium.tex
If a beam of light has speed c, frequency f, and wavelength λ in a vacuum, what are its speed, frequency and wavelength in a medium with index of refraction n? (Equations for v_n, f_n and λ_n.)
Chapter 4

Short/Concept Problems

These problems amplify the laws, principles and theorems of the previous section with short problems or questions that can usually easily be answered on the basis of these simple principles. That is, if you not only know the laws, but understand them conceptually, they are pretty easy.

As such, they are a good diagnostic for basic conceptual understanding gained in an introductory physics course. Note that they are far from exhaustive! You will very likely see different questions on any given test or quiz. But if you can answer these, you have a much better chance of being able to answer those, and if you can’t answer these, well, you have some work to do!
Short Problem 1.

In the picture above, a charge Q sits close to an uncharged conducting sphere concentric with a second uncharged conducting sphere as shown. Is there a nonzero electrostatic force between the inner sphere and the external charge Q? (Explain your answer – an answer such as “yes” or “no” is not sufficient.)
Short Problem 2.

Suppose you are given an electromagnetic field whose equations are:

\[
\vec{E} = \hat{y}E_0 \sin(kz + \omega t) \\
\vec{B} = \hat{x} - B_0 \cos(kz + \omega t)
\]

What is the time average intensity of this field in terms of E_0? Does this wave propagate to the right (+z direction) or the left (−z direction)? You may use any or all of ε_0, μ_0, c in your answer(s).
Short Problem 3.

Why does a balloon rubbed on the hair stick to a wall? Draw a diagram that clearly and correctly indicates the force and its cause.
Short Problem 4.

Transformers are ubiquitous in our society (on poles outside of our houses) for a very important reason. What is it? I don’t need a long essay here, just the bottom line and an indication that you know how it works.
Short Problem 5.

problems/short-build-a-monopole.tex

Roger (who we can imagine owns a motorcycle repair shop in Morehead City) hears about magnetic monopoles and decides to build one and end all the confusion. He gets a few hundred bar magnets and glues them all hedgehog-fashion onto an iron sphere 10 cm in radius so that the north poles face out and the sphere is tightly packed and covered. He reasons that the field of the south poles will meet in the middle and cancel out, while the north pole fields will look just like a monopole.

If the total summed pole strengths (“magnetic charge” of the north poles as determined by their magnetic dipole moments) of all the bar magnets is Q_m, approximately what magnetic field will Roger observe one meter away from his “monopole”? Why? (Draw a picture, invoke a law, something...).
Short Problem 6.

Bull sharks are known to swim from the ocean into freshwater rivers and lakes and are sometimes found a thousand miles or more away from the sea. Freshwater is considerably less dense than salt water, and the index of refraction of saltwater is correspondingly greater than that of fresh water.

If a bull shark has perfectly normal vision in the ocean, is it shortsighted or farsighted in fresh water? In particular, can it still accommodate to a clear vision of distant prey or is everything a bit of a blur to it in fresh water?
Short Problem 7.

A network of capacitors with various values given as multiples of a reference capacitance C is drawn above. Find the total capacitance between points A and B in terms of C.

\begin{center}
\begin{tikzpicture}
 \draw (0,0) -- (1,0) node[midway, above] {A} -- (2,1) node[midway, above] {3C} -- (3,1) node[midway, above] {3C} -- (4,0) node[midway, above] {B} -- (2,-1) node[midway, above] {3C} -- (3,-1) node[midway, above] {3C} -- (4,0);
 \draw (1,0) -- (1,-2) node[midway, above] {2C} -- (2,-1);
 \draw (3,1) -- (3,-1) node[midway, above] {2C} -- (4,0);
 \draw (2,1) -- (2,-1) node[midway, above] {C};
\end{tikzpicture}
\end{center}
Short Problem 8.

A negative charge is located a short distance away from a wooden wall. Is it (circle one):

a) attracted?

b) repelled?

c) free (experiencing no net force)?
Short Problem 9.

Suppose $z = x + iy$ is an arbitrary number in the complex plane (the one with a real and an imaginary axis). Show how it can also be written $z = |z|e^{i\theta}$ and give the relationship between $|z|$ and θ and the real and imaginary components of z. Draw a graph that represents all of this. Note that this is a simple problem – there isn’t anything to derive, I am just checking that you’ve been paying attention.
Short Problem 10.

What is the critical angle of incidence at which total internal reflection will occur when white light is incident on the surface of a diamond facet from the inside? Diamond has an index of refraction of around $n_d = 2.4$, air has an index of refraction around $n_a = 1$. This is what it means to say that a diamond “traps light”.
Short Problem 11.

What happens at the Curie Temperature of a magnetic material? (You may answer in terms of cooling from a warmer temperature or warming from a cooler temperature.)
Short Problem 12.

What does a diamagnetic material do when placed in a magnetic field? For an extra point, when do “perfect” diamagnets occur in nature? For another extra point name the effect that most dramatically demonstrates the diamagnetism (which involves hovering magnets)?
Short Problem 13.

Dielectric materials are generally used when designing capacitors for three excellent reasons. What are they?

a)

b)

c)
Short Problem 14.

(5 points) In the figure above, a solid conducting ellipsoid of revolution is shown that was charged up with a total charge Q and then left for a moment to come to equilibrium. Draw a qualitative picture of the field lines (in the plane of the paper only) you might expect to “see” (if you could see field lines) both inside and outside of the surface of the ellipsoid.
Short Problem 15.

What is the electric field just outside of a conductor at electrostatic equilibrium in terms of its surface charge density σ? Note well that the electric field is a vector quantity, so you’ll have to give at least two generic components.
Short Problem 16.

True or False: A conductor carrying an electric current has no electric field inside.
Short Problem 17.

problems/short-eye-corrections.tex

Above there are six balls that represent a) a normal eye; b) a nearsighted eye; c) a farsighted eye. Indicate for each eye on the left where the focal point of the relaxed eye is relative to the retina by completing the path of the parallel rays given. Then draw the appropriate corrective lens in front of each of the latter non-normal eyes and indicate with the given rays how it “fixes” the problem.
Short Problem 18.

problems/short-fisheye-correction.tex

You catch a fish that has normal vision – in the water! In air you appear all blurry to it. Is the fish nearsighted or farsighted in air? Should you outfit the fish with converging or diverging lenses so that it can see you clearly?
Short Problem 19.

In the figure above, a point charge \(q \) is brought near a neutral conducting sphere.

(3 points) Is the force of between the sphere and the charge:

a) Zero.
b) Attractive.
c) Repulsive.
d) Out of the page.
e) Into the page.

(2 points) Draw a representation of the charge distribution on the conductor that explains your answer.
A charge q is sitting a short distance away from an uncharged conducting sphere. Is there a force acting on this charge? If so, in what direction (towards the sphere or away from the sphere) does the force point? Indicate why you answer what you answer, dressing up the picture above to illustrate what happens.
Short Problem 21.

You are given four capacitors, each with a capacitance of C. Discover an arrangement of these capacitors in series and/or parallel combinations that has a net capacitance of C.
Short Problem 22.

What are the four values of $\delta = kd \sin \theta$ for the first four interference minima produced by five slits. Should be able to read them right off the phasor pictures...
Short Problem 23.

In the figure above, a frog is shown that is being levitated by a superpowerful magnetic field. Is the frog being levitated because it is:

a) diamagnetic
b) dielectric
c) paramagnetic
d) ferromagnetic
e) a conductor
Short Problem 24.

problems/short-high-pass-filter.tex

Draw an arrangement of (your choice of) L, R and C that can be used as a “high pass” filter (one that passes high frequencies but blocks low frequencies). Indicate the two points where the output voltage should be sampled. Note that you do not have to use all three of the circuit elements.
Short Problem 25.

How does a lightning rod work? (SHORT answer with picture(s) and the essential physics.)
In the figure above, two bar magnets are held near two circular loops of conducting wire with many turns and given a sharp pull downward as shown. On the figure, indicate the direction of the induced magnetic forces on the two loops (this can be done by drawing the force arrows, by using words like “up”, “down”, or “sideways to the left”, or both).
Short Problem 27.

Suppose you are given an electromagnetic field whose equations are:

\[\vec{E} = \hat{x}E_0 \sin(kz - \omega t) \]
\[\vec{B} = \hat{y}B_0 \sin(kz - \omega t) \]

Answer the following questions about it. You may use any or all of \(\epsilon_0, \mu_0, c \) in your answers in addition to the actual parameters of the fields.

a) What is the magnitude \(B_0 \) in terms of \(E_0 \)?

b) What is the direction of propagation of the electromagnetic field?

d) What is the instantaneous Poynting Vector for this electromagnetic field?

e) What is the time average intensity of this field in terms of \(E_0 \)?

f) What radiation force would be exerted by this field on a reflective screen of area \(A \) held perpendicular to the direction of propagation?
Short Problem 28.

A conducting wire of resistivity ρ, length L and cross sectional area A is carrying current I. Is the wire equipotential? (Briefly explain your answer.)
Short Problem 29.

What are Kirchoff’s Rules? Also (and still for credit!) what physical principle does each rule correspond to?

a)

b)
Short Problem 30.

Why are transformer cores generally made of thin slices of laminated iron separated by a thin insulating layer? I’m interested in knowing “why laminated”, not “why iron” (although feel free to answer both).
Short Problem 31.

problems/short-lightning-rod.tex

Lightning rods do not attract lightning, they prevent it. Draw a simple schematic of the ground, an approaching charged cloud, and a lightning rod, and show with arrows how this can occur. Name the effect or describe physically how this can occur gradually, given that air is an insulator.
Short Problem 32.

problems/short-low-pass-filter.tex

Draw an arrangement of (your choice of) L, R and C that can be used as a “low pass” filter (one that passes low frequencies but blocks high frequencies). Indicate the two points where the output voltage should be sampled.

Note that you do not have to use all of the circuit elements.
Short Problem 33.

Many exercycles come with a knob that can be turned one way or another to increase or decrease the “resistance” of the pedals. However, it is not possible to systematically increase the resistance by means of friction (with, for example, a brake shoe) because it would soon wear out. So they use magnets instead. Draw a sketch of a possible magnetic brake below, and indicate the physical principle upon which it would work. Where does the extra work one does pushing the pedals go?
Short Problem 34.

a) Is the magnetic field inside a paramagnetic material greater than or less than an applied external magnetic field? (Assume that the material is somewhat above the Curie temperature if it has one.)

b) What happens to a paramagnetic material cooled below the Curie temperature?

c) Is the magnetic field inside a diamagnetic material greater than or less than an applied external magnetic field?
Short Problem 35.

Why are big telescopes almost invariably built with a primary mirror (reflector) instead of a lens (refractor)? To put it another way, what aberration is peculiar to a lens and particularly exacerbated by the long path length of the rays?

Short Problem 36.

problems/short-move-a-wire-loop.tex

A conducting loop of wire (with a small but finite resistance) sits in and perpendicular to a powerful magnetic field. You grab the loop and try to pull it out of the field. The loop (circle one):

a) Resists your attempt and heats up as you move it.
b) Resists your attempt and remains at the same temperature.
c) Is expelled from the field in the direction you pull.
d) Is expelled from the field in the *opposite* direction to your pull.
e) Does not move.
Short Problem 37.

problems/short-nearsighted-eye.tex

Draw a representation of a nearsighted eye, indicating the focal length of the relaxed lens. Then draw the eye with the appropriate corrective lense in front and indicate with rays how it “fixes” the problem.
Short Problem 38.

problems/short-oil-on-water.tex

A drop of oil ($n_o = 1.25$) floats on top of water ($n_w = 4/3$) creating a very think film as it spreads out. At first you see a riot of vaguely toxic rainbow colors in the reflection of white overhead light, but then, as its thickness gets to be much less than any wavelength in visible light, it either turns bright (reflecting all colors like a mirror) or dark (transmitting all colors and reflecting none of them).

Which? Justify your answer with a picture and a few words explaining.
Short Problem 39.

Unpolarized radiation is incident upon a reflecting surface between two different media with indices of refraction as shown. Draw E-field vectors onto the figure that illustrating the polarization of the transmitted and reflected rays. Write down the Brewster formula for the angle of incidence at which the reflected ray is completely polarized in terms of n_1 and n_2.
Short Problem 40.

Unpolarized radiation is incident upon a molecule and is scattered at right angles as shown. State the rule we use to determine the polarization of each of the light rays and draw the polarization into the figure in the usual way.
Short Problem 41.

It is sunset on a clear day. You are wearing your trusty polaroid sunglasses. You look straight overhead and the sky is somewhat dark. You slowly turn your body to the right (continuing to look up) and the sky gradually lightens to become maximally bright. At this moment your body is facing(circle correct answer):

a) North
b) East
c) South
d) West
e) East or West
f) North or South
g) Cannot tell from information given

Draw a set of diagrams and write a paragraph or two showing ALL OF THE PHYSICS that explains your answer – include descriptions BOTH of the polaroid sunglasses themselves and the light scattering off of molecules in the atmosphere overhead.
Short Problem 42.

You are out fishing and your polarized sunglasses do great job of reducing reflected glare off the water in the late afternoon. Do they also reduce the scattered glare from the sky just above the horizon at noon? No good just answering yes or no, have to draw a picture to indicate why to get credit.
Short Problem 43.

The figure above portrays the tracks left by a positron and an electron (labelled) in a cloud chamber. Is the magnetic field that bends their tracks (predominantly) into or out of the paper?
Short Problem 44.

What is the potential at the origin/center of the ring of total charge Q and radius R shown?
Short Problem 45.

problems/short-potential-from-field.tex

You are given the function that represents the electric field, $\vec{E}(\vec{r})$. How (with what expression or relation) can you find the electric potential such that it is zero at the specific point \vec{r}_0?
Short Problem 46.

problems/short-potential-half-circle-charge.tex

(5 points) A half-ring of total charge Q and radius R sits symmetrically across the x-axis around the origin as shown in the figure above. What is the electric potential at the origin?
Short Problem 47.

(5 points) A charge Q sits close to the inner surface of a hollow conductor as shown above. Is the potential at A:

a) Greater than the potential at B.
b) Equal to the potential at B.
c) Less than the potential at B.
d) Zero.
e) Negative relative to infinity.

Justify your answer with some SHORT reasoning or by indicating the rule it follows from.
Short Problem 48.

What is the potential at the center of the square of four charges shown? Note that the square sides have length $2a$, symmetrically arranged around the origin.
Short Problem 49.

The average power output of Mr. Sun is roughly $P_{\text{sun}} = 3.83 \times 10^{26}$ watts. We (Mr. Earth) are roughly $R_{\text{earth orbit}} = 1.5 \times 10^{11}$ meters away. Mr. Earth itself is about $R_{\text{earth}} = 6.4 \times 10^6$ meters in radius. Just for grins, approximately how much solar energy strikes the earth in a year? [Note: You don’t have to give me a number (although you certainly may), but you must draw the right picture and give me an answer that makes dimensional and logical sense in terms of $P_{\text{sun}}, R_{\text{earth}}, R_{\text{earth orbit}},$ and $T \approx \pi \times 10^7$ (seconds per year).]
In the figure about, particles \(a, b \) and \(c \) enter a magnetic field travelling in a straight line as shown. All three particles have the same *velocity* as they enter. Circle all of the statements below that *could* be consistent with the observed trajectories of the particles.

a) All the particle have the same mass \(m \), and \(q_a > q_b > q_c \).

b) All of the particles have the same charge \(q \), and have mass \(m_a < m_b < m_c \).

c) All of the particles have the same mass, and \(q_c > q_b > q_a \).

d) All of the particles have the same charge \(q \), and have mass \(m_c < m_b < m_a \).

e) The particles have \(q_c > q_b > q_a \) and \(m_c < m_b < m_a \).
Short Problem 51.

In the figure above, a charge Q is uniformly distributed in the grey region of each sphere. The relative sizes of the spheres are as shown. Rank the distributions from the least potential energy to the most potential energy (that is, your answer might be a-b-c or c-a-b or...).
Short Problem 52.

A plane circular loop of wire with \(N\) turns, radius \(R\), and current in each turn \(I\) is shown above and produce a magnetic field with strength \(B\) (out of the page) at the geometric center of the loop. Four possible sets of relative values of \(N, R, I\) are given below. Rank the magnitudes of \(B\) from least to greatest for the four cases where equality might be an answer (so an answer might be: \(a < b < c = d\)).

a) \(N = N_0, R = R_0, I = I_0\)
b) \(N = 2N_0, R = 2R_0, I = I_0\)
c) \(N = 2N_0, R = R_0, I = I_0/2\)
d) \(N = 2N_0, R = 2R_0, I = 2I_0\)
Short Problem 53.

problems/short-rank-the-magnetic-forces.tex

In the figure above, several arrangements of two long straight parallel wires separated by multiples or fractions of d and carrying currents that are multiples or fractions of I are shown. Rank the magnitude of the magnetic force of attraction between the two wires in the figures (separated by the dashed lines), where equality is permitted. That is, a possible answer might be $A > C = B > D$.
Short Problem 54.

Three objects that each have a total charge Q uniformly distributed in the grey region are pictured above, rotating about the z-axis (which is an axis of symmetry for the object). The horizontal dimension (width) of each object is the same, as shown. Rank the magnetic moments of the objects from smallest to largest, where equality is a possible answer. That is an answer might be $A < B = C$.
Short Problem 55.

In the figure above, three RC circuits are shown, built out of equal resistances R and capacitances C. The circuits are all charged to a total charge Q and then discharged through the switch at the same time. Rank the circuits in the order of fastest discharge, where equality is possible (so e.g. $A = B > C$ is a possible answer).
Short Problem 56.

What is Rayleigh’s criterion for the angular separation of two objects such that their images are minimally resolved if the light from the objects has wavelength λ and passes through a circular aperture of diameter $D \gg \lambda$?
Short Problem 57.

What is Rayleigh’s criterion for the angular separation of two objects such that their images are minimally resolved if the light from the objects has wavelength λ and passes through a circular aperture of diameter $D \gg \lambda$?
Short Problem 58.

problems/short-RC-RL-time-constants.tex

What are the (exponential) time constants of RC and RL circuits? (If you don’t remember them or what’s on top and what’s on the bottom, feel free to do a two line derivation to remind yourself; it’s what I’d do.)
Short Problem 59.

One can make a telescope by using a \emph{mirror} instead of a \emph{lens} for the primary (objective) stage of magnification. Using what you know about how telescopes work as inspiration, draw a schematic for such a (Newtonian) reflecting telescope. The diagram should indicate how the focal lengths of primary mirror and eyepiece lens are placed so that one can view distant objects, magnified, with a relaxed normal eye. You do not have to draw an actual ray diagram, and you may or may not choose to use a small flat mirror in the barrel of the telescope to allow you to put the eyepiece on the side.
Short Problem 60.

A network of resistors with various values given as multiples of a reference resistance R is drawn above. Find the total resistance between points A and B in terms of R.
Short Problem 61.

A network of resistors with various values given as multiples of a reference resistance R is drawn above. Find the total resistance between points A and B in terms of R.
Short Problem 62.

Light from a sodium lamp has a double line in the yellow part of the spectrum with wavelengths $\lambda_1 = 589.6$ nm and $\lambda_2 = 589.0$ nm ($\Delta \lambda \approx 0.6$ nm correct to the number of significant digits displayed). What is the minimum number of slits that must be illuminated within the coherence length of the light so that a diffraction grating that can resolve the lines:

a) In first order (for $m = 1$)?

b) In second order (for $m = 2$)?

You may approximate freely, e.g. you can assume that $\lambda_1 \approx \lambda_2 \approx 600$ nm to get your answer without a calculator...
Short Problem 63.

On the axes provided above, draw an approximate graph of the average power $P_{av}(\omega)$ dissipated in a series LRC AC circuit when $Q = 20$. The figure should not be insanely out of scale for the value of Q.
Short Problem 64.

On the axes provided above, draw two qualitatively correct resonance curves for $P_{av}(\omega)$, the average power delivered to a damped, driven LRC circuit: one for $Q = 4$ and one for $Q = 10$. The (labelled!) curves must correctly and proportionately exhibit $\Delta \omega$, the full width at half max. Be sure to indicate the algebraic relation between Q and $\Delta \omega$ you use to draw the curves.
Short Problem 65.

Explain in very simple terms why you can see clearly underwater wearing a diving mask but see everything as a blur when your eyes are in direct contact with the water. (Pictures would certainly help your explanation.)
Draw an approximate graph of $P_{av}(\omega)$ for a series LRC circuit for which $Q = 16$. The width of the curve should be to scale. Write down the expression for Q that helps you determine how to draw it to scale, that is, its full width at half maximum.
Short Problem 67.

Draw an approximate graph of $P_{av}(\omega)$ for a series LRC circuit for which $Q = 8$. The width of the curve should be to scale. Write down the expression for Q that helps you determine how to draw it to scale, that is, its full width at half maximum.
Short Problem 68.

Suppose that the intensity of incoming sunlight is 1000 Watts/meter2 at the surface of the earth. At a certain time of day, the angle of incidence (relative to a unit vector normal to the surface) is 60$^\circ$. The efficiency of the solar panel is 10%. How much power can one collect from five square meters of solar panels at this time of day and angle of incidence?
Short Problem 69.

Why would one make a parabolic lens or mirror? Why are big telescopes almost invariably built with a primary mirror instead of a lens? Why are the optics of good binoculars “coated” with a thin film? Three short, short answers – just indicate that you know the problem being solved by naming it.
Short Problem 70.

What is the total capacitance of three capacitors C_1, C_2, and C_3 in series?
Short Problem 71.

On the figure above there are three “eyeballs” schematically represented. On each figure draw:

a) The correct location of the focal point of the relaxed eye of each kind (in front of, on, or behind the retina).

b) The lenses required to correct nearsightedness and farsightedness, drawn in front of each eye.

c) Complete the two rays given (arising from a very distant object “at infinity”), tracing their path through the lenses needed (if any) to the retina.
Short Problem 72.

Three identical light bulbs are arranged in a simple DC circuit as drawn. At a certain time the switch S is closed. Does the brightness of bulb B increase, decrease, or remain the same? Assume that the circuit is powered by an ideal battery with no internal resistance.
Short Problem 73.

Two circular loops of wire are suspended facing each other and carrying no current. A current is suddenly switched on in the first. Does the second loop:

a) move towards the first loop
b) move away from the first loop
c) move sideways (staying at the same distance)
d) remain stationary?
Chapter 5

Long Problems

These, at last, are the meat of the matter – serious, moderately to extremely difficult physics problems. An A" student would be able to construct beautiful solutions, or almost all, of these problems.

Note well the phrase beautiful solutions”. In no case is the answer” to these problems an equation, or a number (or set of equations or numbers). It is a process. Skillful physics involves a systematic progression that involves:

- Visualization and conceptualization. What’s going on? What will happen?
- Drawing figures and graphs and pictures to help with the process of determining what physics principles to use and how to use them. The paper should be an extension of your brain, helping you associate coordinates and quantities with the problem and working out a solution strategy. For example: drawing a free body diagram” in a problem where there are various forces acting on various bodies in various directions will usually help you break a large, complex problem into much smaller and more manageable pieces.
- Identifying (on the basis of these first two steps) the physical principles to use in solving the problem. These are almost invariably things from the Laws, Theorems and Principles chapter above, and with practice, you will get to where you can easily identify a Newtons Second Law” problem (or part of a problem) or an Energy Conservation” (part of) a problem.
- Once these principles are identified (and identifying them by name is a good practice, especially at first!) one can proceed to formulate the solution. Often this involves translating your figures into equations using the laws and principles, for example creating a free body diagram and trans-
lating it into Newton’s Second Law for each mass and coordinate direction separately.

- At this point, believe it or not, the hard part is usually done (and most of the credit for the problem is already secured). What’s left is using algebra and other mathematical techniques (e.g., trigonometry, differentiation, integration, solution of simultaneous equations that combine the results from different laws or principles into a single answer) to obtain a completely algebraic (symbolic) expression or set of expressions that answer the question(s).

- At this point you should check your units! One of several good reasons to solve the problem algebraically is that all the symbols one uses carry implicit units, so usually it is a simple matter to check whether or not your answer has the right ones. If it does, that’s good! It means you probably didn’t make any trivial algebra mistakes like dividing instead of multiplying, as that sort of thing would have led to the wrong units. Remember, an answer with the right units may be wrong, but it’s not crazy and will probably get lots of credit if the reasoning process is clear. On the other hand, an answer with the wrong units isn’t just mistaken, its crazy mistaken, impossible, silly. Even if you can’t see your error, if you check your answer and get the wrong units say so; your instructor can then give you a few points for being diligent and checking and knowing that you are wrong, and can usually quickly help you find your mistake and permanently correct it.

- Finally, at the very end, substitute any numbers given for the algebraic symbols, do the arithmetic, and determine the final numerical answers.

Most of the problems below won’t have any numbers in them at all to emphasize how unimportant this last step is in learning physics! Sure, you should learn to be careful in your doing of arithmetic, but anybody can (with practice) learn to punch numbers into a calculator or enter them into a computer that will do all of the arithmetic flawlessly no matter what. It is the process of determining how to punch those numbers or program the computer to evaluate a correct formula that is what physics is all about. Indeed, with skill and practice (especially practice at estimation and conceptual problem solving) you will usually be able to at least approximate an answer and fully understand what is going on and what will happen even without doing any arithmetic at all, or doing only arithmetic you can do in your head.

As with all things, practice makes perfect, wax on, wax off, and the more fun you have while doing, the more you will learn. Work in groups, with friends, over pizza and beer. Learning physics should not be punishment, it should be a pleasure. And the ultimate reward is seeing the entire world around you with different eyes...
Problem 1.

One kind of simple (and naive!) crystal radio consists of the series LRC circuit drawn above. The antenna-to-ground connection represents an amplitude-modulated AC voltage source $V = V(t) \cos(\omega t)$ where $\omega = 2\pi \times 10^6$ radians/sec. The diode (in series with the earphone of resistance R) is a circuit element that only lets current flow in the direction of the arrow – a one-way gate. The capacitor can be varied to tune the radio.

a) How should the capacitor be set (with respect to the value of L) to tune the radio to deliver the maximum current through the earphones (resistance R) and what is that maximum current? Assume that the diode has negligible resistance and capacitance and that the amplitude-modulation is slow relative to ω^{-1}.

b) Describe qualitatively, with a suitable picture or figure, how the diode allows the amplitude-modulated signal ($V(t)$) to be extracted from the carrier frequency ω.
You are building an FM radio ($f \approx 100$ MHz) and have a power supply and circuitry that generates annoying harmonics in the low frequencies (especially 60 Hz, but also AM stations around 1 MHz contribute) that contaminate your high frequency output and causes your signal to “buzz”. Naturally, you have a parts box that contains resistors and capacitors. The range of resistors available runs from 1 Ohm through 100,000 Ohms (to one significant digit – don’t bother with resistances like 3.845 Ohms as their rated value is generally accurate only to 10% or so anyway – call it 4 Ohms instead), and you have capacitors that range from 1 microfarad to 1 picofarad, but only in multiples of ten (e.g. 10^{-6} farads, 10^{-7} farads, ... , 10^{-12} farads).

Design a “high pass” filter built from one resistor and one capacitor (where you get to choose suitable values for R and C as well as their arrangement) that will output more than half the input voltage for all frequencies greater than 10 MHz but strongly attenuates the output voltage for frequencies more than a bit less than this, and derive the expression (for your circuit) for $V_{\text{out}}/V_{\text{in}}$ as a function of R, C and ω. Draw the circuit in the space above, of course, clearly indicating where V_{in} and V_{out} go.

(Hints and Notes: This was a homework problem, so you should know what a high pass filter is. If you don’t remember exactly, consider a series combination of R and C and think about what happens to the voltage drops across each one as a function of ω. Your “output voltage” will come from a parallel connection across one or the other.)
Problem 3.

The LR circuit above is connected to an alternating voltage $V_0 \cos(\omega t)$ and the circuit run until it is in a steady state. The following problem steps lead you through an exploration of this circuit so that you end by deducing its purpose and have all quantitative relations in hand to be able to e.g. select L and R to accomplish a given design goal.

a) Write Kirchhoff’s voltage rule for this circuit loop.

b) Draw the phasor diagram for the voltage, noting that the current must be in phase with the voltage across the resistor.

c) From this phasor diagram and the relations between maximum current, reactance or resistance of the circuit elements, and the maximum voltage drop across them, deduce and draw the phasor diagram for the impedance Z of the circuit, clearly labelling the phase angle ϕ.

d) What is the phase angle ϕ and hence the power factor of this circuit (as a function of L, R, and ω)?

e) Find the voltage drops across the resistor V_R and sketch it out qualitatively as a function of frequency. If R represents a load of some sort (perhaps the inputs to an amplifier) to which one is sending frequency-encoded information, what kind of filter is this circuit?
Problem 4.

problems/AC-Circuits-Parallel-LRC-1.tex

Draw a parallel LRC circuit above with an alternating voltage $V_0 \cos(\omega t)$, clearly labeling the (presumably given) L, R, and C.

a) Draw the phasor diagram that represents Kirchhoff’s rule for the currents around the loop. What is the form of the total current as a function of time?

b) Draw the phasor diagram from which the impedance Z can be determined and write down its value in terms of the givens. Also indicate the value of the phase angle δ in terms of the givens.

c) What is the resonant frequency ω_0 for the circuit in terms of the givens?

d) Does the average power delivered to the circuit depend on ω? Why or why not?
Problem 5.

Suppose you are given R, C, L, and an applied voltage $V_0 \sin(\omega t)$. What is:

a) The impedance Z of the circuit?

b) The power $P(t)$ dissipated by the resistor?
Problem 6.

A parallel LRC circuit connected across a variable AC voltage source $V = V_0 \sin(\omega t)$ is drawn above. Find (in terms of L, R, C, V_0, ω and any quantities you define in terms of these such as χ_L or χ_c):

a) The current $I_{L,R,C}(t)$ in each element of the circuit. Don’t forget the phase shifts (if any), and note that we are getting current from voltage – be careful!

b) Now find the current $I(t)$ in the primary supply wire (as shown in the figure above) with all terms, e.g. any required phase δ, and the impedance Z defined and (at the end) numerically evaluated. You will probably need to draw the appropriate phasor diagram to help you figure this out unless you managed to memorize the entire LRC circuit chapter results.
Problem 7.

problems/AC-Circuits-Parallel-LR-LC.tex

![Phasor diagram](image)

a) Draw (two) qualitatively correct phasor diagrams that show the voltage drops and gains for each of the two loops shown. Be sure to correctly indicate the phases of the currents I_1 and I_2 relative to the phase of the applied voltage and the voltage drop across each element.

b) Write the Kirchoff’s Law (Voltage) for each of the two loops shown that corresponds to your phasor diagram.

c) From a) and b), find the impedance of each loop Z_1 and Z_2, the current phase of each loop δ_1 and δ_2, and write down an expression for $I_1(t)$ and $I_2(t)$. Try to work neatly enough that I can grade this.

d) For extra credit, use Kirchoff’s Law (current) to find the total impedance of the circuit, the total current provided by the voltage, and the total power provided by the voltage.
Problem 8.

problems/AC-Circuits-Series-LRC-1.tex

Draw a series LRC circuit above with an alternating voltage \(V_0 \cos(\omega t) \), clearly labeling the (presumably given) \(L \), \(R \), and \(C \).

a) Draw the phasor diagram that represents Kirchhoff’s rule for the voltages around the loop.

b) Draw the phasor diagram for the impedance \(Z \) and write down its value in terms of the givens. Also indicate the value of the phase angle \(\delta \) in terms of the givens.

c) What is the resonant frequency \(\omega_0 \) for the circuit in terms of the givens?

d) Draw a semi-quantitatively correct graph of the average power \(P(\omega) \) delivered to the circuit for \(Q = 10 \), clearly indicating the location of \(\omega_0 \). At the very least, the graph scales should be arguably consistent with the value of \(Q \).
Problem 9.

Draw a series LRC circuit connected across an alternating voltage source. Suppose $R = 40\,\Omega$, $C = 0.2\,\mu\text{f}$, $L = 0.80\,\text{mH}$, and the frequency of the applied voltage is $\omega = 10^5\,\text{radians/second}$. What is:

a) The impedance Z of the circuit?

b) The resonant frequency of the circuit, ω_0?
The LRC circuit above is connected to an alternating voltage $V_0 \cos(\omega t)$ and the circuit is run until it is in a steady state. Assume that the current in this circuit is given by $I_0 \cos(\omega t - \delta)$.

a) Write Kirchoff’s voltage rule for this circuit loop.

b) Draw the phasor diagram for the voltages in the loop, noting that the current must be in phase with the voltage across the resistor. Clearly label e.g. δ.

c) Draw the related figure for the impedance Z for the circuit. Write an algebraic expression for Z in terms of R, L, C and ω.

d) Write an algebraic expression for δ in terms of R, L, C and ω.

e) Draw a qualitatively correct figure of $P_{av}(\omega)$ (the average power as a function of ω) for the oscillator if it has $Q = 10$ and a resonant frequency ω_0.

Problem 10.

problems/AC-Circuits-Series-LRC-3.tex
Problem 11.

At time $t = 0$ the capacitor in the LC circuit above has a charge Q_0 and the current in the wire is $I_0 = 0$ (there is no current in the wire).

a) Write Kirchoff's voltage rule for this circuit loop.

b) Turn it into a “simple harmonic oscillator” differential equation for Q. What is the angular frequency ω of this oscillator?

c) Write down (or derive, if necessary) $Q(t)$.
Problem 12.

At time $t = 0$ the capacitor in the LRC circuit above has a charge Q_0 and the current in the wire is $I_0 = 0$ (there is no current in the wire).

a) Find (or remember) $Q(t)$. Don’t forget to define ω', the shifted frequency of this system.

b) Draw a qualitatively correct picture of $Q(t)$ in the case that the oscillation is only weakly damped.

. Show all your work. Remember that $Q(t)$ (in the end) is a real quantity, although it may be convenient for you to assume that it is complex while solving the problem.
Problem 13.

In the picture above, a circular capacitor is being charged by a current I. Using Ampere's Law and the Maxwell Displacement Current, derive a formula for the magnitude of the magnetic field at the two points shown (one at radius $a < R$ from the axis of the capacitor in between the plates, one at radius $b > R$ from the axis of the capacitor outside of the plates).
Problem 14.

A cylindrical beam of particles each with charge q and mass m has a uniform initial (charge) density ρ and radius R. Each particle in the beam is initially travelling with velocity v parallel to the beam’s axis. We will discuss the stability of this beam by examining the forces on a particle travelling in the beam at a distance $r < R$ from the axis (the center of the cylinder).

a) Find the approximate force on a particle at radius r caused by the other particles in the beam. You will need to use Gauss’s law to calculate the electric field at radius r. Describe your work, and do not skip steps; show that you understand Gauss’s law. Make a sketch as needed.

b) Find the magnetic force on a particle at radius r caused by the other particles in the beam. Use Ampere’s law to calculate the magnetic field. Describe your work, and do not skip steps; show that you understand Ampere’s law. Make a sketch.

c) (5 points extra credit) At what beam velocity do the forces in a) and b) exactly balance? Given the unbalanced electric force in the rest frame of the particles from a), offer a hypothesis that can explain both measurements.
Problem 15.

problems/beam-electrostatics.tex

\textbf{Beam Electrostatics:} A cylindrical beam of particles each with charge q and mass m has a uniform initial (charge) density ρ and radius R. Each particle in the beam is initially travelling with velocity v parallel to the beam’s axis. Consider the stability of this beam by examining the forces on a particle travelling in the beam at a distance $r < R$ from the axis (the center of the cylinder).

Find the approximate force on a particle at radius r caused by the other particles in the beam. You will need to use Gauss’s law to calculate the electric field at radius r. Describe your work, and do not skip steps; show that you understand Gauss’s law. Make a sketch as needed.
Problem 16.

Beam Magnetostatics: Not all charged particles travel inside conductors; in the particle beam produced by an accelerator they fly freely together through a vacuum. In the figure above, a cylindrical beam of particles each with charge q and mass m has a uniform initial (charge) density ρ and radius R. Each particle in the beam is initially travelling with velocity v parallel to the beam’s axis.

a) Use Ampere’s law to calculate the (average) magnetic field at points inside the beam.

b) Find the average magnetic force on one of the particles at radius r caused by the other particles in the beam.

Things to think about: Does this force pull the beam tighter together (compress it) or spread it further apart (disperse it)? Is there another force that might oppose it?
Problem 17.

In the figure above, your job is to help design a bending magnet in a beam leg in an accelerator that directs the beam at particular targets. A beam of protons inside a beam pipe is incident on a circular bending magnet that creates a uniform field in the circular region drawn above. You need to determine the magnetic field \vec{B} (strength and direction) that will cause it to bend around to come out of the magnet into the beam pipe travelling to the right as shown. Your answer should be given in terms of the radius of the magnet R (which, note, is the radius of curvature of the beam as well for a bend angle of $\pi/2$ as shown), the kinetic energy of the entering particle E, the proton mass m_p, and the proton charge $+e$. You can assume that the field cuts off sharply at the edge of the magnet.
A Betatron (pictured above with field out of the page) works by increasing a non-uniform magnetic field in such a way that electrons of charge e and mass m inside the “doughnut” tube are accelerated by the E-field produced by induction from the average time-dependent magnetic field $B_1(t)$ inside r (via Faraday’s law) while the specific magnitude of the magnetic field at the radius $B_2(t)$ bends the electrons around in the constant radius circle of radius r.

This problem solves for the “betatron condition” which relates $B_1(t)$ to $B_2(t)$ such that both things can simultaneously be true.

a) First, assuming that the electrons go around in circles of radius r and are accelerated by an \hat{E} field produced by Faraday’s law from the average field B_1 inside that radius, solve for that induced E field in terms of B_1 and r.

b) Second, assuming that the electrons are bent into a circle of radius r by the specific field at that radius, B_2, relate B_2 to the momentum $p = mv$ and charge e of the electron, and the radius r.

c) Third, noting that the force F from the E-field acting on the electron with charge e in part a) is equal to the time rate of change of p in the result of b) substitute, cancel stuff, and solve for dB_1/dt in terms of dB_2/dt. If you did things right, the units will make sense and the relationship will only involve dimensionless numbers, not e or m.

Cool! By determining how to relate the average field inside r to the actual field
at r, you’ve just figured out how to build one of the world’s cheapest electron accelerators!
Problem 19.

A circular loop of wire of radius \(a \) is carrying a current \(I \) counterclockwise (viewed from above) around the \(z \)-axis. It is located in the \(x-y \) plane, centered on the origin as drawn.

a) Using the Biot-Savart law, find the magnetic field at an arbitrary point on the \(z \)-axis. Show all work (don’t just write the answer down if you remember it from your homework).

b) What is the magnetic moment of this current loop \(\vec{m} \)? You don’t have to derive this, you can just write it down.

c) Find the field in the (hopefully familiar) limit \(z \gg a \) and show that it is the familiar field of a magnetic dipole on its axis.
You have a candle and two lenses with a focal length of 10 cm (each). You wish to cast a real image of the candle right side up upon a screen. You want the image size (magnitude) to be exactly two times the size of the actual candle.

a) Determine the set of locations of the object, the lenses, and the image/virtual objects such that this condition is satisfied and so that the absolute value of the magnification of the second lens is $|m_2| = 1$.

b) Carefully place the components on the figure above and draw a ray diagram to locate the image, to scale, in agreement with your answers to a. Be sure to include the 3 rays that uniquely specify the image location, for each lens.

Don’t burn yourself on the candle.
Problem 21.

A candle 20 cm high is placed 40 cm in front of the center of a thin lens. This lens has a focal length of 10 cm. A second thin lens, also with a focal length of 10 cm, is placed 40 cm from the first. Find:

a) The location s' of the image due to the first lens and its magnification. Indicate whether the image is real or virtual.

b) The location s'' of the image (of the image of the first lens) of the second lens. Find the overall magnification, and indicate if the final image is real or virtual.

c) Draw a ray diagram to locate the image in agreement with your answers to a and b. Be sure to include and label 3 rays that uniquely specify the image locations.
Problem 22.

An isolated conducting sphere of radius R is surrounded by a dielectric shell of thickness R with relative permittivity ε_r.

a) If the sphere has a charge Q on it, what is the electric field in all space?

b) What is the potential of the sphere?

c) Find its capacitance.

d) What is the total energy of the charged sphere?
Problem 23.

In the figure above, a parallel plate capacitor with cross-sectional area A and plate separation d is drawn. The space between the plates is filled with two dielectrics with relative permittivities $\varepsilon_r = \varepsilon_1$ and $\varepsilon_r = \varepsilon_2$ of thickness d and area $A/2$ as shown. A (free) charge Q is placed on the upper plate and $-Q$ is similarly placed on the lower plate.

Find the capacitance of this arrangement any way you like.
Problem 24.

In the figure above, a parallel plate capacitor with cross-sectional area A and plate separation d is drawn. The space between the plates is filled with two dielectrics with relative permittivities $\epsilon_r = \epsilon_1$ and $\epsilon_r = \epsilon_2$ of equal thickness $d/2$ as shown. A (free) charge Q is placed on the upper plate and $-Q$ is similarly placed on the lower plate.

Find the capacitance of this arrangement any way you like.
Problem 25.

In the figure above an electric dipole is shown consisting of two equal and opposite charges $\pm q$ separated by a distance $2a$ lined up with the y-axis and centered on the origin. A point P with arbitrary coordinates (x, y) is shown.

a) (5 points) Find an expression for the vector field \vec{E} at the point P in Cartesian coordinates. Recall that a vector is a magnitude and a direction, and can be specified by e.g. E_x and E_y, by $|\vec{E}|$ and θ

b) (2 points) Draw a proportionate picture of the resultant electric field vector at P (showing its approximately correct direction for reasonable representations of the relative field strengths for each charge).

c) (3 points) Show that in the limit $x \gg a, x \gg y$, the field near the x-axis is roughly $E_x \approx -kep/x^3, E_y \approx 0$ (where p is the magnitude of the dipole moment).
Problem 26.

A conducting shell concentrically surrounds a point charge of magnitude Q located at the origin. The inner radius of the shell is R_1 and the outer radius R_2.

a) Find the electric field \vec{E} at all points in space (you should have three answers for three distinct regions).

b) Find the surface charge density σ on the inner surface of the conductor. Justify your answer with Gauss’s law.
A Christmas tree ornament is constructed by vapor-depositing a thin, transparent film (with $n = 1.25$) on a “thick” (~ 2 mm) spherical glass ($n = 1.5$) bubble as drawn schematically above. The thin plastic film is not quite uniform in thickness, and this variation produces brilliant streaks of color in the reflected light.

a) What does the light reflected from the ornament look like where $t \sim 0$ (or $t \ll \lambda$, at any rate). Explain the physics behind your answer with a single sentence and/or diagram.

b) At what thickness $t \sim \lambda > 0$ of the film will the reflected light first have a constructive interference maximum at $\lambda = 550$ nm (where λ, recall, is the wavelength in free space where $n = 1$)?

c) At that thickness, will any other visible wavelengths have an interference maximum or minimum? Justify your answer – just ‘yes’ or ‘no’ (even if correct) are incorrect.
Charges of $-q$ are located at both $y = a$ and $y = -a$, and a charge of $+2q$ is located at $y = 0$ on the y-axis. This arrangement of charge can be visualized as two opposing dipoles.

a) Find the electric field (magnitude and direction) at an arbitrary point on the x-axis.

b) What is nonzero term in the expansion of the electric field evaluated far from the charges, i.e. $-x >> a$? Your answer should be a series of terms in inverse powers of x.

Problem 28.

problems/coulomb-dipole.tex
Problem 29.

problems/dipole-quadrupole.tex

Charges of \(-q\) are located at both \(y = a\) and \(y = -a\), and a charge of \(+2q\) is located at \(y = 0\) on the y-axis. This arrangement of charge can be visualized as two partially opposing dipoles.

a) Find the electric field (magnitude and direction) at an arbitrary point on the x-axis.

b) What are the first two nonzero terms in the expansion of the electric field evaluated far from the charges, i.e. for \(x >> a\)? Your answer should be a series of terms in inverse powers of \(x\).
Problem 30.

problems/draw-quadrupole-field.tex

(5 points) In the figure above, four charges of equal magnitude are arranged in a square as shown. Sketch the field lines you might expect to result from this arrangement in the plane of the figure. Hint: Remember that field lines flow out from positive charges, flow into negative charges, and cannot cross (the field is well defined in direction at all points in space). What kind of field is this?
Problem 31.

Charges of $+q$ are located at the two bottom corners of an equilateral triangle with sides of length a. A charge of $-2q$ is at that top corner. This arrangement of charge can be considered two dipoles oriented at 60° with respect to one another.

a) Find the electric field (magnitude and direction) at an arbitrary point on the y-axis above/outside the triangle.

b) What are the first two terms in the binomial-theorem-derived series for the electric field evaluated far from the charges, i.e. $-y >> a$?

\footnote{Hint: since the net charge balances ($=0$), we expect no monopolar part (like $1/x^2$). Since the dipoles do not quite balance, we might see a dipolar part (like $1/x^3$). However, since the dipoles are not parallel we might expect to see a significant quadrupolar term that varies like $1/x^4$ as well.}
Problem 32.

problems/E-field-of-ring-on-axis.tex

(5 points) Find the electric field at an arbitrary point on the z axis for the ring of charge of radius R with charge per unit length λ above.
Problem 33.

Charges of $-q$ are located at both $y = a$ and $y = -a$, and a charge of $+2q$ is located at $y = 0$ on the y-axis. This arrangement of charge can be visualized as two opposing dipoles.

a) Find the electric field (magnitude and direction) at an arbitrary point on the x-axis.

b) What is nonzero term in the expansion of the electric field evaluated far from the charges, i.e. $-x >> a$? Your answer should be a series of terms in inverse powers of x.

Problem 34.

A spherical conducting shell of radius R is pictured above. It is charged up to a total charge Q_0. Find the potential energy of the charged sphere.

(Note: There are two ways to do this problem, one very easy and one a bit harder. Both should be within your capabilities.)
Problem 35.

Charges of $+q$ are located at the two bottom corners of an equilateral triangle with sides of length a. A charge of $-2q$ is at that top corner. This arrangement of charge can be considered two dipoles oriented at 60° with respect to one another.

a) Find the electric field (magnitude and direction) at an arbitrary point on the y-axis above/outside the triangle.

b) What are the first two surviving terms in the binomial-theorem-derived series for the electric field evaluated far from the charges, i.e. $-2q$ for $y >>$ a?

2Hint: since the net charge balances ($=0$), we expect no monopolar part (like $1/x^2$). Since the dipoles do not quite balance, we might see a dipolar part (like $1/x^3$). However, since the dipoles are not parallel we might expect to see a significant quadrupolar term that varies like $1/x^4$ as well.
Problem 36.

A rigid rectangular loop of wire of length L, width W, and mass m has a total resistance R and is vertically suspended in a horizontal uniform magnetic field \vec{B}_{in} as shown. At time $t = 0$ it is released and falls under the influence of gravity. Note well that the bottom of the loop is not in the region of uniform field! Find:

a) The current $I(v)$ induced in the loop when its downward speed is v. Indicate the direction of this current on the figure above.

b) The net force on the wire loop as a function of v.

c) The “terminal velocity” of the wire loop \vec{v}_t (this is the velocity it must have when all forces on the wire balance).
Problem 37.

Find the electric field (magnitude and direction) at the origin, given the uniform circular arc of charge depicted in the figure above.
Problem 38.

A segment of an “infinitely long” cylinder of uniform charge density ρ and radius R is pictured above. Find the electric field at all points in space.
Problem 39.

Find the electric field on the (z) axis of a disk of charge of radius R with uniform surface charge distribution σ by direct integration.
Problem 40.

A half-ring of total charge Q and radius R sits symmetrically across the x-axis around the origin as shown in the figure above.

a) Find the electric field at the origin (magnitude and direction) from direct integration.

b) What is the electric potential at the origin?
Find the three currents I_1, I_2 and I_3 in the figure above, and clearly indicate their direction on the figure. Note that you’ll likely have to assume a direction for each current in order to solve the problem, so go back and put your final direction(s) back in on the figure when you are done!
Problem 42.

Find the three currents I_1, I_2 and I_3 in the figure above, and clearly indicate their direction on the figure. Note that you’ll likely have to assume a direction for each current in order to solve the problem, so go back and put your final direction(s) back in on the figure when you are done!
Problem 43.

Find the three currents I_1, I_2 and I_3 in the figure above, and clearly indicate their direction on the figure. Note that you’ll likely have to assume a direction for each current in order to solve the problem, so go back and put your final direction(s) back in on the figure when you are done!
Problem 44.

Four positive charges of magnitude $+q$ are located at positions $(0, a, 0)$, $(0, -a, 0)$, $(a, 0, 0)$, $(-a, 0, 0)$ on the $x-y$ plane as shown. Find the electrostatic field at an arbitrary point on the z axis.
Problem 45.

The arrangement of lenses that makes up a “Galilean” compound microscope is pictured above. The focal lengths of the objective and eyepiece lenses are $f_o = 2\, \text{cm}$ and $f_e = -1\, \text{cm}$. The tube length is $L = 20\, \text{cm}$.

- Find s (the object distance from the objective lens) such that the final image viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

- Draw the ray diagram from which you can find the overall magnification. NOTE WELL the tube length goes to the second (negative) focal point of the eyepiece. Why?

- From this diagram, find the overall magnification. Explain each part (that is, what are the separate roles of the objective and eyepiece).

- What is the advantage of this kind of microscope compared to one with two converging lenses?
Problem 46.

problems/galilean-telescope.tex

Draw below a Gallilean telescope (one built with a converging primary lens and a \emph{diverging} eyepiece lens). Draw it to scale so that the overall angular magnification is \(M = 10 \). Derive (with a figure and the correct rays and triangles and angles) its magnification in terms of \(f_p \), \(f_e \), and any other parameters you think necessary. Remember, \(f_e \) is \emph{negative} for a Gallilean telescope – be sure to specify whether the brain perceives the final image right side up or upside down so that there is no ambiguity.

Note that the rays used to derive the magnification are tricky for a diverging eyepiece, so be careful.
Problem 47.

Two infinitely long, cylindrical conducting shells are concentrically arranged as shown above. The inner shell has a radius R_1 and the outer shell the radius R_2. The inner shell has a charge per unit area σ_1, and the outer shell a charge per unit area σ_2.

a) Find the electric field \vec{E} at all points in space (you should have three answers for three distinct regions).

b) Find the surface charge density σ_2 (in terms of σ_1, R_1, R_2, etc.) that causes the field to vanish everywhere but in between the two shells. Justify your answer with Gauss’s law.
Problem 48.

Find the electric field at all points in space of a sphere with radial charge density:

\[
\rho(r) = \begin{cases}
\frac{\rho_0 R}{r} & r \leq R \\
0 & r > R
\end{cases}
\]
Problem 49.

problems/gauss-law-field-of-hydrogen-atom.tex

\[\rho(r) = \rho_0 \frac{e^{-r/2a}}{r^2} \]

For extra credit, determine \(\rho_0 \) such that the total charge \(Q \) in the distribution is \(-e\).

This is the charge distribution of the electron cloud about a hydrogen atom in the ground state. Remember, if you can’t quite see how to do the integral (which is actually pretty easy) set the problem up, systematically – following the steps outlined in class – until all that is LEFT is doing the integral, to end up with most of the credit.
Problem 50.

Find the electric field and electric potential at all points in space for a solid sphere with a constant/uniform charge density ρ and radius R. Show all your work, step by step.
Problem 51.

A rectangular metal strip of length \(L \), width \(w \), and thickness \(t \) sits in a uniform magnetic field \(B \) perpendicular to the strip and into the page as shown. The material has resistivity \(\rho \) and a free (conducting) electron (charge \(q = -e \)) density of \(n \). A voltage \(V_0 \) is connected across the strip so that the electrons travel from left to right as shown.

a) Find an expression for the Hall potential (the potential difference across the strip from top to bottom) in terms of the given quantities.

b) Is the top of the strip at higher or lower potential than the bottom?

Hints: you’ll have to start by relating \(I \) (the current in the strip) to the givens, and then translate that into a form involving the drift velocity \(v_d \). From \(v_d \) and your knowledge of magnetic forces you should be able to determine the electric field and then the potential across the strip in the steady state.
Problem 52.

Find the electric field at all points in space of a spherical charge distribution with radial charge density:

\[\rho(r) = \rho_0 \frac{e^{-r/2a}}{r^2} \]

For extra credit, determine \(\rho_0 \) such that the total charge \(Q \) in the distribution is \(-e \).

This is the charge distribution of the electron cloud about a hydrogen atom in the ground state. Remember, if you can’t quite see how to do the integral (which is actually pretty easy) set the problem up, systematically – following the steps outlined in class – until all that is LEFT is doing the integral, to end up with most of the credit.
Problem 53.

Find the self-inductance per unit length of a coaxial cable consisting of two coaxial cylindrical conducting shells, the inner one with radius a and outer with radius b. I’ve shaded in a chunk of area for you to use in computing the flux, and have even helped you out by drawing in a cartoon for the field between the shells when the inner one is carrying a current I (and the outer one is returning it).
Problem 54.

Consider an ordinary refracting telescope (one built with a converging primary/objective lens with focal length f_o and a converging eyepiece lens with focal length f_e). Then:

a) Draw it to scale (below) so that the overall angular magnification is $M = 10$.

b) Derive (with a figure and the correct rays and triangles and angles) its magnification in terms of f_o, f_e, and any other parameters you think necessary.

c) Does this telescope invert its image or not?
Problem 55.

In the figure above a circular current loop of radius R and N turns carries a current I.

(a) Find the magnetic field at an arbitrary point on the z-axis.

(b) What is the asymptotic form magnetic field in the limit that $z \gg R$, expressed in terms of the magnetic dipole moment of the loop?
Problem 56.

A solenoid with N turns and length L is pictured above. The solenoid is wrapped and connected to a battery (not shown) so that a current I is going into the page at the top of each loop and out of the page at the bottom.

a) Find the magnetic field inside the solenoid using Ampere’s Law. Assume that the solenoid is “infinitely long” as usual. Clearly indicate the direction of the field in on the figure.

b) If a bar magnet is placed at rest near the right hand end of the solenoid as pictured will it be attracted towards the solenoid or repelled away from the solenoid? (Hint: Think of the “north pole” of a bar magnet as being like a “positive magnetic charge”.)
Problem 57.

In the figure above a ring of radius R with total charge Q is spinning at angular velocity ω around the z-axis. What is the magnetic field strength at the origin?
Problem 58.

A flat disk of radius R and mass M with uniform surface charge density $\sigma_q = \frac{Q}{\pi R^2}$ is rotating at angular velocity ω about the z-axis as shown.

Find the magnetic field at an arbitrary point on the z-axis of the disk.
A cylindrical long straight wire of radius R carries a current density of \vec{J} into the page as drawn. Find the magnetic field (magnitude and direction) at arbitrary points inside and outside the wire. Show all work and clearly label the law or rule used to find the answer.
Problem 60.

a) State Ampere’s Law.

b) Using Ampere’s Law find the magnetic field at the point labelled P a distance r from the axis and completely inside the toroidal solenoid with N turns and current I in each turn pictured above.

c) Clearly indicate the direction of the field on the picture.
Problem 61.

A cylindrical long straight wire of radius R has a cylindrical long straight hole of radius $b = R/2$ and carries a current density of \mathbf{J} into the page as drawn. Find the magnetic field at the point \mathbf{r} shown inside of the hole.
Problem 62.

A disk of radius \(R \) and thickness \(t \), with uniform charge density \(\rho_q \) and uniform mass density \(\rho_m \) is rotating at angular velocity \(\vec{\omega} = \omega \hat{z} \).

Consider a tiny differential chunk of the disk’s volume \(dV = dA \ t \) located at \(r, \theta \) in cylindrical polar coordinates. Note that this chunk is orbiting the \(z \)-axis at angular frequency \(\omega \) in a circular path.

a) Find the magnetic moment \(dm_z \) of this chunk in terms of \(\rho_q \), \(\omega \), \(dV \) and its coordinates.

b) Find the angular momentum \(dL_z \) of this chunk in terms of \(\rho_m \), \(\omega \), \(dV \) and its coordinates.

c) Doing the two (simple) integrals, express them in terms of the total charge and total mass of the disk, respectively, and show that the magnetic moment of the disk is given by \(\vec{m} = \mu_B \vec{L} \), where \(\mu_B = \frac{Q}{2M} \).

d) What do you expect the magnetic field of this disk to look like on the \(z \) axis for \(z \gg R \)? (Answer in terms of \(\vec{m} \) is fine.)
Problem 63.

A rod of mass M and length L is uniformly charged with a total charge Q and pivoted around one end. It is rotating in a plane at angular velocity ω. Find:

a) The magnetic moment of the rod in the direction of its angular velocity (axis of rotation). Is it into or out of the page as drawn? (You will have to do a simple integral for this – what is the average “current” of a small chunk of the rod a distance x from the pivot?)

b) The angular momentum of the rod. Note that its moment of inertia is:

$$I = \frac{1}{3}ML^2$$

c) From your answers to a) and b), show that

$$\vec{m} = \mu_B \vec{L}$$

and find μ_B. If you cannot make it work out but know the answer, be sure to put it down (but getting it to work out is an important check that will give you confidence in your answers to a) and b).

Show all work.
A flat disk of radius R and mass M with uniform surface charge density $\sigma_q = \frac{Q}{\pi R^2}$ is rotating at angular velocity ω about the z-axis as shown.

Find its magnetic moment \vec{m}. For extra credit, show that $\vec{m} = \frac{Q}{2m} \vec{L}$, where \vec{L} is the angular momentum of the disk.
A model for a proton (charge $+e$) with mass m_p has an intrinsic angular momentum given by \vec{L} and a magnetic moment given by $\vec{m} = \mu_B \vec{L}$ (where $\mu_B = Q/2M$ for reasons you should completely understand). When the proton is placed in a uniform magnetic field of strength B so that \vec{L} makes an angle of θ with \vec{B}, the angular momentum precesses around \vec{B}.

Find (derive) the angular frequency with which the angular momentum precesses. Indicate the direction of precession on the figure above (into or out of page, as drawn).
You are given an electronic parts box containing compartments containing 1 ohm, 10 ohm, 100 ohm, ... 1,000,000 ohm resistors. The box also contains compartments of inductors of 1 millihenry, 10 millihenries, ..., 1,000,000 millihenries and capacitors of 1 nanofarad, 10 nanofarads, 100 nanofarads, ..., 1,000,000 nanofarads (basically any power of ten of one ohm, farad, or henry that you like).

Use any parts from this box that you wish to design a high pass filter that cuts off frequencies smaller than approximately $\omega = 10^4$ radians/second. Draw its schematic and clearly indicate where one should place a resistive load that matches the resistor you choose so that it gets significant current at high frequencies above this cutoff. You may consider the frequency cutoff to occur when $I(\omega = 10^4) = \frac{\sqrt{2}I_0}{2}$ where I_0 is the current at infinite frequency. Prove (algebraically) that your design and the values you select for the components are correct.
You are given an electronic parts box containing compartments containing 1 ohm, 10 ohm, 100 ohm, ... 1,000,000 ohm resistors. The box also contains compartments of inductors of 1 millihenry, 10 millihenries, ..., 1,000,000 millihenries and capacitors of 1 nanofarad, 10 nanofarads, 100 nanofarads, ... , 1,000,000 nanofarads (basically any power of ten of one ohm, farad, or henry that you like).

Use any parts from this box that you wish to design a low pass filter that cuts off frequencies larger than approximately $\omega = 10^4$ radians/second. Draw its schematic and clearly indicate where one should place a resistive load that matches the resistor you choose so that it gets significant current at low frequencies. You may consider the frequency cutoff to occur when $I(\omega = 10^4) = \frac{\sqrt{2}}{2} I_0$ where I_0 is the current at zero frequency. Prove (algebraically) that your design and the values you select for the components are correct.
Problem 68.

What are Maxwell’s Equations (as you have learned them so far)? To get full credit for them, they need to be written exactly the way I write them in class, with all the little vector arrows, hats, loopy thingies in the middle of integral signs and so forth. An illustrative figure should accompany each one. Circle Lenz’s Law.

a) (GLE)

b) (GLM)

c) (AL)

d) (FL)
Problem 69.

Charges of \(-q\) are located at both \(y = a\) and \(y = -a\), and a charge of \(+3q\) is located at \(y = 0\) on the \(y\)-axis. This arrangement of charge can be visualized as two opposing dipoles plus a charge at the center.

a) Find the electric field (magnitude and direction) at an arbitrary point on the \(x\)-axis.

b) What are the first two nonzero terms in the electric field evaluated \(\text{far}\) from the charges, i.e. \(-\) for \(x >> a\)? Your answer should be a series of terms in inverse powers of \(x\).

c) What is the total potential energy of this collection of charges?
Problem 70.

A parallel plate capacitor is constructed from two square conducting plates of with an area of A, separated by a distance of d. An insulating slab of thickness d and a dielectric constant κ is inserted so that it half-fills the space between the plates.

a) Find the capacitance of this arrangement. Clearly indicate the basic principles and definitions you are using, e.g. the definition of capacitance, the equation that defines the effect of a dielectric on the electric field and so forth.

b) There is a force acting on the dielectric in this arrangement that is trying to pull the dielectric in between the plates (so it would fill the space between them) or to push it out from between them. Which one? Obviously, the answer per se doesn’t matter: *explain your reason for the answer!*
The pinhole (with diameter \(d \)) in a pinhole camera functions like a high-resolution universal-focus “lens” by permitting only the “central ray” through to form an image on a piece of film placed a distance \(L = 50 \text{ cm} \) behind it as shown. A point source a distance \(s \gg L \) in front of the pinhole creates a dot on the film the size of the aperture in the geometric optic approximation (where wavelength does not matter and light travels in straight lines). To get the best possible resolution we would then try to use the smallest possible dot (and wait longer for enough light to pass through to activate the film) with no lower bound in size. Light with wavelength \(\lambda = 500 \text{ nm} \) passing through the aperture, on the other hand, casts a diffraction pattern onto the film that for small enough \(d \) will be wider than the geometric dot.

From these two competing limits, determine the diffraction-limited optimum minimum size for the pinhole diameter \(d \) that will give you the smallest possible image of the point source on the screen in terms of the given. I gave you some (simple) numbers because the actual geometry matters a bit and the number is a good/reasonable one to know, but feel free to use algebra first to answer the question.
Problem 72.

Indicate, with pictures and/or a short descriptions, how light is polarized by absorption, by reflection, and by scattering. Derive and explain the formula for the Brewster angle (telling us what the Brewster angle is). Derive and explain Malus’s law, which quantitatively describes how much light polarized in one direction passes through a filter whose transmission axis is rotated through an angle θ with respect to that direction.
Problem 73.

Polaroid sunglasses are lovely because they reduce reflected glare in the morning and evening when the sun is low AND because they darken the blue sky near the horizon in the middle of the day when the sun is directly overhead.

How does all this work? To answer this, I need a description of polarization by absorption (the sunglasses) including the transmission axis used in the glasses, and the “standard pictures” that indicate QUALITATIVELY how the reflected glare is polarized (so that the sunglasses will block it) and how the scattered light from the sky is polarized (so that the sunglasses will block it).

Clearly good pictures are essential to your answer.
A point charge of \(-q \) is located at \(z = -a \) on the \(z \)-axis and a point charge of \(+q \) is located at \(z = +a \).

a) Write down the potential at an arbitrary point in space in spherical coordinates \((r, \theta, \phi)\).

b) What is the leading term in the expansion of the potential for \(r \gg a \), expressed in terms of the dipole moment \(p_z \) (and coordinates)?
Problem 75.

Three concentric conducting spheres of radii a, b, c are drawn above. The outer shell has a charge Q. The middle shell has a charge $-2Q$. The inner shell is grounded. Find the charge on the inner shell, and the potential at all points in space.
Problem 76.

Three parallel plates with area A and separation d are shown in the figure above. The middle plate has a charge $-Q$, and the bottom plate and top plates are grounded (at $V = 0$). Find:

a) The charge on the top and bottom plates.

b) The electric field at all points in space.

c) The potential of the middle plate.
Problem 77.

(10 points) Three cylindrical conducting shells of radii $a < b < c$ and of length $L \gg c$ are placed in a concentric configuration as shown. The middle shell is given a total charge Q, and both the inner and outer shells are grounded (connected by a thin wire to each other and to something at a potential of “0”). Find:

a) The total charge on the inner shell, in terms of a, b, c, L, Q and k.

b) The potential on the middle shell. In what direction does the field point in between a and b and in between b and c?
A charge of $+Q$ is placed on the innermost and outermost of three concentric conducting spherical shells. The middle shell is grounded via a thin wire that passes through an insulated hole in the outer shell and hence has a potential (relative to ∞) of 0.

a) Find the charge Q_s on the middle shell in terms of k, Q, and the given radii a, b and c.

b) Find the potential at all points in space (in each region where there is a distinct field). You may express your answers algebraically in terms of Q_s to make life a bit simpler (and independent of your answer to part a).
Problem 79.

(10 points) Two spherical conducting shells are drawn above. The outer shell, at a radius b, has a total charge of $Q_b = -Q$. The inner shell is grounded (has potential zero). What is the charge Q_a on the inner shell?
Problem 80.

Two spherical conducting shells have radius a and b respectively. The outer shell has a total charge $+Q$ on it. The inner shell is grounded by means of a thin wire through a tiny hole in the outer shell as shown, and therefore is at potential $V_a = 0$. Find:

a) The total charge on the inner shell, in terms of k_e, Q, a, b.

b) The electric field at all points in space.
Problem 81.

In the figure above, the switch is closed at $t = 0$ and a current $I(t)$ builds up through the inductor. Find (solve for, showing all work):

a) $I(t)$, the current in the wire as a function of time.

b) $P_L(t)$, the power delivered to the inductor as a function of time.
Problem 82.

Our archetypical model for a capacitor of capacitance \(C = \frac{\varepsilon_0 \pi R^2}{d} \) is drawn above: two circular “perfectly conducting” plates with radius \(R \), separated at a distance \(d \) by a vacuum. Assuming that the current is flowing as shown to charge the capacitor at rate \(I = +\frac{dQ}{dt} \), show that the flux of the Poynting vector into the volume between the plates is equal to the rate energy is being stored in the capacitor.
Problem 83.

problems/Poynting-Vector-Inductor.tex

Our archetypical model for an inductor is drawn above: N circular turns of wire forming a solenoid of length L and radius R, carrying a current $I(t)$. Show that the flux of the Poynting vector for this inductor into its interior volume equals the power flowing into it evaluated as $P(t) = V_L(t)I(t)$ where $V_L(t)$ is the voltage drop across the inductor.
Problem 84.

Our archetypical model for a resistor is drawn above: two circular “perfectly conducting” plates (metal contacts) with radius R, separated at a distance d by a material with resistivity ρ.

a) In a steady state situation where a DC voltage V is applied as shown, find the field \vec{E} inside the resistive material.

b) Find the current density \vec{J} inside the resistive material.

c) From Ampere’s law, find the magnetic field as a function of r in the region between the plates.

d) From your answers to a) and c), find the Poynting vector \vec{S} (magnitude and direction) as a function of r in the region in between the plates.

e) NOW show that:

$$\oint_A \vec{S} \cdot \hat{n} dA = -I^2 R$$

where A is the outer surface of the resistor and \hat{n} is its outward-directed normal unit vector.

Thus the heat that appears in the resistor can be thought of as the electromagnetic field energy that flows in through its outer surface!
Problem 85.

A proton (charge $+e$) with mass m_p has an intrinsic angular momentum given by \vec{L} and a magnetic moment given by $\vec{m} = \mu_B \vec{L}$. When the proton is placed in a uniform magnetic field of strength B so that \vec{L} makes an angle of θ with \vec{B}, the angular momentum precesses around \vec{B}.

a) Find the angular frequency ω_p with which the angular momentum precesses. Indicate the direction of precession on the figure above (into or out of page, as drawn).

b) For extra credit, derive μ_B. One way you might proceed is to simply derive \vec{m} and \vec{L} separately for the proton, assuming uniform mass and charge distribution and a common angular velocity $\vec{\omega}$. A better way to proceed might be to relate dm_z (along the axis of rotation) to dL_z (ditto) assuming axial symmetry so that \vec{L} is parallel to $\vec{\omega}$.
Problem 86.

A proton (charge $+e$) with mass m_p has an intrinsic angular momentum given by \vec{L} and a magnetic moment given by $\vec{m} = \mu_B \vec{L}$. When the proton is placed in a uniform magnetic field of strength B so that \vec{L} makes an angle of θ with \vec{B}, the angular momentum precesses around \vec{B}.

a) What is μ_B in terms of the given?

b) Find (derive) the angular frequency ω_p with which the angular momentum precesses about the applied magnetic field. Indicate the direction of precession on the figure above (into or out of page, as drawn). You may use any of the approaches shown in class to find/derive the frequency.
Problem 87.

There is an object 20 cm away from a screen. Using a converging (thin) lens, I would like to throw an image of this object upon the screen that is three times larger (in magnitude) than the object itself. Find the location of the lens (with respect to object and screen and the focal length of the lens necessary to accomplish this. Draw the corresponding ray diagram. [Hints: Remember the central ray! Is the image required real or virtual?]
Problem 88.

There is an object 20 cm away from a screen. Using a concave mirror, I would like to throw an image of this object upon the screen that is three times larger than the object itself. Find the location of the mirror (with respect to object and screen and the focal length of the mirror necessary to accomplish this. Draw the corresponding ray diagram.
A physics professor hands you a box that contains the following material: a converging mirror A with $f_A = 100$ cm, a converging mirror B with $f_B = 200$ cm, a diverging lens C with $f_C = -2$ mm, a converging lens D with $f_D = 5$ mm and diverging lens E with $f_E = -5$ mm. The box also contains a small, round flat mirror centered on an axle so that it can be rotated to any angle.

There are also 4 meter sections of PVC pipe that fit each lens or mirror and that can be cut with a handy hacksaw, sleeves that can nest PVC pipe sections together, some glue, focus gears (that can be used to move the eyepiece lens small distances along its axis), and things like that.

a) Create a rough design in the space above for a reflecting telescope with an angular magnification $M = +200$, made using this material and equipment. Clearly indicate the lenses you use and their arrangement in the tube(s). Note that there might be more than one way to do this.

b) Draw below a simple ray diagram from which the angular magnification of a general reflecting telescope of the sort you design can be evaluated. It need not be precisely to scale.

Note that this telescope will only be used to look relatively distant objects.
Problem 90.

An arrangement of two lenses is drawn above. $f_1 = 2$ cm and $f_2 = 1$ cm. The lenses themselves are separated by a distance $L = 8$ cm. Then:

a) Find where (s) to put an object to be viewed relative to the first lens so that the final image of the second lens can be viewed with the relaxed, normal eye.

b) The "magnification" of the final image (infinity is not the right answer).

c) Draw the ray diagram for this arrangement using the object distance determined above that can be used to locate the final image and (with some rules) find the magnification. You may or may not have to redraw the arrangement to have room.

Hint: What is this particular arrangement of lenses called? What great discoveries did it enable?
Problem 91.

This problem asks you to analyze the Cassegrain reflecting telescope design, drawn above. The two incoming rays drawn from an object at infinity in the center of its visual field are reflected from the parabolic primary mirror and then re-reflected by the flat secondary mirror so that they converge in the vicinity of the eyepiece tube. The focal length of the primary mirror is 100 cm. You have two eyepiece lenses, one converging and one diverging, each with a focal length of five cm.

a) Pick either of these eyepieces and locate it in the eyepiece tube in such a way that the telescope permits you to observe this distant object with a relaxed normal eye. Clearly indicate where its focal point has to be relative to the doubly reflected focal point of the primary mirror. Show the two distances that must add up to 100 cm.

b) Draw the rest of the ray diagram for the two incoming rays that show how they emerge from the eyepiece lens to enter your eye so that the condition required in a) is true. What is the expected magnification of this telescope?

c) This telescope has the reflecting secondary mirror situated right in the middle of the telescope mouth. Is there a corresponding hole in your visual field?

d) What happens to the image you observe as you vary the diameter of this secondary mirror relative to the diameter of the primary reflecting mirror?
Problem 92.

A candle 5 cm high is placed 20 cm in front of the center of a thin lens. The lens has a focal length of +40 cm.

a) Find the location s' of the image, its magnification, and indicate whether the image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to a. Be sure to include 3 rays that uniquely specify the image location.
Problem 93.

A candle $y = 5$ cm high is placed $s = 20$ cm in front of the center of a thin diverging lens. The lens has a focal length of $f = -60$ cm.

a) Find the location s' of the image, its magnification, and indicate whether the image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to a. Be sure to include 3 rays that uniquely specify the image location. Use a straightedge (folded piece of paper) or ruler to draw the rays if at all possible, and be neat.
Problem 94.

a) Design a microscope with a tube length $\ell = 10$ cm and a magnification of 500. Draw it below to scale. Derive its magnification in terms of f_o (the objective lens), f_e, ℓ, and any other parameters you think necessary. You may pick f_o and f_e to have any “sensible” values, and can make the microscope invert the image or not as you wish.

b) Determine where (that is, the actual position in cm) one has to place the object in front of the objective lens in order for the relaxed, normal eye to view its image at infinity through the eyepiece. Note that this answer will depend (obviously) on f_o and other parameters, so the number answer is less important than the algebra (which is what will be checked).
Problem 95.

The mirror above has a radius of curvature \(r = 10 \text{ cm} \). A candle is placed at \(s = 20 \text{ cm} \) as shown. Find:

- The focal length of the mirror (draw the focal point in on the diagram above).
- The location \(s' \) of the image in centimeters.
- The magnification of the image.
- State whether the image is real or virtual, erect or inverted.
- Draw the ray diagram for this arrangement using the three “named” rays used for both lenses and mirrors as shown in class. Obviously it should validate your answers to the above.
Problem 96.

This problem will be solved algebraically in terms of the positive length \(f > 0 \). If it pleases you to make this length definite, say 10 cm, feel free, but it is not necessary.

A small object is placed \(2f \) in front of a *diverging* (convex) mirror with focal length \(-f \) – negative because it is diverging. Determine (in terms of \(f \) where appropriate):

a) The image distance \(s' \).

b) The magnification \(m \).

c) The kind of image (erect/inverted, real/virtual).

Draw a **neat ray diagram** for the arrangement using (and labelling!) the three standard rays covered in class to locate the image. It should at least approximately correspond to your numerical results above. It’s a good idea to use a straightedge of some sort, and try to make the size of the diagram reasonable so it clearly illustrates the problem.
A physics professor hands you a box that contains the following material: lens A with $f_A = 100\text{ cm}$, lens B with $f_B = 200\text{ cm}$, lens C with $f_C = -2\text{ mm}$, lens D with $f_D = 5\text{ mm}$ and lens E with $f_E = -5\text{ mm}$. There are also 4 meter sections of PVC pipe that fit each lens and that can be cut with a handy hacksaw, sleeves that nest the PVC pipe sections together, some glue, focus gears (that can be used to move the eyepiece lens small distances along its axis), and things like that.

a) Create a rough design in the space above for a refracting telescope with an angular magnification $M = -200$, made using this material and equipment. Clearly indicate the lenses you use and their arrangement in the tube(s).

b) Draw below a simple ray diagram from which the angular magnification of a general refracting telescope of the sort you design can be evaluated. It need not be precisely to scale.

Note that this telescope will only be used to look relatively distant objects.
A physics professor hands you a box that contains the following material: (mounted) lens A with \(f_A = 10 \) cm, lens B with \(f_B = 1 \) cm, lens C with \(f_C = 5 \) mm and lens D with \(f_D = -2 \) mm. There is also a piece of tubing 15 cm long that fits the lens mounts exactly and can be cut to any length you like with the enclosed hacksaw, a focus gear (that can be used to move the objective lens mount small distances along its axis in the tube), glue, screws, a slide/tube mounting bracket, and things like that.

Create a rough design in the space above for a simple microscope with a magnification of \(M = -500 \) using this material and equipment. Clearly indicate the lenses you use and their arrangement in the tube.
Problem 99.

A candle 10 cm high is placed 75 cm in front of the center of a thin lens. The lens has a focal length of 50 cm.

a) Find the location s' of the image, its magnification, and indicate whether the image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to a. Be sure to include the 3 rays that uniquely specify the image location.
Problem 100.

The arrangement of lenses that makes up a compound microscope is pictured above. The focal lengths of the objective and eyepiece lenses are \(f_o = f_e = f = 1 \) cm. The tube length is \(L = 9 \) cm.

a) Find \(s \) (the object distance from the objective lens) such that the final image viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

b) Draw the ray diagram from which you can find the overall magnification (try to use a straight edge to do this).

c) From this diagram and your knowledge of the separate purposes of the two lenses, find the overall magnification. Explain each part (that is, what are the separate roles of the objective and eyepiece).
Problem 101.

A candle 20 cm high is placed 60 cm in front of the center of a thin lens. The lens has a focal length of -80 cm.

a) Find the location s' of the image, its magnification, and indicate whether the image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to a. Be sure to include 3 rays that uniquely specify the image location.
Problem 102.

Two pieces of very flat glass are used in the arrangement above to measure the thickness of a human hair. When viewed with light of 600 nm from above, 30 dark fringes are observed in the light reflected from the wedge of air. How thick (approximately) is the hair? (Note well: Derive/explain your answer and show all work).
Problem 103.

problems/prob-13-2.tex

All angles in the parts a-c may be expressed by means of tables of inverse trigonometric functions of simple fractions, e.g. \(\cos^{-1}(1/2) \), \(\sin^{-1}(2/7) \), etc.

Two vertical slits of width \(a = 1200 \) nanometers (nm) are separated (center to center) by a distance of \(d = 3000 \) nm and illuminated by light of wavelength \(\lambda = 600 \) nm. The light which passes through is then projected on a distant screen. Find:

a) The location (angles \(\theta \)) of all **diffraction minima**.

b) The location of all **interference minima**.

c) The location of all **interference maxima**.

d) Finally, draw a properly proportional figure of the resulting interference pattern between 0 and \(\pi/2 \) (on either side), indicating the maximum intensity in terms of the central maximum intensity that would result from a single slit.

e) For five points of extra credit, write down the algebraic expression for \(I(\theta) \) in terms of \(I_0 \) (the central intensity of a single slit), defining all variables used (like \(\phi \) and \(\delta \)) in terms of \(a, d, \lambda \) and \(\theta \).
A Christmas tree ornament is constructed by vapor-depositing a thin, transparent film (with $n = 1.25$) on a “thick” (~ 2 mm) spherical glass ($n = 1.5$) bubble as drawn schematically above. The thin plastic film is not quite uniform in thickness, and this variation produces brilliant streaks of color in the reflected light.

a) What does the light reflected from the ornament look like where $t \sim 0$ (or $t \ll \lambda$, at any rate). Explain the physics behind your answer with a single sentence and/or diagram.

b) At what thickness $t \sim \lambda > 0$ of the film will the reflected light first have a constructive interference maximum at $\lambda = 550$ nm (where λ, recall, is the wavelength in free space where $n = 1$)?

c) At that thickness, will any other visible wavelengths have an interference maximum or minimum? Justify your answer – just ‘yes’ or ‘no’ (even if correct) are incorrect.
You would like to eliminate the reflected light from a flat glass pane for perpendicularly incident light of wavelength 550 nm. The index of refraction of the glass is $n_g = 1.5$, and the index of refraction of the coating material to be used is $n_c = 1.25$. What minimum thickness t of the coating material will have the desired effect? (Try to show your reasoning, and don’t forget “details”.)
Problem 106.

A Christmas tree ornament is constructed by vapor-depositing a chemical film (with $n = 1.7$) on a “thick” (~ 2 mm) spherical glass ($n = 1.5$) bubble as drawn schematically above. The thin chemical film is not uniform in thickness, and its variation in the range 0-2 microns (micrometers) produces brilliant streaks of color in the reflected light.

a) What is the smallest (nontrivial) mean thickness t of the film such that reflected light to has a constructive interference maximum in the center of the visible spectrum ($\lambda = 400$-700 nm in free space where $n = 1$).

b) When the film first starts to deposit on the glass (and has a thickness t of only a few nanometers) does the film on the bulb turn shiny (constructively reflecting all wavelengths) or transparent (destructively reflecting all wavelengths)? Explain.
Problem 107.

Light with wavelength $\lambda = 700$ nm passes through two slits of a width $a = 1400$ nm. The centerpoints of these two slits are separated by a distance of $d = 3500$ nm. The light then travels a long distance and falls on a screen. It is not necessary (for once) to derive or justify the equation(s) you use below, but if you do you will get partial credit even if your numerical answers are wrong.

a) Write down (or derive) the algebraic formula for the intensity of the combined interference-diffraction pattern for this arrangement.

b) Write down (or derive) the formula from which the angles at which diffraction minima occur can be found, and apply it to find all these angles (put them in a table).

c) Write down (or derive) the formulas from which the angles at which interference maxima and minima occur, and apply them to find the first three of each (only) (put them in a table).

d) Draw a qualitatively correct picture of the expected diffraction/integration pattern $I(\theta)$.
Problem 108.

Light with wavelength $\lambda = 300$ nm passes through two slits of a width $a = 900$ nm. The centerpoints of these two slits are separated by a distance of $d = 2700$ nm. The light then travels a long distance and falls on a screen. It is not necessary (for once) to derive or justify the equation(s) you use below, but if you do you will get partial credit even if your answers are wrong.

a) Write down (or derive) the formula from which the angles at which diffraction minima occur can be found, and apply it to find all these angles (put them in a table).

b) Write down (or derive) the formulas from which the angles at which interference maxima and minima occur, and apply them to find the first three of each (put them in a table).

c) Draw a qualitatively correct picture of the expected diffraction/integration pattern $I(\theta)$.
Problem 109.

Suppose you have five point sources of monochromatic, coherent light with wavelength λ and a common phase lined up and separated by a distance d as shown above. The light from all five sources falls upon a distant ($L \gg d$) screen as shown.

Derive expressions for the angles at which maxima and minima occur. Your derivation should include the phasor diagrams for the minima and the maxima and should relate $\phi = kd\sin(\theta)$ to suitable fractional multiples of π. End by drawing a representative cycle or two (primary maximum to primary maximum) of the resulting interference pattern, showing the correct relative intensity of primary and secondary peaks and the right number of minima and maxima per cycle.

Note that in this case "derive" pretty much means draw the correct five-sided phasors for each of the max and min cases and read off what ϕ must be for each, and arrange it in a pretty (simple) pattern.
Problem 110.

Light with wavelength $\lambda = 500$ nm passes through three extremely narrow slits. The slits are spaced a distance $d = 2000$ nm apart. The light then travels a long distance and falls on a screen. The intensity of light reaching the midpoint of the screen from any single slit (with the other two covered) is I_0 (and corresponds to a field strength E_0).

a) Draw onto the figure above lines and coordinates that will help you determine the intensity of the interference pattern produced by the slits. Use θ for the angle to an arbitrary point P on the screen relative to the midline drawn from the central slit (as done in class).

b) Using the superposition principle, write down the sum of the three waves from the slits at P, using δ as the phase angle introduced by the path difference between them.

c) Draw the phasor diagram that allows you to find the total field amplitude as a function of an arbitrary δ (choose and draw a convenient one as I did in class), and evaluate the total field amplitude. Write an expression for the total intensity as a function of δ and I_0. What is the peak intensity in terms of I_0?

d) Write an expression for the angles θ where a principle interference maximum occurs. How many (non-negative) angles are there? Draw a qualitatively correct graph of the intensity as a function of θ between 0 and $\pi/2$.
Problem 111.

Two positively charged pith balls of mass m each have a charge Q and are suspended by insulating (massless) lines of length L from a common point as shown. Assume that L is long enough that θ at the top is a small angle. Find θ such that the pith balls are in static equilibrium in terms of k, Q, m, L and of course g.

Two positively charged pith balls of mass m each have a charge Q and are suspended by insulating (massless) lines of length L from a common point as shown. Assume that L is long enough that θ at the top is a small angle. Find θ such that the pith balls are in static equilibrium in terms of k, Q, m, L and of course g.

Charges of $\pm q$ are located at both $z = \pm a/2$, respectively. This arrangement forms a electric dipole.

a) Find both the electric potential and electric field (magnitude and direction) at an arbitrary point $z > a/2$ on the z-axis.

b) What is the first nonzero term in the expansion of the electric field evaluated far from the charges, i.e. $z \gg a/2$?
Problem 113.

The electric field of an infinite straight line of charge is given by:

\[\vec{E} = \frac{2k\lambda}{r} \hat{r} \]

(\text{where } \lambda \text{ is the charge per unit length and } \vec{r} \text{ is in cylindrical coordinates}).

A dipole consisting of a charges \(\pm q \) separated by a (small) distance \(a \) is located with the charge \(-q \) a distance \(r \) away from the line and the direction of the dipole parallel to \(vr \) as shown.

Find:

a) The next force on the dipole.

b) The net force on the dipole in the limit that \(a \to 0 \) while the magnitude of the dipole moment \(p = qa \) is held constant. This is the force on a “point dipole” in the field of the line of charge.
Problem 114.

A conducting shell concentrically surrounds a point charge of magnitude Q located at the origin. The inner radius of the shell is R_1 and the outer radius R_2.

a) Find the electric field \vec{E} at all points in space (you should have three answers for three distinct regions).

b) Find the surface charge density σ on the inner surface of the conductor. Justify your answer with Gauss’s law.
Problem 115.

Charges of $+q$ are located at the two bottom corners of an equilateral triangle with sides of length a. A charge of $-2q$ is at that top corner. This arrangement of charge can be considered two dipoles oriented at 60° with respect to one another.

a) Find the electric field (magnitude and direction) at an arbitrary point on the y-axis above/outside the triangle.

b) What are the first two surviving terms in the binomial-theorem-derived series for the electric field evaluated far from the charges, i.e. $-y >> a$?3

3Hint: since the net charge balances (=0), we expect no monopolar part (like $1/x^2$). Since the dipoles do not quite balance, we might see a dipolar part (like $1/x^3$). However, since the dipoles are not parallel we might expect to see a significant quadrupolar term that varies like $1/x^4$ as well.
Problem 116.

Find the electric field and electric potential at all points in space of a sphere with radial charge density:

\[\rho(r) = \begin{cases} \rho_0 \frac{r}{R} & r \leq R \\ 0 & r > R \end{cases} \]
Problem 117.

Find the electric field at all points in space for a spherical shell of constant charge density \(\rho \) of inner radius \(a \) and outer radius \(b \).
Problem 118.

Find the electric field at all points in space given a sphere with radial charge density:

\[\rho(r) = \rho_0 \frac{r}{R} \quad r \leq R \]
\[\rho(r) = 0 \quad r > R \]
Problem 119.

Four lines of uniform linear charge density λ and length L form a square in the xy-plane centered symmetrically on the z-axis as shown. Find the electric field at an arbitrary point on the z-axis. You may use $E_\perp = \frac{k\lambda}{y} (\sin \theta_2 - \sin \theta_1)$ for a line segment of charge without deriving it.

Hint: The arbitrary point and corners of the square form a square pyramid. If you use the pythagorean theorem a couple of times you can find the perpendicular height of one face of the pyramid and the length of an edge of that face. A bit of trig using the triangles involved will tell you the sines and cosines of the angles that you might need to find the answer.
Problem 120.

A sphere of uniform charge density ρ_0 has a hole of radius $b = R/2$ centered on $x = b$ cut out of it as shown in the figure.

a) Find the electric field vector inside the hole.

b) What do you expect to be the first two terms in the electric field expansion at an arbitrary point $x \gg R$ on the x axis? Note that you can either guess this answer based on what you know of multipolar fields or you can evaluate the field exactly (which is pretty easy) and do a binomial expansion through two surviving terms.

Hint: Remember, you can think of this as a superposition problem for two spheres, one with uniform charge density ρ_0 and one with uniform charge density $-\rho_0$.
A point charge of $-q$ is located at $z = -a$ on the z-axis and a point charge of $+q$ is located at $z = +a$.

a) Write down the potential at an arbitrary point in space in spherical coordinates (r, θ, ϕ).

b) What is the leading term in the expansion of the potential for $r \gg a$, expressed in terms of the dipole moment $p = 2qa$?
Problem 122.

A simple model for an atom has a tiny (point-like) nucleus with charge $+Ze$ is located at the center of a uniform sphere of charge with radius a and total charge $-Ze$. The atom is placed in a uniform electric field which displaces the nucleus as shown. Find:

a) The equilibrium separation d of the nucleus from the center of the spherical electron cloud;

b) The average polarization density \vec{P} (dipole moment per unit volume) of a solid made up of these atoms, assuming that the atoms are arranged so that they “touch” in a simple cubic lattice (a three dimensional array where atoms sit at positions (x, y, z) where all three coordinates are integer multiples of $2R$).

Remember, this polarization density can be related to the total electric field inside the conductor by a relation like $\vec{P} = \chi e \mathbf{E}$ where $\chi - e$ is called the electric susceptibility of the material. This in turn lets you completely understand κ, the dielectric constant of the model material.
Problem 123.

A spherical shell of inner radius a and outer radius b contains a uniform distribution of charge with charge density ρ.

Find the field and potential at all points in space.
Problem 124.

Two spherical shells with radii R_1 and R_2 respectively concentrically surround a point charge. The central point charge has magnitude $2Q$. Both the spherical shells have a charge of $-Q$ (each) distributed uniformly upon the shells.

Find the field and potential at all points in space. Show your work – even if you can just write the answer(s) down for each region, briefly sketch the methodology used to get the answers.
Problem 125.

Find the electric potential on the (z) axis of a disk of charge of radius R with uniform surface charge distribution σ.

For extra credit (if you have time) find the electric field on the z-axis.
Problem 126.

Find the potential $V(r)$ at all points in space for the arrangement of charge pictured above, where there is a point charge $+2Q$ at the origin, a charge uniformly distributed $-2Q$ on the inner shell (radius R_1), and a charge $+Q$ uniformly distributed on the outer shell (radius R_2). You will need three different answers for the three distinct regions of space.
Problem 127.

A parallel plate capacitor is constructed from two square conducting plates of with an area of A, separated by a distance of d. An insulating slab of thickness d and a dielectric constant κ is inserted so that it half-fills the space between the plates. Find:

a) (15 points) the capacitance of this arrangement;

b) (5 points) the electrostatic force on the dielectric slab when a potential V is maintained across the capacitor. Does it pull the dielectric in between the plates or push it out from between them?
Problem 128.

a) Find the total effective capacitance between the two contacts (the round circles at the top and the bottom) of the arrangement of capacitors drawn above. Naturally, show all work.

b) If a potential V is connected across the contacts, indicate the relative size of the charge on each capacitor. (It will probably be easiest if you give your answers in terms of $Q = CV$.)
Problem 129.

A parallel plate capacitor is constructed from two square conducting plates of with an area of A, separated by a distance of d. An insulating slab of thickness d and a dielectric constant κ is inserted so that it half-fills the space between the plates.

a) Find the capacitance of this arrangement. Clearly indicate the basic principles and definitions you are using, e.g. the definition of capacitance, the equation that defines the effect of a dielectric on the electric field and so forth.

b) Find the electrostatic force on the dielectric slab when a fixed charge of $\pm Q$ is placed on the two plates of the capacitor. If you cannot do this, for partial credit at least indicate on physical grounds whether the force pulls the dielectric in between the plates (trying to fill the space between them) or pushes it out from between them and explain your reasoning.

Hint: Consider the relation between force and potential energy.
Problem 130.

A spherical capacitor has inner radius a and outer radius b

a) Find (derive!) the capacitance of this arrangement. Show All Work!

b) Show that when $b = a + \delta$ with $\delta \ll a$ the capacitance has the limiting form $C = \epsilon - 0A/\delta$ where A is the area of the inner sphere and δ is the separation of the shells.
Problem 131.

Derive C for the cylindrical capacitor drawn above, with inner radius a, outer radius b, length L, filled with a dielectric of dielectric constant κ. Show all work! You must follow the progression $\vec{E} \rightarrow \Delta V \rightarrow C$, inserting or using the important property of the dielectric either at the beginning or the end.
Problem 132.

A spherical capacitor with inner radius a and outer radius b has the space in between filled with a dielectric with dielectric constant κ. A potential V_0 is connected across it as shown. Find:

- The field between the shells
- The charge on the inner and outer shells
- The capacitance of this arrangement.

Show All Work!
Problem 133.

A parallel plate capacitor has cross sectional area A and separation d. A dielectric material with dielectric constant κ of thickness d and area A fills the space in between as shown.

Suppose a potential V is connected across this capacitor. Find the electric field inside the dielectric, the free charge (and hence the capacitance), and the bound charge on the surface of the dielectric. *Show all work!*
Problem 134.

A parallel plate capacitor has cross sectional area A and separation d. A dielectric material with dielectric constant κ of thickness $d/2$ and area A half fills the space in between as shown.

Find the capacitance of this arrangement. *Show all work!*

\[\text{Diagram of parallel plate capacitor with dielectric material.} \]
Problem 135.

Derive C for the cylindrical capacitor drawn above. This capacitor has length L and consists of a conducting shell with radius a, a dielectric dielectric constant κ from radius a to radius b, and empty space from radius b to radius c, the outer conductor.

Show all work! You must follow the progression $\vec{E} \rightarrow \Delta V \rightarrow C$, inserting or using the important property of the dielectric where it is appropriate or necessary.
Problem 136.

A pair of capacitors C_1 and C_2 is connected as shown, with a resistance R in between them. Initially, the first capacitor carries a total charge Q_{1i} and the second one is uncharged, $Q_{2i} = 0$. At $t = 0$ the switch is closed. Find:

a) The equilibrium ($t = \infty$) charges on the two capacitors, Q_{1f} and Q_{2f}.

b) Using Kirchhoff’s laws for this arrangement, find the time constant for the equilibration process. Note that you do NOT have to solve the DE, just formulate it with dt and some arrangement of R, C_1, and C_2 on the other side.

c) For extra credit, either solve the DE (it is integrable, although a bit messy) or GUESS what its solution is, based on your answers to a) and b). To do the latter, try visualizing what $Q_1(t)$ and $Q_2(t)$ will formally look like – it is just a matter of setting the various constants so that the asymptotic (final) and initial conditions are correctly represented and the approach to those conditions has the right time dependence.
Problem 137.

In the circuit above, $R = 100\, \Omega$ and $C = 1\, \mu\text{F}$, and $V = 10$ volts. The capacitor is initially uncharged. To simplify arithmetic to the finger and toe level, answers given algebraically in terms of powers of e are acceptable—no calculators should be strictly necessary although you can smoke 'em if you got 'em.

a) At time $t = 0$, switch 1 is closed. What is the charge on the capacitor as a function of time?

b) At time $t = 300$ microseconds, switch 1 is opened and switch 2 is closed. What is the voltage across the capacitor as a function of time.

c) At time $t = 500$ microseconds (from $t = 0$ in part a) switch 2 is opened. How much energy is stored in the capacitor at that time?
Problem 138.

A printed circuit board contains a resistor formed of a semicircular bend of resistive material (resistivity ρ) of thickness t, inner radius a and outer radius b as shown in the figure above. Copper traces maintain a constant voltage V across the semicircular resistor. Find (in terms of the givens):

a) the resistance R of the resistor – be sure to indicate the basic formulae you are starting from for partial credit in case you can’t quite get the integral right (it is like the integral in a homework problem);

b) the energy dissipated as heat in the resistor in s seconds. Again, if you cannot find R in terms of the givens (or have little confidence in your answer), you may use R and other given quantities to answer b) for at least partial credit.

Check the Units of Your Answers!
Problem 139.

You are given a box containing a digital meter that measures current. It reads 100.0 when a current of 0.1 mA is passed through it. It has a resistance of 10 Ω. The box also contains assorted resistors in powers of 10 Ω, e.g. \(\ldots R_{-6} = 10^{-6}\Omega, R_{-5} = 10^{-5}\Omega, \ldots, R_6 = 10^6\Omega, \ldots \) with at least ten resistors available at each size. The resistors are only good to 10%, though, so there is no point in trying make combinations with more than one significant digit out of different powers. Use this material to design:

a) An ammeter that makes the digital scale read Amps (that is, read (approximately) 100.0 when a current of 100.0 A is flowing into it). Draw it, label all parts, and show your reasoning.

b) A voltmeter that makes the digital scale read Volts (that is, read 100.0 with it is placed across 100 volts). Draw it, label all parts, and show your reasoning.
Problem 140.

problems/prob-5-5.tex

In the circuit above, assume R, C, and V are given. Derive all your answers for up to five bonus points, but you may just give the answers below for full credit. All answers may be expressed in terms of powers of e.

a) At time $t = 0$, switch 1 is closed. What is the charge on the capacitor as a function of time in terms of the given quantities.

b) After a very long time ($\gg RC$) switch 1 is opened and switch 2 is closed. What is the voltage across the capacitor as a function of time.

c) At time $t = 2RC$ switch 2 is opened. How much energy is stored in the capacitor at that time?
Problem 141.

A large Leyden jar (capacitor) is surrounded by dry air so that the net resistance between its charged and grounded terminal is approximately 10^{10} Ω. It is charged up to 50,000 volts by a Wimshurst generator (at which time it contains 0.005 Coulombs of charge). It is then disconnected and left there by a negligent physics instructor. 33 1/3 minutes later, an astrophysics professor comes into the room and, seeking to move the jar, grabs the ungrounded, charged, central terminal. How much charge seeks ground through this hapless soul’s body? How much stored energy is dissipated in the process? (You can solve this algebraically if you have no calculator handy.)

Ouch! These are not unrealistic parameters. Leyden jars or other large capacitors can be very, very dangerous for hours after they are charged up.
Problem 142.

Find the three currents I_1, I_2 and I_3 in the figure above, and clearly indicate their direction on the figure. Note that you'll likely have to assume a direction for each current in order to solve the problem, so go back and put your final direction(s) back in on the figure when you are done!
Problem 143.

A particle of charge q and mass m has momentum (magnitude) $p = mv$ and kinetic energy $K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$. If the particle moves in a circular orbit of radius r perpendicular to a uniform magnetic field of magnitude B, show that:

- $p = Bqr$
- $K = \frac{B^2q^2r^2}{2m}$
- The angular momentum magnitude $L = Bqr^2$.
Problem 144.

A beam of particles with velocity \(\vec{v} \) enters a region of uniform magnetic field \(\vec{B} \) such that \(\vec{v} \) makes a small angle \(\theta < \pi/2 \) with \(\vec{B} \). Show that after a particle moves a distance

\[
D = \frac{2\pi m}{qB} v \cos(\theta)
\]

measured along the direction of \(\vec{B} \), the velocity of the particle is in the same direction as it was when it entered the field.
Problem 145.

A proton (charge $+e$) with mass m_p is in a circular orbit of radius r such that it has an angular momentum given by \vec{L}. The orbiting proton has a magnetic moment \vec{m} parallel to its angular momentum. When the orbiting proton is placed in a uniform magnetic field of strength B so that \vec{L} makes an angle of θ with \vec{B}, the angular momentum precesses around \vec{B}. Find:

a) The magnetic moment of the orbit in terms of \vec{L};

b) The angular frequency with which the angular momentum precesses.
In the mass spectrograph above, the goo in the source chamber contains molecules of mass M that are ionized to have charges of $+e$, $+2e$ or $+3e$ at the source. The particles then fall through a potential of V and enter the uniform B field in the box.

a) Derive an expression for the radius r at which a fragment of charge-to-mass ratio of m/q hits.

b) Use this expression to find r for each of the three possible ionization charges, and draw a picture of the bars produced on the film to a reasonable scale.
Problem 147.

The apparatus for measuring the Hall effect is shown above. Consider a charge carrier q (to keep you from having to mess with the negative charge on the real charge carriers – electrons) moving through the apparatus in a material with an unknown n charge carriers per unit volume. **Derive** an expression for n, given I, V_H, t, B, w and q. Note that I’d have to consider you moderately insane to have memorized this result (I certainly haven’t) but by considering the strip to be a region of self-maintaining crossed fields and relating the current to the drift velocity you should be able to get it fairly easily.
Problem 148.

a) Show that if a particle of mass m and charge q is moving in a circle in a uniform magnetic field B perpendicular to its plane of motion, its angular momentum is $L = Bqr^2$.

b) A thin, flexible loop of wire is carrying a current I (it has some resistance and a built-in small battery) and is sitting in a limp no-particular shape, the shape a loop of string might take if you just dropped it onto a table on edge. A strong, uniform magnetic field is slowly turned on in some direction. It exerts forces on the small segments of wire.

After a short while, the wire loop will be found to have a certain shape and orientation relative to the field. What are they?

Note that this question requires no actual integration – consider the forces on all the small segments of wire and what they’ll do to the wire. You should, however, give a qualitative argument for the form and orientation you decide on, including why it is stable where other possible shapes are not.

Drawing pictures of a proposed initial state, the forces on selected bits of wire, an intermediate state, and the final state showing the balance of forces is highly recommended.
Problem 149.

A flat disk of radius R with uniform surface charge density $\sigma_q = \frac{Q}{\pi R^2}$ and surface mass density $\sigma_m = \frac{M}{\pi R^2}$ is rotating at angular velocity ω.

Show that its magnetic moment $\vec{m} = \mu_B \vec{L}$ with $\mu_B = \frac{Q}{2M}$.
Problem 150.

A cylindrical long straight wire of radius R has a cylindrical long straight hold of radius $b = R/2$ and carries a current density of \vec{J} into the page as drawn. Find the magnetic field (magnitude and direction) at an arbitrary point inside the hole. I made the picture deliberately large so you could draw vectors and triangles inside of it, but feel free to draw larger ones on the backs of the pages.
Problem 151.

In the circuit above, the switch S has been closed for a very long time already at $t = 0$. Find the currents $I_1(0)$ and $I_2(0)$ and the charge $Q(0)$ on the capacitor. In this problem it is not necessary to “derive” your answer – you should be able to use your intuition and knowledge to just write it down with at most a couple of basic equations in support. It never hurts to justify your answer though.

At $t = 0$ the switch is opened. Find the charge on the capacitor $Q(t)$ for all $t > 0$. This answer I would like you to derive, including the (trivial) integration of the resulting homogeneous first order linear differential equation.
Problem 152.

A flat disk of radius R with uniform surface charge density σ is rotating at angular velocity ω.

a) Derive an integral that will give the magnetic field vB at an arbitrary point on the z-axis (axis of rotation) of the disk. Clearly state the law you are using as your starting point. You do not have to evaluate this integral.

b) What is the expected form of the field in terms of the magnetic dipole moment \vec{m} of the rotating disk of charge for $z \gg R$? You do not have to derive this, but if you do (which will require evaluating the integral and using the binomial expansion) you will get 5 extra points!
Problem 153.

A sphere of radius R with uniform charge density $\rho_q = \frac{3Q}{4\pi R}$ and uniform mass density $\rho_m = \frac{3M}{4\pi R^2}$ is rotating at angular velocity $\vec{\omega} = \omega \hat{z}$.

Consider a tiny differential chunk of the sphere’s volume dV located at r, θ, ϕ in spherical polar coordinates. Note that this chunk is orbiting the z-axis at angular frequency ω in a circular path.

a) Find the magnetic moment dm_z of this chunk in terms of ρ_q, ω, dV, and its coordinates. You do not need to express dV in coordinates – leave it as dV.

b) Find the angular momentum dL_z of this chunk in terms of ρ_m, ω, dV, and its coordinates.

c) Expressing the two integrals without doing them in actual coordinates, show that the magnetic moment of the sphere is given by $\vec{m} = \mu_B \vec{L}$, where $\mu_B = \frac{Q}{2M}$.

d) For extra credit: Despite its generality, the conclusion is not true for any shape with a uniform mass and charge density rotating about the z-axis at a constant angular velocity ω. Why not? Give a specific example of a (simple) distribution for which it is not true, and/or the condition for it to be true.
Problem 154.

Two views are shown of a perfectly conducting rod of mass m and length L sitting at rest on frictionless rails elevated at an angle θ with respect to horizontal. The rod is in a vertical magnetic field \vec{B} as shown. A voltage V_0 and variable resistance R creates a circuit.

a) Find R such that the rod is in equilibrium and sits at rest.

At $t = 0$, the resistance is suddenly decreased to $R/2$.

b) Which way does the rod slide, up or down the rails?

c) Derive its equation of motion.

d) For extra credit, determine the terminal velocity of the rod. For a lot of extra credit, solve the equation of motion! But don’t attempt this until everything else is finished, as it will be a bit messy...
Two infinitely wide and long sheets of current carry charge out of and into the paper as shown. They each carry a current per unit length of \(\lambda \), where the length unit in question is in the plane of the page.

a) From symmetry and your knowledge of how the magnetic field depends on the direction of long straight currents, determine the direction only of the magnetic field above, in between, and below the sheets of charge.

b) A possible Amperian path \(C \) is drawn on the figure as a dashed line. Indicate a direction of integration on this figure for the lower sheet only, then use Ampere’s Law to find the magnitude of the magnetic field a distance \(y/2 \) away from the sheet.

c) Use the superposition principle to find the total magnetic field produced by both sheets above, in between and below, magnitude and (from a)) direction.
Problem 156.

A rod of mass m, resistance R and length L is sitting at rest on frictionless rails in a magnetic field as shown. At $t = 0$, the switch S is closed and a voltage V applied across the rails. Show all work while deriving the following results, clearly indicating the physical law used and reasoning process. Neatness and clarity count.

a) What is the net voltage across the resistance R as a function of $|\vec{v}|$?

b) What is the current I in the loop as a function of \vec{v}?

c) What is the force \vec{F} on the rod as a function of \vec{v}?

d) What is the terminal velocity of the rod as $t \to \infty$?

10 points of extra Credit: Solve the first order, linear, ordinary, inhomogeneous differential equation and find the velocity of the rod $\vec{v}(t)$ as a function of time. Draw a qualitatively correct curve showing this function and show how it corresponds to your answer to d).
Problem 157.

A rod of length L is pivoted at one end and swings around at an angular frequency ω with its other end sliding along a circular conducting track. A magnetic field B_{in} is oriented perpendicular to the plane of rotation of the rod as shown. The pivot point and the outer ring are connected by (fixed) wires across a resistance R with a voltmeter and ammeter inserted in the circuit as shown. What do the voltmeter and ammeter read?
Problem 158.

A solenoid is built of length L with N turns and a radius of r. A current I is driven through the solenoid. **Derive from basic laws and definitions:**

a) The magnetic field \vec{B} inside the solenoid, neglecting end effects (magnitude and direction, given the direction of current flow drawn).

b) The magnetic flux ϕ_m through the solenoid, as a function of I?

c) What is the self-inductance of the solenoid?

You might prefer to draw your own picture(s) to facilitate the work.
Problem 159.

A rod of mass m, resistance R and length L is sitting at rest on frictionless rails in a magnetic field as shown. At $t = 0$, the switch S is closed and a voltage V applied across the rails. Find the velocity of the rod as a function of time from a combination of Newton’s laws, Ohm’s law, and Faraday’s law. If you are clueless (in spite of this being a homework problem and very similar to a quiz problem) at least tell me what all those laws and the terminal velocity are for most of the credit.
Problem 160.

A rod of length L and mass m slides on frictionless conducting guides down vertical rails, connected at the bottom, that enclose a uniform magnetic field of magnitude B as shown, starting at rest at $t = 0$. The loop formed by the rod and rails has a total resistance of R. Gravity makes the rod fall. Find:

a) The current $I(v)$ induced in the rod when the speed of the rod is v (down). Indicate the direction on the figure above.

b) The net force on the rod as a function of v.

c) The “terminal velocity” of the rod \vec{v}_t.

d) For extra credit, explicitly solve the equations of motion and find $v(t)$ for all times, assuming of course that it hasn’t yet fallen off of the rails.
Problem 161.

A conducting bar of length L rotates at an angular frequency ω in a uniform, perpendicular magnetic field as shown.

b) Find the forces acting on a charge $+q$ in the rod (magnitude and direction) at the radius r. What causes these forces and what direction do they point?

a) Find the potential difference developed between the central end of the rod and a point at radius r on the rotating rod.

c) Discuss the qualitative distribution of charge in the (presumed neutrally charged) rod, assuming that it is in equilibrium (has been rotating for a long time). Draw a qualitative graph of $\rho(r)$, the charge density as a function of r to support your assertions. That is, you don’t have to have exactly the right functional form but your curve should have all the right features.
Invent and compare spaceships (draw them in the blank space above) that are driven according to the following (ideal) criteria. The actual source of power is e.g. a small fusion plant onboard the spaceship.

a) Suppose a spaceship is powered by a laser that emits 1000 Watts in a beam 1 cm2 in cross-sectional area. What is the recoil force (per KW) exerted by the laser?

b) Suppose instead the spaceship is powered by throwing mass. If it throws 1000 small beads per second, each with mass $m = 1$ gram and with a kinetic energy of 1 Joule per bead (so the power required to operate it is still 1000 Watts), what is the average force (per KW) exerted by the mass-driver?
A parallel LRC circuit connected across a variable AC voltage source $V = V_0 \cos(\omega t)$ is drawn above. Find:

a) The current $I(t)$ in the primary supply wire (as shown in the figure above) with all terms, e.g. the phase δ, and the impedance Z defined (the latter in terms of the individual reactances).

b) The average power dissipated by the circuit. Note that (if you are clever and remember what each elements does in the circuit) you don’t really have to solve a) to get this answer, although you can certainly get the same answer from a knowledge of $V(t)$ and $I(t)$ and some integration.

Hint: I did say to study this section of the chapter, but even if you haven’t you can do this problem if you note that the voltage across each circuit element is known and constant, so it is of little direct help. Instead to find the answer you must add the currents being drawn by each element separately! What might you expect Z to look like, given the way resistances in parallel add?
Problem 164.

A Betatron is pictured above (with field out of the page). It works by increasing a non-uniform magnetic field \(\vec{B}(r) \) in such a way that electrons of charge \(e \) and mass \(m \) inside the “doughnut” tube are accelerated by the \(E \)-field produced by induction (via Faraday’s law) from the “average” time-dependent magnetic field \(B_1(t) \) inside \(a \), while the magnitude of the magnetic field at the radius \(a \), \(B_2(t) = |\vec{B}(a, t)| \), bends those same electrons around in the circle of (constant) radius \(a \).

This problem solves, in simple steps, for the “betatron condition” which relates \(B_1(t) \) to \(B_2(t) \) such that both things can simultaneously be true.

a) The electrons go around in circles of radius \(a \) and are accelerated by an \(\vec{E} \) field produced by Faraday’s law. We will define the (magnitude of the) average field \(B_1 \) by \(\phi_m = B_1(\pi a^2) = \int_{(r<a)} \vec{B}(r) \cdot \hat{n} dA \). What is the induced \(E \) field (tangent to the circle) in terms of \(B_1 \) and \(a \)?

(Problem continued on next page!)
b) The electrons (at their instantaneous speed v tangent to the circle) are bent into the circle of radius a by the field B_2. Relate B_2 to the magnitude of the momentum $p = mv$, the charge e of the electron, and the radius a.

c) The force \vec{F} from the E-field acting on the electron with charge e in the direction of its motion is equal to the time rate of change of the magnitude of its momentum p (if Newton did not live in vain). Substitute, cancel stuff, and solve for $\frac{dB_1}{dt}$ in terms of $\frac{dB_2}{dt}$. If you did things right, the units will make sense and the relationship will only involve dimensionless numbers, not e or m.

Cool! You’ve just figured out how to build one of the world’s cheapest electron accelerators! Or perhaps not....
Problem 165.

A parallel plate capacitor is constructed from two square conducting plates of with an area of A, separated by a distance of d. An insulating slab of thickness d and a dielectric constant κ is inserted so that it half-fills the space between the plates as shown. Find:

a) The capacitance of this arrangement;

b) The electrostatic force on the dielectric slab when a the capacitor carries a total charge (fixed) Q_0 on the top plate and $-Q_0$ on the bottom plate.

c) For extra credit, would the direction of the force be the same if a constant voltage ΔV were applied across the plates? Indicate why if you try to answer this one.
Problem 166.

Two concentric spherical conducting shells of radii R_1 and R_2 are arranged as shown. The inner shell is given a total charge $+Q$. The outer shell is grounded (connected to a conductor at zero potential) as shown.

Find the potential and field at all points in space. Show all work – don’t just write down answers even if you can “see” what the answers must be.
Problem 167.

You need to decide whether or not to buy a solar panel for your house. Use the facts below and your understanding of light energy to estimate whether or not you will invest in a panel based energy system.

- The sun produces 4×10^{26} Watts of power and is 1.5×10^{11} meters away from the earth.
- Only about 70% of this makes it down through the atmosphere on a clear day at the equator.
- On average, at our latitude the sun will strike your panel at an angle of 45°.
- The solar panel converts sunlight into electrical energy and stores it into a battery to be recovered later at an overall efficiency of about 10%.
- Electricity can be purchased from a power company at a cost of $0.10/kW-hour (what is that in joules?).
- A 1 m² solar panel and associated battery storage system cost approximately $1000, with additional panels (that will feed the same battery) costing around $250 each.

If you collect an average of six hours of sunlight a day, roughly how long would it take to recover the cost of a single panel? Show all of your reasoning, supporting it with figures and diagrams as needed. Note that to be completely fair, you’d need to add in the cost of borrowing the money for the panel in which case the answer might well be “never”, but let’s go with the easy answer first.

Next, assume that you double your investment and spend $2000 for five panels. How long will it take to recover your investment now?

You may make “reasonable” simplifying assumptions to make your arithmetic easier as you proceed as long as you are very clear as to what they are, e.g. — six hours is 0.25 days, 0.25 * 365 ≈ 100 days...
Problem 168.

The power output of the Sun is roughly 4×10^{26} Watts. The Sun is 1.5×10^{11} meters away from Earth.

a) What is the intensity of sunlight at the top of the atmosphere? (Show how you get this number, the algebra is more important than the numbers.)

b) What is the approximate force exerted by the Sun on a sheet of shiny aluminum foil 1 meter square placed out in the Sun on a clear day at midday? Assume that the atmosphere absorbs roughly half of the available energy before the light reaches the ground. (Use 1500 Watts/m2 if you couldn’t do better in your answer to a).)

c) Suppose one builds a solar power plant that has 1 kilometer squared worth of collectors, each of them 5% efficient at converting light energy into electricity. What is the expected power output of this plant under optimal conditions?
In some science fiction stories, spaceships get their propulsion from lasers, that is, directly from light pressure.

So, put on your sunglasses (really, really dark ones) and explore the design of such a spaceship to see if this is at all feasible. Assume that the ship to be lifted has a mass of 10^4 kg (ten metric tons) – that’s about two and a half times the mass of my Ford Excursion and hence not very big. Assume that you get propulsion from a panel of 10^6 lasers with a cross-sectional area of 1 cm each (or about 100 square meters – 10 meters square – of lasers).

a) What would the power of each those lasers need to be, in watts, in order to barely lift the ship (generate a force on the ship equal to that of gravity, assuming $g = 10 \text{ m/sec}^2$)?

b) Let’s assume instead that the lasers have the not totally unreasonable (but still very large) intensity of one watt apiece, so that the bank delivers 1 megawatt in 100 m2. Now what force would be exerted on the spaceship, and what (roughly) would be its acceleration. Can you lift such a ship off of the earth?

So, what do you report to NASA about your massless “photon drive”? Good idea or bad? Don’t forget those sunglasses...
Problem 170.

A spherical grain of dust of radius r is a distance $R \gg r$ from Mr. Sun. Mr. Sun has a mass $M_{\text{sun}} = 2 \times 10^{30}$ kg and produces power (all radiated away in the form of light) at a rate $P_{\text{sun}} = 3.83 \times 10^{26}$ watts. The mass density of the grain of dust is ρ.

a) Draw a figure schematically representing what’s going on to help you solve the rest of the problem.

b) Assuming that light is reflected from the grain in such a way that (on average) all the momentum in the light that hits the grain at all is transferred to the grain (per unit time), find an algebraic expression for the radius r of the particle that will cause it to hang precisely balanced between gravitation and light pressure. Note well, do not use the numbers above yet.

c) Does your answer depend on R?

d) Evaluate this radius, assuming a density $\rho = 1000$ kg/m3 (the density of water – most condensed matter has a density between this and about ten times this).
You are given the job of designing a display for the physics department lobby that will demonstrate real images. You are given a box of large, high quality, thin lenses with focal lengths of ±10, 20, 30, 50 cm (several of each size) along with other construction materials such as a small electric candle, plywood, black spray paint, and construction adhesive to use to make a hooded box (to hide/house the candle) and lens mounts.

The plan is for you to construct an arrangement of lenses that creates a real image of the candle with overall magnification of +1 at the front of a short platform, so that a "real candle" appears to be attached there if one looks through the lenses from in front. Of course the candle is just the ghost of a candle and cannot be grasped by the hand if a student tries.

Select one or more lenses from the box and draw a plan for an arrangement that will do the trick. Your plan should include the location (to scale) of the lens(es), its(their) focal length(s) on the diagram, a ray diagram that shows how it will work, proof that the total magnification is +1, and an estimate of the overall length of the box L (accurate within a few cm).

Note that there are an infinite number of choices and arrangements that will "work", but bear in mind that it would be desirable for the overall box and platform to fit on a moveable cart or small table, so maintaining a total length of $L < 1.75$ meters would be a good idea...
Problem 172.

The arrangement of lenses that makes up a compound microscope is pictured above. The focal lengths of the objective and eyepiece lenses are $f_o = 2$ cm and $f_e = 1$ cm. The tube length is $L = 20$ cm.

- Find s (the object distance from the objective lens) such that the final image viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

- Draw the ray diagram from which you can find the overall magnification.

- From this diagram, find the overall magnification. Explain what each part contributes to the overall magnification (that is, what are the separate roles of the objective and eyepiece in allowing you to see a significantly magnified image at infinity).

- Is the final image you see inverted or erect compared to the way you would see the object with your naked eye (if you could see the object with your naked eye)?
Problem 173.

Find the three currents I_1, I_2 and I_3 in the figure above, and clearly indicate their direction on the figure. Note that you’ll likely have to assume a direction for each current in order to solve the problem, so go back and put your final direction(s) back in on the figure when you are done!
In the figure above, a $V = 8$ Volt battery is applied across the resistance network, where $R = 1$ Ohm. Find the currents I_1, I_2, I_3, I_4, and I_5, and indicate the total power delivered by the battery.

Your answer can be given algebraically in terms of V and R or numerically in terms of Amps and Watts. The arithmetic should be easy enough to do in your head should you wish to do the latter.
Problem 175.

problems/resistor-poynting.tex

Above a “leaky capacitor” is shown, that consists of two circular plates with radius R, separated at a distance d by a dielectric material with a dielectric constant κ and with a finite resistivity ρ. The circuit has been closed for some time and so the current I is at equilibrium.

a) Find the charge Q on and current I through the capacitor.

b) Find the magnetic field as a function of the distance r from the cylindrical axis of the resistive material.

c) Find the Poynting vector (magnitude and direction) as a function of r in the region in between the plates.

d) Evaluate the flux of the Poynting vector through the surface of the resistor and prove that the result equals I^2R.
Problem 176.

A solenoid has length L, N turns, and radius r is centered on the z-axis. A current I is driven through the solenoid.

a) Derive the magnetic field \vec{B} inside the solenoid, neglecting end effects. Draw the direction of the field lines in on your picture.

b) Derive the self-inductance of the solenoid.

In both cases, start from fundamental principles, equations, laws or definitions and clearly state what they are; do not just put down a remembered answer.
Problem 177.

Find the self-inductance L of a toroidal solenoid with a rectangular cross-section (height H, inner radius a, outer radius b) and N turns. Presume that the wires are wrapped uniformly all the way around and carry a current of I.
Two infinitely long, cylindrical conducting shells are concentrically arranged as shown above. The inner shell has a radius R_1 and the outer shell the radius R_2. The inner shell has a charge per unit area σ_1, and the outer shell a charge per unit area σ_2.

a) Find the electric field \vec{E} at all points in space (you should have three answers for three distinct regions).

b) Find the surface charge density σ_2 (in terms of σ_1, R_1, R_2, etc.) that causes the field to vanish everywhere but in between the two shells. *Justify your answer with Gauss’s law.*
Problem 179.

In the circuit above, assume R, L, and V are given.

a) At time $t = 0$, switch $S1$ is closed. Start by writing Kirchoff’s loop rule for the circuit and find the current through the inductor as a function of time in terms of the given quantities.

b) Find the power provided by the voltage and delivered to L and R as a function of time and show that $P_V = P_R + P_L$ (so that energy is conserved).
Problem 180.

Unpolarized light is incident on the surface of a large diamond (n = 2.4). Some of the light is reflected from the diamond; the rest penetrates the diamond surface and is refracted.

a) Find the angle at which the reflected light is completely polarized and indicate the direction of polarization on a suitable figure.

b) Diamond is interesting for another reason. It “traps light” and reflects it internally many times as it bounces from facet to facet. Explain how a diamond (with n = 2.4) traps more light more than an identically shaped piece of glass (n = 1.5). Your answer should be at least partly quantitative.
Problem 181.

Light propagates down a light fiber by reflecting off the walls.

a) Assuming that the fiber has an index of refraction of $n = 1.4$, what is the critical angle of incidence such that light will remain trapped in the fiber?

b) Indicate how you think light might be polarized in the fiber after propagating a few meters (and bouncing several times off the walls). Show the polarization direction(s) in cross section. Indicate WHY you think the light would be polarized that way.
Problem 182.

Derive Snell’s Law. You may use either the wave picture (that I gave in class) or the Fermat principle (which was on your homework). For a bit of extra credit, do it both ways. Be sure to give the definition of index of refraction.
Problem 183.

Suppose that you have a sheet of glass with a thin layer of water on top, in air, as shown (where \(n_a = 1 < n_w = 4/3 < n_g = 3/2 \)). Prove that the critical angle in the glass (where total internal reflection occurs for rays coming from the glass through the water into the air) is not changed by the presence of the water.
Problem 184.

Many pocket calculators today run on solar cells instead of batteries, using ambient light (such as a nearby light bulb) for their power source.

You have a pocket calculator has a solar cell with a collection area of $A = 4 \text{ cm}^2$. It works fine using the light from an ordinary $P_0 = 100 \text{ Watt}$ light bulb located $R = 1 \text{ meter}$ away. Make a reasonable (upper bound) estimate for the power used by the calculator. Assume that the efficiency of the solar cell is $\eta = 0.1$ (10% efficient).

You may answer this problem algebraically if you wish (or don’t have a solar powered calculator handy to help with the arithmetic). If you do have a calculator (or do the arithmetic by hand; it isn’t difficult) and get the right numerical answer as well as the right algebraic answer, you may have 2 extra points.
Problem 185.

Find the electric field at all points in space of a sphere with radial charge density:

\[\rho(r) = \begin{cases} \frac{\rho_0 R}{r} & r \leq R \\ 0 & r > R \end{cases} \]
Problem 186.

Four identical charges q are arranged in a tetrahedron with identical distance a between any pair of charges. What is the potential energy of this arrangement?
Problem 187.

You have a candle and a lens with a focal length of +10 cm. You wish to view a virtual, erect image of a candle that is exactly two times the size of the actual candle.

a) Find s and s' such that this kind of image is formed.

b) Carefully 'place' the candle into the figure above at the position you determine and draw a ray diagram to locate the image, to scale, in agreement with your answers to a). Be sure to include the 3 rays that uniquely specify the image location.

c) If you view this image with the naked eye, is the apparent size of the image larger or smaller than it would be if you used the lens as a simple magnifier to view the image?

Don’t burn yourself on the candle.
Problem 188.

You have a candle and a lens with a focal length of 15 cm. You wish to cast a real image of the candle upon a screen. You want the image size (magnitude) to be exactly two times the size of the actual candle.

a) Find s and s' such that this kind of image can be formed.

b) Carefully place the components on the figure above and draw a ray diagram to locate the image, to scale, in agreement with your answers to a.
Be sure to include the 3 rays that uniquely specify the image location.

Don’t burn yourself on the candle.
Problem 189.

Light with wavelength λ is incident on a barrier with two narrow (width much smaller than a wavelength) slits separated by a distance $d = 3\lambda$ cut in it. The lower slit is twice as wide as the upper one. The light passes through the two slits and falls upon a distant screen at a point P that is at an angle θ above both slits, where the figure is not horizontally to scale.

a) Write an expression for the total electric field you expect to get at P from both slits, in terms of the field strength E_0 at P from the upper slit only.

b) Draw a phasor diagram that you could use to solve for the total field amplitude for arbitrary $\delta = kd\sin(\theta)$. Do not attempt to solve it at this time.

c) Draw (small) phasor diagrams that schematically indicate the phase angles δ where you expect to get maximum and minimum intensity on the screen. What are the magnitudes you expect for maximum and minimum intensity on the basis of these diagrams.

d) Find the angles θ where the maxima and minima occur and sketch the intensity as a function of θ, approximately to scale.

Only when this is done and checked should you then attempt:

e) For five points of extra credit, find an explicit expression for E_{tot}, and use it to express the intensity $I(\delta)$ in terms of the intensity of the upper slit by itself, I_0. Hint: remember the law of cosines.
Two converging lenses are shown above. The first has a focal length of \(f_1 = 1 \) cm. The second has a focal length of \(f_2 = 3 \) cm and is placed a distance of \(D = 5 \) cm from the first lens.

An object is placed a distance \(s_1 = 3/2 \) cm in front of the first lens. Dashed lines are drawn for your convenience into the figure at the focal points and down the center plane of the lenses.

a) Draw (using a straightedge if possible) the ray diagrams for both lenses, using the image from the first lens as the virtual object for the second one. Locate and circle the final image and indicate whether the final image is erect or inverted, real or virtual.

b) Solve for the magnification of this final image. Show all work! Just because there are numbers, don’t go all crazy. You shouldn’t need a calculator for these numbers, but you are welcome to use one after setting up the arithmetic required on the paper.
Find the potential $V(r)$ at all points in space for the spherically symmetric arrangement of charge pictured above, where there is a point charge $+2Q$ at the origin, a charge uniformly distributed $-2Q$ on the concentric spherical inner shell (radius R_1), and a charge $+Q$ uniformly distributed on the outer spherical shell (radius R_2). You will need three different answers for the three distinct regions of space.
Problem 192.

Two spherical shells with radii R_1 and R_2 respectively concentrically surround a point charge. The central point charge has magnitude $2Q$. Both the spherical shells have a charge of $-Q$ (each) distributed uniformly upon the shells.

Find the field and potential at all points in space. Show your work – even if you can just write the answer(s) down for each region, briefly sketch the methodology used to get the answers.
Problem 193.

problems/two-slits-finite-width-1.tex

Two vertical slits of width 1500 nanometers (nm) are separated (center to center) by a distance of 2500 nm and illuminated by light of wavelength 500 nm. The light which passes through is then projected on a distant screen. Find θ (or $\sin(\theta)$) for:

a) The location of all diffraction minima.

b) The location of all interference minima.

c) The location of all interference maxima.

d) Finally, draw a properly proportional graph of $I(\theta)$ (or $I(\sin(\theta))$) between $-\pi/2$ and $\pi/2$ (or -1 and 1) indicating the maximum intensity in terms of the central maximum intensity that would result from a single slit.

Note well that you may answer in terms of $\sin(theta)$ or θ as you prefer, but without a calculator $\sin(\theta)$ is usually somewhat simpler.
Appendix A

License Terms for “Review Problems for Introductory Physics”

A.1 General Terms

License is granted to copy or use this document according to the Open Public License (OPL, enclosed below), which is a Public License, developed by the GNU Foundation, which applies to “open source” generic documents.

In addition there are three modifications to the OPL:

a) Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder. (This is to prevent errors from being introduced which would reflect badly on the author’s professional abilities.)

b) Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder. (This is so that the author can make at least some money if this work is republished as a textbook or set of notes and sold commercially for – somebody’s – profit. The author doesn’t care about copies photocopied or locally printed and distributed free or at cost to students to support a course, except as far as the next clause is concerned.)

c) The "One Dollar" modification listed below applies to all non-Duke usage of these notes in any form (online or in a paper publication).
298

APPENDIX A. LICENSE TERMS FOR “REVIEW PROBLEMS FOR INTRODUCTORY PHYSICS”

A.2 The “One Dollar” Modification to the OPL

Any individual user of this OPL-copyrighted material who makes substantial use of it for the purpose of learning physics in a formal setting (in any school, college, business, or university, for example) shall send the author one dollar in exchange for a lifetime personal unlimited use license. What constitutes substantial use is left to the moral judgement of the user, who presumably knows what a dollar is worth and will similarly know when they owe me one.

Note that the author has a paypal account at:

rgb@phy.duke.edu at http://www.paypal.com

which means that paying him with a credit card is just a click away. Alternatively, payment by check can be sent by mail to:

Robert G. Brown
Duke University Physics Department
Box 90305 Durham, NC, 27708-0305
USA

A.3 OPEN PUBLICATION LICENSE Draft v0.4, 8 June 1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED VERSIONS

The Open Publication works may be reproduced and distributed in whole or in part, in any medium physical or electronic, provided that the terms of this license are adhered to, and that this license or an incorporation of it by reference (with any options elected by the author(s) and/or publisher) is displayed in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author’s name or designee>. This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, vX.Y or later (the latest version is presently available at http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the author(s) and/or publisher of the document (see section VI).
Commercial redistribution of Open Publication-licensed material is permitted. Any publication in standard (paper) book form shall require the citation of the original publisher and author. The publisher and author’s names shall appear on all outer surfaces of the book. On all outer surfaces of the book the original publisher’s name shall be as large as the title of the work and cited as possessive with respect to the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or designee.

III. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless otherwise explicitly stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works or programs on the same media shall not cause this license to apply to those other works. The aggregate work shall contain a notice specifying the inclusion of the Open Publication material and appropriate copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remaining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided "as is" without warranty of any kind, express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including translations, anthologies, compilations and partial documents, must meet the following requirements:

a) The modified version must be labeled as such.

b) The person making the modifications must be identified and the modifications dated.

c) Acknowledgement of the original author and publisher if applicable must be retained according to normal academic citation practices.

d) The location of the original unmodified document must be identified.

e) The original author’s (or authors’) name(s) may not be used to assert or imply endorsement of the resulting document without the original author’s (or authors’) permission.
V. GOOD-PRACTICE RECOMMENDATIONS

In addition to the requirements of this license, it is requested from and strongly recommended of redistributors that:

a) If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email notification to the authors of your intent to redistribute at least thirty days before your manuscript or media freeze, to give the authors time to provide updated documents. This notification should describe modifications, if any, made to the document.

b) All substantive modifications (including deletions) be either clearly marked up in the document or else described in an attachment to the document.

Finally, while it is not mandatory under this license, it is considered good form to offer a free copy of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document may elect certain options by appending language to the reference to or copy of the license. These options are considered part of the license instance and must be included with the license (or its incorporation by reference) in derived works.

A. To prohibit distribution of substantively modified versions without the explicit permission of the author(s). "Substantive modification" is defined as a change to the semantic content of the document, and excludes mere changes in format or typographical corrections.

To accomplish this, add the phrase ‘Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.’ to the license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or in part in standard (paper) book form for commercial purposes is prohibited unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase ‘Distribution of the work or derivative of the work in any standard (paper) book form is prohibited unless prior permission is obtained from the copyright holder.’ to the license reference or copy.

OPEN PUBLICATION POLICY APPENDIX:

(This is not considered part of the license.)

Open Publication works are available in source format via the Open Publication home page at http://works.opencontent.org/.

Open Publication authors who want to include their own license on Open Publication works may do so, as long as their terms are not more restrictive than
the Open Publication license.

If you have questions about the Open Publication License, please contact TBD, and/or the Open Publication Authors’ List at opal@opencontent.org, via email.