Time-of-Flight at CDF

Matthew Jones

August 19, 2004
History

• An experimental TOF system installed in CDF at the end of Run-I:
 – Covered only 5% of the acceptance
 – Demonstrated feasibility
 – Identified potential problems

• Contributions to Run-II TOF system from several institutes:
 – Cantabria, FNAL, INFN, Korea, LBL, MIT, Penn, Tsukuba
Tracking chambers only detect stable, charged particles: $e^\pm, \mu^\pm, \pi^\pm, K^\pm, p/\bar{p}$

- P_T measured by curvature in B field
- Extra information needed for particle ID:
 - Ionization of material
 - Cherenkov techniques
 - Time-of-Flight
 - Shower shapes
 - Transition radiation

These measure β e/h separation
How well we can measure Δt determines how well we can distinguish between the two particles.

$\Delta t = d \left(\frac{1}{v_1} - \frac{1}{v_2} \right)$

$t_1 = \frac{d}{v_1}$

$t_2 = \frac{d}{v_2}$
• Achievable resolution is of order 100 ps.
Measuring TOF

• Important issues:
 – Precision: K/π separation or cosmic veto?
 – Detector technology:
 • Scintillator + PMT
 • Resistive plate chambers
 – Segmentation: occupancy vs channel count
 – Cost per channel
Detecting charged particles

- Charged particles lose energy in material:

\[-\frac{dE}{dx} = K z^2 Z \frac{1}{A \beta^2} \left[\frac{1}{2} \log \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 \right] \]

- Example:

1 MIP = 2 MeV/cm
Plastic Scintillator

- Ionization \rightarrow excited molecular states

- π electrons are loosely bound
- Ionization excites the S_0 electrons
- Light emitted when de-excitation occurs
- Emission spectra shifted to lower energies
- Absorption and emission spectra do not overlap \rightarrow emitted light is not re-absorbed.
Properties of Plastic Scintillator

• Typical figures of merit:
 – Light yield (% compared with anthracene)
 – Emission spectrum
 – Bulk attenuation length
 – Rise time, decay times (short, long)
 \[f(t) = \left(1 - e^{-t/\tau_r}\right)e^{-t/\tau_f} \]

• Bicron-408:
 – \(\tau_r = 0.9 \text{ ns}, \tau_f = 2.1 \text{ ns} \)
 – Bulk attenuation length, \(\lambda = 380 \text{ cm} \)
Examples from Bicron

Sci Emission Spectra

Lig
Ris
De
Pu
Wc
Lig
Bu

At

Nc
Nc
Ra
Nc

*Thienophen
Photomultiplier Tubes

- **Books** from vendors are fun to read:
Photomultiplier Tubes

- Typical dynode structure:
 - This kind won't work in a magnetic field.
 - Mesh dynode structure:
 - This kind will work in a magnetic field.
Photomultiplier Tubes

- **Window material:**
 - Borosilicate glass: transmits blue (not UV)

- **Photocathode:**
 - Bialkali metal (Sb-Rb-Cs): low work function
 - Also important: low dark current

- **Dynodes:**
 - Metal with secondary emissive material
 - Good (relatively inexpensive): Be-CuO-Cs
 - Better (more expensive): GaP: Cs
Quantum efficiency: 20% at 390 nm

Gain: $\mu = \alpha \cdot \delta_1 \cdot \delta_2 \cdots \delta_n$

$\delta_i = aE^k \sim 1 - 2$

With $n=19$, $\mu \sim 10^7$ at 2 kV and no B field

Gain greatly reduced in a magnetic field
Mesh PMT’s in Magnetic Fields

- Gain is reduced by $O(500)$, but not to zero

- Large tube-to-tube variation

![Graph showing relative anode output in magnetic fields with a peak at 1.4 Tesla]
Preamp for PMT

- We added a preamplifier with a gain of 15
- Differential output driver
- Gain switches to ~2 for big pulses
Photomultiplier tube properties

- Timing characteristics:
 - Pulse shape: Gaussian, few ns risetime
 - Transit time: ~ 15 ns
 - Transit time spread: ~ 300 ps

Timing resolution is roughly \(\frac{TTS}{\sqrt{n}} \)

That’s why we want \(n \) to be large.
Photomultiplier tube properties

Gain

Δ Transit time

Pulse rise time

Pulse width
• Scintillator dimensions is about 2x2 cm
• Sensitive area of photocathode is 27 mm
• Optical couplings made using glue or silicone pads
The CDF-II TOF System

Look for it here...
The CDF-II TOF System

The PMT goes in here.
Front-end Electronics

• Requirements:
 – Measure arrival time of pulse from PMT
 – Measure pulse height (or charge)
 – Do it every 132 ns (whimsical requirement)
 – Precision should be < 25 ps

• Limitations:
 – Only measures time of first pulse
 – Light from multiple pulses overlap (biases Q)
Front-end Electronics

- Fast components go to discriminator.
- Slow components used to measure charge.
Measuring Time

• Time measured using TAC with respect to a common stop signal:

Voltage proportional to time difference between START and STOP
Interface with ADMEM

- Use ADMEM boards to read out TOF:
 - CAFÉ cards measure charge
 - deCAF cards measure time (output of TAC)

9 channels
Typical Response

- Response of PMT from cosmic rays: 132 ns
Pulse Properties

• Pulse shape is a complicated mixture of:
 – Scintillation process
 – Light transport in the scintillator
 – Optics of PMT coupling
 – PMT response
 – Shaping from base
 – Preamplifier
 – Cables
 – Receiver and discriminator
Things we can’t measure directly

• Absolute gain:
 – Need calibrated light source (we do have a laser…)
 – Need magnetic field
 – Systematics from electronics (preamp, $Q_{\text{anode}} \rightarrow \text{ADC}$?)
 – Probably averages around 3×10^4

• Number of photons:
 – Don’t know PMT properties well enough
 – Don’t know the gain precisely
 – Systematics from electronics
 – Probably end up with few 100 p.e.

• Most effects are parameterized by the empirical model used for calibration.
Simulated pulses

- We can’t probe the electronics on CDF to see what the pulses really look like.
- Simulations can provide a qualitative description of most effects.
Simulated pulses

- Compare pulse shapes at east/west ends:

\[z = -125.0 \text{ cm} \]

Attenuated far pulse

![Graph showing pulse shapes](image-url)
Timing Resolution

- Stated goal was “100 ps”.
- Actual model is:

\[\sigma_t = \sigma_0 + \rho d \]

\[\sim (100 \text{ ps}) + (0.4 \text{ ps/cm})d \]

- Resolutions measured after calibrations:

\[\langle \sigma_t \rangle \sim (100 \text{ ps}) + (0.5 \text{ ps/cm})d \]

- Not the complete story, see next talk by Stephanie…
Summary

• Typical TOF detector
 – BC-408 scintillator
 – Mesh PMT’s
 – Properties poorly controlled – each channel is different

• Unique features
 – Hadron collider environment
 – Small bar cross section: not much light output

• DAQ interface
 – Looks like one of the calorimeters

• Performance
 – Generally meets timing precision requirements…