Contents

Preface to the third edition xx
Preface to the second edition xxiii
Preface to the first edition xxv

1 Preliminary algebra 1
1.1 Simple functions and equations 1
 Polynomial equations; factorisation; properties of roots
1.2 Trigonometric identities 10
 Single angle; compound angles; double- and half-angle identities
1.3 Coordinate geometry 15
1.4 Partial fractions 18
 Complications and special cases
1.5 Binomial expansion 25
1.6 Properties of binomial coefficients 27
1.7 Some particular methods of proof 30
 Proof by induction; proof by contradiction; necessary and sufficient conditions
1.8 Exercises 36
1.9 Hints and answers 39

2 Preliminary calculus 41
2.1 Differentiation 41
 Differentiation from first principles; products; the chain rule; quotients;
 implicit differentiation; logarithmic differentiation; Leibniz' theorem; special
 points of a function; curvature; theorems of differentiation
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Integration</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Integration from first principles; the inverse of differentiation; by inspection; sinusoidal functions; logarithmic integration; using partial fractions; substitution method; integration by parts; reduction formulae; infinite and improper integrals; plane polar coordinates; integral inequalities; applications of integration</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Exercises</td>
<td>76</td>
</tr>
<tr>
<td>2.4</td>
<td>Hints and answers</td>
<td>81</td>
</tr>
<tr>
<td>3</td>
<td>Complex numbers and hyperbolic functions</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>The need for complex numbers</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Manipulation of complex numbers</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>Addition and subtraction; modulus and argument; multiplication; complex conjugate; division</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Polar representation of complex numbers</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Multiplication and division in polar form</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>de Moivre’s theorem</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Trigonometric identities; finding the nth roots of unity; solving polynomial equations</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Complex logarithms and complex powers</td>
<td>99</td>
</tr>
<tr>
<td>3.6</td>
<td>Applications to differentiation and integration</td>
<td>101</td>
</tr>
<tr>
<td>3.7</td>
<td>Hyperbolic functions</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>Definitions; hyperbolic–trigonometric analogies; identities of hyperbolic functions; solving hyperbolic equations; inverses of hyperbolic functions; calculus of hyperbolic functions</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Exercises</td>
<td>109</td>
</tr>
<tr>
<td>3.9</td>
<td>Hints and answers</td>
<td>113</td>
</tr>
<tr>
<td>4</td>
<td>Series and limits</td>
<td>115</td>
</tr>
<tr>
<td>4.1</td>
<td>Series</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Summation of series</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Arithmetic series; geometric series; arithmetico-geometric series; the difference method; series involving natural numbers; transformation of series</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Convergence of infinite series</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Absolute and conditional convergence; series containing only real positive terms; alternating series test</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Operations with series</td>
<td>131</td>
</tr>
<tr>
<td>4.5</td>
<td>Power series</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Convergence of power series; operations with power series</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Taylor series</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Taylor’s theorem; approximation errors; standard Maclaurin series</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Evaluation of limits</td>
<td>141</td>
</tr>
<tr>
<td>4.8</td>
<td>Exercises</td>
<td>144</td>
</tr>
<tr>
<td>4.9</td>
<td>Hints and answers</td>
<td>149</td>
</tr>
</tbody>
</table>
CONTENTS

5 Partial differentiation 151

5.1 Definition of the partial derivative 151
5.2 The total differential and total derivative 153
5.3 Exact and inexact differentials 155
5.4 Useful theorems of partial differentiation 157
5.5 The chain rule 157
5.6 Change of variables 158
5.7 Taylor’s theorem for many-variable functions 160
5.8 Stationary values of many-variable functions 162
5.9 Stationary values under constraints 167
5.10 Envelopes 173
5.11 Thermodynamic relations 176
5.12 Differentiation of integrals 178
5.13 Exercises 179
5.14 Hints and answers 185

6 Multiple integrals 187

6.1 Double integrals 187
6.2 Triple integrals 190
6.3 Applications of multiple integrals 191

Areas and volumes; masses, centres of mass and centroids; Pappus’ theorems; moments of inertia; mean values of functions

6.4 Change of variables in multiple integrals 199

Change of variables in double integrals; evaluation of the integral \(I = \int_{-\infty}^{\infty} e^{-x^2} \, dx \); change of variables in triple integrals; general properties of Jacobians

6.5 Exercises 207
6.6 Hints and answers 211

7 Vector algebra 212

7.1 Scalars and vectors 212
7.2 Addition and subtraction of vectors 213
7.3 Multiplication by a scalar 214
7.4 Basis vectors and components 217
7.5 Magnitude of a vector 218
7.6 Multiplication of vectors 219

Scalar product; vector product; scalar triple product; vector triple product
CONTENTS

Chapter 7: Equations of lines, planes and spheres
- Equations of lines, planes and spheres 226
- Using vectors to find distances 229
 - Point to line; point to plane; line to line; line to plane
- Reciprocal vectors 233
- Hints and answers 240

Exercise 7.10 234

Hints and Answers 7.11 240

Chapter 8: Matrices and vector spaces

Section 8.1: Vector spaces
- Basis vectors; inner product; some useful inequalities 242

Section 8.2: Linear operators

Section 8.3: Matrices

Section 8.4: Basic matrix algebra
- Matrix addition; multiplication by a scalar; matrix multiplication 250

Section 8.5: Functions of matrices

Section 8.6: The transpose of a matrix

Section 8.7: The complex and Hermitian conjugates of a matrix

Section 8.8: The trace of a matrix

Section 8.9: The determinant of a matrix
 - Properties of determinants 259

Section 8.10: The inverse of a matrix

Section 8.11: The rank of a matrix

Section 8.12: Special types of square matrix
 - Diagonal; triangular; symmetric and antisymmetric; orthogonal; Hermitian and anti-Hermitian; unitary; normal 268

Section 8.13: Eigenvectors and eigenvalues
- Of a normal matrix; of Hermitian and anti-Hermitian matrices; of a unitary matrix; of a general square matrix 272

Section 8.14: Determination of eigenvalues and eigenvectors
 - Degenerate eigenvalues 280

Section 8.15: Change of basis and similarity transformations

Section 8.16: Diagonalisation of matrices

Section 8.17: Quadratic and Hermitian forms
 - Stationary properties of the eigenvectors; quadratic surfaces 288

Section 8.18: Simultaneous linear equations
 - Range; null space; N simultaneous linear equations in N unknowns; singular value decomposition 292

Section 8.19: Exercises 307

Hints and Answers 8.20 314

Chapter 9: Normal modes

Section 9.1: Typical oscillatory systems

Section 9.2: Symmetry and normal modes

viii
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.3 Rayleigh–Ritz method</td>
<td>327</td>
</tr>
<tr>
<td>9.4 Exercises</td>
<td>329</td>
</tr>
<tr>
<td>9.5 Hints and answers</td>
<td>332</td>
</tr>
<tr>
<td>10 Vector calculus</td>
<td>334</td>
</tr>
<tr>
<td>10.1 Differentiation of vectors</td>
<td>334</td>
</tr>
<tr>
<td>Composite vector expressions; differential of a vector</td>
<td></td>
</tr>
<tr>
<td>10.2 Integration of vectors</td>
<td>339</td>
</tr>
<tr>
<td>10.3 Space curves</td>
<td>340</td>
</tr>
<tr>
<td>10.4 Vector functions of several arguments</td>
<td>344</td>
</tr>
<tr>
<td>10.5 Surfaces</td>
<td>345</td>
</tr>
<tr>
<td>10.6 Scalar and vector fields</td>
<td>347</td>
</tr>
<tr>
<td>10.7 Vector operators</td>
<td>347</td>
</tr>
<tr>
<td>Gradient of a scalar field; divergence of a vector field; curl of a vector field</td>
<td></td>
</tr>
<tr>
<td>10.8 Vector operator formulae</td>
<td>354</td>
</tr>
<tr>
<td>Vector operators acting on sums and products; combinations of grad, div and curl</td>
<td></td>
</tr>
<tr>
<td>10.9 Cylindrical and spherical polar coordinates</td>
<td>357</td>
</tr>
<tr>
<td>10.10 General curvilinear coordinates</td>
<td>364</td>
</tr>
<tr>
<td>10.11 Exercises</td>
<td>369</td>
</tr>
<tr>
<td>10.12 Hints and answers</td>
<td>375</td>
</tr>
<tr>
<td>11 Line, surface and volume integrals</td>
<td>377</td>
</tr>
<tr>
<td>11.1 Line integrals</td>
<td>377</td>
</tr>
<tr>
<td>Evaluating line integrals; physical examples; line integrals with respect to a scalar</td>
<td></td>
</tr>
<tr>
<td>11.2 Connectivity of regions</td>
<td>383</td>
</tr>
<tr>
<td>11.3 Green’s theorem in a plane</td>
<td>384</td>
</tr>
<tr>
<td>11.4 Conservative fields and potentials</td>
<td>387</td>
</tr>
<tr>
<td>11.5 Surface integrals</td>
<td>389</td>
</tr>
<tr>
<td>Evaluating surface integrals; vector areas of surfaces; physical examples</td>
<td></td>
</tr>
<tr>
<td>11.6 Volume integrals</td>
<td>396</td>
</tr>
<tr>
<td>Volumes of three-dimensional regions</td>
<td></td>
</tr>
<tr>
<td>11.7 Integral forms for grad, div and curl</td>
<td>398</td>
</tr>
<tr>
<td>11.8 Divergence theorem and related theorems</td>
<td>401</td>
</tr>
<tr>
<td>Green’s theorems; other related integral theorems; physical applications</td>
<td></td>
</tr>
<tr>
<td>11.9 Stokes’ theorem and related theorems</td>
<td>406</td>
</tr>
<tr>
<td>Related integral theorems; physical applications</td>
<td></td>
</tr>
<tr>
<td>11.10 Exercises</td>
<td>409</td>
</tr>
<tr>
<td>11.11 Hints and answers</td>
<td>414</td>
</tr>
<tr>
<td>12 Fourier series</td>
<td>415</td>
</tr>
<tr>
<td>12.1 The Dirichlet conditions</td>
<td>415</td>
</tr>
</tbody>
</table>
12.2 The Fourier coefficients 417
12.3 Symmetry considerations 419
12.4 Discontinuous functions 420
12.5 Non-periodic functions 422
12.6 Integration and differentiation 424
12.7 Complex Fourier series 424
12.8 Parseval’s theorem 426
12.9 Exercises 427
12.10 Hints and answers 431

13 Integral transforms 433
13.1 Fourier transforms 433
The uncertainty principle; Fraunhofer diffraction; the Dirac δ-function; relation of the δ-function to Fourier transforms; properties of Fourier transforms; odd and even functions; convolution and deconvolution; correlation functions and energy spectra; Parseval’s theorem; Fourier transforms in higher dimensions
13.2 Laplace transforms 453
Laplace transforms of derivatives and integrals; other properties of Laplace transforms
13.3 Concluding remarks 459
13.4 Exercises 460
13.5 Hints and answers 466

14 First-order ordinary differential equations 468
14.1 General form of solution 469
14.2 First-degree first-order equations 470
Separable-variable equations; exact equations; inexact equations, integrating factors; linear equations; homogeneous equations; isobaric equations; Bernoulli’s equation; miscellaneous equations
14.3 Higher-degree first-order equations 480
Equations soluble for p; for x; for y; Clairaut’s equation
14.4 Exercises 484
14.5 Hints and answers 488

15 Higher-order ordinary differential equations 490
15.1 Linear equations with constant coefficients 492
Finding the complementary function \(y_c(x)\); finding the particular integral \(y_p(x)\); constructing the general solution \(y(x) = y_c(x) + y_p(x)\); linear recurrence relations; Laplace transform method
15.2 Linear equations with variable coefficients 503
The Legendre and Euler linear equations; exact equations; partially known complementary function; variation of parameters; Green’s functions; canonical form for second-order equations
15.3 General ordinary differential equations 518

Dependent variable absent; independent variable absent; non-linear exact equations; isobaric or homogeneous equations; equations homogeneous in \(x \) or \(y \) alone; equations having \(y = Ae^x \) as a solution

15.4 Exercises 523

15.5 Hints and answers 529

16 Series solutions of ordinary differential equations 531

16.1 Second-order linear ordinary differential equations 531

Ordinary and singular points

16.2 Series solutions about an ordinary point 535

16.3 Series solutions about a regular singular point 538

Distinct roots not differing by an integer; repeated root of the indicial equation; distinct roots differing by an integer

16.4 Obtaining a second solution 544

The Wronskian method; the derivative method; series form of the second solution

16.5 Polynomial solutions 548

16.6 Exercises 550

16.7 Hints and answers 553

17 Eigenfunction methods for differential equations 554

17.1 Sets of functions 556

Some useful inequalities

17.2 Adjoint, self-adjoint and Hermitian operators 559

17.3 Properties of Hermitian operators 561

Reality of the eigenvalues; orthogonality of the eigenfunctions; construction of real eigenfunctions

17.4 Sturm–Liouville equations 564

Valid boundary conditions; putting an equation into Sturm–Liouville form

17.5 Superposition of eigenfunctions: Green’s functions 569

17.6 A useful generalisation 572

17.7 Exercises 573

17.8 Hints and answers 576

18 Special functions 577

18.1 Legendre functions 577

General solution for integer \(\ell \); properties of Legendre polynomials

18.2 Associated Legendre functions 587

18.3 Spherical harmonics 593

18.4 Chebyshev functions 595

18.5 Bessel functions 602

General solution for non-integer \(\nu \); general solution for integer \(\nu \); properties of Bessel functions
CONTENTS

18.6 Spherical Bessel functions ... 614
18.7 Laguerre functions ... 616
18.8 Associated Laguerre functions .. 621
18.9 Hermite functions ... 624
18.10 Hypergeometric functions .. 628
18.11 Confluent hypergeometric functions 633
18.12 The gamma function and related functions 635
18.13 Exercises .. 640
18.14 Hints and answers .. 646

19 Quantum operators ... 648
 19.1 Operator formalism ... 648
 Commutators .. 649
 19.2 Physical examples of operators 656
 Uncertainty principle; angular momentum; creation and annihilation operators
 19.3 Exercises .. 671
 19.4 Hints and answers .. 674

20 Partial differential equations: general and particular solutions 675
 20.1 Important partial differential equations 676
 The wave equation; the diffusion equation; Laplace’s equation; Poisson’s equation; Schrödinger’s equation
 20.2 General form of solution .. 680
 20.3 General and particular solutions 681
 First-order equations; inhomogeneous equations and problems; second-order equations
 20.4 The wave equation .. 693
 20.5 The diffusion equation .. 695
 20.6 Characteristics and the existence of solutions 699
 First-order equations; second-order equations
 20.7 Uniqueness of solutions .. 705
 20.8 Exercises .. 707
 20.9 Hints and answers .. 711

21 Partial differential equations: separation of variables and other methods ... 713
 21.1 Separation of variables: the general method 713
 21.2 Superposition of separated solutions 717
 21.3 Separation of variables in polar coordinates 725
 Laplace’s equation in polar coordinates; spherical harmonics; other equations in polar coordinates; solution by expansion; separation of variables for inhomogeneous equations
 21.4 Integral transform methods ... 747
CONTENTS

21.5 Inhomogeneous problems – Green’s functions
Similarities to Green’s functions for ordinary differential equations; general
boundary-value problems; Dirichlet problems; Neumann problems
751

21.6 Exercises
767

21.7 Hints and answers
773

22 Calculus of variations
775
22.1 The Euler–Lagrange equation
776
22.2 Special cases
777
F does not contain y explicitly; F does not contain x explicitly
22.3 Some extensions
781
Several dependent variables; several independent variables; higher-order
derivatives; variable end-points
22.4 Constrained variation
785
22.5 Physical variational principles
787
Fermat’s principle in optics; Hamilton’s principle in mechanics
22.6 General eigenvalue problems
790
22.7 Estimation of eigenvalues and eigenfunctions
792
22.8 Adjustment of parameters
795
22.9 Exercises
797
22.10 Hints and answers
801

23 Integral equations
803
23.1 Obtaining an integral equation from a differential equation
803
23.2 Types of integral equation
804
23.3 Operator notation and the existence of solutions
805
23.4 Closed-form solutions
806
Separable kernels; integral transform methods; differentiation
23.5 Neumann series
813
23.6 Fredholm theory
815
23.7 Schmidt–Hilbert theory
816
23.8 Exercises
819
23.9 Hints and answers
823

24 Complex variables
824
24.1 Functions of a complex variable
825
24.2 The Cauchy–Riemann relations
827
24.3 Power series in a complex variable
830
24.4 Some elementary functions
832
24.5 Multivalued functions and branch cuts
835
24.6 Singularities and zeros of complex functions
837
24.7 Conformal transformations
839
24.8 Complex integrals
845
24.9 Cauchy’s theorem 849
24.10 Cauchy’s integral formula 851
24.11 Taylor and Laurent series 853
24.12 Residue theorem 858
24.13 Definite integrals using contour integration 861
24.14 Exercises 867
24.15 Hints and answers 870

25 Applications of complex variables 871
25.1 Complex potentials 871
25.2 Applications of conformal transformations 876
25.3 Location of zeros 879
25.4 Summation of series 882
25.5 Inverse Laplace transform 884
25.6 Stokes’ equation and Airy integrals 888
25.7 WKB methods 895
25.8 Approximations to integrals 905
 Level lines and saddle points; steepest descents; stationary phase
25.9 Exercises 920
25.10 Hints and answers 925

26 Tensors 927
26.1 Some notation 928
26.2 Change of basis 929
26.3 Cartesian tensors 930
26.4 First- and zero-order Cartesian tensors 932
26.5 Second- and higher-order Cartesian tensors 935
26.6 The algebra of tensors 938
26.7 The quotient law 939
26.8 The tensors δ_{ij} and ϵ_{ijk} 941
26.9 Isotropic tensors 944
26.10 Improper rotations and pseudotensors 946
26.11 Dual tensors 949
26.12 Physical applications of tensors 950
26.13 Integral theorems for tensors 954
26.14 Non-Cartesian coordinates 955
26.15 The metric tensor 957
26.16 General coordinate transformations and tensors 960
26.17 Relative tensors 963
26.18 Derivatives of basis vectors and Christoffel symbols 965
26.19 Covariant differentiation 968
26.20 Vector operators in tensor form 971
26.21 Absolute derivatives along curves 975
26.22 Geodesics 976
26.23 Exercises 977
26.24 Hints and answers 982

27 Numerical methods 984
27.1 Algebraic and transcendental equations 985
Rearrangement of the equation; linear interpolation; binary chopping; Newton–Raphson method
27.2 Convergence of iteration schemes 992
27.3 Simultaneous linear equations 994
Gaussian elimination; Gauss–Seidel iteration; tridiagonal matrices
27.4 Numerical integration 1000
Trapezium rule; Simpson’s rule; Gaussian integration; Monte Carlo methods
27.5 Finite differences 1019
27.6 Differential equations 1020
Difference equations; Taylor series solutions; prediction and correction; Runge–Kutta methods; isoclines
27.7 Higher-order equations 1028
27.8 Partial differential equations 1030
27.9 Exercises 1033
27.10 Hints and answers 1039

28 Group theory 1041
28.1 Groups 1041
Definition of a group; examples of groups
28.2 Finite groups 1049
28.3 Non-Abelian groups 1052
28.4 Permutation groups 1056
28.5 Mappings between groups 1059
28.6 Subgroups 1061
28.7 Subdividing a group 1063
Equivalence relations and classes; congruence and cosets; conjugates and classes
28.8 Exercises 1070
28.9 Hints and answers 1074

29 Representation theory 1076
29.1 Dipole moments of molecules 1077
29.2 Choosing an appropriate formalism 1078
29.3 Equivalent representations 1084
29.4 Reducibility of a representation 1086
29.5 The orthogonality theorem for irreducible representations 1090
29.6 Characters
Orthogonality property of characters

29.7 Counting irreps using characters
Summation rules for irreps

29.8 Construction of a character table

29.9 Group nomenclature

29.10 Product representations

29.11 Physical applications of group theory
Bonding in molecules; matrix elements in quantum mechanics; degeneracy of normal modes; breaking of degeneracies

29.12 Exercises

29.13 Hints and answers

30 Probability

30.1 Venn diagrams

30.2 Probability
Axioms and theorems; conditional probability; Bayes’ theorem

30.3 Permutations and combinations

30.4 Random variables and distributions
Discrete random variables; continuous random variables

30.5 Properties of distributions
Mean; mode and median; variance and standard deviation; moments; central moments

30.6 Functions of random variables

30.7 Generating functions
Probability generating functions; moment generating functions; characteristic functions; cumulant generating functions

30.8 Important discrete distributions
Binomial; geometric; negative binomial; hypergeometric; Poisson

30.9 Important continuous distributions
Gaussian; log-normal; exponential; gamma; chi-squared; Cauchy; Breit–Wigner; uniform

30.10 The central limit theorem

30.11 Joint distributions
Discrete bivariate; continuous bivariate; marginal and conditional distributions

30.12 Properties of joint distributions
Means; variances; covariance and correlation

30.13 Generating functions for joint distributions

30.14 Transformation of variables in joint distributions

30.15 Important joint distributions
Multinomial; multivariate Gaussian

30.16 Exercises

30.17 Hints and answers
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.1</td>
<td>Experiments, samples and populations</td>
<td>1221</td>
</tr>
<tr>
<td>31.2</td>
<td>Sample statistics</td>
<td>1221</td>
</tr>
<tr>
<td>31.3</td>
<td>Estimators and sampling distributions</td>
<td>1229</td>
</tr>
<tr>
<td>31.4</td>
<td>Some basic estimators</td>
<td>1243</td>
</tr>
<tr>
<td>31.5</td>
<td>Maximum-likelihood method</td>
<td>1255</td>
</tr>
<tr>
<td>31.6</td>
<td>The method of least squares</td>
<td>1271</td>
</tr>
<tr>
<td>31.7</td>
<td>Hypothesis testing</td>
<td>1277</td>
</tr>
<tr>
<td>31.8</td>
<td>Exercises</td>
<td>1298</td>
</tr>
<tr>
<td>31.9</td>
<td>Hints and answers</td>
<td>1303</td>
</tr>
</tbody>
</table>

Index | 1305
Index

Where the discussion of a topic runs over two consecutive pages, reference is made only to the first of these. For discussions spread over three or more pages the first and last page numbers are given; these references are usually to the major treatment of the corresponding topic. Isolated references to a topic, including those appearing on consecutive pages, are listed individually. Some long topics are split, e.g. ‘Fourier transforms’ and ‘Fourier transforms, examples’. The letter ‘n’ after a page number indicates that the topic is discussed in a footnote on the relevant page.

A, B, one-dimensional irreps, 1090, 1102, 1109
Abelian groups, 1044
absolute convergence of series, 124, 831
absolute derivative, 975–977
acceleration vector, 335
Adams method, 1024
Adams–Moulton–Bashforth, predictor-corrector scheme, 1035
addition rule for probabilities, 1125, 1130
addition theorem for spherical harmonics Y m
ℓ(θ, φ), 594
adjoint, see Hermitian conjugate
adjoint operators, 559–564
adjustment of parameters, 795
Airy integrals, 890–894
Ai(z), 889
algebra of complex numbers, 85
functions in a vector space, 556
matrices, 251
power series, 134
series, 131
tensors, 938–941
vectors, 213
in a vector space, 242
in component form, 218
algebraic equations, numerical methods for, see numerical methods for algebraic equations
alternating group, 1116
alternating series test, 130
ammonia molecule, symmetries of, 1042
Ampère’s rule (law), 381, 408
amplitude modulation of radio waves, 444
amplitude-phase diagram, 914
analytic (regular) functions, 826
angle between two vectors, 221
angular frequency, 693n
in Fourier series, 419
angular momentum, 933, 949
and irreps, 1093
of particle system, 950–952
of particles, 338
of solid body, 396, 951
vector representation, 238
angular momentum operator
component, 658
total, 659
angular velocity, vector representation, 223, 238, 353
annihilation and creation operators, 667
anti-Hermitian matrices, 271
eigenvalues, 276–278
imaginary nature, 277
eigenvectors, 276–278
orthogonality, 277
anti-Stokes line, 905
anticommutativity of vector or cross product, 222
antisymmetric functions, 416
and Fourier series, 419
and Fourier transforms, 445
antisymmetric matrices, 270
INDEX

general properties, see anti-Hermitian matrices
antisymmetric tensors, 938, 941
antithetic variates, in Monte Carlo methods, 1014
aperture function, 437
approximately equal ≈, definition, 132
arbitrary parameters for ODE, 469
arc length of
plane curves, 73
space curves, 341
arccosech, arccosh, arccoth, arcsech, arcsinh, arctanh, see hyperbolic functions, inverses
Archimedean upthrust, 396, 410
area element in
Cartesian coordinates, 188
plane polars, 202
area of
circle, 71
ellipse, 71, 207
parallelogram, 223
region, using multiple integrals, 191–193
surfaces, 346
as vector, 393–395, 408
area, maximal enclosure, 779
arg, argument of a complex number, 87
Argand diagram, 84, 825
argument, principle of the, 880
arithmetic series, 117
arithmetic–geometric series, 118
arrays, see matrices
associated Laguerre equation, 535, 621–624
as example of Sturm–Liouville equation, 566, 622
natural interval, 567, 622
associated Laguerre polynomials $L_n^\mu(x)$, 621
as special case of confluent hypergeometric function, 634
generating function, 623
orthogonality, 622
recurrence relations, 624
Rodrigues’ formula, 622
associated Legendre equation, 535, 587–593, 733, 768
general solution, 588
as example of Sturm–Liouville equation, 566, 590, 591
general solution, 588
natural interval, 567, 590, 591
associated Legendre functions, 587–593
of first kind $P^{\mu}_n(x)$, 588, 733, 768
generating function, 592
normalisation, 590
orthogonality, 590, 591
recurrence relations, 592
Rodrigues’ formula, 588
of second kind $Q^{\nu}_n(x)$, 588
associative law for
addition
in a vector space of finite dimensionality, 242
in a vector space of infinite dimensionality, 556
of complex numbers, 86
of matrices, 251
of vectors, 213
convolution, 447, 458
group operations, 1043
linear operators, 249
multiplication
of a matrix by a scalar, 251
of a vector by a scalar, 214
of complex numbers, 88
of matrices, 253
multiplication by a scalar
in a vector space of finite dimensionality, 242
in a vector space of infinite dimensionality, 556
atomic orbitals, 1115
d-states, 1106, 1108, 1114
p-states, 1106
s-states, 1144
auto-correlation functions, 450
automorphism, 1061
auxiliary equation, 493
repeated roots, 493
average value, see mean value
axial vectors, 949
backward differences, 1019
basis functions
for linear least squares estimation, 1273
in a vector space of infinite dimensionality, 556
of a representation, 1078
change in, 1084, 1087, 1092
basis vectors, 217, 243, 929, 1078
derivatives, 965–968
Christoffel symbol Γ^k_{ij}, 965
for particular irrep, 1106–1108, 1116
linear dependence and independence, 217
non-orthogonal, 245
orthonormal, 244
required properties, 217
Bayes’ theorem, 1132
Bernoulli equation, 477
Bessel correction to variance estimate, 1248
Bessel equation, 535, 602–607, 614, 615
as example of Sturm–Liouville equation, 566
natural interval, 608
Bessel functions $J_\nu(x)$, 602–614, 729, 738
as special case of confluent hypergeometric function, 634
generating function, 613
graph of, 606
integral relationships, 610
integral representation, 613–614
orthogonality, 608–611
INDEX

recurrence relations, 611–612
second kind $Y_ν(x)$, 607
 graph of, 607
series, 604
 $ν = 0$, 606
 $ν = ±1/2$, 605
spherical $j_ν(x)$, 615, 741
zeros of, 729, 739
Bessel inequality, 246, 559
best unbiased estimator, 1232
beta function, 638
bias of estimator, 1231
bilinear transformation, general, 110
binary chopping, 990
binomial coefficient nC_k, 27–30, 1135–1137
 elementary properties, 26
 identities, 27
 in Leibnitz’ theorem, 49
 negative n, 29
 non-integral n, 29
binomial distribution Bin(n, p), 1168–1171
 and Gaussian distribution, 1185
 and Poisson distribution, 1174, 1177
 mean and variance, 1171
 MGF, 1170
 recurrence formula, 1169
binomial expansion, 25–30, 140
binormal to space curves, 342
birthdays, different, 1134
bivariate distributions, 1196–1207
 conditional, 1198
 continuous, 1197
 correlation, 1200–1207
 and independence, 1200
 matrix, 1203–1207
 positive and negative, 1200
 uncorrelated, 1200
 covariance, 1200–1207
 matrix, 1203
 expectation (mean), 1199
 independent, 1197, 1200
 marginal, 1198
 variance, 1200
Boltzmann distribution, 171
bonding in molecules, 1103, 1105–1108
Born approximation, 149, 575
Bose–Einstein statistics, 1138
boundary conditions
 and characteristics, 700
 and Laplace equation, 764, 766
 for Green’s functions, 512, 514–516
 inhomogeneous, 515
 for ODE, 468, 470, 501
 for PDE, 681, 685–687
 for Sturm–Liouville equations, 564
 homogeneous and inhomogeneous, 685, 723,
 752, 754
 superposition solutions, 718–724
 types, 702–705
bra vector $⟨ψ|$, 649
brachistochrone problem, 784
Bragg formula, 237
branch cut, 835
branch points, 835
Bromwich integral, 884
bulk modulus, 980

calculus of residues, see zeros of a function of a
 complex variable and contour integration

calculus of variations
 constrained variation, 785–787
 estimation of ODE eigenvalues, 790
 Euler–Lagrange equation, 776
 Fermat’s principle, 787
 Hamilton’s principle, 788
 higher-order derivatives, 782
 several dependent variables, 782
 several independent variables, 782
 soap films, 780
 variable end-points, 782–785

calculus, elementary, 41–76

cancellation law in a group, 1046

canonical form, for second-order ODE, 516

card drawing, see probability

carrier frequency of radio waves, 445

cartesian coordinates, 217

cartesian tensors, 930–955
 algebra, 938–941
 contraction, 939
 definition, 935
 first-order, 932–935
 from scalar, 934
 general order, 935–954
 integral theorems, 954
 isotropic, 944–946
 physical applications, 934, 939–941, 950–954
 second-order, 935–954, 968
 symmetry and antisymmetry, 938
 tensor fields, 954
 zero-order, 932–935
 from vector, 935

cartesian tensors, particular
 conductivity, 952
 inertia, 951
 strain, 953
 stress, 953
 susceptibility, 952

catenary, 781, 787

Cauchy
 boundary conditions, 702
 distribution, 1152
 inequality, 853
 integrals, 851–853
 product, 131
 root test, 129, 831
 theorem, 849

Cauchy–Riemann relations, 827–830, 849, 873, 875
 in terms of z and z^*, 829

central differences, 1019
central limit theorem, 1194–1196
central moments, see moments, central
centre of a group, 1069
centre of mass, 195
 of hemisphere, 195
 of semicircular lamina, 197
centroid, 195
 of plane area, 195
 of plane curve, 197
 of triangle, 216
CF, see complementary function
chain rule for functions of
 one real variable, 46
 several real variables, 157
change of basis, see similarity transformations
change of variables
 and coordinate systems, 158–160
 in multiple integrals, 199–207
 evaluation of Gaussian integral, 202–204
 general properties, 206
 in RVD, 1150–1157
character tables, 1093
 3m or 32 or \(C_3 \) or \(S_3 \), 1093, 1097, 1108, 1110, 1117
 4mm or 4\(C_4 \) or \(D_4 \), 1102, 1106, 1108, 1113
 \(A_4 \), 1116
 \(D_5 \), 1116
 \(S_4 \) or 432 or \(O \), 1114, 1115
 43m or \(T_6 \), 1115
 construction of, 1100–1102
 quaternion, 1113
characteristic equation, 280
 normal mode form, 319
 of recurrence relation, 499
characteristic functions, see moment generating
 functions (MGFs)
characteristics
 and boundary curves, 700
 multiple intersections, 700, 705
 and the existence of solutions, 699–705
 first-order equations, 699
 second-order equations, 703
 and equation type, 703
characters, 1092–1096, 1100–1102
 and conjugacy classes, 1092, 1095
 counting irreps, 1095
 definition, 1092
 of product representation, 1104
 orthogonality properties, 1094, 1102
 summation rules, 1097
charge (point), Dirac \(\delta \)-function representation, 441
charged particle in electromagnetic fields, 370
Chebyshev equation, 535, 595–602
 as example of Sturm–Liouville equation, 566, 599
 general solution, 597
 natural interval, 567, 599
 polynomial solutions, 552
Chebyshev functions, 595–602
Chebyshev polynomials
 of first kind \(T_n(x) \), 596
 as special case of hypergeometric function, 631
 generating function, 601
 graph of, 597
 normalisation, 600
 orthogonality, 599
 recurrence relations, 601
 Rodrigues' formula, 599
 of second kind \(U_n(x) \), 597
 generating function, 601
 graph of, 598
 normalisation, 600
 orthogonality, 599
 Rodrigues' formula, 599
chi-squared (\(\chi^2 \)) distribution, 1192
 and goodness of fit, 1297
 and likelihood-ratio test, 1283, 1292
 and multiple estimators, 1243
 percentage points tabulation, 1244
 test for correlation, 1301
Cholesky separation, 313
Christoffel symbol \(\Gamma^k_{ij} \), 965–968
 from metric tensor, 966, 973
circle
 area of, 71
 equation for, 16
 circle of convergence, 831
Clairaut equation, 483
classes and equivalence relations, 1064
closure of a group, 1043
closure property of eigenfunctions of an
 Hermitian operator, 563
cofactor of a matrix element, 259
column matrix, 250
column vector, 250
combinations (probability), 1133–1139
 common ratio in geometric series, 117
commutation law for group elements, 1044
commutative law for
 addition
 in a vector space of finite dimensionality, 242
 in a vector space of infinite dimensionality, 556
 of complex numbers, 86
 of matrices, 251
 of vectors, 213
 complex scalar or dot product, 222
 convolution, 447, 458
 inner product, 244
 multiplication
 of a vector by a scalar, 214
 of complex numbers, 88
 scalar or dot product, 220
 commutator
 of two matrices, 309
 of two operators, 653, 656
 comparison test, 125
INDEX

complement, 1121
 probability for, 1125
complementary equation, 490
complementary error function, 640
complementary function (CF), 491
 for ODE, 492
 partially known, 506
 repeated roots of auxiliary equation, 493
completeness of
 basis vectors, 243
 eigenfunctions of an Hermitian operator, 560, 563
 eigenvectors of a normal matrix, 275
 spherical harmonics \(Y_{\ell}^m(\theta, \phi) \), 594
completing the square
 as a means of integration, 66
 for quadratic equations, 35
 for quadratic forms, 1206
 to evaluate Gaussian integral, 436, 749
complex conjugate
 \(z^* \), of complex number, 89–91, 829
 of a matrix, 256–258
 of scalar or dot product, 222
 properties of, 90
complex exponential function, 92, 833
complex Fourier series, 424
complex integrals, 845–849, see also
 zeros of a function of a complex variable and contour integration
 Airy integrals, 890–894
 Cauchy integrals, 851–853
 Cauchy’s theorem, 849
 definition, 845
 Jordan’s lemma, 864
 Morera’s theorem, 851
 of \(z^{-1} \), 846
 principal value, 864
 residue theorem, 858–860
 WKB methods, 895–905
complex logarithms, 99, 834
principal value of, 100, 834
complex numbers, 83–114
 components of, as rotation in the Argand diagram, 88
 notation, 84
 polar representation of, 92–95
 real part of, 83
 trigonometric representation of, 93
complex potentials, 871–876
 and fluid flow, 873
 equipotentials and field lines, 872
 for circular and elliptic cylinders, 876
 for parallel cylinders, 921
 for plates, 877–879, 921
 for strip, 921
 for wedges, 878
 under conformal transformations, 876–879
complex power series, 133
complex powers, 99
complex variables, see functions of a complex variable and power series in a complex variable and complex integrals
components
 of a complex number, 84
 of a vector, 217
 in a non-orthogonal basis, 234
 uniqueness, 243
conditional (constrained) variation, 785–787
conditional convergence, 124
conditional distributions, 1198
conditional probability, see probability, conditional
cone
 surface area of, 74
 volume of, 75
confidence interval, 1236
confidence region, 1241
coupling process, 634
cylindrical harmonics, 426
cylindrical functions, 426
cylindrical potentials, 874
cylindrical vector functions, 428–429
cylindrical vector fields, 428–429

1309
INDEX

consistency, of estimator, 1230
constant coefficients in ODE, 492–503
auxiliary equation, 493
constants of integration, 62, 468
constrained variation, 785–787
constraints, stationary values under, see
Lagrange undetermined multipliers
continuity correction for discrete RV, 1186
continuity equation, 404
contour integration, 861–867, 887
infinite integrals, 862–867
inverse Laplace transforms, 884–887
residue theorem, 858–867
sinusoidal functions, 861
summing series, 882
contraction of tensors, 939
contradiction, proof by, 32–34
contravariant
basis vectors, 961
derivative, 965
components of tensor, 956
definition, 961
correlation functions, 449–451
auto-correlation, 450
cross-correlation, 449
energy spectrum, 450
Parseval's theorem, 451
Wiener–Kinchin theorem, 450
correlation matrix, of sample, 1229
correlation of bivariate distributions, 1200–1207
correlation of sample data, 1229
correlation, chi-squared test, 1301
correspondence principle in quantum mechanics, 1215
cosets and congruence, 1065
cosh, hyperbolic cosine, 102, 833, see also
hyberbolic functions
cosine, cos(x)
in terms of exponential functions, 102
Maclaurin series for, 140
orthogonality relations, 417
counting irreps, see characters, counting irreps
coupled pendulums, 329, 331
covariance matrix
of linear least squares estimators, 1274
of sample, 1229
covariance of bivariate distributions, 1200–1207
covariance of sample data, 1229
covariant
basis vector, 961
derivative, 965
components of tensor, 956
definition, 961
derivative, 968
semi-colon notation, 969
differentiation, 968–971
CPF, see probability functions, cumulative
Cramér–Rao (Fisher's) inequality, 1232, 1233
Cramer determinant, 299
Cramer's rule, 299
cross product, see vector product
cross-correlation functions, 449
crystal lattice, 148
crystal point groups, 1082
cube roots of unity, 98
cube, rotational symmetries of, 1114
cumulants, 1166
curl, 353
as a determinant, 353
as integral, 398, 400
curl curl, 356
in cylindrical coordinates, 368
in cylindrical polars, 360
and matrices, see similarity transformations
general, 960–965
relative tensors, 963
tensor transformations, 962
weight, 964
orthogonal, 932
coplanar vectors, 225
Cornu spiral, 914
cucumbers, see Discrete RV, 1186
decima, 1186
decimals, 1186
deviation, 1186
d earthquake, 1186
determinant, 298
ci, 353
ci as a determinant, 353
INDEX

in spherical polars, 362
Stoke's theorem, 406–409
tensor form, 974
current-carrying wire, magnetic potential, 729
curvature, 52–55
 circle of, 53
 of a function, 52
 of space curves, 342
 radius of, 53
curves, see plane curves and space curves
curvilinar coordinates, 364–369
 basis vectors, 364
 length and volume elements, 365
 scale factors, 364
 surfaces and curves, 364
tensors, 955–977
 vector operators, 367–369
cut plane, 865
cycle notation for permutations, 1057
cyclic groups, 1061, 1098
cyclic relation for partial derivatives, 157
cycloid, 370, 785
cylinders, conducting, 874, 876
cylindrical polar coordinates, 357–361
 area element, 360
 basis vectors, 358
 Laplace equation, 728–731
 length element, 360
 vector operators, 357–361
 volume element, 360

\(\delta \)-function (Dirac), see Dirac \(\delta \)-function
\(\delta_{ij}, \delta_i^j \), Kronecker delta, tensor, see Kronecker
delta, \(\delta_{ij}, \delta_i^j \), tensor
D'Alembert's ratio test, 126, 832
 in convergence of power series, 132
D'Alembert's solution to wave equation, 694
damped harmonic oscillators, 239
 and Parseval's theorem, 451
data modelling, maximum-likelihood, 1255
de Broglie relation, 436, 709, 768
de Moivre's theorem, 95, 861
 applications, 95–99
 finding the nth roots of unity, 97
 solving polynomial equations, 98
 trigonometric identities, 95–97
deconvolution, 449
defective matrices, 278, 311
dergeneracy
 breaking of, 1111–1113
 of normal modes, 1110
degenerate
 (separable) kernel, 807
degenerate eigenvalues, 275, 282
degree
 of ODE, 468
 of polynomial equation, 2
del V, see gradient operator (grad)
del squared \(V^2 \) (Laplacian), 352, 676
 as integral, 400

in curvilinear coordinates, 368
in cylindrical polar coordinates, 360
in polar coordinates, 725
in spherical polar coordinates, 362, 741
tensor form, 973
delta function (Dirac), see Dirac \(\delta \)-function
dependent random variables, 1196–1205
derivative, see also differentiation
 absolute, 975–977
 covariant, 968
Fourier transform of, 444
Laplace transform of, 455
 normal, 350
 of basis vectors, 336
 of composite vector expressions, 337
 of function of a complex variable, 825
 of function of a function, 46
 of hyperbolic functions, 106–109
 of products, 44–46, 48–50
 of quotients, 47
 of simple functions, 44
 of vectors, 334
 ordinary, first, second and nth, 42
 partial, see partial differentiation
 total, 154
derivative method for second series solution of
 ODE, 545–548
determinant form
 and \(e_{ijk} \), 942
 for curl, 353
determinants, 259–263
 adding rows or columns, 262
 and singular matrices, 263
 as product of eigenvalues, 287
 evaluation
 using \(e_{ijk} \), 942
 using Laplace expansion, 259
 identical rows or columns, 262
 in terms of cofactors, 259
 interchanging two rows or two columns, 262
 Jacobian representation, 201, 205, 207
 notation, 259
 of Hermitian conjugate matrices, 262
 of order three, in components, 260
 of transpose matrices, 261
 product rule, 262
 properties, 261–263, 978
 relationship with rank, 267
 removing factors, 262
 secular, 280
diagonal matrices, 268
diagonalisation of matrices, 285–288
 normal matrices, 286
 properties of eigenvalues, 287
 simultaneous, 331
 diamond, unit cell, 234
die throwing, see probability
difference method for summation of series, 119
difference schemes for differential equations, 1020–1023, 1030–1032
difference, finite, see finite differences
differentiable
 function of a complex variable, 825–827
 function of a real variable, 42
differential
definition, 43
 exact and inexact, 155
 of vector, 338, 344
 total, 154
differential equations, see ordinary differential
 equations and partial differential equations
differential equations, particular
 associated Laguerre, 535, 566, 621–624
 associated Legendre, 535, 566, 587–593
 Bernoulli, 477
 Bessel, 535, 566, 602–607, 614
 Chebyshev, 535, 566, 595–602
 Clairaut, 483
 confluent hypergeometric, 535, 566, 633
diffusion, 678, 695–698, 716, 723, 1032
 Euler, 504
 Euler–Lagrange, 776
 Helmholtz, 737–741
 Hermite, 535, 566, 624–628
 hypergeometric, 535, 566, 628–632
 Lagrange, 789
 Laguerre, 535, 566, 616–621
 Laplace, 679, 690, 717, 718, 1031
 Legendre, 534, 535, 566, 577–586
 Legendre linear, 503–505
 Poisson, 679, 744–746
 Schrödinger, 679, 741, 768, 795
 simple harmonic oscillator, 535, 566
 Sturm–Liouville, 790
 wave, 676, 689, 693–695, 714, 737, 790
differential operators, see linear differential
 operator
differentiation, see also derivative
 as gradient, 42
 as rate of change, 41
 chain rule, 46
 covariant, 968–971
 from first principles, 41–44
 implicit, 47
 logarithmic, 48
 notation, 43
 of Fourier series, 424
 of integrals, 178
 of power series, 135
 partial, see partial differentiation
 product rule, 44–46, 48–50
 quotient rule, 47
 theorems, 55–57
 using complex numbers, 101
diffraction, see Fraunhofer diffraction
diffusion equation, 678, 688, 695–698
 combination of variables, 696–698
 integral transforms, 747
 numerical methods, 1032
 separation of variables, 716
 simple solution, 696
 superposition, 723
diffusion of solute, 678, 696, 747
dihedral group, 1113, 1116
dimension of irrep, 1088
dimensionality of vector space, 243
dipole matrix elements, 208, 1108, 1115
dipole moments of molecules, 1077
 Dirac δ-function, 355, 405, 439–443
 and convolution, 447
 and Green’s functions, 511, 512
 as limit of various distributions, 443
 as sum of harmonic waves, 442
 definition, 439
 Fourier transform of, 443
 impulses, 441
 point charges, 441
 properties, 439
 reality of, 443
 relation to Fourier transforms, 442
 relation to Heaviside (unit step) function, 441
 three-dimensional, 441, 452
 Dirac notation, 648
 direct product, of groups, 1072
 direct sum ⊕, 1086
 direction cosines, 221
 Dirichlet boundary conditions, 702, 852n
 Green’s functions, 754, 756–765
 method of images, 758–765
 Dirichlet conditions, for Fourier series, 415
disc, moment of inertia, 208
discontinuous functions and Fourier series, 420–422
discrete Fourier transforms, 462
 disjoint events, see mutually exclusive events
 displacement kernel, 809
distance from a
 line to a line, 231
 line to a plane, 232
 point to a line, 229
 point to a plane, 230
distributive law for
 addition of matrix products, 254
 convolution, 447, 458
 inner product, 244
 linear operators, 249
 multiplication
 of a matrix by a scalar, 251
 of a vector by a complex scalar, 222
 of a vector by a scalar, 214
 multiplication by a scalar
 in a vector space of finite dimensionality, 242
 in a vector space of infinite dimensionality, 556
 scalar or dot product, 220
 vector or cross product, 222
div, divergence of vector fields, 352
 as integral, 398
 in curvilinear coordinates, 367
INDEX

in cylindrical polars, 360
in spherical polars, 362
tensor form, 972
divergence theorem
for tensors, 954
for vectors, 401
in two dimensions, 384
physical applications, 404
related theorems, 403
division axiom in a group, 1046
division of complex numbers, 91
dominant term, in Stokes phenomenon, 904
dot product, see scalar product
double integrals, see multiple integrals
drumskin, see membrane
dual tensors, 949
dummy variable, 61

ϵ_{ijk}, Levi-Civita symbol, tensor, 941–946
and determinant, 942
identities, 943
isotropic, 945
vector products, 942
weight, 964
e^x, see exponential function
E, two-dimensional irrep, 1090, 1102, 1108
eccentricity, of conic sections, 17
efficiency, of estimator, 1231
eigenequation for differential operators, 554
more general form, 555, 571–573
eigenfrequencies, 319
estimation using Rayleigh–Ritz method, 327–329
eigenfunctions
completeness for Hermitian operators, 560, 563
construction of a real set for an Hermitian operator, 563
definition, 555
normalisation for Hermitian operators, 562 of integral equations, 817
of simple harmonic oscillators, 555
orthogonality for Hermitian operators, 561–563

eigenvalues, 272–282, see Hermitian operators
characteristic equation, 280
continuous and discrete, 650
definition, 272
degenerate, 282
determination, 280–282
estimation for ODE, 790
estimation using Rayleigh–Ritz method, 327–329
notation, 273
of anti-Hermitian matrices, see anti-Hermitian matrices
of Fredholm equations, 808
of general square matrices, 278
of Hermitian matrices, see Hermitian matrices of integral equations, 808, 816
of linear differential operators
adjustment of parameters, 795
definition, 555
error in estimate of, 793
estimation, 790–796
higher eigenvalues, 793, 800
simple harmonic oscillator, 555
of linear operators, 272
of normal matrices, 273–276
of representative matrices, 1100
of unitary matrices, 278
under similarity transformation, 287
eigenvectors, 272–282
characteristic equation, 280
definition, 272
determination, 280–282
normalisation condition, 273
notation, 273
of anti-Hermitian matrices, see anti-Hermitian matrices
of commuting matrices, 278
of general square matrices, 278
of Hermitian matrices, see Hermitian matrices of linear operators, 272
of normal matrices, 273–276
of unitary matrices, 278
stationary properties for quadratic and Hermitian forms, 290
Einstein relation, 436, 709, 768
elastic deformations, 953
electromagnetic fields
flux, 395
Maxwell's equations, 373, 408, 979
electrostatic fields and potentials
charged split sphere, 735
conducting cylinder in uniform field, 876
conducting sphere in uniform field, 734
from charge density, 745, 758
from complex potential, 873
infinite charged plate, 759, 877
infinite wedge with line charge, 878
infinite charged wedge, 877
of line charges, 761, 872
semi-infinite charged plate, 877
sphere with point charge, 764
ellipse
area of, 71, 207, 385
as section of quadratic surface, 292
equation for, 16
ellipsoid, volume of, 207
elliptic PDE, 687, 690
empty event \emptyset, 1121
end-points for variations
contributions from, 782
fixed, 777
variable, 782–785
energy levels of
particle in a box, 768
simple harmonic oscillator, 642

1313
INDEX

energy spectrum and Fourier transforms, 450, 451
entire functions, 832n
envelopes, 173–175
equations of, 174
to a family of curves, 173
epimorphism, 1061
equilateral triangle, symmetries of, 1047, 1052, 1081, 1110
equivalence relations, 1064–1066, 1068
and classes, 1064
congruence, 1065–1067
examples, 1070
equivalence transformations, see similarity transformations
equivalent representations, 1084–1086, 1099
error function, erf(x), 640, 697, 748
as special case of confluent hypergeometric function, 634
error terms
in Fourier series, 430
in Taylor series, 139
errors, first and second kind, 1280
essential singularity, 838, 856
estimation of eigenvalues
linear differential operator, 792–795
Rayleigh–Ritz method, 327–329
estimators (statistics), 1229
best unbiased, 1232
bias, 1231
central confidence interval, 1237
confidence interval, 1236
confidence limits, 1236
confidence region, 1241
consistency, 1230
efficiency, 1231
maximum-likelihood, 1256
minimum-variance, 1232
standard error, 1234
Euler equation
differential, 504, 522
trigonometric, 93
Euler method, numerical, 1021
Euler–Lagrange equation, 776
special cases, 777–781
even functions, see symmetric functions
events, 1120
complement of, 1121
empty 0, 1121
intersection of a, 1120
mutually exclusive, 1129
statistically independent, 1129
union of b, 1121
exact differentials, 155
exact equations, 472, 505
condition for, 472
non-linear, 519
expectation values, see probability distributions, mean
exponential distribution, 1190
from Poisson, 1190
MGF, 1191
exponential function
Maclaurin series for, 140
of a complex variable, 92, 833
relation with hyperbolic functions, 102
F-distribution (Fisher), 1290–1296
critical points table, 1295
logarithmic form, 1296
Fabry–Pérot interferometer, 146
factorial function, general, 636
factorisation, of a polynomial equation, 7
faithful representation, 1083, 1098
Fermat's principle, 787, 798
Fermi–Dirac statistics, 1138
Fibonacci series, 525
field lines and complex potentials, 872
fields
conservative, 387–389
scalar, 347
tensor, 954
vector, 347
fields, electrostatic, see electrostatic fields and potentials
fields, gravitational, see gravitational fields and potentials
finite differences, 1019
central, 1019
for differential equations, 1020–1023
forward and backward, 1019
from Taylor series, 1019, 1026
schemes for differential equations, 1030–1032
finite groups, 1043
first law of thermodynamics, 176
first-order differential equations, see ordinary differential equations
Fisher distribution, see F-distribution (Fisher)
Fisher matrix, 1241, 1268
Fisher's inequality, 1232, 1233
fluids
Archimedean upthrust, 396, 410
complex velocity potential, 873
continuity equation, 404
cylinder in uniform flow, 874
flow, 873
flux, 395, 875
irrotational flow, 353
sources and sinks, 404, 873
stagnation points, 873
velocity potential, 409, 679
vortex flow, 408, 874
forward differences, 1019
Fourier cosine transforms, 446
Fourier series, 415–432
and separation of variables, 719–722, 724
coefficients, 417–419, 425
complex, 424
differentiation, 424
Dirichlet conditions, 415

1314
discontinuous functions, 420–422
error term, 430
integration, 424
non-periodic functions, 422–424
orthogonality of terms, 417
complex case, 425
Parseval's theorem, 426
standard form, 417
summation of series, 427
symmetry considerations, 419
uses, 415
Fourier series, examples
 square-wave, 418
 \(x, 424, 425 \)
 \(x^2, 422 \)
 \(x^3, 424 \)
Fourier sine transforms, 445
Fourier transforms, 433–453
 as generalisation of Fourier series, 433–435
 convolution, 446–449
 and the Dirac \(\delta \)-function, 447
 associativity, commutativity, distributivity, 447
 definition, 447
 resolution function, 446
 convolution theorem, 448
 correlation functions, 449–451
 cosine transforms, 446
 deconvolution, 449
 definition, 435
discrete, 462
evaluation using convolution theorem, 448
for integral equations, 809–812
for PDE, 749–751
Fourier-related (conjugate) variables, 436
in higher dimensions, 451–453
inverse, definition, 435
odd and even functions, 445
Parseval's theorem, 450
properties: differentiation, exponential multiplication, integration, scaling, translation, 444
relation to Dirac \(\delta \)-function, 442
sine transforms, 445
Fourier transforms, examples
 convolution, 448
damped harmonic oscillator, 451
Dirac \(\delta \)-function, 443
exponential decay function, 435
Gaussian (normal) distribution, 435
rectangular distribution, 442
spherically symmetric functions, 452
two narrow slits, 448
two wide slits, 438, 448
Fourier's inversion theorem, 435
Fraunhofer diffraction, 437–439
diffraction grating, 461
two narrow slits, 448
two wide slits, 438, 448
Fredholm integral equations, 805
eigenvalues, 808
operator form, 806
with separable kernel, 807
Fredholm theory, 815
Frenet–Serret formulae, 343
Fresnel integrals, 913
Frobenius series, 539
Fuch's theorem, 539
function of a matrix, 255
functional, 776
functions of a complex variable, 825–839,
 853–858
analyticity, 826
behaviour at infinity, 839
branch points, 835
Cauchy integrals, 851–853
Cauchy–Riemann relations, 827–830
conformal transformations, 839–844
derivative, 825
differentiation, 825–830
identity theorem, 854
Laplace equation, 829, 871
Laurent expansion, 855–858
multivalued and branch cuts, 835–837, 885
particular functions, 832–835
poles, 837
power series, 830–832
real and imaginary parts, 825, 830
singularities, 826, 837–839
Taylor expansion, 853–855
zeros, 839, 879–882
functions of one real variable
decomposition into even and odd functions, 416
differentiation of, 41–50
Fourier series, see Fourier series integration of, 59–72
limits, see limits
maxima and minima of, 50–52
stationary values of, 50–52
Taylor series, see Taylor series
functions of several real variables
chain rule, 157
differentiation of, 151–179
integration of, see multiple integrals, evaluation
maxima and minima, 162–167
points of inflection, 162–167
rates of change, 153–155
saddle points, 162–167
stationary values, 162–167
Taylor series, 160–162
fundamental solution, 757
fundamental theorem of
 algebra, 83, 85, 868
calculus, 61
 complex numbers, see de Moivre's theorem
gamma distribution, 1153, 1191
gamma function
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>as general factorial function, 636</td>
</tr>
<tr>
<td>definition and properties, 636</td>
</tr>
<tr>
<td>graph of, 637</td>
</tr>
<tr>
<td>Gauss’s theorem, 765</td>
</tr>
<tr>
<td>Gauss–Seidel iteration, 996–998</td>
</tr>
<tr>
<td>Gaussian (normal) distribution $N(\mu, \sigma^2)$, 1179–1189</td>
</tr>
<tr>
<td>and binomial distribution, 1185</td>
</tr>
<tr>
<td>and central limit theorem, 1195</td>
</tr>
<tr>
<td>and Poisson distribution, 1187</td>
</tr>
<tr>
<td>continuity correction, 1186</td>
</tr>
<tr>
<td>CPF, 1018, 1181</td>
</tr>
<tr>
<td>tabulation, 1182</td>
</tr>
<tr>
<td>Fourier transform, 435</td>
</tr>
<tr>
<td>integration with infinite limits, 202–204</td>
</tr>
<tr>
<td>mean and variance, 1180–1184</td>
</tr>
<tr>
<td>MGF, 1185, 1188</td>
</tr>
<tr>
<td>multiple, 1188</td>
</tr>
<tr>
<td>multivariate, 1209</td>
</tr>
<tr>
<td>random number generation, 1018</td>
</tr>
<tr>
<td>sigma limits, 1183</td>
</tr>
<tr>
<td>standard variable, 1180</td>
</tr>
<tr>
<td>Gaussian elimination with interchange, 995</td>
</tr>
<tr>
<td>Gaussian integration, 1005–1009</td>
</tr>
<tr>
<td>points and weights, 1008, 1010</td>
</tr>
<tr>
<td>general tensors</td>
</tr>
<tr>
<td>algebra, 938–941</td>
</tr>
<tr>
<td>contraction, 939</td>
</tr>
<tr>
<td>contravariant, 961</td>
</tr>
<tr>
<td>covariant, 961</td>
</tr>
<tr>
<td>dual, 949</td>
</tr>
<tr>
<td>metric, 957–960</td>
</tr>
<tr>
<td>physical applications, 957–960, 976</td>
</tr>
<tr>
<td>pseudotensors, 964</td>
</tr>
<tr>
<td>tensor densities, 964</td>
</tr>
<tr>
<td>generalised likelihood ratio, 1282</td>
</tr>
<tr>
<td>generating functions</td>
</tr>
<tr>
<td>associated Laguerre polynomials, 623</td>
</tr>
<tr>
<td>associated Legendre polynomials, 592</td>
</tr>
<tr>
<td>Bessel functions, 613</td>
</tr>
<tr>
<td>Chebyshev polynomials, 601</td>
</tr>
<tr>
<td>Hermite polynomials, 627</td>
</tr>
<tr>
<td>Laguerre polynomials, 620</td>
</tr>
<tr>
<td>Legendre polynomials, 584–586</td>
</tr>
<tr>
<td>generating functions in probability, 1157–1167, 1161</td>
</tr>
<tr>
<td>see also moment generating functions</td>
</tr>
<tr>
<td>and probability generating functions</td>
</tr>
<tr>
<td>geodesics, 797, 976, 982</td>
</tr>
<tr>
<td>geometric distribution, 1159, 1172</td>
</tr>
<tr>
<td>geometric series, 117</td>
</tr>
<tr>
<td>Gibbs’ free energy, 178</td>
</tr>
<tr>
<td>Gibbs’ phenomenon, 421</td>
</tr>
<tr>
<td>gradient of a function of one variable, 42</td>
</tr>
<tr>
<td>several real variables, 153–155</td>
</tr>
<tr>
<td>gradient of scalar, 348–352</td>
</tr>
<tr>
<td>tensor form, 972</td>
</tr>
<tr>
<td>gradient of vector, 936, 969</td>
</tr>
<tr>
<td>gradient operator (grad), 348</td>
</tr>
<tr>
<td>as integral, 398</td>
</tr>
<tr>
<td>in curvilinear coordinates, 367</td>
</tr>
<tr>
<td>in cylindrical polars, 360</td>
</tr>
<tr>
<td>in spherical polars, 362</td>
</tr>
<tr>
<td>tensor form, 972</td>
</tr>
<tr>
<td>Gram–Schmidt orthogonalisation of eigenfunctions of Hermitian operators, 562</td>
</tr>
<tr>
<td>eigenvectors of Hermitian matrices, 277</td>
</tr>
<tr>
<td>normal matrices, 275</td>
</tr>
<tr>
<td>functions in a Hilbert space, 557</td>
</tr>
<tr>
<td>gravitational fields and potentials</td>
</tr>
<tr>
<td>Laplace equation, 679</td>
</tr>
<tr>
<td>Newton’s law, 339</td>
</tr>
<tr>
<td>Poisson equation, 679, 744</td>
</tr>
<tr>
<td>uniform disc, 771</td>
</tr>
<tr>
<td>uniform ring, 742</td>
</tr>
<tr>
<td>Green’s functions, 568–571, 751–767</td>
</tr>
<tr>
<td>and boundary conditions, 512, 514</td>
</tr>
<tr>
<td>and Dirac δ-function, 511</td>
</tr>
<tr>
<td>and partial differential operators, 753</td>
</tr>
<tr>
<td>and Wronskian, 527</td>
</tr>
<tr>
<td>diffusion equation, 749</td>
</tr>
<tr>
<td>Dirichlet problems, 756–765</td>
</tr>
<tr>
<td>for ODE, 185, 511–516</td>
</tr>
<tr>
<td>Neumann problems, 765–767</td>
</tr>
<tr>
<td>particular integrals from, 514</td>
</tr>
<tr>
<td>Poisson’s equation, 755</td>
</tr>
<tr>
<td>Green’s theorems</td>
</tr>
<tr>
<td>applications, 706, 754, 849</td>
</tr>
<tr>
<td>in a plane, 384–387, 407</td>
</tr>
<tr>
<td>in three dimensions, 402</td>
</tr>
<tr>
<td>ground-state energy</td>
</tr>
<tr>
<td>harmonic oscillator, 796</td>
</tr>
<tr>
<td>hydrogen atom, 800</td>
</tr>
<tr>
<td>group multiplication tables, 1050</td>
</tr>
<tr>
<td>order three, 1062</td>
</tr>
<tr>
<td>order four, 1050, 1052, 1061</td>
</tr>
<tr>
<td>order five, 1062</td>
</tr>
<tr>
<td>order six, 1055, 1061</td>
</tr>
<tr>
<td>grouping terms as a test for convergence, 129</td>
</tr>
<tr>
<td>groups</td>
</tr>
<tr>
<td>Abelian, 1044</td>
</tr>
<tr>
<td>associative law, 1043</td>
</tr>
<tr>
<td>cancellation law, 1046</td>
</tr>
<tr>
<td>centre, 1069</td>
</tr>
<tr>
<td>closure, 1043</td>
</tr>
<tr>
<td>definition, 1043–1046</td>
</tr>
<tr>
<td>direct product, 1072</td>
</tr>
<tr>
<td>division axiom, 1046</td>
</tr>
<tr>
<td>elements, 1043</td>
</tr>
<tr>
<td>order, 1047</td>
</tr>
<tr>
<td>finite, 1043</td>
</tr>
<tr>
<td>identity element, 1043–1046</td>
</tr>
<tr>
<td>inverse, 1043, 1046</td>
</tr>
<tr>
<td>isomorphic, 1051</td>
</tr>
<tr>
<td>mappings between, 1059–1061</td>
</tr>
<tr>
<td>homomorphic, 1059–1061</td>
</tr>
<tr>
<td>image, 1059</td>
</tr>
<tr>
<td>isomorphic, 1059</td>
</tr>
</tbody>
</table>
nomenclature, 1102
non-Abelian, 1052–1056
permutation law, 1047
subgroups, see subgroups
groups, examples
1 and −1 under multiplication, 1043
alternating, 1116
complex numbers $e^{i\theta}$, 1048
functions, 1055
general linear, 1073
integers under addition, 1043
integers under multiplication (mod N),
1049–1051
matrices, 1054
permutations, 1056–1058
quaternion, 1073
rotation matrices, 1048
symmetries of a square, 1100
symmetries of an equilateral triangle, 1047
$H_n(x)$, see Hermite polynomials
Hamilton’s principle, 788
Hamiltonian, 796
Hankel functions $H^{(1)}_n(x)$, $H^{(2)}_n(x)$, 607
Hankel transforms, 459
harmonic oscillators
damped, 239, 451
ground-state energy, 796
Schrödinger equation, 796
simple, see simple harmonic oscillator
heat flow
diffusion equation, 678, 696, 723
in bar, 723, 749, 770
in thin sheet, 698
Heaviside function, 441
relation to Dirac δ-function, 441
Heisenberg’s uncertainty principle, 435–437
Helmholtz equation, 737–741
cylindrical polars, 740
plane polars, 738
spherical polars, 740–741
Helmholtz potential, 177
hemisphere, centre of mass and centroid, 195
as example of Sturm–Liouville equation, 566
natural interval, 567
Hermite polynomials $H_n(x)$, 625
as special case of confluent hypergeometric
function, 634
generating function, 627
graph of, 625
normalisation, 626
orthogonality, 626
recurrence relations, 628
Rodrigues’ formula, 626
Hermitian conjugate, 256–258
and inner product, 258
product rule, 257
Hermitian forms, 288–292
positive definite and semi-definite, 290
stationary properties of eigenvectors, 290
Hermitian kernel, 816
Hermitian matrices, 271
eigenvalues, 276–278
reality, 276
eigenvectors, 276–278
orthogonality, 277
Hermitian operators, 559–564
and physical variables, 650
boundary condition for simple harmonic
oscillators, 560
eigenfunctions
completeness, 560, 563
orthogonality, 561–563
eigenvalues
reality, 561
Green’s functions, 568–571
importance of, 555, 560
in Sturm–Liouville equations, 564
properties, 561–564
superposition methods, 568–571
higher-order differential equations, see ordinary
differential equations
Hilbert spaces, 557–559
hit or miss, in Monte Carlo methods, 1014
homogeneous
boundary conditions, see boundary
conditions, homogeneous and
inhomogeneous
differential equations, 490
dimensionally consistent, 475, 521
simultaneous linear equations, 293
homomorphism, 1059–1061
kernel of, 1060
representation as, 1083
Hooke’s law, 953
hydrogen atom
s-states, 1144
electron wavefunction, 208
ground-state energy, 800
hydrogen molecule, symmetries of, 1041
hyperbola
as section of quadratic surface, 292
equation for, 16
hyperbolic functions, 102–109, 833
calculus of, 106–109
definitions, 102, 833
graphs, 102
identities, 104
in equations, 105
inverses, 105
trigonometric analogies, 102–104
hyperbolic PDE, 687, 690
hypergeometric distribution, 1173
mean and variance, 1173
hypergeometric equation, 535, 628–632
as example of Sturm–Liouville equation, 566, 567
general solution, 630
natural interval, 567
hypergeometric functions, 628–632
contiguous relations, 632
integral representation, 631
recurrence relations, 632
special cases, 630

hypothesis testing, 1277–1298
errors, first and second kind, 1280
generalised likelihood ratio, 1282
generalised likelihood-ratio test, 1281
goodness of fit, 1296
Neyman–Pearson test, 1280
null, 1278
power, 1280
rejection region, 1279
simple or composite, 1278
statistical tests, 1278
test statistic, 1278

i, j, k (unit vectors), 219
i, square root of -1, 84
identity element of a group, 1043–1046
uniqueness, 1043, 1045
identity matrices, 254, 255
identity operator, 249
images, method of, see method of images
imaginary part or term of a complex number, 83
importance sampling, in Monte Carlo methods, 1012
improper
integrals, 70
rotations, 946–948
impulses, δ-function representation, 441
incomplete gamma function, 639
independent random variables, 1156, 1200
index of a subgroup, 1066
indices, of regular singular points, 540
indicical equation, 540
distinct roots with non-integral difference, 540–542
repeated roots, 542, 546, 547
roots differ by integer, 542, 546
induction, proof by, 31
inequalities
amongst integrals, 72
Bessel, 246, 559
Schwarz, 246, 559
triangle, 246, 559
inertia, see also moments of inertia
moments and products, 951
tensor, 951
inexact differentials, 155
inexact equation, 473
infinite integrals, 70
contour integration, 862–867
infinite series, see series
inflection
general points of, 52
stationary points of, 50–52

inhomogeneous
boundary conditions, see boundary conditions, homogeneous and inhomogeneous
differential equations, 490
simultaneous linear equations, 293
inner product in a vector space, see also scalar product
of finite dimensionality, 244
and Hermitian dimensionality, 244
commutativity, 244
distributivity over addition, 244
of infinite dimensionality, 557
integral equations
eigenfunctions, 817
eigenvalues, 808, 816
Fredholm, 805
from differential equations, 803
homogeneous, 805
linear, 804
first kind, 805
second kind, 805
nomenclature, 804
singular, 805
Volterra, 805
integral equations, methods for
differentiation, 812
Fredholm theory, 815
integral transforms, 809–812
Fourier, 809–812
Laplace, 810
Neumann series, 813–815
Schmidt–Hilbert theory, 816–819
separable (degenerate) kernels, 807
integral functions, 832n
integral equations, methods for convergence of series, 128
integral transforms, see also Fourier transforms
and Laplace transforms
general form, 459
Hankel transforms, 459
Mellin transforms, 459
integrals, see also integration
complex, see complex integrals
definite, 59
double, see multiple integrals
Fourier transform of, 444
improper, 70
indefinite, 62
inequalities, 72, 559
infinite, 70
Laplace transform of, 456
limits
containing variables, 188
fixed, 59
variable, 61
line, see line integrals
multiple, see multiple integrals
non-zero, 1104
of vectors, 339
properties, 60
INDEX

triple, see multiple integrals
undefined, 59
integrand, 59
integrating factor (IF), 506
first-order ODE, 473–475
integration, see also integrals
applications, 72–76
finding the length of a curve, 73
mean value of a function, 72
surfaces of revolution, 74
volumes of revolution, 75
as area under a curve, 59
as the inverse of differentiation, 61
formal definition, 59
from first principles, 59
in plane polar coordinates, 70
logarithmic, 64
multiple, see multiple integrals
multivalued functions, 865–867, 885
of Fourier series, 424
of functions of several real variables, see multiple integrals
of hyperbolic functions, 106–109
of power series, 135
of simple functions, 62
of singular functions, 70
of sinusoidal functions, 63, 861
integration constant, 62
integration, methods for
by inspection, 62
by parts, 67–69
by substitution, 65–67
t substitution, 65
change of variables, see change of variables
completing the square, 66
countour, see contour integration
Gaussian, 1005–1009
numerical, 1000–1009
partial fractions, 64
reduction formulae, 69
stationary phase, 912–920
steepest descents, 908–912
trigonometric expansions, 63
using complex numbers, 1008–1010
intrinsic derivative, see absolute derivative
invariant tensors, see isotropic tensors
inverse hyperbolic functions, 105
inverse integral transforms
Fourier, 435
Laplace, 454, 884–887
uniqueness, 454
inverse matrices, 263–266
elements, 264
in solution of simultaneous linear equations, 295
product rule, 266
properties, 265
inverse of a linear operator, 249
inverse of a product in a group, 1046
inverse of element in a group
uniqueness, 1043, 1046
inversion theorem, Fourier’s, 435
inversions as
improper rotations, 946
symmetry operations, 1041
irregular singular points, 534
irreps, 1087
counting, 1095
dimension n_j, 1097
direct sum \oplus, 1086
identity \mathbf{A}_i, 1100, 1104
n-dimensional, 1089, 1102
number in a representation, 1087, 1095
one-dimensional, 1089, 1093, 1099, 1102
orthogonality theorem, 1090–1092
projection operators for, 1107
reduction to, 1096
summation rules for, 1097–1099
irrotational vectors, 353
isobaric ODE, 476
non-linear, 521
isoclines, method of, 1028, 1037
isomorphic groups, 1051–1056, 1058, 1059
isomorphism (mapping), 1060
isotope decay, 484, 525
isotropic (invariant) tensors, 944–946, 953
iteration schemes
convergence of, 992–994
for algebraic equations, 986–994
for differential equations, 1025
for integral equations, 813–816
Gauss–Seidel, 996–998
order of convergence, 993
$J_\nu(x)$, see Bessel functions
$\sqrt{-1}$, square root of -1, 84
$j_\nu(x)$, see spherical Bessel functions
Jacobians
analogy with derivatives, 207
and change of variables, 206
definition in
two dimensions, 201
three dimensions, 205
general properties, 206
in terms of a determinant, 201, 205, 207
joint distributions, see bivariate distributions
and multivariate distributions
Jordan’s lemma, 864
kernel of a homomorphism, 1060, 1063
kernel of an integral transform, 459
kernel of integral equations
displacement, 509
Hermitian, 816
of form $\exp(-ixz)$, 810–812
of linear integral equations, 804
resolvent, 814, 815
separable (degenerate), 807
ket vector $|\psi\rangle$, 648

1319
kinetic energy of oscillating system, 316
Klein–Gordon equation, 711, 772
Kronecker delta δ_{ij} and orthogonality, 244
Kronecker delta, δ_{ij}, δ^i_j, tensor, 928, 941–946, 956, 962
identities, 943
isotropic, 945
vector products, 942
Kummer function, 633
kurtosis, 1150, 1227
$\ln(x)$, see Laguerre polynomials
$L_m^n(x)$, see associated Laguerre polynomials
L'Hôpital's rule, 142–144
Lagrange equations, 789
and energy conservation, 797
Lagrange undetermined multipliers, 167–173
and ODE eigenvalue estimation, 792
application to stationary properties of the eigenvectors of quadratic and Hermitian forms, 290
for functions of more than two variables, 169–173
in deriving the Boltzmann distribution, 171–173
integral constraints, 785
with several constraints, 169–173
Lagrange's identity, 226
Lagrange's theorem, 1065
and the order of a subgroup, 1062
and the order of an element, 1062
Lagrangian, 789, 797
Laplace equation, 679
expansion methods, 741–744
in two dimensions, 688, 690, 717, 718
and analytic functions, 829
and conformal transformations, 876–879
numerical method for, 1031, 1038
plane polars, 725–727
separated variables, 717
in three dimensions
cylindrical polars, 728–731
spherical polars, 731–737
uniqueness of solution, 741
with specified boundary values, 764, 766
Laplace expansion, 259
Laplace transforms, 453–459, 884
convolution
- associativity, commutativity, distributivity, 458
definition, 457
convolution theorem, 457
definition, 453
for ODE with constant coefficients, 501–503
for PDE, 747–748
inverse, 454, 884–887
uniqueness, 454
properties: translation, exponential multiplication, etc., 456
table for common functions, 455
Laplace transforms, examples
- constant, 453
derivatives, 455
exponential function, 453
integrals, 456
polynomial, 453
Laplacian, see del squared ∇^2 (Laplacian)
Laurent expansion, 855–858
analytic and principal parts, 855
region of convergence, 855
least squares, method of, 1271–1277
basis functions, 1273
linear, 1272
non-linear, 1276
response matrix, 1273
Legendre equation, 534, 535, 577–586
as example of Sturm–Liouville equation, 566, 583
associated, see associated Legendre equation
general solution, 578, 580
natural interval, 567, 583
Legendre functions $P_\ell(x)$, 577–586
associated Legendre functions, 768
of second kind $Q_\ell(x)$, 579
graph of, 580
Legendre linear equation, 503
Legendre polynomials $P_\ell(x)$, 578
as special case of hypergeometric function, 631
associated Legendre functions, 733
generating function, 584–586
graph of, 579
in Gaussian integration, 1006
normalisation, 578, 582
orthogonality, 583, 735
recurrence relations, 585, 586
Rodrigues' formula, 581
Leibnitz' rule for differentiation of integrals, 178
Leibnitz' theorem, 48–50
length of
- a vector, 218
plane curves, 73, 341
space curves, 341
tensor form, 982
INDEX

level lines, 905, 906
Levi-Civita symbol, see ϵ_{ijk}, Levi-Civita symbol, tensor
likelihood function, 1255
limits, 141–144
definition, 141
L'Hôpital's rule, 142–144
of functions containing exponents, 142
of integrals, 59
containing variables, 188
of products, 141
of quotients, 141–144
of sums, 141
line charge, electrostatic potential, 872, 878
line integrals
and Cauchy integrals, 851–853
and Stokes' theorem, 406–409
of scalars, 377–387
of vectors, 377–389
physical examples, 381
round closed loop, 386
line of steepest descents, 908
line, vector equation of, 226
linear dependence and independence
definition in a vector space, 242
relationship with rank, 267
linear differential operator \mathcal{L}, 511, 545, 554
adjoint \mathcal{L}^\dagger, 559
eigenfunctions, see eigenfunctions
eigenvalues, see eigenvalues, of linear differential operators
for Sturm-Liouville equation, 564–568
Hermitian, 555, 559–564
self-adjoint, 559
linear equations, differential
first-order ODE, 474
general ODE, 490–517
ODE with constant coefficients, 492–503
ODE with variable coefficients, 503–517
linear equations, simultaneous, see simultaneous linear equations
linear independence of functions, 491
Wronskian test, 491, 532
linear integral operator K, 805
and Schmidt–Hilbert theory, 816–818
Hermitian conjugate, 805
inverse, 806
linear interpolation for algebraic equations, 988
linear least squares, method of, 1272
linear molecules
normal modes of, 320–322
symmetries of, 1077
linear operators, 247–249
associativity, 249
distributivity over addition, 249
eigenvalues and eigenvectors, 272
in a particular basis, 248
inverse, 249
non-commutativity, 249
particular: identity, null or zero, singular and non-singular, 249
properties, 249
linear vector spaces, see vector spaces
lines of steepest descent, 906
Liouville's theorem, 853
Ln of a complex number, 99, 834
ln (natural logarithm)
Maclaurin series for, 140
of a complex number, 99, 834
log-likelihood function, 1258
longitudinal vibrations in a rod, 677
lottery (UK), and hypergeometric distribution, 221
mappings between groups, see groups, mappings between
marginal distributions, 1198
mass of non-uniform bodies, 193
matrices, 241–307
as a vector space, 252
as arrays of numbers, 249
as representation of a linear operator, 249
column, 250
elements, 249
minors and cofactors, 259
identity or unit, 254
row, 250
zero or null, 254
matrices, algebra of, 250
addition, 251
change of basis, 283–285
Cholesky separation, 313
diagonalisation, see diagonalisation of matrices
multiplication, 252–254
and common eigenvalues, 278
commutator, 309
non-commutativity, 254
multiplication by a scalar, 251
normal modes, see normal modes
numerical methods, see numerical methods
for simultaneous linear equations
similarity transformations, see similarity transformations
simultaneous linear equations, see simultaneous linear equations
subtraction, 251
matrices, derived
adjoint, 256–258
complex conjugate, 256–258
Hermitian conjugate, 256–258
inverse, see inverse matrices
transpose, 250
matrices, properties of
- anti- or skew-symmetric, 270
- anti-Hermitian, see anti-Hermitian matrices
determinant, see determinants
diagonal, 268
eigenvalues, see eigenvalues
eigenvectors, see eigenvectors
- Hermitian, see Hermitian matrices
normal, see normal matrices
nullity, 293
order, 249
orthogonal, 270
rank, 267
square, 249
symmetric, 270
trace or spur, 258
triangular, 269
tridiagonal, 998–1000, 1030
unitary, see unitary matrices

matrix elements in quantum mechanics
as integrals, 1103
dipole, 1108, 1115

maxima and minima (local) of a function of
- constrained variables, see Lagrange undetermined multipliers
- one real variable, 50–52
- sufficient conditions, 51
- several real variables, 162–167
- sufficient conditions, 164, 167
maximum modulus theorem, 881
maximum-likelihood, method of, 1255–1271
and Bayesian approach, 1264
bias, 1260
data modelling, 1255
- extended, 1270
log-likelihood function, 1258
parameter estimation, 1255
transformation invariance, 1260
Maxwell's
- electromagnetic equations, 373, 408, 979
thermodynamic relations, 176–178
Maxwell–Boltzmann statistics, 1138
mean \(\mu \)
- from MGF, 1163
- from PGF, 1158
- of RVD, 1144
- of sample, 1223
- of sample: geometric, harmonic, root mean square, 1223
mean value of a function of
- one variable, 72
- several variables, 199
mean value theorem, 56
median of RVD, 1145
membrane
- deformed rim, 725–727
- normal modes, 739, 1112
- transverse vibrations, 677, 739, 768, 1112
method of images, 706, 758–765, 878
- disc (section of cylinder), 764, 766
- infinite plate, 759
- intersecting plates in two dimensions, 761
- sphere, 762–764, 772
metric tensor, 957–960, 963
- and Christoffel symbols, 966
- and scale factors, 957, 972
- covariant derivative of, 982
determinant, 957, 964
derivative of, 973
length element, 957
raising or lowering index, 959, 963
scalar product, 958
volume element, 957, 981
MGF, see moment generating functions
Milne's method, 1022
minimum-variance estimator, 1232
minor of a matrix element, 259
mixed, components of tensor, 957, 962, 969
ML estimators, 1256
- bias, 1260
- confidence limits, 1262
- efficiency, 1261
- transformation invariance, 1260
mode of RVD, 1145
modulo, mod \(N \), multiplication, 1049
modulus of a complex number, 87
of a vector, see magnitude of a vector
molecules
- bonding in, 1103, 1105–1108
dipole moments of, 1077
- symmetries of, 1077
moment generating functions (MGFs), 1162–1167
and central limit theorem, 1195
and PGF, 1163
mean and variance, 1163
particular distributions
- binomial, 1170
- exponential, 1191
- Gaussian, 1163, 1185
- Poisson, 1177
properties, 1163
moments (of distributions)
- central, 1148
- of RVD, 1147
moments (of forces), vector representation of, 223
moments of inertia
- and inertia tensor, 951
definition, 198
- of disc, 208
- of rectangular lamina, 198
- of right circular cylinder, 209
- of sphere, 205
- perpendicular axes theorem, 209
- momentum as first-order tensor, 933
monomorphism, 1061
Monte Carlo methods, of integration, 1009–1017
 antithetic variates, 1014
 control variates, 1013
 crude, 1011
 hit or miss, 1014
 importance sampling, 1012
 multiple integrals, 1016
 random number generation, 1017
 stratified sampling, 1012
Morera’s theorem, 851
multinomial distribution, 1208
 and multiple Poisson distribution, 1218
multiple integrals
 application in finding
 area and volume, 191–193
 mass, centre of mass and centroid, 193–195
 mean value of a function of several
 variables, 199
 moments of inertia, 198
 change of variables
 double integrals, 200–204
 general properties, 206
 triple integrals, 204
 definitions of
 double integrals, 187
 triple integrals, 190
 evaluation, 188–190
 notation, 188, 189, 191
 order of integration, 188, 191
multiple integrals
 multiplication tables for groups, see group
 multiplication tables
 multiplication theorem, see Parseval’s theorem
multiple valued functions, 835–837
multivariate distributions, 1196, 1207–1211
 change of variables, 1206
 Gaussian, 1209
 multinomial, 1208
mutually exclusive events, 1120, 1129

\(n_\ell(x) \), see spherical Bessel functions

\(\nabla \), see gradient operator (grad)
natural interval
 for associated Laguerre equation, 567, 622
 for associated Legendre equation, 567, 590, 591
 for Bessel equation, 608
 for Chebyshev equation, 567, 599
 for Hermite equation, 567
 for Laguerre equation, 567, 619
 for Legendre equation, 567, 583
 for simple harmonic oscillator equation, 567
 for Sturm–Liouville equations, 565, 567
natural logarithm, see \(\ln \) and \(\text{Ln} \)
natural numbers, in series, 31, 121
natural representations, 1081, 1110
 necessary and sufficient conditions, 34
negative binomial distribution, 1172
negative function, 556
negative vector, 242
Neumann boundary conditions, 702
 Green’s functions, 754, 765–767
 method of images, 765–767
 self-consistency, 765
Neumann functions \(Y_\nu(x) \), 607
Neumann series, 813–815
Newton–Raphson (NR) method, 990–992
 order of convergence, 993
Neyman–Pearson test, 1280
nodes of oscillation, 693
non-Abelian groups, 1052–1056
 of functions, 1055
 of matrices, 1054
 of permutations, 1056–1058
 of rotations and reflections, 1052
non-Cartesian coordinates, see curvilinear,
 cylindrical polar, plane polar and spherical
 polar coordinates
non-linear differential equations, see ordinary
differential equations, non-linear
non-linear least squares, method of, 1276
 norm of
 function, 557
 vector, 244
 normal
 to coordinate surface, 366
 to plane, 228
 to surface, 346, 350, 390
 normal derivative, 350
 normal distribution, see Gaussian (normal)
distribution
 normal matrices, 272
 eigenvectors
 completeness, 275
 orthogonality, 275
 eigenvectors and eigenvalues, 273–276
 normal modes, 316–329
 characteristic equation, 319
 coupled pendulums, 329, 331
 definition, 320
 degeneracy, 1110–1113
 frequencies of, 319
 linear molecular system, 320–322
 membrane, 739, 1112
 normal coordinates, 320
 normal equations, 320
 rod–string system, 317–320
 symmetries of, 322
 normal subgroups, 1063
normalisation of
 eigenfunctions, 562
 eigenvectors, 273
 functions, 557
 vectors, 219
null (zero)
 matrix, 254, 255
 operator, 249
 space, of a matrix, 293
 vector, 214, 242, 556

1323
null operation, as identity element of group, 1044
nullity, of a matrix, 293
numerical methods for algebraic equations, 985–992
binary chopping, 990
convergence of iteration schemes, 992–994
linear interpolation, 988
Newton–Raphson, 990–992
rearrangement methods, 987
numerical methods for integration, 1000–1009
Gaussian integration, 1005–1009
mid-point rule, 1034
Monte Carlo, 1009
nomenclature, 1001
Simpson’s rule, 1004
trapezium rule, 1002–1004
numerical methods for ordinary differential equations, 1020–1030
accuracy and convergence, 1021
Adams method, 1024
difference schemes, 1021–1023
Euler method, 1021
first-order equations, 1021–1028
higher-order equations, 1028–1030
isoclines, 1028
Milne’s method, 1022
prediction and correction, 1024–1026
reduction to matrix form, 1030
Runge–Kutta methods, 1026–1028
Taylor series methods, 1023
numerical methods for partial differential equations, 1030–1032
diffusion equation, 1032
minimising error, 1032
numerical methods for simultaneous linear equations, 994–1000
Gauss–Seidel iteration, 996–998
Gaussian elimination with interchange, 995
matrix form, 994–1000
tridiagonal matrices, 998–1000
O(n), order of, 132
observables in quantum mechanics, 277, 560
odd functions, see antisymmetric functions
ODE, see ordinary differential equations (ODEs)
operators
Hermitian, see Hermitian operators
linear, see linear operators and linear differential operator and linear integral operator
operators (quantum)
angular momentum, 656–663
annihilation and creation, 667
coordinate-free, 648–671
eigenvalues and eigenstates, 649
physical examples
angular momentum, 658
Hamiltonian, 657
order of
approximation in Taylor series, 137n
convergence of iteration schemes, 993
group, 1043
group element, 1047
ODE, 468
permutation, 1058
recurrence relations (series), 497
subgroup, 1061
and Lagrange’s theorem, 1065
tensor, 930
ordinary differential equations (ODE), see also
differential equations, particular boundary conditions, 468, 470, 501
complementary function, 491
degree, 468
dimensionally homogeneous, 475
exact, 472, 505
first-order, 468–484
first-order higher-degree, 480–484
soluble for p, 480
soluble for x, 481
soluble for y, 482
general form of solution, 468–470
higher-order, 490–523
homogeneous, 490
inexact, 473
isobaric, 476, 521
linear, 474, 490–517
non-linear, 518–523
exact, 519
isobaric (homogeneous), 521
x absent, 518
y absent, 518
order, 468
ordinary point, see ordinary points of ODE
particular integral (solution), 469, 492, 494
singular point, see singular points of ODE
singular solution, 469, 481, 482, 484
ordinary differential equations, methods for canonical form for second-order equations, 516
eigenfunctions, 554–573
equations containing linear forms, 478–480
equations with constant coefficients, 492–503
Green’s functions, 511–516
integrating factors, 473–475
Laplace transforms, 501–503
numerical, 1020–1030
partially known CF, 506
separable variables, 471
series solutions, 531–550, 604
undetermined coefficients, 494
variation of parameters, 508–510
ordinary points of ODE, 533, 535–538
indicial equation, 543
orthogonal lines, condition for, 12
orthogonal matrices, 270, 929, 930
general properties, see unitary matrices
orthogonal systems of coordinates, 364
orthogonal transformations, 932
orthogonalisation (Gram–Schmidt) of
eigenfunctions of an Hermitian operator, 562
eigenvectors of a normal matrix, 275
functions in a Hilbert space, 557
orthogonality of
eigenfunctions of an Hermitian operator,
561–563
eigenvectors of a normal matrix, 275
eigenvectors of an Hermitian matrix, 277
functions, 557
terms in Fourier series, 417, 425
vectors, 219, 244
orthogonality properties of characters, 1094,
1102
orthogonality theorem for irreps, 1090–1092
orthonormal
basis functions, 557
basis vectors, 244
under unitary transformation, 285
oscillations, see normal modes
outcome, of trial, 1119
outer product of two vectors, 936

\(P_ℓ(x) \), see Legendre polynomials
\(P_m^ℓ(x) \), see associated Legendre functions
Pappus' theorems, 195–197
parabola, equation for, 16
parabolic PDE, 687, 690
parallel axis theorem, 238
parallel vectors, 223
parallelepiped, volume of, 225
parallelogram equality, 247
parallelogram, area of, 223, 224
parameter estimation (statistics), 1229–1255,
1298
Bessel correction, 1248
error in mean, 1298
maximum-likelihood, 1255
mean, 1243
variance, 1245–1248
parameters, variation of, 508–510
parametric equations
of conic sections, 17
of cycloid, 370, 785
of space curves, 340
of surfaces, 345
parity inversion, 1102
Parseval's theorem
conservation of energy, 451
for Fourier series, 426
for Fourier transforms, 450
partial derivative, see partial differentiation
partial differential equations (PDE), 675–707,
713–767, see also differential equations,
partial
arbitrary functions, 680–685
boundary conditions, 681, 699–707, 723
characteristics, 699–705
and equation type, 703
equation types, 687, 710
first-order, 681–687
general solution, 681–692
homogeneous, 685
inhomogeneous equation and problem,
685–687, 744–746, 751–767
particular solutions (integrals), 685–692
second-order, 687–698
partial differential equations (PDE), methods for
change of variables, 691, 696–698
constant coefficients, 687
general solution, 689
integral transform methods, 747–751
method of images, see method of images
numerical, 1030–1032
separation of variables, see separation of
variables
superposition methods, 717–724
with no undifferentiated term, 684
partial differentiation, 151–179
as gradient of a function of several real
variables, 151
chain rule, 157
change of variables, 158–160
definitions, 151–153
properties, 157
cyclic relation, 157
reciprocity relation, 157
partial fractions, 18–25
and degree of numerator, 21
as a means of integration, 64
complex roots, 22
in inverse Laplace transforms, 454, 502
repeated roots, 23
partial sum, 115
particular integrals (PI), 469, see also ordinary
differential equation, methods for and
partial differential equations, methods for
partition of a
group, 1064
set, 1065
parts, integration by, 67–69
path integrals, see line integrals
PDE, see partial differential equations
PDFs, 1140
pendulums, coupled, 329, 331
periodic function representation, see Fourier
series
permutation groups \(S_n \), 1056–1058
cycle notation, 1057
permutation law in a group, 1047
permutations, 1133–1139
degree, 1056
distinguishable, 1135
order of, 1058
symbol \(^nP_n \), 1133
perpendicular axes theorem, 209
perpendicular vectors, 219, 244
PF, see probability functions
PGF, see probability generating functions
phase memory, 895
case, complex, 896
PI, see particular integrals
plane curves, length of, 73
 in Cartesian coordinates, 73
 in plane polar coordinates, 74
plane polar coordinates, 70, 336
 arc length, 74, 361
 area element, 202, 361
 basis vectors, 336
 velocity and acceleration, 337
plane waves, 695, 716
planes
 and simultaneous linear equations, 300
 vector equation of, 227
plates, conducting, see also complex potentials, for plates
 line charge near, 761
 point charge near, 759
point charges, δ-function representation, 441
point groups, 1082
points of inflection of a function of one real variable, 50–52
 several real variables, 162–167
Poisson distribution $\text{Po}(\lambda)$, 1174–1179
 and Gaussian distribution, 1187
 as limit of binomial distribution, 1174, 1177
 mean and variance, 1176
 MGF, 1177
 multiple, 1178
 recurrence formula, 1176
Poisson equation, 575, 679, 744–746
 fundamental solution, 757
 Green's functions, 753–767
 uniqueness, 705–707
Poisson summation formula, 461
Poisson's ratio, 953
polynomial equations, 1–10
 conjugate roots, 99
 factorisation, 7
 multiplicities of roots, 4
 number of roots, 83, 85, 868
 properties of roots, 9
 real roots, 1
 solution of, using de Moivre's theorem, 98
 polynomial solutions of ODE, 538, 548–550
 populations, sampling of, 1222
 positive (semi-) definite quadratic and Hermitian forms, 290
 positive semi-definite norm, 244
 potential energy of ion in a crystal lattice, 148
magnetic dipole in a field, 220
oscillating system, 317
potential function
 and conservative fields, 389
 complex, 871–876
electrostatic, see electrostatic fields and potentials
 gravitational, see gravitational fields and potentials
 vector, 389
power series
 and differential equations, see series solutions of differential equations
 interval of convergence, 132
Maclaurin, see Maclaurin series
 manipulation, difference, differentiation, integration, product, substitution, sum, 134
Taylor, see Taylor series
power series in a complex variable, 133, 830–832
 analyticity, 832
 circle and radius of convergence, 133, 831
 convergence tests, 831, 832
 form, 830
power, in hypothesis testing, 1280
powers, complex, 99, 833
prediction and correction methods, 1024–1026, 1035
prime, non-existence of largest, 34
principal axes of Cartesian tensors, 951–953
 conductivity tensors, 952
 inertia tensors, 951
 quadratic surfaces, 292
 rotation symmetry, 1102
principal normals of space curves, 342
principal value of complex integrals, 864
 complex logarithms, 100, 834
probability, 1124–1211
 axioms, 1125
 conditional, 1128–1133
 Bayes' theorem, 1132
 combining, 1130
 definition, 1125
 for intersection \cap, 1120
 for union \cup, 1121, 1125–1128
 probability distributions, 1139, see also individual distributions
 bivariate, see bivariate distributions
 change of variables, 1150–1157
 cumulants, 1166
generating functions, see moment generating functions and probability generating functions
 mean μ, 1144
 mean of functions, 1145
 mode, median and quartiles, 1145
 moments, 1147–1150
 multivariate, see multivariate distributions

1326
INDEX

standard deviation σ, 1146
variance σ², 1146
probability functions (PFs), 1139
cumulative (CPF), 1139, 1141
density functions (PDFs), 1140

probability generating functions (PGFs),
1157–1162
and MGF, 1163
binomial, 1161
definition, 1158
geometric, 1159
mean and variance, 1158
Poisson, 1158
sums of RV, 1161
trials, 1158
variable sums of RV, 1161

product rule for differentiation, 44–46, 48–50
products of inertia, 951
projection operators for irreps, 1107, 1116
projection tensors, 979
proper rotations, 946
proper subgroups, 1061
pseudoscalars, 947, 950
pseudotensors, 946–950, 964
pseudovectors, 946–950

Qℓ(x), see Legendre polynomials
Qmℓ(x), see associated Legendre functions

quadratic equations
complex roots of, 83
properties of roots, 10
roots of, 2
quadratic forms, 288–292
completing the square, 1206
positive definite and semi-definite, 290
quadratic surfaces, 292
removing cross terms, 289
stationary properties of eigenvectors, 290
quantum mechanics, from classical mechanics, 657

quantum operators, see operators (quantum)
quartiles, of RVD, 1145
quaternion group, 1073, 1113
quotient law for tensors, 939–941
quotient rule for differentiation, 47
quotient test for series, 127
radius of convergence, 133, 831
radius of curvature
of plane curves, 53
of space curves, 342
radius of torsion of space curves, 343
random number generation, 1017
random numbers, non-uniform distribution, 1035
random variable distributions, see probability distributions
random variables (RV), 1119, 1139–1143
continuous, 1140–1143
dependent, 1196–1205
discrete, 1139
independent, 1156, 1200
sums of, 1160–1162
uncorrelated, 1200
range of a matrix, 293
rank of matrices, 267
and determinants, 267
and linear dependence, 267
rank of tensors, see order of tensor
rate of change of a function of
one real variable, 41
several real variables, 153–155
ratio comparison test, 127
ratio test (D'Alembert), 126, 832
in convergence of power series, 132
ratio theorem, 215
and centroid of a triangle, 216
Rayleigh–Ritz method, 327–329, 800
real part or term of a complex number, 83
real roots, of a polynomial equation, 1
rearrangement methods for algebraic equations, 987
reciprocal vectors, 233, 366, 955, 959
reciprocity relation for partial derivatives, 157
rectangular distribution, 1194
Fourier transform of, 442

recurrence relations (functions), 585, 611
associated Laguerre polynomials, 624
associated Legendre functions, 592
Chebyshev polynomials, 601
confluent hypergeometric functions, 635
Hermite polynomials, 628
hypergeometric functions, 632
Legendre polynomials, 586
recurrence relations (series), 496–501
characteristic equation, 499
coefficients, 536, 538, 999
first-order, 497
second-order, 499
higher-order, 501
reducible representations, 1084, 1086
reduction formulae for integrals, 69
reflections and improper rotations, 946

as symmetry operations, 1041
reflexivity, and equivalence relations, 1064
regular functions, see analytic functions
regular representations, 1097, 1110
regular singular points, 534, 538–540
relative velocities, 218
remainder term in Taylor series, 138
repeated roots of auxiliary equation, 493
representation, 1076
definition, 1082
dimension of, 1078, 1082
equivalent, 1084–1086
faithful, 1083, 1098
generation of, 1078–1084, 1112
irreducible, see irreps
natural, 1081, 1110
product, 1103–1105
reducible, 1084, 1086
regular, 1097, 1110
 counting irreps, 1098
 unitary, 1086
representative matrices, 1079
 block-diagonal, 1086
eigenvalues, 1100
inverse, 1083
number needed, and order of group, 1082
 of identity, 1082
residue
 at a pole, 856–858
 theorem, 858–860
resolution function, 446
resolvent kernel, 814, 815
response matrix, for linear least squares, 1273
rhomboid, volume of, 237
Riemann tensor, 981
Riemann theorem for conditional convergence, 124
Riemann zeta series, 128, 129
right hand screw rule, 222
Rodrigues' formula for
 associated Laguerre polynomials, 622
 associated Legendre functions, 588
 Chebyshev polynomials, 599
 Hermite polynomials, 626
 Laguerre polynomials, 618
 Legendre polynomials, 581
 Rolle's theorem, 55
 root test (Cauchy), 129, 831
roots
 of a polynomial equation, 2
 properties, 9
 of unity, 97
rope, suspended at its ends, 786
rotation groups (continuous), invariant subspaces, 1088
rotation matrices as a group, 1048
rotation of a vector, see curl rotations
 as symmetry operations, 1041
 axes and orthogonal matrices, 930, 931, 961
 improper, 946–948
 invariance under, 934
 product of, 931
 proper, 946
Rouche's theorem, 880–882
row matrix, 250
Runge–Kutta methods, 1026–1028
RV, see random variables
RVD (random variable distributions), see probability distributions
saddle point method of integration, 908
 saddle points, 162
 and integral evaluation, 905
 sufficient conditions, 164, 167
sampling
 correlation, 1227
 covariance, 1227
 space, 1119
 statistics, 1222–1229
 with or without replacement, 1129
scalar fields, 347
 derivative along a space curve, 349
 gradient, 348–352
 line integrals, 377–387
 rate of change, 349
scalar product, 219–222
 and inner product, 244
 and metric tensor, 958
 and perpendicular vectors, 219, 244
 for vectors with complex components, 221
 in Cartesian coordinates, 221
 invariance, 930, 939
 scalar triple product, 224–226
 cyclic permutation of, 225
 in Cartesian coordinates, 225
 determinant form, 225
 interchange of dot and cross, 225
 scalars, 212
 invariance, 930
 zero-order tensors, 933
scale factors, 359, 362, 364
 and metric tensor, 957, 972
scattering in quantum mechanics, 463
Schmider–Hilbert theory, 816–819
Schrödinger equation, 679
 constant potential, 768
 hydrogen atom, 741
 numerical solution, 1039
 variational approach, 795
 Schwarz inequality, 246, 559
 Schwarz–Christoffel transformation, 843
second differences, 1019
second-order differential equations, see ordinary differential equations
 and partial differential equations
 secular determinant, 280
 self-adjoint operators, 559–564, see also
 Hermitian operators
 semicircle, angle in, 18
 semicircular lamina, centre of mass, 197
 separable kernel in integral equations, 807
 separable variables in ODE, 471
 separation constants, 715, 717
separation of variables, for PDE, 713–746
 diffusion equation, 716, 722–724, 737, 751
 expansion methods, 741–744
 general method, 713–717
 Helmholtz equation, 737–741
 inhomogeneous boundary conditions, 722–724
 inhomogeneous equations, 744–746
 Laplace equation, 717–722, 725–737, 741
 polar coordinates, 725–746
 separation constants, 715, 717
 superposition methods, 717–724

1328
INDEX

wave equation, 714–716, 737, 739
series, 115–141
convergence of, see convergence of infinite series
differentiation of, 131
finite and infinite, 116
integration of, 131
multiplication by a scalar, 131
multiplication of (Cauchy product), 131
notation, 116
operations, 131
summation, see summation of series
series, particular
arithmetic, 117
arithmetico-geometric, 118
Fourier, see Fourier series
geometric, 117
Maclaurin, 138, 140
power, see power series
powers of natural numbers, 121
Riemann zeta, 128, 129
Taylor, see Taylor series
series solutions of differential equations, 531–550
about ordinary points, 535–538
about regular singular points, 538–540
Frobenius series, 539
convergence, 536
indicial equation, 540
linear independence, 540
polynomial solutions, 538, 548–550
recurrence relation, 536, 538
second solution, 537, 544–548
derivative method, 545–548
Wronskian method, 544, 580
shortest path, 778
and geodesics, 976, 982
similarity transformations, 283–285, 929, 1092
properties of matrix under, 284
unitary transformations, 285
simple harmonic oscillator, 555
energy levels of, 642, 902
equation, 535, 566
operator formalism, 667
simple poles, 838
Simpson’s rule, 1004
simultaneous linear equations, 292–307
and intersection of planes, 300
homogeneous and inhomogeneous, 293
singular value decomposition, 301–307
solution using
Cramer’s rule, 299
inverse matrix, 295
numerical methods, see numerical methods for simultaneous linear equations
sine, sin(\(x\))
in terms of exponential functions, 102
Maclaurin series for, 140
orthogonality relations, 417
singular and non-singular
integral equations, 805
linear operators, 249
matrices, 263
singular integrals, see improper integrals
singular point (singularity), 826, 837–839
essential, 838, 856
removable, 838
singular points of ODE, 533
irregular, 534
particular equations, 535
regular, 534
singular solution of ODE, 469, 481, 482, 484
singular value decomposition
and simultaneous linear equations, 301–307
singular values, 302
sinh, hyperbolic sine, 102, 833, see also hyperbolic functions
skew-symmetric matrices, 270
skewness, 1150, 1227
Snell’s law, 788
soap films, 780
solenoidal vectors, 352, 389
solid angle
as surface integral, 395
subtended by rectangle, 411
solid: mass, centre of mass and centroid, 193–195
source density, 679
space curves, 340–344
arc length, 341
binormal, 342
curvature, 342
Frenet–Serret formulae, 343
parametric equations, 340
principal normal, 342
radius of curvature, 342
radius of torsion, 343
tangent vector, 342
torsion, 342
spaces, see vector spaces
span of a set of vectors, 242
sphere, vector equation of, 228
spherical Bessel functions, 615, 741
of first kind \(j_\ell(z)\), 615
of second kind \(n_\ell(z)\), 615
spherical harmonics \(Y_\ell^m(\theta, \phi)\), 593–595
addition theorem, 594
spherical polar coordinates, 361–363
area element, 362
basis vectors, 362
length element, 362
vector operators, 361–363
volume element, 205, 362
spur of a matrix, see trace of a matrix
square matrices, 249
square, symmetries of, 1100
square-wave, Fourier series for, 418
stagnation points of fluid flow, 873
standard deviation \(\sigma\), 1146
of sample, 1224
standing waves, 693

1329
INDEX

stationary phase, method of, 912–920
stationary values
 of functions of
 one real variable, 50–52
 several real variables, 162–167
 of integrals, 776
 under constraints, see Lagrange undetermined multipliers
statistical tests, and hypothesis testing , 1278
 describing data, 1222–1229
 estimating parameters, 1229–1255, 1298
 steepest descents, method of, 908–912
Stirling’s
 approximation, 637, 1185
 asymptotic series, 637
B Stokes constant, in Stokes phenomenon, 904
B Stokes line, 899, 903
Stokes phenomenon, 903
 dominant term, 904
 Stokes constant, 904
 subdominant term, 904
Stokes’ equation, 643, 799, 888–894
 Airy integrals, 890–894
 qualitative solutions, 888
 series solution, 890
Stokes’ theorem, 388, 406–409
 for tensors, 955
 physical applications, 408
 related theorems, 407
strain tensor, 953
stratified sampling, in Monte Carlo methods, 1012
streamlines and complex potentials, 873
stress tensor, 953
stress waves, 980
string
 loaded, 798
 plucked, 770
 transverse vibrations of, 676, 789
Student’s t-distribution
 normalisation, 1286
 plots, 1287
Student’s t-test, 1284–1290
 comparison of means, 1289
 critical points table, 1288
 one- and two-tailed confidence limits, 1288
Sturm–Liouville equations, 564
 boundary conditions, 564
 examples, 566
 associated Laguerre, 566, 622
 associated Legendre, 566, 590, 591
 Bessel, 566, 608–611
 Chebyshev, 566, 599
 confluent hypergeometric, 566
 Hermite, 566
 hypergeometric, 566
 Laguerre, 566, 619
 Legendre, 566, 583
 manipulation to self-adjoint form, 565–568
 natural interval, 565, 567
 two independent variables, 801
 variational approach, 790–795
 weight function, 790
 zeros of eigenfunctions, 573
 subdominant term, in Stokes phenomenon, 904
 subgroups, 1061–1063
 index, 1066
 normal, 1063
 order, 1061
 Lagrange’s theorem, 1065
 proper, 1061
 trivial, 1061
 substitution, 123
 superposition methods
 for ODE, 554, 568–571
 for PDE, 717–724
 surface integrals
 and divergence theorem, 401
 Archimedean upthrust, 396, 410
 of scalars, vectors, 389–396
 physical examples, 395
 surfaces, 345–347
 area of, 346
 cone, 74
 solid, and Pappus’ theorem, 195–197
 sphere, 346
 coordinate curves, 346
 normal to, 346, 350
 of revolution, 74
 parametric equations, 345
 quadratic, 292
 tangent plane, 346
 SVD, see singular value decomposition
 symmetric functions, 416
 and Fourier series, 419
 and Fourier transforms, 445
 symmetric matrices, 270
 general properties, see Hermitian matrices

1330
symmetric tensors, 938
symmetry in equivalence relations, 1064
symmetry operations
 on molecules, 1041
 order of application, 1044
t-test, see Student’s t-test
t substitution, 65
tan$^{-1}$ x, Maclaurin series for, 140
tangent planes to surfaces, 346
tangent vectors to space curves, 342
tanh, hyperbolic tangent, see hyperbolic functions
Taylor series, 136–141
 and finite differences, 1019, 1026
 and Taylor’s theorem, 136–139, 853
 approximation errors, 139
 as solution of ODE, 1023
 for functions of a complex variable, 853–855
 for functions of several real variables, 160–162
 remainder term, 138
 required properties, 136
 standard forms, 136
tensors, see Cartesian tensors and Cartesian tensors, particular and general tensors
test statistic, 1278
tetrahedral group, 1115
tetrahedron
 mass of, 194
 volume of, 192
thermodynamics
 first law of, 176
 Maxwell’s relations, 176–178
top-hat function, see rectangular distribution
torque, vector representation of, 223
torsion of space curves, 342
total derivative, 154
total differential, 154
trace of a matrix, 258
 and second-order tensors, 939
 as sum of eigenvalues, 280, 287
 invariance under similarity transformations, 284, 1092
 trace formula, 287
transcendental equations, 986
transformation matrix, 283, 289
transformations
 active and passive, 948
 conformal, 839–844
 coordinate, see coordinate transformations
 similarity, see similarity transformations
 transforms, integral, see integral transforms and
 Fourier transforms and Laplace transforms
 transients, and the diffusion equation, 723
 transitivity in equivalence relations, 1064
 transpose of a matrix, 250, 255
 product rule, 256
transverse vibrations
 membrane, 677, 739, 768
rod, 769
string, 676
trapezium rule, 1002–1004
trial functions
 for eigenvalue estimation, 793
 for particular integrals of ODE, 494
 trials, 1119
triangle inequality, 246, 559
triangle, centroid of, 216
triangular matrices, 269
tridiagonal matrices, 998–1000, 1030, 1033
trigonometric identities, 10–15
triple integrals, see multiple integrals
 triple scalar product, see scalar triple product
 triple vector product, see vector triple product
turning point, 50
uncertainty principle (Heisenberg), 435–437
 from commutator, 664
undetermined coefficients, method of, 494
undetermined multipliers, see Lagrange
uniqueness theorem
 Klein–Gordon equation, 711
 Laplace equation, 741
 Poisson equation, 705–707
unit step function, see Heaviside function
unit vectors, 219
unitary matrices, 271
 eigenvalues and eigenvectors, 278
 representations, 1086
 transformations, 285
upper triangular matrices, 269
variable end-points, 782–785
variable, dummy, 61
variables, separation of, see separation of variables
variance σ^2, 1146
 from MGF, 1163
 from PGF, 1159
 of dependent RV, 1203
 of sample, 1224
 variation of parameters, 508–510
 variation, constrained, 785–787
 variational principles, physical, 787–790
 Fermat, 787
 Hamilton, 788
 variations, calculus of, see calculus of variations
 vector operators, 347–369
 acting on sums and products, 354
 combinations of, 355–357
 curl, 353, 368
 del V, 348
 del squared V^2, 352
divergence (div), 352
geometrical definitions, 398–400
INDEX

gradient operator (grad), 348–352, 367
identities, 356, 978
Laplacian, 352, 368
non-Cartesian, 357–369
tensor forms, 971–975
curl, 974
divergence, 972
gradient, 972
Laplacian, 973
vector product, 222–224
anticommutativity, 222
definition, 222
determinant form, 224
in Cartesian coordinates, 224
non-associativity, 222
vector spaces, 242–247, 1113
associativity of addition, 242
basis vectors, 243
commutativity of addition, 242
complex, 242
defining properties, 242
dimensionality, 243
group actions on, 1088
inequalities: Bessel, Schwarz, triangle, 246
invariant, 1088, 1113
matrices as an example, 252
of infinite dimensionality, 556–559
associativity of addition, 556
basis functions, 556
commutativity of addition, 556
defining properties, 556
Hilbert spaces, 557–559
inequalities: Bessel, Schwarz, triangle, 559
parallelogram equality, 247
real, 242
span of a set of vectors in, 242
vector triple product, 226
identities, 226
non-associativity, 226
vectors
as first-order tensors, 932
as geometrical objects, 241
base, 336
column, 250
compared with scalars, 212
component form, 217
equations of, 212
graphical representation of, 212
irrotational, 353
magnitude of, 218
non-Cartesian, 336, 358, 362
notation, 212
polar and axial, 949
solenoidal, 352, 389
span of, 242
vectors, algebra of, 212–234
addition and subtraction, 213
in component form, 218
angle between, 221
associativity of addition and subtraction, 213
commutativity of addition and subtraction, 213
multiplication by a complex scalar, 222
multiplication by a scalar, 214
multiplication of, see scalar product and
vector product
outer product, 936
vectors, applications
centroid of a triangle, 216
equation of a line, 226
equation of a plane, 227
equation of a sphere, 228
finding distance from a line to a line, 231
line to a plane, 232
point to a line, 229
point to a plane, 230
intersection of two planes, 228
vectors, calculus of, 334–369
differentiation, 334–339, 344
integration, 339
line integrals, 377–389
surface integrals, 389–396
volume integrals, 396
vectors, derived quantities
curl, 353
derivative, 334
differential, 338, 344
divergence (div), 352
reciprocal, 233, 366, 955, 959
vector fields, 347
curl, 406
divergence, 352
flux, 395
rate of change, 350
vectors, physical
acceleration, 335
angular momentum, 238
angular velocity, 223, 238, 353
area, 393–395, 408
area of parallelogram, 223, 224
force, 212, 213, 220
moment or torque of a force, 223
velocity, 335
velocity vectors, 335
Venn diagrams, 1119–1124
vibrations
internal, see normal modes
longitudinal, in a rod, 677
transverse
membrane, 677, 739, 768, 799, 801
rod, 769
string, 676, 789
Volterra integral equation, 804, 805
differentiation methods, 812
Laplace transform methods, 810
volume elements
curvilinear coordinates, 365
cylindrical polars, 360
spherical polars, 205, 362

1332
INDEX

volume integrals, 396
 and divergence theorem, 401
volume of
 cone, 75
 ellipsoid, 207
 parallelepiped, 225
 rhomboid, 237
 tetrahedron, 192
volumes
 as surface integrals, 397, 401
 in many dimensions, 210
 of regions, using multiple integrals, 191–193
volumes of revolution, 75
 and surface area & centroid, 195–197

wave equation, 676, 688, 790
 boundary conditions, 693–695
 characteristics, 704
 from Maxwell’s equations, 373
 in one dimension, 689, 693–695
 in three dimensions, 695, 714, 737
 standing waves, 693
wave number, 437, 693n
wave packet, 436
wave vector, k, 437
wavefunction of electron in hydrogen atom, 208
 Weber functions $Y_{\nu}(x)$, 607
wedge product, see vector product
weight
 of relative tensor, 964
 of variable, 477
Wiener–Kinchin theorem, 450
WKB methods, 895–905
 accuracy, 902
 general solutions, 897
 phase memory, 895
 the Stokes phenomenon, 903
work done
 by force, 381
 vector representation, 220
Wronskian
 and Green’s functions, 527
 for second solution of ODE, 544, 580
 from ODE, 532
 test for linear independence, 491, 532

X-ray scattering, 237

$Y^{m}_{\nu}(\theta, \phi)$, see spherical harmonics
$Y_{\nu}(x)$, Bessel functions of second kind, 607
Young’s modulus, 677, 953

z, as a complex number, 84
z^*, as complex conjugate, 89–91
zero (null)
 matrix, 254, 255
 operator, 249
 unphysical state $|\emptyset\rangle$, 650
 vector, 214, 242, 556

zero-order tensors, 932–935
zeros of a function of a complex variable, 839
 location of, 879–882, 921
 order, 839, 856
 principle of the argument, 880
 Rouche’s theorem, 880, 882
zeros of Sturm-Liouville eigenfunctions, 573
zeros, of a polynomial, 2
zeta series (Riemann), 128, 129
z-plane, see Argand diagram

1333