YUM: Yellowdog Updater, Modified

Robert G. Brown
Duke University Physics Department
Durham, NC 27708-0305
rgb@phy.duke.edu

December 17, 2003

Copyright Notice
Copyright Robert G. Brown as of Date: 2003/11/21 02:35:21 .

Contents

1 Introduction 3
1.1 Article Organization 3
1.2 Useful Links o o 4
1.3 Yum History 4
1.4 Acknowledgements and Disclaimer 5

2 What Yum Can Do 5
2.1 yum-arch: The Repository Tool 6
2.2 yum: The Client Tool 6

3 Getting and Installing Yum 7
3.1 Root Privileges, Editors and Terminal Commands 7
3.2 Preparing Your System for Yum 8
3.3 Imstalling Yum o 9

4 Creating a Simple Yum Repository 9
4.1 Mirroring a Repository oo 10
4.2 Yummify the Repository 0oL 11
4.3 Export the Repository to the Client(s) 11

5 The Yum Client 13
5.1 yum.conf 14
0.2 yUM . oL e e 15
5.3 Automating Nightly Updates 19
54 Examples o 20

6 The Future 23

A License Terms for “YUM: Yellowdog Updater, Modified” 26
A1l General Terms 26
A.2 The “Beverage” Modification to the OPL 26
A.3 OPEN PUBLICATION LICENSE Draft v0.4, 8 June 1999 27

1 Introduction

Yum is a tool designed to provide a user or systems administrator with the abil-
ity to fully automate all aspects of Red Hat Package Manager (RPM) package
installation and administration on RPM-based systems (both Linux and other-
wise). It can be viewed as “competing” with package management tools such as
Red Hat’s up2date, Debian’s Advanced Packaging Tool (apt-get), Mandrake’s
utility for managing and installing RPMs, (urpmi) and aptdrpm. If you like,
its primary purpose is to prevent ”"dynamic link-library hell” on RPM-based
systems while providing users and administrators a much higher level interface
to RPM packages and repositories than that provided in the basic RPM .

Yum, however, is not YAAPT (yet another advanced packaging tool). Pack-
age management is far from trivial, and each of these tools has been driven by
a distinct philosophy. Yum has from its post-yup beginnings been designed and
improved strictly by experienced systems administrators managing large net-
works of systems. Its development is non-corporate and distribution agnostic,
and as a client pull tool that works from package repositories it supports a decen-
tralized management model that fits well in the Universities, government labs,
and cluster environments whose administrators have primarily contributed to
its development.

Yum is still a relatively young tool — it lacks a graphical user interface (GUI)
for example, because its primary application in administered networks really
doesn’t need one — but is quite feature mature and is very portable. It is also
under extremely active development, with features planned that will make it
even faster and more efficient.

1.1 Article Organization

This section tells you how to avoid reading much of this article if you are in a
hurry by describing its organization in more depth than that permitted by a
table of contents. Readers of this article are likely to split into three general
groups:

Users (of the Yum Client only): You have just installed a system that has yum
preinstalled or want to yum-maintain a system already installed from some
RPM based distribution. You may want to read the section on “What Yum
Can Do” (a review of its principal features and advantages) and “Getting
and Installing Yum” and then skip ahead to the section on “The Yum
Client”.

Systems Administrators: You are interested in setting up one or more RPM
repositories and using yum to maintain a LAN of systems installed and
maintained from these repositories (possibly augmented in various ways
by public repositories that support yum). You are the primary audience
for whom this article is intended, and will need to read all the sections.

Potential Yum Developers: You are in either of the two categories above but
have or wish to develop python skills and are excited at the prospect of
helping to create a that could one day make Linux “transparent” across
all distributions and packaging schema. You too will need to read the
entire article — for starters — and then of course go on and read all the
documentation you can get your hands on, including the source.

Everybody can read or skip the Conclusion as they like — it contains a
measure of future prognostication but little functional information essential to
the use of yum in its current revision.

1.2 Useful Links
Yum Website: http://linux.duke.edu/projects/yum

One stop shop for yum and information about yum.

Yum HOWTO: http://www.phy.duke.edu/~rgh/General /yum HOWTO.php
The yum HOWTO (probably still somewhat incomplete).

Yum article: http://www.phy.duke.edu/~rgh/General/yum _article.php
This article. (Self-referentiality! That’s a neat trick...)

DULUG: http://www.dulug.duke.edu

Duke University Linux User’s Group, host to several public mirrors and
useful resources.

Linux@Duke: http://linux.duke.edu

Current host of the yum website, among other things.

The Linux Documentation Project: http://www.tldp.org

The name says it all. The place to go if you don’t understand any tool
referenced in this article, or to learn how to set up e.g. a web server or
ftp server or network file server.

1.3 Yum History

Some years ago Dan Burcaw at Yellowdog Linux (an RPM-based distribution
targeted at Apple Macintoshes) together with Bryan Stillwell, Stephen Edie,
and Troy Bengegerdes created the Yellowdog Updater (yup). Yup extracted
dependency information from RPM headers and constructed full dependency
trees, permitting the automation of RPM installation and maintenance. On the
strength of its features, Duke University (especially the Physics Department)
came to rely heavily on yup.

However, yup was extremely slow. Operating on the client side, it had to
completely download RPMs in order to extract critical header information to
resolve all possible dependency loops. The header is only a tiny fraction of most

RPMs so this was obviously very inefficient. Powerful as it was, yup was also
missing lots of obviously desirable features.

As a GPL project it was also easy to get involved and work to improve it.
Seth Vidal, the Duke University Physics Department’s highly talented systems
administrator, took on this task. At first Seth worked to improve yup, but
soon it became apparent that the tool would have to be completely rewritten
in order to make it faster and more powerful, so at some point he split off from
yup and created yum, the “yellowdog updater, modified”. The resulting tool
was an instant hit.

Seth was later joined by a physics post-doc, Michael Stenner, who took on the
development of a generalized “urlgrabber” that manages most of yum’s remote
file access transactions, and many others (mostly systems administrators of large
networks and beowulf cluster that now use yum as a primary maintenance tool
— see the list of contributors on the yum project page for a complete listing).

With active input from many highly talented administrators and a very
energetic open source development team, yum has become a very powerful tool
indeed, capable of working such dark magic as safely upgrading a system from
one distribution release to the next while the system is operating, as well as
installing packages, updating packages, providing information about installed
and available packages, and much more, all while operating many times faster
than yup was able to do.

At this point, yum is supported and distributed via DULUG’s public web
resources and the Linux@Duke project (see links above).

1.4 Acknowledgements and Disclaimer

The author would like to thank the members of the yum mailing list, especially
Seth Vidal and Michael Stenner for creating yum, Russ Herrold for taking a
first stab and some of its documentation and Jonathan Pickard (co-author of
the nascent Yum HOWTO). The good stuff in yum is due to their hard work,
the errors in this article are my own.

The trademarks mentioned in this article belong to their owners, the opinions
stated are those of the author, the “facts” presented in this article are open to
question and may in fact be incorrect. What do I know, after all? Use at your
own risk.

2 What Yum Can Do

“Yum” is really a set of python libraries with two primary command line user
interface programs (yum and yum-arch) built to support installation and main-
tenance actions using RPMs provided in a repository. A repository can be any
of the following:

e A website containing RPMs

e An FTP site containing RPMs

e A directory path (e.g. NFS mounted or local) containing RPMs.

(all of which can be thought of in generalized terms as Universal Resource Lo-
cator paths: URLSs). A typical network-based repository might contain a mirror
of a primary distribution and hence (in the case of Red Hat) directly support
kickstart and network installation in addition to yum-based maintenance.

However, yum supports multiple repositories. Repositories can be added for
many reasons:

e To extend the set of available RPMs. Two repositories can present the
union of all the RPMs therein for installation and update purposes. It sup-
ports policy choices to use the order of the repositories in /etc/yum.conf
to determine what to install or to always choose the latest revision.

e For robustness and redundancy. Yum supports a repository fallback scheme
so if one repository intended to serve some purpose is unavailable, it au-
tomatically uses a fallback repository (perhaps a mirror of the first) again
according to a controlled policy.

e Asordered layers. Yum can easily overlay, for example, a set of department-
local RPMs on top of a larger set of organization-global RPMs). This
permits proprietary packages to be made available only to selected clients
for installation or maintenance purposes, or permits the overlay of RPMs
containing private configuration information.

e Support different purposes in a maintenance and installation scheme. One
department can be responsible for a repository that contains all the database
rpms, another for all the graphical utilities, but both can be shared across
the parent organization.

The ability to intelligently use multiple hierarchically ordered repositories
to maintain client installations is one of yum’s best features. Repository cre-
ation and maintenance is hence a major component of yum’s value in a scalable
administrative setting.

2.1 yum-arch: The Repository Tool

Yum currently consists of two separate components. One component of yum
must be run on each repository the yum client seeks to use. Yum-arch is the
tool that “yummifies” a repository, preparing it so that the yum client tool
can easily and efficiently obtain the header information it requires to function.
Yum-arch has a variety of debugging, informational, and security switches that
are primarily of use to systems persons setting up repository and are well-
documented in its man page.

2.2 yum: The Client Tool

The other component is yum itself, the client tool that provides all its direct
functionality. Yum in its most current incarnation can:

e List packages (installed and available on all listed repositories) and their
description and contents. As of recent versions, package groups too.

e Permit the easy installation of a package (or package group) and all of its
dependencies with a single simple command.

e Permit the easy removal of a package (or package group) and all its unique
dependencies (the ones that are not required to support other packages
being retained) with a single simple command.

e Automatically update all packages on a system to the latest revision num-
bers available on the repository(s) to which yum is directed. Again, depen-
dencies are resolved and additional packages added as needed. However, it
is the responsibility of the maintainer of the repository set to ensure that
the revision numbers are consistently maintained through the set and to
deal with conflicts such as dependency loops and plain old bugs as they
are revealed.

e Automatically upgrade an entire distribution from one distribution version
to another (to the maximum extent that this is possible — it isn’t always
possible or wise to proceed this way).

Of these, probably the single function of the greatest importance is also the
most mundane — automated updating. While the other functions are all very
useful and convenient, these days it is essential to keep all clients in a network
fully patched and current in order to keep them secure. However, this presents
a serious dilemma — few organizations are structured so that any single admin-
istrative group has root privileges on all the computers in the organization, and
in most cases this is a good thing.

Yum, however, is a network client pull tool and requires no centralized privi-
leges on the client in order to function. Each client contacts the repository server
and requests the download of all files the client requires to update itself. These
downloads can be anonymous and public or authenticated by any mechanism
supported by yum’s urlgrabber utility. By scripting a nightly yum update, all of
the students, the faculty, the staff, and the various departments of a University
can maintain an interval of less than 24 hours between placing a critical secu-
rity updated RPM in the repository and having it propagated to all the client
systems, all without having any individual with “super-root” privileges on all
of the systems being updated.

3 Getting and Installing Yum

3.1 Root Privileges, Editors and Terminal Commands

If you are an experienced administrator, you can skip the following minilecture
on root, terminals, and editors except to note that to install yum and for many,
if not most, of yum’s commands to work properly it is necessary to become root

(the superuser). Privileged commands will generally be indicated by means of
the ‘4’ prompt in the examples.

If you are a linux user, you may have used root privileges only via a Graphical
User Interface (GUI) tool. At this moment there is no suitable GUI for yum,
so yum commands must be entered at a command line (terminal).

Ways of bringing up a terminal window vary a bit from system to system. On
some a terminal might be available as a Gnome or KDE menu entry. On others
it might be on the bottom task bar, or as a menu selection if you right-click
and hold with the focus over the X background. Terminals might be named
“terminal”, or xterm, or rterm, or kterm. Nearly any of these will suffice,
although I personally prefer plain old xterms.

To begin to work with many of the examples, you will need to start up a
terminal and become root on the terminal. To become root, enter:

$ su

and enter the root password when prompted to do so. The prompt should
change from the usual default $ to the sharp sign ‘#’. Tradition holds that this
is to remind you to be sharp as root.

Note Well: As the root superuser you can utterly destroy your system’s
linux installation with a single careless keystroke! Be very certain that you type
things in correctly, especially if they involve wildcard characters such as * or ?.

You will also need to use some sort of editor to create and modify some of the
configuration files mentioned in this article. Your GUI setup will likely have at
least some editors, or you can use an old Unix standby such as emacs or vi from
the command line. These tools are not terribly easy learn and instruction is well
beyond the scope of this article. Seek help from man pages, online resources, or
The Linux Documentation Project (linked elsewhere in this document).

3.2 Preparing Your System for Yum

Yum is a designed to help you maintain a system relative to a well-maintained
rpm repository. In order for this to work, it is important to clean up your system
so that its RPM database is consistent with what is actually installed on your
system. Installing yum on a brand new, clean system installed from RPMs is
ideal. If your system has been in use for a while, though, don’t panic. Yum
may install and work just fine.

However, if you have ever used the --force and/or --nodeps options to
install RPM packages, or if you've built and installed a number of programs
(perhaps into /usr/local) from source, you may encounter problems. In these
cases the best thing to do is to do your best to remove the offending packages
or programs and reinstall them from a consistent set of RPMs built for the base
distribution you are using.

3.3 Installing Yum

Given this, it should come as no surprise that in order to install yum, you should
visit its primary website:
http://linux.duke.edu/projects/yum

and download RPMs for the latest stable version that match your installed
version of rpm and python. Some of the features described in this document
(support of package groups, for example) are available only in version 2. Individ-
uals interested in participating in the development process or seeking additional
support are encouraged to join the yum list on this site.

Once the appropriate rpm is downloaded, it can be installed by using a
command like:

rpm -Uvh yum-2.0.4-1.noarch.rpm

If rpm complains about missing dependencies, try to install or upgrade the
missing components or fall back to a version of yum that better matches the
components you already have installed or available.

If yum is initially installed from rpm, then yum can thereafter update itself as
well as everything else, so this is by far the preferable way to proceed. However,
on the primary yum site there is a tarball (.tar.gz source file) and links to
the public CVS repository for the project. Individuals who want to look over
the sources, create their own RPM, or participate in yum development can of
course download the sources and rebuild yum locally.

4 Creating a Simple Yum Repository

It is very simple indeed to set up a yum repository. There are only three steps.
We will briefly outline them below, making the assumption that you are going to
set up a mirror of the Fedora core repository on the DULUG (Duke University
Linux User’s Group) public Red Hat Mirror:

http://mirror.dulug.duke.edu/pub/fedora/linux/core/1/i386/0s/

Note that this path (and the public accessibility of this server) are both
subject to change. Modify the path and scripts below to mirror the particular
repository of your choice, or create your own repository from (for example) CD
images for your favorite RPM-based Linux distribution. Note Well however,
that if you create a “static” repository directly from CD/ISO images, yum will
not be able to perform one of its very important functions — managing package
updates to keep your system current and secure. In this case you might consider
using your static repository for a initial installs and ”package shopping”, but
put additional repositories to provide you with updates into the yum.conf on
your clients (see the section below on “layering yum”).

Note also that if you are not interested in setting up your own repository,
yum will still function as a client on your workstation(s) and server(s) if you
can find a public repository that supports yum. Many of them do, in particular

the Fedora repositories. If this describes you, you can skip all of this section
except the part on getting yum.

A reasonably complete list of public repositories is available on the yum
project site. Systems administrators caring for large numbers of systems are
strongly encouraged to set up their own local mirrors of these repositories to
(and if possible to make them publicly accessible) to minimize the load on the
mirrors.

4.1 Mirroring a Repository

Let us as a demonstration create a mirror of a Fedora repository that can be used
to install and maintain a Fedora-based LAN (both workstations and servers).
For the sake of being concrete, it will be assumed that the repository is being
created on a web server, although it might equally well be created on an FTP
server or NFS server (or the same repository exported all three different ways to
different clients). This article will not detail the process of setting up any sort
of server initially; support for this is readily available from many books and in
HOWTOs provided by The Linuz Documentation Project:
http://www.tldp.org

The following is a trivial script that uses anonymous rsync to make a copy
of the entire fedora core repository. Note that you will have to install rsync for
this to work! Rsync is available as a standard rpm in most distributions and
on many public repositories and mirrors. If necessary, obtain and install rsync
before attempting to use it to create a mirror.

When this is done, enter this into a file named (for example) rsync.fedora
and use chmod 755 rsync.fedora to make it executable.

#!/bin/sh
rsync -av --partial --stats \
mirror.dulug.duke.edu: :archive/pub/fedora/linux/core .

Place this script on an executable path or prepare to execute it by explicit path.

Note that one can add an --exclude argument to this command if one
wishes to omit part of the tree for any reason. For example, adding --exclude
isolinux after the —-stats argument causes the isolinux directory under the
fedora core to be omitted. If you don’t plan to turn the mirror into a bootable
cd, this directory is of no particular use to yum, although it is also not terribly
large. This exemplifies how the distribution can be further trimmed or expanded
according to your needs by editing the script. As long as the RPMs themselves
are mirrored, yum itself will function.

On the server, create a suitable directory path and rsync mirror the reposi-
tory using the script. For a web-based repository, this might be done with the
following commands:

$ cd /var/www
$ mkdir fedora

10

$ cd fedora
$ rsync.fedora

This script will typically take a fairly long time to complete the first time,
depending on your bandwidth and the load on the Fedora mirror server. After-
ward, however, running the script will only cause changes in the repository to
be downloaded.

In many cases one will want to create a short nightly or weekly cron script to
automate a regular resynchronization of your mirror with the original. You may
also want to add a step to check the MD5 or GPG signatures of the packages
(if any are available) to ensure that they have not be tampered with.

4.2 Yummify the Repository

In many cases you will no longer have to yummify a repository you mirror
(where by “yummify” I mean prepare the repository so that yum clients can
work their magic when updating or installing software from them). Yum is
being widely adopted by the major RPM distributions so that a mirror of the
Fedora repository given in this article will very likely already be yummified and
will equally likely automatically install yum as a part of the base distribution.
However, you need to know how to yummify a distribution, as you may want to
set up your own repository of RPMs you’ve built or collected yourself, or you
may need to re-yummify a repository after updating or adding RPMs to it.

This is, fortunately, extremely simple. Assuming that you’ve installed your
repository on the primary path /var/www/fedora as in the running example,
simply run:

$ yum-arch /var/www/fedora

That’s it. Yum-arch will descend into the fedora tree, looking for RPMs, extract
their headers (with all the requisite dependency and path information) and
structure it so that it can be delivered to any yum client without the need
of downloading the RPMs themselves. It is possible to have more than one
RPM directory in the repository; all RPMS in the tree will be yum-accessible.
However, it is not possible to mix architectures, and is a generally bad idea to
even mix RPMs built for different revisions.

Note that there are a fair number of options that yum-arch recognizes, most
of which aren’t terribly important for beginners to be aware of. The one possible
exception is -c¢, which causes yum-arch to check GPG and/or MD5 checksums,
if it can. Otherwise you should (as always) read the man page and other docu-
mentation before experimenting with options.

4.3 Export the Repository to the Client(s)

As noted above, yum can use repositories provided to the clients via the web,
via ftp, or via any filesystem path (including those provided by a variety of
network base filesystems). There are therefore many choices for servers, and

11

it is far beyond the scope of this article to describe how to set each possi-
bility up. We will therefore assume that you are running a straightforward
apache webserver and need to export the Fedora path above so that it becomes
http://my.webserver.org/fedora on your web server.

To do this, add a section such as:

<Directory "/var/www/fedora">
Options Indexes Includes FollowSymLinks
AllowOverride ALL
Order allow,deny
Allow from all
</Directory>

to /etc/httpd/conf/httpd.conf in an appropriate place and restart the web-
server:

/etc/init.d/httpd restart

Then, as a preview of sorts, create a yum.conf entry that points to this
repository:

[fedora-core]

name = Fedora Core
baseurl=http://www.myserver.org/fedora/
gpgcheck=1

and set it aside for the next section.

Note that the gpgcheck=1 line causes yum to check signatures of all the files
it looks at, which is a good thing to do, at least if you wish to minimize the
risk of installing a trojanned RPM that might have been inserted into one of
the repositories you manage or mirror on every system in your enterprise.

Note also that there can be no leading whitespace in /etc/yum.conf —
leading whitespace is interpreted by the configuration file parser as a line con-
tinuation (which is in fact used to add more than one baseurl for fallback pur-
poses).

Warning! If the repository is a locally mounted filesystem, remember to
include the leading path slash for the URL, as in

baseurl=file:///path/to/repository

Forgetting to do this is a fairly common cause of initial failure.

That’s all there is to it!

In some ways yum is a tool designed for systems administrators (even if
they care for only one system) which is why this article started by describing
the setup of a yummified repository. Once you have a repository, however, it is
time to learn to use yum itself as an installation/maintenance client for RPM
repositories. This is the topic of the next section.

12

5 The Yum Client

If you are a systems administrator or Linux geek you've likely set up a repository
of one sort or another for testing by now. Others, who have installed a pre-
yummified distribution from one source or another and only want to know how
to set up their yum clients, will have skipped the previous section altogether.
Welcome back!

For starters, let’s make sure that everybody has access to a yum repository,
whether or not they built one. Chances are decent that if you installed yum
from the main yum site:

http://linux.duke.edu/projects/yum
yum will “work” in that it will function at the client level if the client has access
to the Internet and hence the default repositories in its /etc/yum.conf file. We
will therefore begin by testing it.

As root, enter:

yum list

at the # command prompt in a tty window (for example, in an xterm). With
luck, you will see something like:

rgb@1ilith|T:7#yum -c /tmp/yum.conf list

Gathering header information file(s) from server(s)

Server: Yum Test

Finding updated packages

Downloading needed headers

Name Arch Version Repo

xmlsysd i386 0.2.0-1 yum-test

where there can be a lot of packages in the list (I'm using a tiny two RPM
repository with its own custom yum.conf in this example, as you can see, to
avoid this). These are all packages that are on the repository but not yet
installed on your system!

Don’t be discouraged if instead of this you get some sort of error message, or
even if error messages persist through several more of the steps outlined below.
Yum is a very conservative program, and it tries very hard to never do anything
that will break your system with a default action. Some of its warning messages
(especially ones you will get if your RPM database is inconsistent or corrupted
by the use of RPMs --force or —-nodeps options to install packages in the
past) should be fully resolved by “cleaning up the system” before yum will run
without complaint. As noted above, yum is happiest when run on a clean install
from a yummified distribution repository, and your system will remain happiest
if only yum is used to add or remove only packages from a set of yummified
repositories that are consistent with this initial distribution repository, except
when yum itself is used to upgrade to a different one.

13

But how can we arrange for this to be so? And once we’ve made the ar-
rangements, how can we use yum for routine installation and maintenance?
The remainder of this section contains two subsections: one on yum.conf, yum’s
configuration file that tells it, among other things, where to look for RPM repos-
itories, what order to use them in, and what kind of policy and security features
you wish to use when installing or maintaining packages from them; and one on
the yum client itself.

5.1 yum.conf

There are three ways to get a working /etc/yum.conf file. The best way is to
get one “automatically” (or at worst, to have to pick one that matches your
installation from a list of pre-built alternatives). If you're using yum from an
RPM installed from a repository on your site (for example) it very likely is pre-
configured with a /etc/yum.conf file that directs it to just the right campus or
corporate or lab repositories.

Alternatively, there is a list of pre-built yum.conf entries for yummified pub-
lic repositories on the primary yum site:

http://linux.duke.edu/projects/yum/repos/
Chances are pretty good that you can just grab one that matches your distri-
bution (or that you’d like to upgrade to from your existing distribution) and
install it. To use them, click on them and paste them into your yum.conf files
as described next.

The last way is to build your yum.conf to meet your specific needs and
support your own local repositories. This is the route that will almost certainly
be taken by most systems administrators who build their own repository. To
do this, start by reading the yum.conf man pages that should have come with
your distribution. Look over the default /etc/yum.conf that was installed by
the RPM. Finally, browse through the additional examples below. Chances
are pretty good that one of these will resources will provide a template that
is adequate to get you started, and once you get things running at all a bit of
experimentation will soon make you an expert.

So let’s look at a yum.conf file that is fairly minimal — just enough to get
you started:

[main]
cachedir=/var/cache/yum
debuglevel=2
logfile=/var/log/yum.log

[fedora-core]

name = Fedora Core
baseurl=http://www.myserver.org/fedora/
gpgcheck=1

Systems persons who are building a fedora mirror as we proceed should note
that this yum.conf uses the repository we “built” in the previous section, where

14

of course the actual URL should point to that repository.

Users who want to accomplish the same thing could instead paste in an entry
from the list of public yum repositories linked above. For example, here is a
yum.conf file containing several repositories from that list:

[main]
cachedir=/var/cache/yum
debuglevel=2
logfile=/var/log/yum.log

[fedora-stable-9]

name=Fedora Project Stable RPMS for RHL 9
baseurl=http://download.fedora.us/fedora/redhat/9/i386/yum/stable/
gpgcheck=1

[fedora-updates-9]

name=Fedora Project update RPMS for RHL 9
baseurl=http://download.fedora.us/fedora/redhat/9/i386/yum/updates/
gpgcheck=1

From the comments, one could hope that these two repositories contain what
is effectively Red Hat 9, as ported into the Fedora project, plus updates. Note
that we’ve turned on gpgcheck under the assumption that this is a good thing
to do to ensure that the RPMs we grab haven’t been trojanned.

Note that yum has many options that can be selected in the yum.conf file,
only a few of which are illustrated in these examples. Each baseurl can have addi-
tional fallback repositories for additional stability and robustness. gpgchecking
can be enabled (causing each rpm to be examined to ensure that it is correctly
signed). The debuglevel can be cranked up or down to help diagnose problems.
pkgpolicy can be set to determine the order in which yum chooses to decide
between two versions of the same package on different repositories it is using
at the same time. Packages can be listed to exclude them from the automated
update process. The failover method yum uses to select a server to use from a
list of servers in a baseurl can be chosen. More options may have been added
since this article was written, or old options may have gone away.

So read the man pages on yum.conf. It is the only thing likely to be author-
itative.

At this point we will assume that you are on a client, that you have a func-
tional /etc/yum.conf installed that directs your system to a repository (that you
built yourself or not) that is consistent with your system’s existing RPM dis-
tribution, and that yum list works (as root) to list packages on the repository.
Now let’s see what yum can do.

5.2 yum

At last we should have a system on which yum is functional. For systems admin-
istrators building their own repositories and hand crafting yum.conf’s to access

15

them, it may have been an arduous and long journey (well, not THAT long — one
can actually create a directory path, throw some RPMs into it, run yum-arch
on it, cut-n-paste a basic yum.conf into existence, and run yum -c yum.conf list
on your new “repository” in about five minutes). For system owners who got a
pre-configured yum automatically installed on their system ready to run, well,
you may have just skipped to this point (but at least glance over all the sections
above so you can appreciate all the work the systems administrator who put
together your repository base and the yum rpm did for you).

Note Well: If your system’s RPM database is inconsistent because of the
use of RPMs --force or --nodeps options, or because you've built and in-
stalled libraries or programs directly from source (as opposed to source RPMs)
then yum may complain, not work correctly, or even “break” some installed
subsystem as it attempts to update or install a package that you've already
installed and configured by hand. Yum works best on a system that has been
installed and modified only with RPMs, ideally RPMs built and distributed in
a consistent set. As you can see, this bears repeating...

We now proceed to review the basic yum commands and what each one does
for you. This section is not erhaustive by any means. Yum is a very powerful
tool with a variety of primary actions that can be modified by both command
line options and configuration settings in /etc/yum.conf, so to learn its full range
of power you will need to read its man page and possibly take a tour of the yum
HOWTO. The following should suffice, though, to get you started and may be
all you ever need.

All yum commands cause yum to take the following actions:

e The first time yum is called, as root, it downloads all the header files in
all repositories in its yum.conf and puts them in a cache on your system.
Subsequently it only downloads ones that have changed since the last time
the cache was refreshed.

e It then reads your RPM database (which should be consistent, see note
above) to determine what packages are installed.

e Determine which yum command has been invoked, and process the com-
mand.

e If the command is run interactively (the default) yum will prompt the
user for permission to proceed before actually updating or installing files.

e If yum is run with the -y option, yum will assume a “yes” answer to
all interactive questions. This is typically used in a script or to process
“known safe” installs or updates.

e If yum is run with the -d 0 option, it will run as quietly as possible. -y -d
0 are typically invoked together in a scripted update where only serious
errors are to be reported.

e There are many other yum action modifiers; read the man page for a
Synopsis.

16

Yum is very conservative. It will never perform the equivalent of a --force
install. It was designed, as noted above, by systems administrators to facilitate
the consistent and scalable maintenance of systems, and thus will balk at any
action that might cause your system to enter “package hell” (a state of package
inconsistency). If yum refuses to do something, then the thing it refuses to do
is probably a bad idea for most people to think about. If you are skilled enough
to know that it is really OK on YOUR system, you are skilled enough to use
rpm itself to override yum.

But do you really want to? Perhaps what you really should be doing is
rebuilding the RPMs in question, or fixing some apparent conflict instead of
ignoring it. In a sense, yum is the ultimate sanity check. If yum is happy, your
repository is consistent, your RPM database is consistent, and your system is
happy. If yum is not happy, then chances are pretty good that at least some
part of your system could break, which would cost you a lot more time to set
right than just making everything consistent to start with.

The following is a brief synopsis of the commands:

yum install packagel [package2 package3...]: Yum checks to see if pack-
agel is already installed and is the latest version. If not, it downloads
packagel and all its dependency packages (saving them in its cache direc-
tory) and installs them.

yum update [packagel package?2...: If there is a basic, essential yum com-
mand this is it. Without arguments, yum compares each installed package
to packages available on the repository list. If a newer package is avail-
able in the repository, it downloads it (saving it in the cache directory)
and updates the old one. If a list of packages is given, it only checks for
updates of those packages (and their dependencies).

Note that RPM updates generally preserve configuration information and
restart daemons and so forth, so your system will generally not require
a reboot, although updating the kernel is an obvious exception. Kernel
updates are a special case and systems administrators will generally set a
policy on this in /etc/yum.conf. In any event, yum will not reboot your
system even after a kernel update.

yum remove packagel [package2 package3...]: Yum will first check to see
if removing the package breaks anything else (that is, if anything else
already installed depends on this package). It will then offer to remove the
package and all the packages that depend on it. Yum will generally refuse
to leave ”dangling” packages that won’t work anyway because a critical
library or component has been removed. Note that running remove with
the -y option is probably a really stupid idea for most people, unless they
are certain that they know all of the possible side effects.

yum list [,available,installed,updates,extras] [package list]: This
is one of yum’s most useful commands. Run without arguments or a list

17

of packages, yum lists all packages available to be installed on all reposi-
tories. Run with a list of packages (which can contain file wildcard globs,
e.g. yum list kernmel

to list all kernel package) it shows both the installed packages and the avail-
able packages that match the expanded list! The installed, available,
and updates options show only installed packages, available packages, or
packages that will be updated by the next yum update command. Note
Well that when run interactively from a shell, wildcard characters need
to be escaped from the shell itself or the command will have unexpected
consequences.

yum info [,available,installed,updates,extras] [package list]: This
command extracts the description and summary from all matching pack-
ages and prints it out. It takes the same options as list, but provides
different information. yum info > /tmp/packages thus provides you
with a shopping list in /tmp/packages of every package either already in-
stalled on your system or available on its set of repositories! This can be
very useful indeed!

The extras option lists all packages that are installed but not available in
the repositories. These are packages you may have installed by hand, for
example. A good practice is to create a repository for these local RPMs
(which can be nothing but a local directory on the system) and add the
repository to the yum.conf file for the system, following the recipe above.

yum search keyword: Searches for packages matching the keyword string in
the description, summary, packager and package name fields. This is useful
for finding a package you do not know by name but know by some word
related to it. The keyword string can contain wildcard file globs. Be sure
to escape these from the shell as noted above if run interactively.

yum provides [feature|file]: Find package(s) that provide some feature
or file. Accepts file wildcard globs, which again should be escaped from
the shell if run interactively.

yum clean: Cleans up yum'’s cache file. On systems with small disks or limited
/var resources, the RPMs that yum caches can fill up the disk. Running
yum clean periodically can free up the resources, but it can also mean
that yum runs more slowly when doing certain things. Clean takes various
options: see the man page for details.

yum group[list,install,update]: Yum has recently acquired the ability to
perform the list, install, and update functions on package groups defined
for a system, with otherwise similar arguments. This makes it relatively
easy to install an entire block of software all at once, on systems that have
package groups defined.

There are a few more commands (some of them deprecated) and of course
many more options. Also, if you installed an relatively early version of yum

18

(perhaps in order to support an older Linux distribution that you don’t wish to
upgrade with the latest python and rpm required to support the latest version
of yum) some options may be missing! Read the man page of the particular
yum version you installed to review all available commands and options.

5.3 Automating Nightly Updates

Note that the commands above fall into three broad categories: informational
command, installation commands, and update commands. The first two are
almost always run interactively. yum update needs to be run regularly and
hence needs to be automated. The yum rpm recognizes this by installing
/ete/cron.daily /yum.cron and /etc/init.d/yum. The former is a script that
runs yum update. The latter is a control structure that permits this action to
be controlled via chkconfig.

Yum may have been installed on your system with the nightly cron already
enabled by (for example) a departmental or institutional administrator who
repackaged yum with a local /etc/yum.conf that points to a local set of repos-
itories. At Duke, for example, any Linux system installed from the campus
repository already contains yum as part of its Basic package. Yum itself is pre-
configured to both update and install future RPMs from the same repository as
the original system install and to update the system to the latest RPMs placed
on that repository every night.

This makes the campus security officer very happy, as an exploit can be
discovered in a Linux package in the morning, a patched RPM that closes the
exploit can be dropped into the repository at five in the afternoon, and every
Linux system on campus will be updated to the patched package and secure
again by the following morning. It also makes the non-expert users of these
systems very happy, as if they report a bug or problem that can be easily
patched and the relevant RPM updated and dropped back into the repository,
they can do “nothing” and the problem is resolved the next day, even though
the central repository administrator may have no direct access to their systems
at all.

If you are using yum in a similar context inside an organization that main-
tains a repository and pre-configured yum to use this repository according to
some policy, it is likely wise to leave the setting alone (or at least find out what
the policy is before changing it). If you are a systems administrator seeking to
create such a setup for your organization, hopefully this document is sufficient
for you to see how to go about it (further help is available on the yum list if
this is not correct).

If you are an ordinary user seeking to set up automated maintenance from
a public repository, then after you have set things up according to the general
instructions above so that a yum update reports that all packages are installed
and the latest version, you will likely want to turn on the nightly cron update.
Simply become root and enter:

chkconfig yum on

19

/etc/init.d/yum start

(where the latter is necessary the first time, as chkconfig does not start services
as they are turned on). On all subsequent reboots the yum nightly cron will be
automatically enabled at boot time.

It is worthwhile to look over the nightly cron script in /etc/cron.daily/yum.cron.
As of this moment, it contains:

#!/bin/sh

if [-f /var/lock/subsys/yum]; then
/usr/bin/yum -R 10 -e 0 -d 1 -y update yum
/usr/bin/yum -R 120 -e 0 -d 1 -y update

fi

Note that this tells yum to first update yum, then update everything else (a wise
order to follow, as one doesn’t want yum’s guts to be replaced in midstream).
The -R window option causes yum to wait a random amount of seconds in the
window and then run — this causes the server load associated with e.g. an entire
campus of updates running out of cron at the same time to be spread out in
time a bit. Systems administrators or users may wish to tweak these settings a
bit for their local environment or according to the policy dictates of the public
repositories they are using.

5.4 Examples

One of the best ways to learn any tool is by example. The following are some
actual verbatim examples of simple yum usage. Imagine that you want to add
some simple speech synthesis capabilities to your PC so that it can issue verbal
prompts or read simple messages out loud. Looking through the info on your
repository collection, you discover the festival package, which does just what
you need (note that we are root):

rgb@lucifer|T:11#yum info festival

Gathering header information file(s) from server(s)

Server: Linux@Home 9 - i386 - Base

Server: Linux@Home Distributable add-on packages - 9 i386
Server: Linux@Home Nondistributable add-on packages - 9 1386
Server: Linux@Home personal add-on packages - 9 1386

Server: Linux@Home NFS test - 9 i386

Finding updated packages

Downloading needed headers

Looking in Available Packages:

Name : festival
Arch : 1386
Version: 1.4.2
Release: 16

20

Size : 58.35 MB
Group : Applications/Multimedia

Repo : Linux@Home 9 - i386 - Base
Summary: A speech synthesis system.
Description:

Festival is a general purpose, multi-lingual speech synthesis system
developed at CSTR. It offers a full text to speech system with various
APIs, as well as an environment for development and research of speech
synthesis techniques.

It is written in C++ with a Scheme-based command interpreter for
general control.

Looking in Installed Packages:

Hmm, available, not installed. Let’s install it.

rgb@lucifer|T:12#yum install festival

Gathering header information file(s) from server(s)
Server: Linux@Home 9 - i386 - Base

Server: Linux@Home Distributable add-on packages - 9 1386
Server: Linux@Home Nondistributable add-on packages - 9 1386
Server: Linux@Home personal add-on packages - 9 i386
Server: Linux@Home NFS test - 9 i386

Finding updated packages

Downloading needed headers

Resolving dependencies

Dependencies resolved

I will do the following:

[install: festival 1.4.2-16.i386]

Is this ok [y/N]: y

Getting festival-1.4.2-16.1386.rpm

Calculating available disk space - this could take a bit
festival 100 % done 1/1

Installed: festival 1.4.2-16.i386

Transaction(s) Complete

Nothing to it. We wonder if there are any other festival components and if
we need them:

rgb@lucifer|T:13#yum list festivall*

Gathering header information file(s) from server(s)

Server: Linux@Home 9 - i386 - Base

Server: Linux@Home Distributable add-on packages - 9 1386
Server: Linux@Home Nondistributable add-on packages - 9 1386

21

Server: Linux@Home personal add-on packages - 9 1386
Server: Linux@Home NFS test - 9 1386

Finding updated packages

Downloading needed headers

Looking in Available Packages:

Name Arch Version Repo

festival-devel 1386 1.4.2-16 duke-base

Looking in Installed Packages:
Name Arch Version Repo

festival 1386 1.4.2-16 db

Looks like there is a development package. This could be a library so that
one can build one’s own speaking applications, or it could be examples and
data files. It isn’t, apparently, a dependency of festival (or yum would have
automatically selected and installed it too). One wonders what is in it?

rgb@lucifer|T:16#yum info festival-devel

Gathering header information file(s) from server(s)

Server: Linux@Home 9 - i386 - Base

Server: Linux@Home Distributable add-on packages - 9 i386
Server: Linux@Home Nondistributable add-on packages - 9 1386
Server: Linux@Home personal add-on packages - 9 1386

Server: Linux@Home NFS test - 9 1386

Finding updated packages

Downloading needed headers

Looking in Available Packages:

Name : festival-devel

Arch : 1386

Version: 1.4.2

Release: 16

Size : 11.57 MB

Group : Development/Libraries
Repo : Linux@Home 9 - i386 - Base

Summary: Development files for the festival speech synthesizer.
Description:

Development files for the festival speech synthesizer. Install
festival-devel if you want to use the festival speech synthesizer from
within your own progrmas and/or if you intend to compile other programs
using it.

Looking in Installed Packages:

22

Hmmm, looks like we might need this as well some day. Disk is cheap, maybe
we should install it now. On the other hand, if we ever do need it, with yum we
can install it in a matter of seconds. With yum, one can actually do things like
install a tool you need only rarely, use it for five minutes, and remove it at the
end to recover the space and other resources.

Let’s finish off with an always useful:

rgb@lucifer|T:18#yum update

Gathering header information file(s) from server(s)
Server: Linux@Home 9 - i386 - Base

Server: Linux@Home Distributable add-on packages - 9 i386
Server: Linux@Home Nondistributable add-on packages - 9 1386
Server: Linux@Home personal add-on packages - 9 1386
Server: Linux@Home NFS test - 9 1386

Finding updated packages

Downloading needed headers

No Packages Available for Update

No actions to take

It’s always a pleasure to know that every single software package on the system
is current as of the last round of patches and security fixes mirrored to my home
repository from Duke.

Now to go play with festival. Maybe I can tell the cat to stop sleeping on
the keyboard from work...

6 The Future

As noted above, yum is in an extremely active state of development. Volunteers
are writing a GUI for yum to make it in some sense auto-documenting and
simpler for novices to use. The primary developers periodically ask the yum list
for ideas for new features (although since most of those list members are systems
administrators using yum to manage entire organizational-scale networks, they
have not in the past been shy about requesting new features without prodding
and often accompany the requests with patches to facilitate their addition).
Bleeding edge participants can access the latest development snapshot of yum,
which is updated as often as several times a day. With this sort of energy, it
should come as no surprise that yum has an ambitious future.
Things on the yum TO DO list include:

e Improved extraction/transmission of repository metadata (e.g. package
listings and dependencies) to make yum more efficient. Currently yum
sends the header files for each package separately, and this is relatively
slow and inefficient (order of a few seconds per yum invocation after the
first). This should be reducible to less than a second for any high band-
width connection, a bit longer for low bandwidth cable, DSL, or wireless
connections.

23

e This process has been combined with an effort to unify the header meta-
data description across all Linux packages in an extensible way on top of
XML. This is an extremely exciting development that could in the future
flatten the currently significant barriers between installing packages built
for different distributions.

e Efforts are underway to make yum an integral part of a system’s primary
installation process. There are reasons that yum would make a much
better tool to bring a system into agreement with a specific list of packages
and package groups than kickstart, for example. This too is discussed
below.

e Efforts are underway to make yum retrieve and act on source RPMs as well
as architecture-specific binary RPMs. This has extraordinary implications
for the future, discussed below.

Kickstart (and Red Hat’s interactive installation tool) are in many ways
lovely tools but they have one major flaw. If they are interrupted at any time
after the system configuration has been selected and the package installation
process is begun, they have to be rerun from the beginning. Since they can take
quite a long time to complete (installing whole gigabytes worth of programs
and data over channels that might be as slow as a DSL link supporting tens of
kilobytes per second) there is a significant window where the system is vulnerable
to interruption. Also, as a pure matter of convenience, one might wish to be
able to "use” (or otherwise work on) a system in its basic configuration while its
customizing packages are being uploaded and installed, especially if the latter
will take hours to complete.

Yum will eventually (soon) permit these two steps to be completely sep-
arated. Indeed, this could be done now, but not easily as a “prepackaged”
process. One will be able to kickstart (or interactively install or an install based
on a PXE ramdisk)) a very basic system — one with "no” packages but the ba-
sic/default package — and then use yum to ”finish” the install to bring it up to
a predefined standard. If it is interrupted in the middle, it can just be restarted
— yum will not duplicate or waste any of the work it has already accomplished
but will just chug along until it is finished. In the meantime, the system can be
worked on or with as it will be bootable and usable after the initial very short
pre-yum installation process.

Making yum work at the source level is very exciting indeed. If yum were
able to retrieve RPMs and their dependencies as source RPMs and automati-
cally begin building and installing binary RPMs starting at the bottom of the
dependency trees, it would be possible to do away with binary rpm support to
whatever extent one desired. A system install could begin with a basic system
plus the associated compiler, and then (with the help of yum) build itself. This
would make it more or less impossible to build systems with problems associ-
ated with incompatible binaries or libraries, as those problems would be revealed
and resolved at the source level and corrected in the primary repositories almost
instantly.

24

This would not, in fact, consume an inordinate fraction of a system’s re-
sources to do. The smallest disks currently being sold are order of 40 GB in
size, more commonly 80 GB or more. Caching a local copy of source and binary
RPMs on a system occupies a modest fraction of that that will only diminish in
time, and with yum one would only actually retrieve what one actually wanted
to install.

This represents a genuine paradigm shift, and might well completely alter
the way Linux and GPL/open source software in general are distributed and
supported. A Linux distribution would become little more than a collection of
source RPMs, with tools that would convert them into a binary RPM repository
for convenience sake in a matter of a few hours. Provided only that metadata
descriptions are sufficiently robust to cope with the network of revision depen-
dencies that can exist between source RPMs, in short order the same basic set
of source RPMs would represent stable Linux across all distributions.

To conclude, yum has already begun to alter the installation and update
paradigm used to scalably maintain RPM-based Linux computers, but it in a
sense has only begun to do what it is capable of doing. In the near future, yum
and its contributed extensions may well alter Linux itself, and by extension
the Internet itself, by providing a simple way of network-distributing arbitrary
software in source/package form. Even compact disks are now proving clumsy
as ways of moving around the many gigabytes of tools and data associated with
a fully functioning Linux system, and at best they represent a base from which
to work that necessarily must be kept up to date and patched in any event.
The network will of necessity be the mechanism for this process of updating in
the future, and yum is the best tool to emerge to date for supporting the entire
process.

25

A License Terms for “YUM: Yellowdog Updater,
Modified”

A.1 General Terms

License is granted to copy or use this document according to the Open Public
License (OPL, enclosed below), which is a Public License, developed by the
GNU Foundation, which applies to “open source” generic documents.

In addition there are three modifications to the OPL:

Distribution of substantively modified versions of this document is prohibited
without the explicit permission of the copyright holder. (This is to prevent errors
from being introduced which would reflect badly on the author’s professional
abilities.)

Distribution of the work or derivative of the work in any standard (paper)
book form is prohibited unless prior permission is obtained from the copyright
holder. (This is so that the author can make at least some money if this work is
republished as a textbook or set of notes and sold commercially for — somebody’s
— profit. The author doesn’t care about copies photocopied or locally printed
and distributed free or at cost to students to support a course, except as far as
the next clause is concerned.)

The ”Beverage” modification listed below applies to all non-Duke usage of
these notes in any form (online or in a paper publication). Note that this
modification is probably not legally defensible and can be followed really pretty
much according to the honor rule.

As to my personal preferences in beverages, red wine is great, beer is de-
lightful, and Coca Cola or coffee or tea or even milk acceptable to those who
for religious or personal reasons wish to avoid stressing my liver. Students at
Duke, whether in my class or not, of course, are automatically exempt from
the beverage modification. It can be presumed that the fraction of their tuition
that goes to pay my salary counts for any number of beverages.

A.2 The “Beverage” Modification to the OPL

Any user of this OPL-copyrighted material shall, upon meeting the primary au-
thor(s) of this OPL-copyrighted material for the first time under the appropriate
circumstances, offer to buy him or her or them a beverage. This beverage may
or may not be alcoholic, depending on the personal ethical and moral views of
the offerer(s) and receiver(s). The beverage cost need not exceed one U.S. dollar
(although it certainly may at the whim of the offerer:-) and may be accepted or
declined with no further obligation on the part of the offerer. It is not necessary
to repeat the offer after the first meeting, but it can’t hurt...

26

A.3 OPEN PUBLICATION LICENSE Draft v0.4, 8 June
1999

I. REQUIREMENTS ON BOTH UNMODIFIED AND MODIFIED
VERSIONS

The Open Publication works may be reproduced and distributed in whole
or in part, in any medium physical or electronic, provided that the terms of this
license are adhered to, and that this license or an incorporation of it by reference
(with any options elected by the author(s) and/or publisher) is displayed in the
reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (¢) <year> by <author’s name or designee>. This material may
be distributed only subject to the terms and conditions set forth in the Open
Publication License, vX.Y or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The reference must be immediately followed with any options elected by the
author(s) and/or publisher of the document (see section VI).

Commercial redistribution of Open Publication-licensed material is permit-
ted.

Any publication in standard (paper) book form shall require the citation
of the original publisher and author. The publisher and author’s names shall
appear on all outer surfaces of the book. On all outer surfaces of the book the
original publisher’s name shall be as large as the title of the work and cited as
possessive with respect to the title.

II. COPYRIGHT

The copyright to each Open Publication is owned by its author(s) or de-
signee.

III. SCOPE OF LICENSE

The following license terms apply to all Open Publication works, unless
otherwise explicitly stated in the document.

Mere aggregation of Open Publication works or a portion of an Open Pub-
lication work with other works or programs on the same media shall not cause
this license to apply to those other works. The aggregate work shall contain a
notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in
any jurisdiction, the remaining portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided ”as
is” without warranty of any kind, express or implied, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose
or a warranty of non-infringement.

IV. REQUIREMENTS ON MODIFIED WORKS

All modified versions of documents covered by this license, including transla-
tions, anthologies, compilations and partial documents, must meet the following
requirements:

27

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifi-
cations dated.

3. Acknowledgement of the original author and publisher if applicable must
be retained according to normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author’s (or authors’) name(s) may not be used to assert or
imply endorsement of the resulting document without the original author’s
(or authors’) permission.

V. GOOD-PRACTICE RECOMMENDATIONS
In addition to the requirements of this license, it is requested from and
strongly recommended of redistributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM,
you provide email notification to the authors of your intent to redistribute
at least thirty days before your manuscript or media freeze, to give the
authors time to provide updated documents. This notification should
describe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked
up in the document or else described in an attachment to the document.

Finally, while it is not mandatory under this license, it is considered good
form to offer a free copy of any hardcopy and CD-ROM expression of an Open
Publication-licensed work to its author(s).

VI. LICENSE OPTIONS

The author(s) and/or publisher of an Open Publication-licensed document
may elect certain options by appending language to the reference to or copy of
the license. These options are considered part of the license instance and must
be included with the license (or its incorporation by reference) in derived works.

A. To prohibit distribution of substantively modified versions without the
explicit permission of the author(s). ”Substantive modification” is defined as a
change to the semantic content of the document, and excludes mere changes in
format or typographical corrections.

To accomplish this, add the phrase ‘Distribution of substantively modified
versions of this document is prohibited without the explicit permission of the
copyright holder.” to the license reference or copy.

B. To prohibit any publication of this work or derivative works in whole or
in part in standard (paper) book form for commercial purposes is prohibited
unless prior permission is obtained from the copyright holder.

To accomplish this, add the phrase ’'Distribution of the work or derivative of
the work in any standard (paper) book form is prohibited unless prior permission
is obtained from the copyright holder.” to the license reference or copy.

28

OPEN PUBLICATION POLICY APPENDIX:

(This is not considered part of the license.)

Open Publication works are available in source format via the Open Publi-
cation home page at http://works.opencontent.org/.

Open Publication authors who want to include their own license on Open
Publication works may do so, as long as their terms are not more restrictive
than the Open Publication license.

If you have questions about the Open Publication License, please contact
TBD, and/or the Open Publication Authors’ List at opal@opencontent.org, via
email.

29

