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@ Discrete Charge and the Electric Field
@ E-Field of Electric Dipole at point P
9 E-Field of Electric Dipole at point P-Solution

© Continuous Charge and Gauss's Law
@ Finding the Field of a Hydrogen Atom
@ Finding the Field of a Hydrogen Atom-Solution

© Electrostatic Potential and Energy
@ Potential Energy of Solid Sphere of Charge
o Potential Energy of Solid Sphere of Charge-Solution
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© Capacitance
@ Force on a Dielectric Slab
@ Force on a Dielectric Slab-Solution

© Current and Resistance
@ Resistance of a Truncated Cone
@ Resistance of a Truncated Cone-Solution

© The Magnetic Force
@ Trajectory in Opposing B-fields
@ Trajectory in Opposing B-fields-Solution

Robert G. Brown Introductory Physics 142/152/162



@ Sources of the Magnetic Field
@ B-field of a Spinning Disk on its Axis
@ B-field of a Spinning Disk on its Axis-Solution

© Faraday’s Law and Induction
@ Self-Induction of a Coaxial Cable
@ Self-Induction of a Coaxial Cable-Solution
@ The Self-Induction of a Thick Wire
@ The Self-Induction of a Thick Wire-Solution

© AC Circuits
@ A Crystal Radio Circuit
@ A Crystal Radio Circuit-Solution
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@ Maxwell's Equations and Electromagnetic Waves
@ Energy Flow into an Inductance
@ Energy Flow into an Inductance-Solution

@ Light
@ Lateral Deflection of a Light Beam
o Lateral Deflection of a Light Beam-Solution

@ Geometric Optics
@ Solving a Two Lens Optical System
@ Solving a Two Lens Optical System-Solution

@® Physical Optics
o Diffraction of Two Wavelengths Through a Slit
o Diffraction of Two Wavelengths Through a Slit-Solution

@ End
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About These Problems

This is an experiment. Beamer allows me to make slides that will successively
reveal lines of math-heavy text. This gives me a unique opportunity to build a
collection of self-guided learning problems for physics that do what I've fantasized
about doing for years now — present a problem, then provide a hint, then another
hint, then another (or reveal a step, and then another step) until finally, the entire
souution is presented, annotated.

Hopefully these problems will help students everywhere as they struggle to learn
physics problems solving techniques and learn to “think like a physicist” as they
do so.

To use this resource, pick a problem or topic from the table of contents and go
directly to it, or work your way through all the problems systematically. Work on a
separate sheet of paper, and when you get stuck, page down through the frames
to see (hopefully) where you went wrong.

Remember, the point is to master these problems, not just to get through
them. Make sure that before you are done, you can do every problem without
looking, without hints, and without remembering the exact solution but
rather, understanding how to find it!
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
3 at an arbitrary point in the x-y plane (a solution
+q ! that, rotated around the y axis, would work
everywhere in space).
a :
X X
a
—-q
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
at an arbitrary point in the x-y plane (a solution
+q i that, rotated around the y axis, would work

everywhere in space).

a @ Our solution strategy here is extremely
straightforward. We start with the field of a
point-charge in charge-centered coordinates and

a draw a vector arrow representing the fields of the

—q specific charges in on the figure.
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
: at an arbitrary point in the x-y plane (a solution
+q ! that, rotated around the y axis, would work

3 everywhere in space).

| @ Our solution strategy here is extremely
straightforward. We start with the field of a
point-charge in charge-centered coordinates and
draw a vector arrow representing the fields of the
specific charges in on the figure.

a

—-q

@ Next, we decompose the vectors in cartesian coordinates...
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
: at an arbitrary point in the x-y plane (a solution
+q ! that, rotated around the y axis, would work

3 everywhere in space).

| @ Our solution strategy here is extremely
straightforward. We start with the field of a
point-charge in charge-centered coordinates and
draw a vector arrow representing the fields of the
specific charges in on the figure.

a

—-q

@ Next, we decompose the vectors in cartesian coordinates...
@ And add the vectors componentwise...
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
: at an arbitrary point in the x-y plane (a solution
+q ! that, rotated around the y axis, would work

3 everywhere in space).

| @ Our solution strategy here is extremely
straightforward. We start with the field of a
point-charge in charge-centered coordinates and
draw a vector arrow representing the fields of the
specific charges in on the figure.

a

—-q

@ Next, we decompose the vectors in cartesian coordinates...
@ And add the vectors componentwise...

@ And admire the result!
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E-Field of Electric Dipole at point P

y @ A simple electric dipole aligned with the y-axis is
Yo P drawn to the left. We need to find the electric field
3 at an arbitrary point in the x-y plane (a solution
+q ! that, rotated around the y axis, would work

1 everywhere in space).

a | . .
| @ Our solution strategy here is extremely
)1( 2 straightforward. We start with the field of a
a point-charge in charge-centered coordinates and

draw a vector arrow representing the fields of the
specific charges in on the figure.

—-q

@ Next, we decompose the vectors in cartesian coordinates...
@ And add the vectors componentwise...

@ And admire the result!

* - The solution is on the next page. Don't advance until you are ready!
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E-Field of Electric Dipole at point P-Solution

@ |'ve decorated the figure to the left with:

= R )Y = (R )

—-q
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E-Field of Electric Dipole at point P-Solution

@ |'ve decorated the figure to the left with:

= R )Y = (R )

a o And: L p
r_ E. = :Qq E — re2q
X X * -
a |
L
—-q
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E-Field of Electric Dipole at point P-Solution

@ |'ve decorated the figure to the left with:

= R )Y = (R )

a Ao o And: . B
Ny _ Keq _ Keq
¥ ! E, = 2 E_ = 2
X x " -
a ‘ o So: P K
_ D--- - R E :iqi E = — Eqi
q T2 T r2or_
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E-Field of Electric Dipole at point P-Solution

@ |'ve decorated the figure to the left with:

= R )Y = (R )

a A o And: B X

r) _ keq _ keq

B | £ = 2 E = 2

X X *
a @ So:
T _kax o ke x
—q o 2 r?or_
@ And
kgy—a o _ kqy+a
oy 2oy e o

Robert G. Brown
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E-Field of Electric Dipole at point P-Solution (Cont)

@ Or (summing the terms and assembling all of the
pieces, see below):

@ Note that the solution is tangent to the dipolar field
lines that run from +q to —q.

@ It might not be the best way to represent the field —
spherical polar coordinates are better — but we
definitely have the skill to find the E-field at

field lines arbitrary points in space from arbitrary numbers of

discrete charges in cartesian coordinates!

—-q

-

Exy) = kea { (x2+(y — a)2)3/2 - (x> + (y+ 3)2)3/2 } "

<

ke y—a _ y+a }
T { 2+ (y— a2 (2+(y+a)2)*?
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Finding the Field of a Hydrogen Atom

@ Find the electric field at all points in space of a
spherical charge distribution with radial charge
density:

efr/2a
p(r) = po 2

and determine pg such that the total charge Q in
the distribution is —e. This is the charge
distribution of the electron cloud about a hydrogen
atom in the ground state.
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Finding the Field of a Hydrogen Atom

@ Find the electric field at all points in space of a
spherical charge distribution with radial charge
density:

efr/2a
p(r) = po 2

and determine pg such that the total charge Q in
the distribution is —e. This is the charge
distribution of the electron cloud about a hydrogen
atom in the ground state.

@ The key part of this solution will be to evaluate the total charge inside a
Gaussian surface of radius r by integration.

Robert G. Brown Introductory Physics 142/152/162



Finding the Field of a Hydrogen Atom

@ Find the electric field at all points in space of a
spherical charge distribution with radial charge
density:

efr/2a
p(r) = po 2

and determine pg such that the total charge Q in
the distribution is —e. This is the charge
distribution of the electron cloud about a hydrogen
atom in the ground state.

@ The key part of this solution will be to evaluate the total charge inside a
Gaussian surface of radius r by integration.

@ Then we can use this result plus Gauss's Law to find E,.
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Finding the Field of a Hydrogen Atom

@ Find the electric field at all points in space of a
spherical charge distribution with radial charge
density:

efr/2a

p(r) =po—7

and determine pg such that the total charge Q in
the distribution is —e. This is the charge
distribution of the electron cloud about a hydrogen
atom in the ground state.

@ The key part of this solution will be to evaluate the total charge inside a
Gaussian surface of radius r by integration.

@ Then we can use this result plus Gauss's Law to find E,.

@ If we evaluate this same integral for r — oo and set the result equal to —e,
we can solve for pg.
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Finding the Field of a Hydrogen Atom

@ Find the electric field at all points in space of a
spherical charge distribution with radial charge
density:

efr/2a

r2

p(r) = po

and determine pg such that the total charge Q in
the distribution is —e. This is the charge
distribution of the electron cloud about a hydrogen
atom in the ground state.

@ The key part of this solution will be to evaluate the total charge inside a
Gaussian surface of radius r by integration.

@ Then we can use this result plus Gauss's Law to find E,.

@ If we evaluate this same integral for r — oo and set the result equal to —e,
we can solve for pg.

* - The solution is on the next page. Don't advance until you are ready!
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Finding the Field of a Hydrogen Atom-Solution

@ We start by finding the total charge in a
spherical shell of radius r’ and thickness
dr’, using dg = pdV.
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Finding the Field of a Hydrogen Atom-Solution

@ We start by finding the total charge in a
spherical shell of radius r’ and thickness
dr’, using dg = pdV.

dq = p(r')anr?dr' = 4mpee™" /?2dr’
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Finding the Field of a Hydrogen Atom-Solution

@ We start by finding the total charge in a
spherical shell of radius r’ and thickness
dr’, using dg = pdV.

dq = p(r')anr?dr' = 4mpee™" /?2dr’

@ Next, we integrate this from 0 to r to find
the total charge inside r:

q(r) = 47rp0/ e " ?2dy
0
—r/2a
u=—r'/2a =q(r)= 787rpoa/ e'du = 8mppa (1 - e*’/za)
0

@ Now we use Gauss's Law to find the E-field:

, 8 2
?{ E-ndA = Edrr? == =007 (1— e72) 5| B () = 9 (1- e772)
S
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Finding the Field of a Hydrogen Atom-Solution (Cont)
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Finding the Field of a Hydrogen Atom-Solution (Cont)

@ Hence:

2
E(r) = g (1-e22)

@ Note: This solution already continues to r — co. Quantum mechanically,
p(r) never quite reaches zero, even though (of course) the exponential term
cuts off rapidly once r >> 2a (where a is the characteristic “size” of the
hydrogen atom at ~ 0.5 A).
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Finding the Field of a Hydrogen Atom-Solution (Cont)

@ Hence:

2
() - 222 (1 e %)

@ Note: This solution already continues to r — co. Quantum mechanically,
p(r) never quite reaches zero, even though (of course) the exponential term
cuts off rapidly once r >> 2a (where a is the characteristic “size” of the
hydrogen atom at ~ 0.5 A).

@ to find the magnitude of pg, we set:

—e
g(r > 0)=—e=8mppa = |po=—-——
8ma
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Finding the Field of a Hydrogen Atom-Solution (Cont)

@ Hence:

€or?

E.(r)= 2/0703 (1 — e*’/za)

@ Note: This solution already continues to r — co. Quantum mechanically,
p(r) never quite reaches zero, even though (of course) the exponential term
cuts off rapidly once r >> 2a (where a is the characteristic “size” of the
hydrogen atom at ~ 0.5 A).

@ to find the magnitude of pg, we set:

q(r — o0)

—e = 8mppa

=

Po

—€

- 8ma

@ And we're done! It initially looked difficult, but honestly, it isn’t really that

hard!

Robert G. Brown
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Finding the Field of a Hydrogen Atom-Solution (Cont)

@ Hence:

2
E(r) = g (1-e22)

@ Note: This solution already continues to r — co. Quantum mechanically,
p(r) never quite reaches zero, even though (of course) the exponential term
cuts off rapidly once r >> 2a (where a is the characteristic “size” of the
hydrogen atom at ~ 0.5 A).

@ to find the magnitude of pg, we set:

—e
g(r > ©)=—e=8mppa = |po=—-—
8ra

@ And we're done! It initially looked difficult, but honestly, it isn’t really that
hard!

@ If you want a further challenge, see if you can integrate by parts to find V/(r)!
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Potential Energy of Solid Sphere of Charge

@ A solid sphere of charge with radius R and
total charge Q, uniformly distributed, is
shown to the left. We'd like to compute its
total electrostatic potential energy. This
formula can serve as an estimate or
reference form for many problems of
interest, such as the approximate
electrostatic potential energy of quarks
bound into a proton.
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Potential Energy of Solid Sphere of Charge

@ A solid sphere of charge with radius R and
total charge Q, uniformly distributed, is
shown to the left. We'd like to compute its
total electrostatic potential energy. This
formula can serve as an estimate or
reference form for many problems of
interest, such as the approximate
electrostatic potential energy of quarks

bound into a proton.

@ Our solution stratey here is to "build a sphere”. We can imagine we have a
sphere of radius r’ < R with the appropriate fractional charge, compute the
electrostatic potentiual at its surface, and use this to compute the work dW
required to bring in the next chunk of charge dQ of thickness dr’ to increase
its radius.
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Potential Energy of Solid Sphere of Charge

@ A solid sphere of charge with radius R and

total charge Q, uniformly distributed, is
shown to the left. We'd like to compute its
total electrostatic potential energy. This
formula can serve as an estimate or
reference form for many problems of
interest, such as the approximate
electrostatic potential energy of quarks

bound into a proton.

@ Our solution stratey here is to "build a sphere”. We can imagine we have a
sphere of radius r’ < R with the appropriate fractional charge, compute the
electrostatic potentiual at its surface, and use this to compute the work dW
required to bring in the next chunk of charge dQ of thickness dr’ to increase
its radius.

@ Then, we integrate to find the total potential energy as being equal to the
work required to assemble the entire sphere.
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Potential Energy of Solid Sphere of Charge

@ A solid sphere of charge with radius R and
total charge Q, uniformly distributed, is
shown to the left. We'd like to compute its
total electrostatic potential energy. This
formula can serve as an estimate or
reference form for many problems of
interest, such as the approximate
electrostatic potential energy of quarks
bound into a proton.

@ Our solution stratey here is to "build a sphere”. We can imagine we have a
sphere of radius r’ < R with the appropriate fractional charge, compute the
electrostatic potentiual at its surface, and use this to compute the work dW
required to bring in the next chunk of charge dQ of thickness dr’ to increase
its radius.

@ Then, we integrate to find the total potential energy as being equal to the
work required to assemble the entire sphere.

* - The solution is on the next page. Don't advance until you are ready!
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Potential Energy of Solid Sphere of Charge-Solution

@ The charge Q' inside r’ is easy:

4 13 3
3/ r

QX =Q =05
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Potential Energy of Solid Sphere of Charge-Solution

@ The charge Q' inside r’ is easy:

4%,/3 r/3
/ — R
¥ = Q5 = U

@ Gauss's Law at r > r’ (careful with r vs

r'1) is:

1
EArr? = —Q = E
€0

Introductory Physics 142/152/162

k. 31
_ kQ7 1 (r>r)

A(r) = R3 2
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Potential Energy of Solid Sphere of Charge-Solution

@ The charge Q' inside r’ is easy:

47 13
3r

4m p3
3R

QX =Q

r'1) is:

1
E4nr* = gQ’ = E.(r)

@ Next we integrate this to find the potential at r = r’:

r

/3

:Qﬁ

B keQr® 1

="r3
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@ Gauss's Law at r > r’ (careful with r vs

(r>r)
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Potential Energy of Solid Sphere of Charge-Solution (Cont)

@ Now we're ready to find the work required
/R ‘ to bring in a charge d@’ with thickness dr’
/ ar at radius r’. We start by finding dQ’:
3Q

- —
W@ =V =g

Anr?dr = ?;?—grQ dr’
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Potential Energy of Solid Sphere of Charge-Solution (Cont)

@ Now we're ready to find the work required
to bring in a charge dQ’ with thickness dr’
at radius r’. We start by finding dQ’:

3Q
47 R3

dQ' = pdV =

Anr?dr = ?;?—grQ dr’

@ Then we find the work bringing it in and wrapping it around Q:

keQr® X gr’2 dr' = 3keQ”

4 g0
23 =3 6 rdr

dU = dW = V(r)dQ =
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Potential Energy of Solid Sphere of Charge-Solution (Cont)

@ Now we're ready to find the work required
to bring in a charge dQ’ with thickness dr’
at radius r'.

We start by finding dQ’:

dQ' = pdV =

@ Then we find the work bringing it in and wrapping it around Q:

dU =

dW = V(r)dQ =

@ And finally, we integrate this from r' =0 to R:

Robert G. Brown

2
U= /dU /3"5 rdr’

Introductory Physics 142/152/162

or

ke Qr'? 3Q gy —
R3 R3

3Q 2 g 3Q 2 g
471_"?347rr dr = =3r dr
ke Q2
3R6Q r'*dr’
k@
5 R




Potential Energy of Solid Sphere of Charge-Solution

Summary

We got:

R 2 2
3@ , 3keQ
U:/dU:/(; TIJ dr’ or U:g R
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Potential Energy of Solid Sphere of Charge-Solution

Summary

We got:

R 2 2
3@ , 3keQ
U:/dU:/(; TIJ dr’ or U:g R

@ This answer “makes sense”. It has the right units, for one thing.
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Potential Energy of Solid Sphere of Charge-Solution

Summary

We got:

R 2 2
3@ , 3keQ
U:/dU:/(; TIJ dr’ or U:g R

@ This answer “"makes sense". It has the right units, for one thing.
@ For another, if we assemble a shell of charge @ and radius R, we expect

1kQ
Ushent = 5 R

and this is a bit [larger than this as we expect because we've pushed the
charge a bit closer together throughout the interior.
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Potential Energy of Solid Sphere of Charge-Solution

Summary

We got:

R 2 2
3@ , 3keQ
U:/dU:/(; TIJ dr’ or U:g R

@ This answer “makes sense”. It has the right units, for one thing.
@ For another, if we assemble a shell of charge @ and radius R, we expect
1 k.Q

Ushent = 5 R

and this is a bit [larger than this as we expect because we've pushed the
charge a bit closer together throughout the interior.

@ Note how many concepts we had to use to assemble the answer! Next
chapter, we'll learn a different way of finding the energy of a solid uniform
sphere of charge of radius R and charge Q: by integrating the energy density
in its electrostatic field over all space!
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Potential Energy of Solid Sphere of Charge-Solution

Summary

We got:

R 2 2
3@ , 3keQ
U:/dU:/(; TIJ dr’ or U:g R

@ This answer “makes sense”. It has the right units, for one thing.
@ For another, if we assemble a shell of charge @ and radius R, we expect
1 k.Q

Ushent = 5 R

and this is a bit [larger than this as we expect because we've pushed the
charge a bit closer together throughout the interior.

@ Note how many concepts we had to use to assemble the answer! Next
chapter, we'll learn a different way of finding the energy of a solid uniform
sphere of charge of radius R and charge Q: by integrating the energy density
in its electrostatic field over all space!

@ Be sure to come back and verify that the two approaches give you the same
answer!
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled

me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained

across it by a batter has a dielectric
slab with relative permittivity €,

Robert G. Brown

inserted a distance x into it.
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled

me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained

across it by a batter has a dielectric
slab with relative permittivity €,

inserted a distance x into it.

@ The slab is released. What is the electrostatic force pulling it into or pushing
it out of the volume between the plates?

Robert G. Brown
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled
me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained
across it by a batter has a dielectric
slab with relative permittivity e,
inserted a distance x into it.

@ The slab is released. What is the electrostatic force pulling it into or pushing
it out of the volume between the plates?

@ Our solution strategy is going to be something like: Find the change in the
potential energy as the slab moves further into the capacitor by a small
distance dx.
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled

me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained

across it by a batter has a dielectric
slab with relative permittivity €,

inserted a distance x into it.

@ The slab is released. What is the electrostatic force pulling it into or pushing
it out of the volume between the plates?

@ Our solution strategy is going to be something like: Find the change in the
potential energy as the slab moves further into the capacitor by a small

distance dx.

@ If the change in potential energy is negative the force will pull it in (to
decrease the total PE). If positive, it will push out. We can find the force

itself by F, = —dU/dx.

Robert G. Brown
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled
me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained
across it by a batter has a dielectric
slab with relative permittivity e,
inserted a distance x into it.

@ The slab is released. What is the electrostatic force pulling it into or pushing
it out of the volume between the plates?

@ Our solution strategy is going to be something like: Find the change in the
potential energy as the slab moves further into the capacitor by a small
distance dx.

@ If the change in potential energy is negative the force will pull it in (to
decrease the total PE). If positive, it will push out. We can find the force
itself by F, = —dU/dx.

@ The key is going to be: change in potential energy of the system, not just
the charged capacitor!
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Force on a Dielectric Slab

@ Here's a tricky one, one that fooled
me back even as an instructor
when | first started teaching
physics. In the figure to the left, a
square capacitor (L x L x d) with a
constant potential Vy maintained
across it by a batter has a dielectric
slab with relative permittivity e,
inserted a distance x into it.

@ The slab is released. What is the electrostatic force pulling it into or pushing
it out of the volume between the plates?

@ Our solution strategy is going to be something like: Find the change in the
potential energy as the slab moves further into the capacitor by a small
distance dx.

@ If the change in potential energy is negative the force will pull it in (to
decrease the total PE). If positive, it will push out. We can find the force
itself by F, = —dU/dx.

@ The key is going to be: change in potential energy of the system, not just
the charged capacitor!
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Force on a Dielectric Slab-Solution

@ We'll start by expressing the
potential energy of the x-filled
capacitor as a function of x. Note
well that in this case V¢ = Vg no
matter what, so U = CVZ is
likely to be the easiest if we find C
as a function of x.
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Force on a Dielectric Slab-Solution

@ We'll start by expressing the
potential energy of the x-filled
capacitor as a function of x. Note
well that in this case V¢ = Vg no
matter what, so U = CVZ is
likely to be the easiest if we find C
as a function of x.
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Resistance of a Truncated Cone

Robert G. Brown

@ We'd like to find the total vertical
resistance of a truncated right circular cone
made from material of a uniform resistivity
p with height H and radii a and b at the
top and bottom respectively. Give this a try
on your own with looking up anything
before uncovering the hints below.
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Resistance of a Truncated Cone

@ We'd like to find the total vertical
resistance of a truncated right circular cone
made from material of a uniform resistivity
p with height H and radii a and b at the
top and bottom respectively. Give this a try
on your own with looking up anything
before uncovering the hints below.

9 First, do you remember the formula for the resistance of a chunk of material
of length ¢ and cross-sectional area A in terms of the resistivity? How do you
expect the resistance of such a chunk to scale?
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resistance of a truncated right circular cone
made from material of a uniform resistivity
p with height H and radii a and b at the
top and bottom respectively. Give this a try
on your own with looking up anything
before uncovering the hints below.

9 First, do you remember the formula for the resistance of a chunk of material
of length ¢ and cross-sectional area A in terms of the resistivity? How do you
expect the resistance of such a chunk to scale?

@ Second, what coordinate system is likely to be the best one to use to integrate
over the entire truncated cone? In this coordinate system, can you find a
differentially thin slice of the material to which you can apply the formula?
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Resistance of a Truncated Cone

@ We'd like to find the total vertical
resistance of a truncated right circular cone
made from material of a uniform resistivity
p with height H and radii a and b at the
top and bottom respectively. Give this a try
on your own with looking up anything
before uncovering the hints below.

9 First, do you remember the formula for the resistance of a chunk of material
of length ¢ and cross-sectional area A in terms of the resistivity? How do you
expect the resistance of such a chunk to scale?

@ Second, what coordinate system is likely to be the best one to use to integrate
over the entire truncated cone? In this coordinate system, can you find a
differentially thin slice of the material to which you can apply the formula?

@ Third, if the resistance of the cone is the total of a stack of these thin slices,
can you express the answer as an integral and evaluate it?

Robert G. Brown Introductory Physics 142/152/162



Resistance of a Truncated Cone

@ We'd like to find the total vertical
resistance of a truncated right circular cone
made from material of a uniform resistivity
p with height H and radii a and b at the
top and bottom respectively. Give this a try
on your own with looking up anything
before uncovering the hints below.

9 First, do you remember the formula for the resistance of a chunk of material
of length ¢ and cross-sectional area A in terms of the resistivity? How do you
expect the resistance of such a chunk to scale?

@ Second, what coordinate system is likely to be the best one to use to integrate
over the entire truncated cone? In this coordinate system, can you find a
differentially thin slice of the material to which you can apply the formula?

@ Third, if the resistance of the cone is the total of a stack of these thin slices,
can you express the answer as an integral and evaluate it?

* - The solution is on the next page. Don't advance until you are ready!
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Resistance of a Truncated Cone-Solution

o First, we know that (for a short cylindrical

. pl
tor) R = —.
resistor) 2
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Resistance of a Truncated Cone-Solution

o First, we know that (for a short cylindrical
. pl
resistor) R = —.
istor) y

@ Second, we should choose cylindrical
coordinates to treat the cone as a stack of
short cylindrical resistors in series

@ In order to compute A for each thin slice of height dz and radius r and do
the sum/integral, we need (e.g. point-slope formula):
b—a

r(z)=b-— g

z
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Resistance of a Truncated Cone-Solution

o First, we know that (for a short cylindrical
. pl
resistor) R = —.
istor) y

@ Second, we should choose cylindrical
coordinates to treat the cone as a stack of
short cylindrical resistors in series

@ In order to compute A for each thin slice of height dz and radius r and do
the sum/integral, we need (e.g. point-slope formula):

b—a
H

z

r(z)=b-—
@ Now we can find the resistance dR of the thin dark shaded slice:
pdz pdz

R e = bty
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Resistance of a Truncated Cone-Solution (Cont)

Our job is now reduced to a simple math problem — integrating

R:pdz_ pdz

(b e

from z = 0 to z = H. This is easy if we use u-substitution
with:

u=b—(b—az/H =  du= (—(b’;a))dz

Robert G. Brown
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Resistance of a Truncated Cone-Solution (Cont)

Our job is now reduced to a simple math problem — integrating

R:pdz_ pdz

(b e

from z = 0 to z = H. This is easy if we use u-substitution
with:

u=b—(b—az/H =  du= (—(b’;a))dz

i [t G o= [

H

Robert G. Brown
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

9.8 ®®; 0 O (30(09) magnetic fields sitting side by side. A charged particle
R B RO OO O g and mass m is initially travelling to the left at speed
R ® ®‘*® 0000 vp as shown, and is bent into a semicircular trajectory
PR RO OO0 of radius R by the magnetic field By into the page.

® ® ® OO O O

O RO OO OO

® ® ® OO O O

QR QO OO O
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

9.8 ®®; 0 O (30(09) magnetic fields sitting side by side. A charged particle
R B RO OO O g and mass m is initially travelling to the left at speed
R ® ®‘*® 0000 vp as shown, and is bent into a semicircular trajectory
PR RO OO0 of radius R by the magnetic field By into the page.

® ® ® O © © ©| @ Find: The sign of q.

O RO OO OO

® ® ® OO O O

QR QO OO O
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite
magnetic fields sitting side by side. A charged particle
g and mass m is initially travelling to the left at speed
vp as shown, and is bent into a semicircular trajectory
of radius R by the magnetic field By into the page.

=
o

@

B
g

RV ® ® ® ®Q
®O®6 86 8.8

@ Find: The sign of g. The mass m in terms of g, R,
By, and vy.

R BB ] ® O
® ®Q® 1§ 0
OO0O0O0000O0
oloNoNoNoNoNoRe,
© 606006 6 O
oloNoNoNoNoNe
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite
magnetic fields sitting side by side. A charged particle
g and mass m is initially travelling to the left at speed
vp as shown, and is bent into a semicircular trajectory
of radius R by the magnetic field By into the page.

=
o

@

B
g

RV ® ® ® ®Q
®O®6 86 8.8

Find: The sign of g. The mass m in terms of q, R,
By, and vy. The time it will take to complete the
semicircle and enter the field By out of the page.

® ®Q® 1§ 0
OO0O0O0000O0
oloNoNoNoNoNoRe,
© 606006 6 O

QR B R Bu®

@@ o066
©
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite
magnetic fields sitting side by side. A charged particle
g and mass m is initially travelling to the left at speed
vp as shown, and is bent into a semicircular trajectory
of radius R by the magnetic field By into the page.

=
o

@

B
g

Find: The sign of g. The mass m in terms of q, R,
By, and vy. The time it will take to complete the
semicircle and enter the field By out of the page.
Finally, draw the subsequent trajectory of the particle
until it exits the fields.

® ®Q® 1§ 0
OO0O0O0000O0
oloNoNoNoNoNoRe,
© 606006 6 O

QOO B Q Q W
RV ® ® ® ®Q
®O®6 86 8.8

@@ o066
©

Hints:
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

%(iS@ ®®; 0 O (3(09) magnetic fields sitting side by side. A charged particle
® ® & ®O O O O g and mass m is initially travelling to the left at speed
® ® HO O 0 0 vp as shown, and is bent into a semicircular trajectory
® ® ® ® 000 0 of radius R by the magnetic field By into the page.
® ® ® ®|O © © ©| @ Find: The sign of g. The mass m in terms of q, R,
R0 OO O By, and vy. The time it will take to complete the
QR R ROO OO semicircle and enter the field By out of the page.
O R ® 0000 Finally, draw the subsequent trajectory of the particle
until it exits the fields.

Hints:

@ Use the right hand rule and F = g(¥ x B) to see what the sign of the charge

must be.
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

%(iS@ ®®; 0 O (3(09) magnetic fields sitting side by side. A charged particle
® ® & ®O O O O g and mass m is initially travelling to the left at speed
® ® HO O 0 0 vp as shown, and is bent into a semicircular trajectory
® ® ® ® 000 0 of radius R by the magnetic field By into the page.
® ® ® ®|O © © ©| @ Find: The sign of g. The mass m in terms of q, R,
R0 OO O By, and vy. The time it will take to complete the
QR R ROO OO semicircle and enter the field By out of the page.
O R ® 0000 Finally, draw the subsequent trajectory of the particle
until it exits the fields.

Hints:

@ Use the right hand rule and F = q(¥ x B) to see what the sign of the charge

must be.

@ Use Newton's Second Law and centripetal acceleration to come up with an
algebraic formula for m.
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

%(iS@ ®®; 0 O (3(09) magnetic fields sitting side by side. A charged particle
® ® & ®O O O O g and mass m is initially travelling to the left at speed
® ® HO O 0 0 vp as shown, and is bent into a semicircular trajectory
® ® ® ® 000 0 of radius R by the magnetic field By into the page.
® ® ® ®|O © © ©| @ Find: The sign of g. The mass m in terms of q, R,
R0 OO O By, and vy. The time it will take to complete the
QR R ROO OO semicircle and enter the field By out of the page.
O R ® 0000 Finally, draw the subsequent trajectory of the particle
until it exits the fields.

Hints:

@ Use the right hand rule and F = q(¥ x B) to see what the sign of the charge

must be.

@ Use Newton's Second Law and centripetal acceleration to come up with an
algebraic formula for m.
@ You can answer this knowing only vy and R! Can you see how?

Robert G. Brown Introductory Physics 142/152/162



Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

%a? ®®; 0 O @B(Og?) magnetic fields sitting side by side. A charged particle
R QRO O O O g and mass m is initially travelling to the left at speed
® ® HO O 0 0 vp as shown, and is bent into a semicircular trajectory
® ® ® ® 000 0 of radius R by the magnetic field By into the page.
® ® ® ®|O © © ©| @ Find: The sign of g. The mass m in terms of q, R,
R0 OO O By, and vy. The time it will take to complete the
QR R ROO OO semicircle and enter the field By out of the page.
O R ® 0000 Finally, draw the subsequent trajectory of the particle
until it exits the fields.

Hints:

@ Use the right hand rule and F = q(¥ x B) to see what the sign of the charge

must be.

@ Use Newton's Second Law and centripetal acceleration to come up with an
algebraic formula for m.

@ You can answer this knowing only vy and R! Can you see how?

9 Use the right hand rule again, plus the symmetry of the field to help you
draw the picture.
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Trajectory in Opposing B-fields

@ A region is split with two equal and opposite

%a? ®®; 0 O @B(Og?) magnetic fields sitting side by side. A charged particle
R QRO O O O g and mass m is initially travelling to the left at speed
® ® HO O 0 0 vp as shown, and is bent into a semicircular trajectory
® ® ® ® 000 0 of radius R by the magnetic field By into the page.
® ® ® ®|O © © ©| @ Find: The sign of g. The mass m in terms of q, R,
R0 OO O By, and vy. The time it will take to complete the
QR R ROO OO semicircle and enter the field By out of the page.
O R ® 0000 Finally, draw the subsequent trajectory of the particle
until it exits the fields.

Hints:

@ Use the right hand rule and F = q(¥ x B) to see what the sign of the charge

must be.

@ Use Newton's Second Law and centripetal acceleration to come up with an
algebraic formula for m.

@ You can answer this knowing only vy and R! Can you see how?

9 Use the right hand rule again, plus the symmetry of the field to help you
draw the picture.

* - The solution is on the next page. Don’t advance until you are ready!
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Trajectory in Opposing B-fields-Solution
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Robert G. Brown

@ The magnetic force initially points down to make the
charge curve in towards the center of curvature of the

displayed trajectory. F,, = +q(vp x éo) is down, so
the charge must be positive.
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Trajectory in Opposing B-fields-Solution
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Robert G. Brown

@ The magnetic force initially points down to make the
charge curve in towards the center of curvature of the
displayed trajectory. F,, = +q(¥o x Bg) is down, so
the charge must be positive.

o B does no work; so v, does not change, only its
direction. When it hits the (blue shaded) B field on
the right hand side, again the magnetic force must
point down (with the same magnitude) so the charge
again curves back to the (red shaded) B field.
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Trajectory in Opposing B-fields-Solution

@ The magnetic force initially points down to make the
charge curve in towards the center of curvature of the
displayed trajectory. F,, = +q(¥o x Bg) is down, so
the charge must be positive.

<
+
)

©

°
L

R ® R

B does no work; so vy does not change, only its
direction. When it hits the (blue shaded) B field on
the right hand side, again the magnetic force must
point down (with the same magnitude) so the charge
\ again curves back to the (red shaded) B field.

® 88 8 8 ® 8 8
®'® ®\® ® § Rt
Jgoo'oo oo
ociollcloloNoNolo
©0 0000 00
©0 0000
©

©

RO R ] R V QR

@ To solve for m, use the magnitude of the force in N2 plus centripetal
acceleration: 5 ~ 4BoR

V(
0 m
R Vo

quBo = m-— =
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Trajectory in Opposing B-fields-Solution

@ The magnetic force initially points down to make the
charge curve in towards the center of curvature of the
displayed trajectory. F,, = +q(¥o x Bg) is down, so
the charge must be positive.

<
+
)

©

°
L

R ® R

B does no work; so vy does not change, only its
direction. When it hits the (blue shaded) B field on
the right hand side, again the magnetic force must
point down (with the same magnitude) so the charge
\ again curves back to the (red shaded) B field.

® 88 8 8 ® 8 8
®'® ®\® ® § Rt
Jgoo'oo oo
ociollcloloNoNolo
©0 0000 00
©0 0000
©

©

RO R ] R V QR

@ To solve for m, use the magnitude of the force in N2 plus centripetal
acceleration: 5

v BoR
quoBy = m-2 = m= 90
R Vo
@ In terms of the givens:
TR
Vote = 7R = te = —
Vo

which doesn’t depend on the magnetic field, mass, or charge, because vy and
R were given!

Robert G. Brown Introductory Physics 142/152/162



B-field of a Spinning Disk on its Axis

@ A disk of radius R and uniformly
distributed mass M and charge Q is
rotating around the z-axis at a constant
angular velocity Q = Q2. Find the B-field
at an arbitrary point on the z-axis, and
show that for z > R it can be written:

ks QL
T 2MZ3

(o]
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B-field of a Spinning Disk on its Axis

@ A disk of radius R and uniformly
distributed mass M and charge Q is
rotating around the z-axis at a constant
angular velocity Q = Q2. Find the B-field
at an arbitrary point on the z-axis, and
show that for z > R it can be written:

ks QL

- 2Mz8

@ Solution: In words: We'll find the charge of a tiny chunk of the disk in
coordinates we can integrate over to cover the disk. Using the Biot-Savart
Law (the form appropriate for a point charge moving with a speed v < ¢)
we'll find its differential B-field at a point on the z-axis and integrate.

(o]
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B-field of a Spinning Disk on its Axis

@ A disk of radius R and uniformly
distributed mass M and charge Q is
rotating around the z-axis at a constant
angular velocity Q = Q2. Find the B-field
at an arbitrary point on the z-axis, and
show that for z > R it can be written:

ks QL

- 2Mz8

@ Solution: In words: We'll find the charge of a tiny chunk of the disk in
coordinates we can integrate over to cover the disk. Using the Biot-Savart
Law (the form appropriate for a point charge moving with a speed v < ¢)
we'll find its differential B-field at a point on the z-axis and integrate.

(o]

@ Next, we'll connect our answer to the magnetic moment of the disk using
=L

2M
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B-field of a Spinning Disk on its Axis

@ A disk of radius R and uniformly
distributed mass M and charge Q is
rotating around the z-axis at a constant
angular velocity Q = Q2. Find the B-field
at an arbitrary point on the z-axis, and
show that for z > R it can be written:

ks QL

- 2Mz8

@ Solution: In words: We'll find the charge of a tiny chunk of the disk in
coordinates we can integrate over to cover the disk. Using the Biot-Savart
Law (the form appropriate for a point charge moving with a speed v < ¢)
we'll find its differential B-field at a point on the z-axis and integrate.

(o]

@ Next, we'll connect our answer to the magnetic moment of the disk using

—

— L.
2M

’ﬁ:

* - The solution is on the next page. Don't advance until you are ready!
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B-field of a Spinning Disk on its Axis-Solution

@ Our first chore is to add x and y axes,
define 6 and r as integration variables,
and decorate the figure with dB and its
components (and an angle ¢ we'll need
as we proceed).
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B-field of a Spinning Disk on its Axis-Solution

@ Our first chore is to add x and y axes,
define 6 and r as integration variables,
and decorate the figure with dB and its
components (and an angle ¢ we'll need
as we proceed).

@ Now we need to find dA = rdr df and

o= —R2 and use them to find

B Q rdr do

dg = odA= =5
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B-field of a Spinning Disk on its Axis-Solution

@ Our first chore is to add x and y axes,
define 6 and r as integration variables,

and decorate the figure with dB and its
components (and an angle ¢ we'll need
as we proceed).

@ Now we need to find dA = rdr df and

0 = — and use them to find
T

R2
Q rdr do
dg=0dA= ———

=7 mR?
9 Then
= dqv x (Z —7) vdq vQrdr df
dB:kmf dB:km :km
-7 (P +22)  "RRY2 1 2)
and
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B-field of a Spinning Disk on its Axis-Solution

@ Our first chore is to add x and y axes,
define 6 and r as integration variables,

and decorate the figure with dB and its
components (and an angle ¢ we'll need
as we proceed).

@ Now we need to find dA = rdr df and

0 = — and use them to find
T

R2
Q rdr do
dg=0dA= ———

=7 mR?
9 Then
= dqv x (Z —7) vdq vQrdr df
dB:kmf dB:km :km
-7 (P +22)  "RRY2 1 2)
and

dB, = dBsin¢ dB, = dB cos ¢ cosf dB, = dBcos ¢sinf
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B-field of a Spinning Disk on its Axis-Solution (Cont)
@ Note that:

sing =

r o z
(r2 +22)1/2 cos¢ = (r2 +22)1/2
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ Note that:
. _ r I z
S|n¢— (I’2+22)1/2 COS¢_ (r2+22)1/2
@ Hence, with v = rQ2:
y
3
B, — ki, QQr>dr d6
TR2(r? +22)3/2
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ Note that:
. _ r I z
S|n¢— (I’2+Z2)1/2 COS¢_ (r2+22)1/2
@ Hence, with v = rQ2:
3
B, — ki, QQr>dr d6
TR2(r? +22)3/2

@ Then (integrating):

B, / /2” knQQridrdd 2k, QQ /R ridr
- 7TR2(r2+z2)3/2 T OR2 0 (r2+22)3/2

Robert G. Brown
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ Note that:
. _ r I z
S|n¢— (I’2+Z2)1/2 COS¢_ (r2+22)1/2
@ Hence, with v = rQ2:
y
3
B, — ki, QQr>dr d6
TR2(r? +22)3/2

@ Then (integrating):

B, / /2” knQQridrdd 2k, QQ /R ridr
- 7TR2(r2+z2)3/2 T OR2 0 (r2+22)3/2

@ This integral is tricky — it requires (careful!) integration by parts. Choose

u=r?dv= % and get:
km Q2 2R?
B: =~ {_(R2+z2)1/2 +4(R2—|—Z2)1/2—4z}
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ This must be expanded for z > R:
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ This must be expanded for z > R:

knQQ [ 2R? R2\ M2 R
B: = "k {—z<1+22> ezl ) -
knQQ [ 2R 1R? RY R
~ (A= 54) 44 gZ AT
R? { z ( 2727 >+ Z<1+ z2 8z4+ 4z
ki QQ {(R“ R“)} _ knQOR? . Q 1 MR?Q

z3 2783

223 oM 23
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ This must be expanded for z > R:

knQQ [ 2R? R2\ /2 R? |,y
B, =~ {_Z<1+22> —|—4z(1—|—?)/—4z

knQQ | 2R? 1R ZRZ R*
~ R2 {_Z( —2Z2+...>+4Z<1+ 22_@4-... 746

km QS {(R“ R“)} _ kmQQR? . Q 3MRQ

~ R2 23 278 223 oM 23
9 or:
Q 1 2kp,m,
B, =2k, | —L, =
(2/\/7 ) 3 z3

as expected.
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ Note that:
vQzrdr cos0df
mﬂRz(rz +22)3/2

km QQzr?dr om
BX:7TI‘?2(I'2+Z2)3/2X/O cosfdf =0

dB, = dBcos ¢ cosf = k

vQzrdr sin 0d6
m7rR2(r2 +22)3/2

ko QQzr?dr o
By—71_"?2(,‘2—’_22)3/2><\/0 sinfdfd =0

dB, = dBcos ¢sinf = k
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B-field of a Spinning Disk on its Axis-Solution (Cont)

@ Note that:
vQzrdr cos0df
mﬂRz(rz +22)3/2

km QQzr?dr om
BX:7TR2(I‘2+22)3/2X/0 cosfdf =0

dB, = dBcos ¢ cosf = k

vQzrdr sin 0d6
m7rR2(r2 +22)3/2

ko QQzr?dr o
By—71_"?2(,‘2—’_22)3/2><\/0 sinfdfd =0

dB, = dBcos ¢sinf = k

@ We can then conclude via explicit (if painful) integration that:

. 2k, i
B =
(2) = 2
where 0 0 )
M= L= x ~MR*Qz2
M=om""2m "2
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Self-Induction of a Coaxial Cable
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Self-Induction of a Coaxial Cable

* - The solution is on the next page. Don't advance until you are ready!
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Self-Induction of a Coaxial Cable-Solution
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Self-Induction of a Coaxial Cable-Solution
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The Self-Induction of a Thick Wire

1/
/

@ In the figure to the left, a piece of a long
straight cylindrical wire with relative
permeability u, is shown that has radius R
and length ¢. Find its self-inductance per
unit length (since obviously, a longer chunk
of wire would have a larger inductance — we
expect inductance to scale with length).
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The Self-Induction of a Thick Wire

—= @ In the figure to the left, a piece of a long
P ! straight cylindrical wire with relative

permeability u, is shown that has radius R
and length ¢. Find its self-inductance per
unit length (since obviously, a longer chunk
I of wire would have a larger inductance — we
expect inductance to scale with length).

@ We expect the self-inductance to follow from its own internal magnetic field
passing through its own internal conductive pathway, although we have no
return pathway and must compensate.

@ Our strategy, then, must be to first, find the magnetic field inside the
conductor, assuming a current / and using Ampere's Law.

@ Second identify the appropriate area through which magnetic flux passes.

@ Third, compute the flux, and from the flux, find the self-inductance.

* - The solution is on the next page. Don't advance until you are ready!
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The Self-Induction of a Thick Wire-Solution

@ To find the é—field, we find the current
through the shaded disk at radius r:

r2

I(r):/sJ~ndA:IR2
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The Self-Induction of a Thick Wire-Solution

@ To find the é—field, we find the current
through the shaded disk at radius r:

r2

I(r):/sJ~ndA:IR2

@ Then Ampere's Law is (with u = p,po):

= > r
j{ B-d¢ = B2nwr = ,u,,uolﬁ = B =
c
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The Self-Induction of a Thick Wire-Solution

@ To find the é—field, we find the current
through the shaded disk at radius r:

r2

I(r):/sJ~ndA:IR2

@ Then Ampere's Law is (with u = p,po):
wlr

- r
B-d¢ = B27r = |— = B =
jé(,' wr Hr o R2 21 R2
@ Then we find the magnetic flux through the shaded strip of length ¢ and
thickness dr at radius r. However, we can't use the entire current / in this
expression as it doesn’t pass inside r and is not “linked” to the flux, so we
multiply by an extra r?/R? to correct for this:

2 1er3d 1w (R 10
dom = B(r)mztdr =5 = om =L /0r3dr—“—

27T R4 T 27R% ~ 8r
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The Self-Induction of a Thick Wire-Solution

@ To find the é—field, we find the current
through the shaded disk at radius r:

r2

I(r):/J~FrdA:IR2
s
@ Then Ampere's Law is (with u = p,po):

- r plr
B-d¢ = B27r = |— = B =
jé(,' wr Hr o R2 21 R2
@ Then we find the magnetic flux through the shaded strip of length ¢ and
thickness dr at radius r. However, we can't use the entire current / in this
expression as it doesn’t pass inside r and is not “linked” to the flux, so we
multiply by an extra r?/R? to correct for this:

2 1er3d 1w (R 10
dom = B(r)mztdr =5 = om =L /0r3dr—“—

27T R4 T 27R% ~ 8r
@ Hence: P i "
m - 13 - 8m

Robert G. Brown Introductory Physics 142/152/162



A Crystal Radio Circuit

Antenna @ We would like to find the total current
I(t) = lpsin(wt 4 ¢) in the circuit to the
AN left, a common one used in crystal radios,
V(t)Ln(m) R ] and use this current to discuss the power
ﬁ% delivered to the headphones as a function
of w. Note that it is a parallel LRC
== Ground circuit with an extra resistor in series.
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@ Our strategy is to use Kirchoff’s Junction Rule and Kirchoff’s Loop Rule
together with the equations relating current to voltage for each element to
get a phasor diagram for the active elements.
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@ Our strategy is to use Kirchoff’s Junction Rule and Kirchoff’s Loop Rule
together with the equations relating current to voltage for each element to
get a phasor diagram for the active elements.

@ Then solve for I(t).

o Find the average power delivered to R, Pr(w)
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@ Our strategy is to use Kirchoff’s Junction Rule and Kirchoff’s Loop Rule
together with the equations relating current to voltage for each element to
get a phasor diagram for the active elements.

@ Then solve for /(t).
o Find the average power delivered to R, Pr(w)

@ Finally, for fun, show that the power delivered is maximum at resonance and
when r = R (matching impedances).
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A Crystal Radio Circuit

Antenna @ We would like to find the total current
I(t) = lpsin(wt 4 ¢) in the circuit to the
AN left, a common one used in crystal radios,
V(t)Ln(M) R ] and use this current to discuss the power
ﬁ% delivered to the headphones as a function
of w. Note that it is a parallel LRC
== Ground circuit with an extra resistor in series.

@ Our strategy is to use Kirchoff’s Junction Rule and Kirchoff’s Loop Rule
together with the equations relating current to voltage for each element to
get a phasor diagram for the active elements.

@ Then solve for /(t).
o Find the average power delivered to R, Pr(w)

@ Finally, for fun, show that the power delivered is maximum at resonance and
when r = R (matching impedances).

* - The solution is on the next page. Don't advance until you are ready!
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A Crystal Radio Circuit-Solution

@ From KLR:

Antenna

p Vo sin(wt + 7/2) — lpsin(wt + ¢ + 7/2)r
I c=

»sin( @t) @R ....... Xc
J,:Gmund - I[_ — VOSin(Wt_Tr/2)— /OSin(Wt+¢_7T/2)r
XL
Vo sin(wt) — lysin(wt + ¢)r
Ir = R
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A Crystal Radio Circuit-Solution

@ From KLR:

Antenna

_ Vo sin(wt + 7/2) — lpsin(wt + ¢ + 7/2)r

@R ((((((( XcC

Vosin( @ t)
Jf:Gmund IL — VO Sin(wt — 7T/2) - IO sin(Wt + ¢ - 7T/2)I'
XL
Vo sin(wt) — losin(wt + ¢)r
I =
R
o KRJ:
Vosi 2) — Iysi 2
losin(wt + ¢) = osin(wt + 7/2) — lysin(wt + ¢ + 7/2)r
Xc
4 Vosin(wt = m/2) — lpsin(wt + ¢ — /2)r
XL
n Vosin(wt) — lysin(wt + ¢)r

R
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A Crystal Radio Circuit-Solution
1(t)

@ From KLR:
Yo - Vo sin(wt + 7/2) — lpsin(wt + ¢ + 7/2)r
Vv, xc ©- Xc
7 Vo I - Vosin(wt — w/2) — lpsin(wt + ¢ — 7 /2)r
v XL ‘ XL
0 -2 Vo sin(wt) — losin(wt + ¢)r
t R Ir = R
o KRJ:
losin(wt + 6) = Vo sin(wt + 7/2) —)io sin(wt + ¢ +w/2)r
c
N Vosin(wt — /2) — lysin(wt + ¢ — 7/2)r
XL
Vosin(wt) — lysin(wt + ¢)r
R

Robert G. Brown
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A Crystal Radio Circuit-Solution (Cont)

@ We can rearrange this to put all of the /y terms on one side. Note well that ¢
is the phase angle of the current through r only — it is no longer the phase
angle of the “unperturbed” phasor on the right below.

lo { (R;rr> sin(wt + ¢) + L sin(wt + ¢ + 7/2) + L sin(wt + ¢ — 7r/2)}
Xc XL

1. 1 . 1
=W {Xcsm(wt—l—w/2) + E5|n(wt—7r/2) + Rsm(wt)}
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A Crystal Radio Circuit-Solution (Cont)

@ We can rearrange this to put all of the /y terms on one side. Note well that ¢
is the phase angle of the current through r only — it is no longer the phase

angle of the “unperturbed” phasor on the right below.

lo { (RJ”> sin(wt + ¢) + L sin(wt + ¢ + 7/2) + L sin(wt + ¢ — 7r/2)}
R Xc XL

1
=W {1 sin(wt + 7/2) + — sin(wt — 7/2) +
Xc XL

C, and L:

;sin(wt)}

@ We rewrite this in terms of the phase angle ¢ of the total voltage across R,

lo { (R:;r> sin(wt + ¢) + X—rc sin(wt + ¢+ 1/2) + é sin(wt + ¢ — 7r/2)}

Vi
= Xsin(wt + ¢o) where:
VA

12 1/2
)7 o
L

R(x. — xc)

XLXcC

)
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A Crystal Radio Circuit-Solution (Cont)

@ The phase angle of the dimensionless term in {} brackets on the left has to
match that of the term on the right. It's effect will be to lower Iy relative to

its value when r = 0 (where ¢ = ¢ and Iy = V/Zp). We'll call this the
attenuation factor, A, so that:

lo { (R;rr> sin(wt + ¢) + L sin(wt + ¢+ m/2) + L sin(wt + ¢ — 7r/2)}
Xc XL

%
= hAsin(wt + ¢g) = 70 sin(wt + ¢g)
o

Al {(REV (oYY a1 (XL xOR
{( R ) +<XC m)} i ((XCXL)(r+R)>
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A Crystal Radio Circuit-Solution (Cont)

@ The phase angle of the dimensionless term in {} brackets on the left has to
match that of the term on the right. It's effect will be to lower Iy relative to

its value when r = 0 (where ¢ = ¢ and Iy = V/Zp). We'll call this the
attenuation factor, A, so that:

lo { (R;rr> sin(wt + ¢) + L sin(wt + ¢+ m/2) + L sin(wt + ¢ — 7r/2)}
Xc XL

%
= hAsin(wt + ¢g) = 70 sin(wt + ¢g)
o

Al {(REV (oYY a1 (XL xOR
{( R ) +<XC m)} i ((XCXL)(r+R)>

@ To conclude:

I(t) = ALZO sin(wt + @)

with A, Zy, and ¢ defined above. When r — 0, A — 1, ¢ — ¢ as expected.
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A Crystal Radio Circuit-Solution (Cont)

@ Consider:

Robert G. Brown
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(xL — xc)rR
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A Crystal Radio Circuit-Solution (Cont)

@ Consider:

I(t) = ALZOO sin(wt + ¢)

2 2)1/2
A G | e )

") |fXLIXC¢wIwO21/\/LC, ZozR,A:(r+R)/R,¢:¢0:0.

Vo

I:
0 r+R

as expected, and we've already shown that in this case we'll have the
maximum possible power dissipated in R if and only if r = R (the resistances
of antenna and load match). This is resonance in an well-matched circuit.
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A Crystal Radio Circuit-Solution (Cont)

o If xc < r (high frequency) or x; < r (low frequency) and r = R,
Ax —— 1
Xc,L

and
I(t) =0
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A Crystal Radio Circuit-Solution (Cont)

o If xc < r (high frequency) or x; < r (low frequency) and r = R,
Ax —— 1
Xc,L

and
I(t) =0

@ Consequently, the power delivered to the circuit is strongly suppressed as AZ,
gets large.
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A Crystal Radio Circuit-Solution (Cont)

o If xc < r (high frequency) or x; < r (low frequency) and r = R,

Ax 1 s1
Xc,L

and
I(t) =0

@ Consequently, the power delivered to the circuit is strongly suppressed as AZ,

gets large.
R T
¢ — tan™? ( ) - —=
2x1,c 2

@ Also:
as the remaining reactance gets much smaller than r (or R).
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A Crystal Radio Circuit-Solution (Cont)

o If xc < r (high frequency) or x; < r (low frequency) and r = R,
Ax —— 1
Xc,L

and
I(t) =0

@ Consequently, the power delivered to the circuit is strongly suppressed as AZ,

gets large.
R T
¢ — tan™? ( ) - —=
2x1,c 2

o Also:
as the remaining reactance gets much smaller than r (or R).

@ This is a kind of band pass filter, but one that modulates the fraction of the
power delivered to the load resistor by essentially shorting it out through the
capacitor or inductor for frequencies much larger or smaller (respectively)
than the resonant frequency.
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A Crystal Radio Circuit-Solution (Cont)

o If xc < r (high frequency) or x; < r (low frequency) and r = R,

Ax 1 s1
Xc,L

and
I(t) =0

@ Consequently, the power delivered to the circuit is strongly suppressed as AZ,

gets large.
R T
¢ — tan™? ( ) - —=
2x1,c 2

o Also:
as the remaining reactance gets much smaller than r (or R).

@ This is a kind of band pass filter, but one that modulates the fraction of the
power delivered to the load resistor by essentially shorting it out through the
capacitor or inductor for frequencies much larger or smaller (respectively)
than the resonant frequency.

o (In case you forgot, x1 = wl, xc =1/wC).
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Energy Flow into an Inductance

9 At time t = 0 the switch is closed, and the
current through the solenoidal inductance

R (initially zero) increases. Find the flux of
—y the Poynting vector through the sides of
0 the inductor, which has N turns, length ¢,
/ and radius a as shown. Show that it equals

the rate that power flows into the inductor
into its total energy store, U = %LI2.
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—y the Poynting vector through the sides of
0 the inductor, which has N turns, length ¢,
/ and radius a as shown. Show that it equals

the rate that power flows into the inductor
into its total energy store, U = %LI2.

@ Our solution strategy here has to be to first find the B-field inside the
solenoid /inductor from Ampere's Law.
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@ Our solution strategy here has to be to first find the B-field inside the
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@ Then find the E-field around the solenoid in the wires from Faraday's Law
(and our knowledge of the voltage change across and inductance.
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Energy Flow into an Inductance

9 At time t = 0 the switch is closed, and the

current through the solenoidal inductance
R (initially zero) increases. Find the flux of
the Poynting vector through the sides of
the inductor, which has N turns, length /,

and radius a as shown. Show that it equals

/ the rate that power flows into the inductor
into its total energy store, U = %LI2.

@ Our solution strategy here has to be to first find the B-field inside the
solenoid /inductor from Ampere's Law.

@ Then find the E-field around the solenoid in the wires from Faraday's Law
(and our knowledge of the voltage change across and inductance.

@ Form S at the surface of the inductor.
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Energy Flow into an Inductance

9 At time t = 0 the switch is closed, and the
current through the solenoidal inductance

R (initially zero) increases. Find the flux of
—Lv the Poynting vector through the sides of
0 the inductor, which has N turns, length ¢,
/ and radius a as shown. Show that it equals

the rate that power flows into the inductor
into its total energy store, U = %LI2.

@ Our solution strategy here has to be to first find the B-field inside the
solenoid /inductor from Ampere's Law.

@ Then find the E-field around the solenoid in the wires from Faraday's Law
(and our knowledge of the voltage change across and inductance.

@ Form S at the surface of the inductor.

@ Integrate to find its flux into the volume and show it equal to ‘ZT‘;’.
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Energy Flow into an Inductance

9 At time t = 0 the switch is closed, and the
current through the solenoidal inductance

R (initially zero) increases. Find the flux of
—Lv the Poynting vector through the sides of
0 the inductor, which has N turns, length ¢,
/ and radius a as shown. Show that it equals

the rate that power flows into the inductor
into its total energy store, U = %LI2.

@ Our solution strategy here has to be to first find the B-field inside the
solenoid /inductor from Ampere's Law.

@ Then find the E-field around the solenoid in the wires from Faraday's Law
(and our knowledge of the voltage change across and inductance.

@ Form S at the surface of the inductor.

@ Integrate to find its flux into the volume and show it equal to ‘ZT‘;’.

* _ The solution is on the next page. Don't advance until you are ready!
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Energy Flow into an Inductance-Solution

@ Ampere’s Law:

pTTTTTT C

14

N turns -~ b =3 - N
f B gbm:fB-dZ:Bb:,uo—lb
C

I(t) Increasing
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Energy Flow into an Inductance-Solution

@ Ampere’s Law:

pTTTTTT C

N turns ~—b—

14

B ¢m:f§-d5:8b:uoﬂlb
C

N
B, = ,uOYI to the right

I(t) Increasing
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Energy Flow into an Inductance-Solution

@ Ampere’s Law:

N turns E

B ¢m:f§-d5:8b:uoﬂlb
C

Hlie o ‘

J&v{ N %L Or:

IE

N
Bin = po—1 to the right

I(t) Increasing E
2 2
o The total flux is ¢ = NBinA = LT 0.
[ (;Sl B poN?ma?
/ 14
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Energy Flow into an Inductance-Solution

@ Ampere’s Law:

N turns E

B ¢m:f§-d5:8b:uoﬂlb
C

T ‘

J&v{ N %L Or:

IE

N
Bin = po—1 to the right

I(t) Increasing E
o The total flux is ¢ = NBi A = LolIT oo
[ (;Sl B poN?ma?
T 1
@ This let's us find:

dl 1oNa di
Vina| = NE27a = L= — at
[Vinal ety T 2 dt

Note that as / increases, E points in the opposite direction to / in the wire!
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Energy Flow into an Inductance-Solution (Cont)

@ Now we find the Poynting vector:

1 = 1 /LQNI uoNa dl
T ExB= —x™2"
1o 1o . / % 20 dt (in)

E. B s’

,.%
—

1(t) Increasing
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Energy Flow into an Inductance-Solution (Cont)

@ Now we find the Poynting vector:

1 = 1 /LQNI uoNa dl
T ExB= —x™2"
1o 1o . / % 20 dt (in)

E. B s’

,.%
—

il o .
AR ® with its magnitude:

o N2a ﬂ
202 dt

1(t) Increasing Sin —
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Energy Flow into an Inductance-Solution (Cont)

@ Now we find the Poynting vector:

1 = 1 /LQNI uoNadl
~ ExB= —x™ "
1 R TR

E., B s’

| il o .
AR ® with its magnitude:

2
1(t) Increasing Sin _ MON a ﬂ
202 dt
@ lts flux into the volume is:
2, u0N27ra dl
= S -ndA =S5, 2ral = ——— | —
¢S side " e / dt
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Energy Flow into an Inductance-Solution (Cont)

@ Now we find the Poynting vector:

1 = 1 /LQNI uoNa dl
T ExB= —x™2"
1o 1o . / % 20 dt (in)

E. B s’

| il o .
AR ® with its magnitude:

2
1(t) Increasing Sin — MON d ﬂ
202 dt
@ lts flux into the volume is:
2, u0N27ra dl
= S hdA =527l = ———|—
¢S side " i ¢ dt
@ Or (identifying L from the previous page):
d 1 dP?
Py,=L1—=-l— .E.D.
dt 2 dt @ )
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Lateral Deflection of a Light Beam

@ In the figure to the left, a beam of light is
incident on a slab of glass of thickness t. It
is surrounded by air. The beam emerges
displaced from its original direction by a
lateral distance d as shown.
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Lateral Deflection of a Light Beam

@ In the figure to the left, a beam of light is
incident on a slab of glass of thickness t. It
is surrounded by air. The beam emerges
displaced from its original direction by a
lateral distance d as shown.

@ We need to show that 6; = ¢ (the incident and emergent beams are parallel)
and we also need to show/prove that:

o sin(@,- — 9,)

-~ cos(6,)
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Lateral Deflection of a Light Beam

@ In the figure to the left, a beam of light is
incident on a slab of glass of thickness t. It
is surrounded by air. The beam emerges
displaced from its original direction by a
lateral distance d as shown.

T

@ We need to show that 6; = ¢ (the incident and emergent beams are parallel)
and we also need to show/prove that:

o sin(@,- — 9,)
-~ cos(6,)

o We'll use Snell's Law for the first observation (which is easy).
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Lateral Deflection of a Light Beam

@ In the figure to the left, a beam of light is
incident on a slab of glass of thickness t. It
is surrounded by air. The beam emerges
displaced from its original direction by a
lateral distance d as shown.

@ We need to show that 6; = ¢ (the incident and emergent beams are parallel)
and we also need to show/prove that:

o sin(@,- — 9,)
-~ cos(6,)

o We'll use Snell's Law for the first observation (which is easy).

@ It's a bit more challenging to show the second — Snell's Law plus some
manipulations of triangles and angles will be required!
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Lateral Deflection of a Light Beam

@ In the figure to the left, a beam of light is
incident on a slab of glass of thickness t. It
is surrounded by air. The beam emerges
displaced from its original direction by a
lateral distance d as shown.

T

@ We need to show that 6; = ¢ (the incident and emergent beams are parallel)
and we also need to show/prove that:

o sin(@,- — 9,)
-~ cos(6,)

o We'll use Snell's Law for the first observation (which is easy).

@ It's a bit more challenging to show the second — Snell's Law plus some
manipulations of triangles and angles will be required!

*

- The solution is on the next page. Don’t advance until you are ready!
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Lateral Deflection of a Light Beam-Solution

@ Snell's Law:

ngsinb; = ngsitl, = pgsinbr = 0; = O
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Lateral Deflection of a Light Beam-Solution

@ Snell's Law:

ngsinb; = ngsitl, = pgsinbr = 0; = O

@ Using the (red) triangle in the figure:

e .

" cosé,
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Lateral Deflection of a Light Beam-Solution

@ Snell's Law:

ngsinb; = ngsitl, = pgsinbr = 0; = O

@ Using the (red) triangle in the figure:

L .

" cosé,

@ Next, use the (blue) triangle indicated to write:

sin(9,~ — 9,) "
cos 6,

d = hsin(0; — 6,) = (QED.)
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Lateral Deflection of a Light Beam-Solution

@ Snell's Law:

ngsinb; = ngsitl, = pgsinbr = 0; = O

@ Using the (red) triangle in the figure:

L .

" cosé,
@ Next, use the (blue) triangle indicated to write:

sin(9,~ — 9,) "
cos 6,

d = hsin(0; — 6,) = (QED.)

@ So, not so difficult as all of that in terms of the number of steps, but it
requires some insight to “see” the correct triangles and rules to use to get the
answer!
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Lateral Deflection of a Light Beam-Solution

@ Snell's Law:

ngsinb; = ngsitl, = pgsinbr = 0; = O

@ Using the (red) triangle in the figure:

L .

" cosé,
@ Next, use the (blue) triangle indicated to write:

sin(9,~ — 9,) "

cos 6,

d = hsin(0; — 6,) = (QED.)

@ So, not so difficult as all of that in terms of the number of steps, but it
requires some insight to “see” the correct triangles and rules to use to get the
answer!

@ If you want a challenge, try to evaluate this for #; = 60° and t =1 cm. You
should get d ~ 5 mm...
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Solving a Two Lens Optical System

@ In the figure, two lenses and an object are

drawn to scale — each box represents “1
cm”. fi = +4 cm, b = —4 cm, and the 2
cm high object is located at s; =2 cm to
the left of the first lens. The lenses are
separated by 10 cm.

Robert G. Brown
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Solving a Two Lens Optical System

@ In the figure, two lenses and an object are
drawn to scale — each box represents “1
cm”. fi = +4 cm, b = —4 cm, and the 2

1"1 m cm high object is located at s; =2 cm to

I the left of the first lens. The lenses are

H separated by 10 cm.

Il

{ il o We need to find “everything”: s|, s, s3,
fi o jens2 mi, My, Moy, and to characterize each
image, especially the final one as seen
looking through lens 2 on the right.
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Solving a Two Lens Optical System

@ In the figure, two lenses and an object are
drawn to scale — each box represents “1
cm”. fi = +4 cm, b = —4 cm, and the 2

I m cm high object is located at s; =2 cm to

the left of the first lens. The lenses are

separated by 10 cm.

{ il o We need to find “everything”: s|, s, s3,
fi o jens2 mi, My, Moy, and to characterize each
image, especially the final one as seen
looking through lens 2 on the right.

@ Our solution strategy is straightforward — use the thin lens equation and our
knowledge of magnification to determine the unknowns numerically, while
drawing a ray diagram with the standard three rays for each lens to verify
our algebraic/numerical results.
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Solving a Two Lens Optical System

@ In the figure, two lenses and an object are
drawn to scale — each box represents “1
cm”. fi = +4 cm, b = —4 cm, and the 2

1"1 m cm high object is located at s; =2 cm to

I the left of the first lens. The lenses are

H separated by 10 cm.

Il

{ il o We need to find “everything”: s|, s, s3,
lens1  fi & lens2 mi, My, Moy, and to characterize each
image, especially the final one as seen
looking through lens 2 on the right.

@ Our solution strategy is straightforward — use the thin lens equation and our
knowledge of magnification to determine the unknowns numerically, while
drawing a ray diagram with the standard three rays for each lens to verify
our algebraic/numerical results.

@ You may want to copy this figure onto your own paper to proceed. Note that
you may end up drawing rays etc outside of the provided grid — it is not
meant to limit you, only give you a decent scale!
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Solving a Two Lens Optical System

@ In the figure, two lenses and an object are
drawn to scale — each box represents “1
cm”. fi = +4 cm, b = —4 cm, and the 2

1"1 m cm high object is located at s; =2 cm to

I the left of the first lens. The lenses are

H separated by 10 cm.

Il

{ il o We need to find “everything”: s|, s, s3,
lens1  fi & lens2 mi, My, Moy, and to characterize each
image, especially the final one as seen
looking through lens 2 on the right.

@ Our solution strategy is straightforward — use the thin lens equation and our
knowledge of magnification to determine the unknowns numerically, while
drawing a ray diagram with the standard three rays for each lens to verify
our algebraic/numerical results.

@ You may want to copy this figure onto your own paper to proceed. Note that
you may end up drawing rays etc outside of the provided grid — it is not
meant to limit you, only give you a decent scale!

* - The solution is on the next page. Don't advance until you are ready!
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Solving a Two Lens Optical System-Solution

@ The order of doing these things isn't very
o important. | did the ray diagram to the left
s -] st first. Note that red = parallel ray, blue =
e I central ray, green = focal ray (for both

| == lenses). The focal ray for lens 1 becomes

) \ =~ the parallel ray for lens 2 (so the rays

| il overlap). Note that we can treat the image
image 1 \ image 2 of the first lens exactly as if it is a (virtual)
object for the second lens.

I

~L
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Solving a Two Lens Optical System-Solution

@ The order of doing these things isn't very
o important. | did the ray diagram to the left
s -] st first. Note that red = parallel ray, blue =
e I central ray, green = focal ray (for both

| == lenses). The focal ray for lens 1 becomes

) \ =~ the parallel ray for lens 2 (so the rays

| il overlap). Note that we can treat the image
image 1 \ image 2 of the first lens exactly as if it is a (virtual)
object for the second lens.

I

~L
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Solving a Two Lens Optical System-Solution

@ The order of doing these things isn't very
o important. | did the ray diagram to the left
s -] st first. Note that red = parallel ray, blue =
e I central ray, green = focal ray (for both

| == lenses). The focal ray for lens 1 becomes

) \ =~ the parallel ray for lens 2 (so the rays

| il overlap). Note that we can treat the image
image 1 \ image 2 of the first lens exactly as if it is a (virtual)
object for the second lens.

I

~L

o

o From the diagram alone I'd guess s; = —4 cm, s, = 14 cm, sj = —3 cm,
my =42, my = 0.2, myy, =~ 0.4. Let's see how this guess works out.
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Solving a Two Lens Optical System-Solution

@ The order of doing these things isn't very

o important. | did the ray diagram to the left
s -] . s} first. Note that red = parallel ray, blue =
e T central ray, green = focal ray (for both
| RS lenses). The focal ray for lens 1 becomes
/ ) \ . the parallel ray for lens 2 (so the rays.
/ | 4 overlap). Note that we can treat the image
image 1 \ image 2 of the first lens exactly as if it is a (virtual)
object for the second lens.
°
o From the diagram alone I'd guess s; = —4 cm, s, = 14 cm, sj = —3 cm,
my =42, my = 0.2, myy, =~ 0.4. Let's see how this guess works out.

@ First:

— 4 — == — = —=—=—= s; = —4 cm m=—-——=
s1S fi s; 4 2 4 ! 1 s
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Solving a Two Lens Optical System-Solution

@ The order of doing these things isn't very

o important. | did the ray diagram to the left
s -] . s} first. Note that red = parallel ray, blue =
e T central ray, green = focal ray (for both
| RS lenses). The focal ray for lens 1 becomes
/ ) \ . the parallel ray for lens 2 (so the rays.
/ | 4 overlap). Note that we can treat the image
image 1 \ image 2 of the first lens exactly as if it is a (virtual)
object for the second lens.
°
o From the diagram alone I'd guess s; = —4 cm, s, = 14 cm, sj = —3 cm,
my =42, my = 0.2, myy, =~ 0.4. Let's see how this guess works out.

@ First:

— 4 — == — = —=—=—= s; = —4 cm m=—-——=
s1S fi s; 4 2 4 ! 1 s

So far, so good.
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Solving a Two Lens Optical System-Solution (Cont)

@ Next, the lenses are 10 cm apart. We add —s; to get s, = +14 cm, and then:

1+1 11 1 1 18 _ | 52 3
—+ === - === =—— S, =—— -3 cm
s s s 4 14 52 2 18

Introductory Physics 142/152/162
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Solving a Two Lens Optical System-Solution (Cont)

@ Next, the lenses are 10 cm apart. We add —s; to get s, = +14 cm, and then:

and

Robert G. Brown

1 1 18

I u m

sy =

7178%73 cm

/

my = ~2 5 +0.21

S2
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Solving a Two Lens Optical System-Solution (Cont)

@ Next, the lenses are 10 cm apart. We add —s; to get s, = +14 cm, and then:

1,1 1 11 1 _ 18
s s, fHh s 4 14 52

and

/

my = ~2 5 +0.21
S

Still right on the money, within a few percent.
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Solving a Two Lens Optical System-Solution (Cont)

= +14 cm, and then:

o Next, the lenses are 10 cm apart. We add —sj to get s,

1+1 1;>1 1 1 18§ ,
- —_— = — _—= = — = — — S, =
52 2

7178%73 cm

s s, h s 4 14

and

/

my = ~2 5 +0.21
S

Still right on the money, within a few percent.

o Finally:

Myt = mpmy =2 x 0.21 =~ 0.42
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Solving a Two Lens Optical System-Solution (Cont)

@ Next, the lenses are 10 cm apart. We add —s; to get s, = +14 cm, and then:

and

1 11 18 [,

—_— = —— — — = —— = =
s 4 14 52 |7

—— &~ -3 cm

18

/

my = ~2 5 +0.21
S

Still right on the money, within a few percent.

o Finally:

Myt = mpmy =2 x 0.21 =~ 0.42

Super! The numbers all correspond with the ray diagram within the
acceptable limits imposed by line thickness, etc!
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Solving a Two Lens Optical System-Solution (Cont)

@ Next, the lenses are 10 cm apart. We add —s; to get s, = +14 cm, and then:

1 1.1 1 11 18 _|o_ 52 4
- - _ = - — = —— S = —— K —3Cin
s s s 4 14 52 2 18

and

/

my = ~2 5 +0.21
S

Still right on the money, within a few percent.

o Finally:

Myt = mpmy =2 x 0.21 =~ 0.42

Super! The numbers all correspond with the ray diagram within the
acceptable limits imposed by line thickness, etc!

@ We can categorize the images. Image 1 is erect and virtual. Image two is
erect and virtual. The first is larger than the object, the second smaller than
both object and first image. We are good to go!
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Diffraction of Two Wavelengths Through a Slit

A

@ A slit of width a = 2800 nm is illuminated
by white light. We'd like to determine

- whether or not we expect the white light to

be resolved into “rainbow colors” in any of

the secondary maxima.

P p—
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Diffraction of Two Wavelengths Through a Slit

A

@ A slit of width a = 2800 nm is illuminated
by white light. We'd like to determine

- whether or not we expect the white light to

be resolved into “rainbow colors” in any of

the secondary maxima.

P p—

@ We'll do this by tabulating the expected minima for red light at 400 nm and
violet light at 700 nm.
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Diffraction of Two Wavelengths Through a Slit

A

@ A slit of width a = 2800 nm is illuminated
by white light. We'd like to determine

- whether or not we expect the white light to

be resolved into “rainbow colors” in any of

the secondary maxima.

P p—

@ We'll do this by tabulating the expected minima for red light at 400 nm and
violet light at 700 nm.

@ We'll then guess that the maxima are (approximately) determined by the
half-integer formula in between.
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Diffraction of Two Wavelengths Through a Slit

A

@ A slit of width a = 2800 nm is illuminated
by white light. We'd like to determine
whether or not we expect the white light to
be resolved into “rainbow colors” in any of
the secondary maxima.

P p—

@ We'll do this by tabulating the expected minima for red light at 400 nm and
violet light at 700 nm.

@ We'll then guess that the maxima are (approximately) determined by the
half-integer formula in between.

9 Finally, we'll apply Rayleigh's Criterion for Resolution to see if these two
extreme ends of the visible spectrum are resolved. If they are, it's likely that

at least, the secondary maxima will be blurred out wider and no longer be all
white.
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Diffraction of Two Wavelengths Through a Slit

A

@ A slit of width a = 2800 nm is illuminated
by white light. We'd like to determine
whether or not we expect the white light to
be resolved into “rainbow colors” in any of
the secondary maxima.

P p—

@ We'll do this by tabulating the expected minima for red light at 400 nm and
violet light at 700 nm.

@ We'll then guess that the maxima are (approximately) determined by the
half-integer formula in between.

9 Finally, we'll apply Rayleigh's Criterion for Resolution to see if these two
extreme ends of the visible spectrum are resolved. If they are, it's likely that

at least, the secondary maxima will be blurred out wider and no longer be all
white.

* - The solution is on the next page. Don't advance until you are ready!
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Diffraction of Two Wavelengths Through a Slit-Solution

@ Recall that minima occur when asinf = m\ for m=1,2,3..., or:

m 0, (red) 6, (violet)

1 [sin'7=145° | sin”' % =8.2°
2 | sin 1% =30.0° | sin 1 2=16.6°
3 [sin"12=48.6° | sin '2=254°
4 [sin"t§=00.0° | sin"'37=34.0°
5 NA sin ' 2 =45.6°
6 NA sin” 1% =50.0°
7 NA sin ' £ =090.0°
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Diffraction of Two Wavelengths Through a Slit-Solution

@ Recall that minima occur when asinf = m\ for m=1,2,3..., or:

m 0, (red) 6, (violet)

1 [sin'7=145° | sin”' % =8.2°
2 [sin 12=30.0° [ sin"'2=16.6°
3 [sin"12=48.6° | sin '2=254°
4 [sin"t§=00.0° | sin"'37=34.0°
5 NA sin ' 2 =45.6°
6 NA sin” 1% =50.0°
7 NA sin ' 2 =090.0°

@ Our estimates for the maxima are (from asinf ~ (m+ %) A)

m 6, (red) 6, (violet)

1 NA NA

2 [sinT12=220° [sin ' 2 =124°
3 [sin"2=387° [sin"! 5 =20.9°
4 [sin"{=61.0° [ sin ' £ =30.0°
5 NA sin” ' & = 40.0°
6 NA sin ' 7 =51.8°
7 NA sin” ' 3 =68.2°

Robert G. Brown Introductory Physics 142/152/162



Diffraction of Two Wavelengths Through a Slit-Solution

(Cont)

@ From this table we might well conclude
that the spectrum would be resolved into

. colored bars in the higher order maxima and

- minima. However, by chance, the second

violet maxima occurs right at the first red

maximum, so those to particular colors

aren't separated in the first bright sidebar.
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Diffraction of Two Wavelengths Through a Slit-Solution

(Cont)

@ From this table we might well conclude
that the spectrum would be resolved into
colored bars in the higher order maxima and

- minima. However, by chance, the second

violet maxima occurs right at the first red

maximum, so those to particular colors
aren't separated in the first bright sidebar.

0
@ However, other colors in between are! | plotted the actual diffraction intensity
curves for red, green, and violet light; this fiuure makes it clear that green'’s
first maximum happens at the second minimum of violet and close to the
first minimum for red!
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Diffraction of Two Wavelengths Through a Slit-Solution

(Cont)

‘ @ From this table we might well conclude

o that the spectrum would be resolved into

) colored bars in the higher order maxima and
minima. However, by chance, the second

°

04

]

violet maxima occurs right at the first red
maximum, so those to particular colors

aren't separated in the first bright sidebar.

0
However, other colors in between are! | plotted the actual diffraction intensity
curves for red, green, and violet light; this fiuure makes it clear that green'’s
first maximum happens at the second minimum of violet and close to the
first minimum for red!

We therefore might reasonably expect the
sidebars to be mixes of colors instead of
white, and as you can see, for slit widths with
many secondary maxima, they are!
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