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About These Problems

This is an experiment. Beamer allows me to make slides that will successively
reveal lines of math-heavy text. This gives me a unique opportunity to build a
collection of self-guided learning problems for physics that do what I’ve fantasized
about doing for years now – present a problem, then provide a hint, then another
hint, then another (or reveal a step, and then another step) until finally, the entire
souution is presented, annotated.

Hopefully these problems will help students everywhere as they struggle to learn
physics problems solving techniques and learn to “think like a physicist” as they
do so.

To use this resource, pick a problem or topic from the table of contents and go
directly to it, or work your way through all the problems systematically. Work on a
separate sheet of paper, and when you get stuck, page down through the frames
to see (hopefully) where you went wrong.

Remember, the point is to master these problems, not just to get through
them. Make sure that before you are done, you can do every problem without

looking, without hints, and without remembering the exact solution but
rather, understanding how to find it!
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Kinematics: Two Bumper Cars
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Two bumper cars are headed straight at
one another, one travelling at 2v0 to the
right, the other at speed v0 to the left.
When they are separated by a distance D,
the car on the right slows down with a
constant acceleration a0. Does the right
hand car manage to stop before being hit
by the left hand car?
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ditions in this coordinate frame?
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Solve the equations of motion for xl (t), vl (t), xr (t), vr (t) for the left and right
hand cars respectively.
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The solution is on the next page. Don’t advance until you are ready!
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Kinematics: Two Bumper Cars-Solution
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Solution: xl (t) = 2v0t, vl (t) = 2v0

xr (t) = D − v0t +
1

2
a0t

2, vr (t) = −v0 + a0t
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It makes sense – larger D makes it less likely to collide, larger a0 makes it less likely
they will collide, larger v0 makes it more likely.
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collide before the right hand car comes to rest. We can simplify this to:

D <
5v2

0

2a0

It makes sense – larger D makes it less likely to collide, larger a0 makes it less likely
they will collide, larger v0 makes it more likely. Knowing they collide, if we write:

xl (tc) = 2v0tc = D − v0tc +
1

2
a0t

2
c = xr (tc)

would let us find the time of collision and answer other questions about e.g. their
relative velocity at that time. This is a simple quadratic equation for tc .
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Kinematics: 2D Basketball Trajectory
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A basketball player shoots a jump hook at
a (horizontal) distance R from the basket,
releasing the ball at a height H above the
rim as shown. To shoot over his opponent’s
outstretched arm, he releases the basketball
at an angle θ with respect to the horizontal.

Find v0, the speed he must release the basketball with (in terms of H, R , g and
θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.
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A basketball player shoots a jump hook at
a (horizontal) distance R from the basket,
releasing the ball at a height H above the
rim as shown. To shoot over his opponent’s
outstretched arm, he releases the basketball
at an angle θ with respect to the horizontal.

Find v0, the speed he must release the basketball with (in terms of H, R , g and
θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.

Hints: First write down ax = 0, ay = −g and solve for x(t), vx(t), y(t) and vy (t).
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Note that there are really two unknowns – v0 and tb, the time the ball reaches the
basket.

Robert G. Brown Introductory Physics 141/151/161 6 / 15



Kinematics: 2D Basketball Trajectory

0
v

R

θ

y

x
H

A basketball player shoots a jump hook at
a (horizontal) distance R from the basket,
releasing the ball at a height H above the
rim as shown. To shoot over his opponent’s
outstretched arm, he releases the basketball
at an angle θ with respect to the horizontal.

Find v0, the speed he must release the basketball with (in terms of H, R , g and
θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.
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Kinematics: 2D Basketball Trajectory-Solution

Initial Conditions:

ax = 0, v0x = v0 cos θ, x0 = 0 and ay = −g , v0y = v0 sin θ, y0 = 0

Integrate:

x(t) = v0 cos θt vx(t) = v0 cos θ y(t) = −
1

2
gt2+v0 sin θt vy (t) = v0 sin θ−gt

Find the time tb that the basketball reaches the horizontal position of the hoop:

R = v0 cos θtb ⇒ tb = R/(v0 cos θ)

This must also be the time that the ball has exactly the height of the hoop:

−H = −
1

2
gt2b + v0 sin θtb ⇒

gR2

2v2
0 cos

2 θ
= R tan θ + H

And finally, we solve for v0:

v0 =

√

gR2

2(R sin θ cos θ + H cos2 θ)

After doing the algebra, check the dimensions. Are they OK?

Robert G. Brown Introductory Physics 141/151/161 7 / 15



Firing a Speargun

v
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An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:
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First, draw a picture of the general motion and drag force.
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exponentially, and v = dx
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! It will come to rest “at” t → ∞. So, the range should
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Note that it will come almost to rest (and in the real world, completely to rest)
long before t equals “infinity”. Note also that the “terminal velocity” in this
problem is zero as drag is the only force acting.

Robert G. Brown Introductory Physics 141/151/161 8 / 15



Firing a Speargun

v−bv

An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:

First, draw a picture of the general motion and drag force. Then, write Newton’s

Second Law, expressing a in terms of v , not x . Then, integrate to find v(t)! This
involves separating variables and integrating both sides separately, using (easiest)
definite integrals.

Finding the range is trickier. If you did/do things right, the velocity is decaying
exponentially, and v = dx

dt
! It will come to rest “at” t → ∞. So, the range should

be the integral of the velocity from 0 to infinity!

Note that it will come almost to rest (and in the real world, completely to rest)
long before t equals “infinity”. Note also that the “terminal velocity” in this
problem is zero as drag is the only force acting.

The solution is on the next page. Don’t advance until you are ready!

Robert G. Brown Introductory Physics 141/151/161 8 / 15



Firing a Speargun-Solution

v−bv

Robert G. Brown Introductory Physics 141/151/161 9 / 15



Firing a Speargun-Solution
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F = −bv = m
dv
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= ma ⇒
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v
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b

m
dt
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m
dt

⇒

∫ v(t)

v0

dv

v
=

∫ t

0

−
b

m
dt

⇒ ln

(

v

v0

)

= −
b

m
t ⇒ e

{

ln
(

v
v0

)

=−

b
m
t
}

⇒
v

v0
= e−

b
m
t
⇒ v(t) = v0e

−

b
m
t

dx

dt
= v0e

−

b
m
t
⇒ x(t) =

∫ x

0

dx =

∫ t

0

v0e
−

b
m
tdt = −

mv0

b

∫ t

0

e−
b
m
t

(

−
b

m

)

dt

x(t) =
mv0

b

∫ 0

−bt/m

eudu =
mv0

b

(

1− e−
b
m
t
)

so the range R is:

R = x(t → ∞) =
mv0

b
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Static Equilibrium: Carrying A Box Up the Stairs
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h

mg
θ

φ

Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure.
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!).
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2? Can you back
substitute to find F1?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2? Can you back
substitute to find F1?

The solution is on the next page. Don’t advance until you are ready!
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Static Equilibrium: Carrying A Box Up the Stairs-Solution
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 −mg = 0
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 −mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

Robert G. Brown Introductory Physics 141/151/161 11 / 15



Static Equilibrium: Carrying A Box Up the Stairs-Solution

F

F
1

2

w

h

θ

w/2

mg

h/2

r
θ

θ
y

x

z

Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 −mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1−
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 −mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1−
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)

Note: F1 > F2 for all θ ∈ (0, π/2). It’s better to be the student at the top!
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 −mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1−
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)

Note: F1 > F2 for all θ ∈ (0, π/2). It’s better to be the student at the top! Note:

F1 = mg when θ = tan−1 w

h
. At this point F2 = 0 and the student at the top is

just helping balance the load!
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ.
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Oscillations: A Rolling Pendulum
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m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor.
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Oscillations: A Rolling Pendulum
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m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force.
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force. Rearrange into SHOE, find ω, write
θ(t) = s/R , and backsubstitute to find fs .
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls
without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force. Rearrange into SHOE, find ω, write
θ(t) = s/R , and backsubstitute to find fs .

* - The solution is on the next page. Don’t advance until you are ready!
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Oscillations: A Rolling Pendulum-Solution

θ
R

r

fs

mg

N

pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk

Using this, we write N2 for rotation using the CM of the disk as pivot:

rfs =
1

2
mr2α ⇒ fs = −

1

2
mat .
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk

Using this, we write N2 for rotation using the CM of the disk as pivot:

rfs =
1

2
mr2α ⇒ fs = −

1

2
mat . Subtract the two N2s: −mg sin θ =

3

2
mR

d2θ

dt2
,
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk

Using this, we write N2 for rotation using the CM of the disk as pivot:

rfs =
1

2
mr2α ⇒ fs = −

1

2
mat . Subtract the two N2s: −mg sin θ =

3

2
mR

d2θ

dt2
,

make the small angle approximation and rearrange into
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk

Using this, we write N2 for rotation using the CM of the disk as pivot:

rfs =
1

2
mr2α ⇒ fs = −

1

2
mat . Subtract the two N2s: −mg sin θ =

3

2
mR

d2θ

dt2
,

make the small angle approximation and rearrange into
d2θ

dt2
+

2g

3R
θ = 0. Thus:
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Oscillations: A Rolling Pendulum-Solution
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pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R
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dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs −mg sin θ = at

The rolling constraint is tricky. It involves little r

and the angle φ through which the disk rotates,
and when vt is positive, Ωdisk = dφ

dt
is negative

(out of the page), so: vt = −rΩdisk, at = −rαdisk

Using this, we write N2 for rotation using the CM of the disk as pivot:

rfs =
1

2
mr2α ⇒ fs = −

1

2
mat . Subtract the two N2s: −mg sin θ =

3

2
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d2θ

dt2
,

make the small angle approximation and rearrange into
d2θ

dt2
+
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θ = 0. Thus:

ω =

√
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θ(t) = θ0 cos(

√
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3R
t) fs = −

1

2
mat =

mg

3
θ0 cos(

√

2g

3R
t)
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!

Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!

Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.

Note fs always has the same sign as θ(t) – when it is positive (on the left half
of the curved floor) fs points up the incline, when it is negative (or the right
half of the curved floor) fs points up the incline, to the right! It is symmetric,
as it must be as we could be viewing the solution from the other side of the
page!
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!

Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.

Note fs always has the same sign as θ(t) – when it is positive (on the left half
of the curved floor) fs points up the incline, when it is negative (or the right
half of the curved floor) fs points up the incline, to the right! It is symmetric,
as it must be as we could be viewing the solution from the other side of the
page!

If we wanted to find the angular velocity of the disk about its own center of
mass, from the previous page:

−rΩdisk = R
dθ(t)

dt
⇒ Ωdisk = −

R

r

dθ

dt
=

R

r

√

2g

3R
sin(

√
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3R
t)
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!

Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.

Note fs always has the same sign as θ(t) – when it is positive (on the left half
of the curved floor) fs points up the incline, when it is negative (or the right
half of the curved floor) fs points up the incline, to the right! It is symmetric,
as it must be as we could be viewing the solution from the other side of the
page!

If we wanted to find the angular velocity of the disk about its own center of
mass, from the previous page:

−rΩdisk = R
dθ(t)

dt
⇒ Ωdisk = −

R

r

dθ

dt
=

R

r

√

2g

3R
sin(

√

2g

3R
t)

This too makes sense! At t = 0, the disk starts to roll down to the right, so
Ωdisk is into the page, positive. You should be able to trace each quarter
cycle of its oscillation and see that everything is consistent and correct.
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The End

Feedback Welcome

Send Comments To: rgb at duke dot edu
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