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Chapter 1

Preface

First, note well that The problems in this collection are provided ‘as is’ without any
guarantee of being correct! That’s not to suggest that they are all broken — on the contrary,
most of them are well-tested and correct, but as problems are added and taken away errors can
and do creep in (and are usually corrected as soon as I can do so after they are pointed out by
clever students or other faculty who use this collection, but that can take some time). So use
them at your own risk, and please feel free to bring any errors you discover to my attention.

This collection of problems is intended to be primarily used by students of serious, calculus
based college-level physics to study on their own or with limited tutorial mentoring (if they
have a mentor handy, a class teaching asssistant, a professor, a friend who is a physics major).
It will be most useful to students who also have access to a moderately sound calculus based
college-level physics textbook to use as a primary source for learning the concepts and seeing
examples of problems solving, or as a standalone resource to support an actual course taught
by any professor/teacher from any textbook.

As the title suggests, it contains self-guided learning problems. These are problems (mostly
with solutions provided) you can use to test your knowledge of the material you are studying
somewhere else. They are best attacked after you have prepared for a chapter, attended lecture
or other form of presentation of the material in the chapter, completed (in my classes, at least)
in-class problems worked in teams intended to immediately reinforce the material covered in
the pre-class prep and the lecture, and done the homework problems for the chapter on your
own or working with friends or a tutor as your class rules permit. They are an excellent way for
you to see if you have mastered the homework before tackling a quiz on the chapter, or to use
to study for exams and review your conceptual understanding, your knowledge of dimensions
and scaling, and above all, your problem solving skills.
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Chapter 2

Math Review Problems

The following problems are useful for co-teaching math skills or for students to review on their

OW1l.



6 CHAPTER 2. MATH REVIEW PROBLEMS

2.1 Math

2.1.1 Short Answer Problems

Problem 1. problems-1/math-sa-binomial-expansion.tex

Write down the binomial expansion for the following expressions, given the conditions indi-
cated. FYI, the binomial expansion is:
nn—1) 5, nn—-1)(n-2) 4

1+x)"=14nx+ T + 3 2+ ...

where x can be positive or negative and where n is any real number and only converges if
|x] < 1. Write at least the first three non-zero terms in the expansion:

a) For x > a:

b

(x +a)?
b) For z > a:

1

(z + a)3/?
c¢) For z > a:

(z + a)'/?
d) For x > a:

1 _ 1
(r+a)/2  (x—a)l/?

e) For r > a:

1
(r?2 4+ a? — 2ar cos(6))'/2




2.1. MATH

Problem 2. problems-1/math-sa-differentiate-expressions.tex

Evaluate the following expressions, where % means “differentiate with respect to ¢”:

a) — sin(wt) =

dt

b) %cos(wt) =

c) % In(at) =
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Problem 3. problems-1/math-sa-evaluate-vector-products.tex

vel]

9
A
z

a) Express the dot product in terms of its Cartesian components e.g. A=A, +A, g+ A2

A-B=

b) Express the dot product in terms of the magnitudes A, B and 6:

A-B=

c) Express the magnitude of cross product in terms of the magnitudes A, B and 6:

Ax B

d) Express the cross product in terms of its Cartesian components e.g. A= A 2+Ag+A2
(this has a lot of terms):




2.1. MATH

Problem 4. problems-1/math-sa-general-arithmetic.tex

Solve the following short problems:

a)
102
- —

b)

71%3.x103+12. =

c)

i 1o
2 V6

d)
cos(m/6)/9 =

e)

sin(30°) * 3.14 =
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Problem 5. problems-1/math-sa-integrate-expressions.tex

Evaluate the following indefinite and definite integrals:

w/2 ) B
a) /0 sin(6) df =

b) /cos(wt) dt =

c) /ac"d:n:

) / (—gt +vo) dt =




2.1. MATH 11
Problem 6. problems-1/math-sa-simple-series.tex

Evaluate the first three nonzero terms for the Taylor Series for the following expressions.
Recall that the radius of convergence for the binomial expansion (another name for the first

taylor series in the list below) is |z| < 1 — this gives you two ways to consider the expansions
of the form (z + a)".

a) Expand about x = 0:

(1+2)7 2~

b) Expand about x = 0:

c) For x > a (expand about x or use the binomial expansion after factoring):

(r+a) 2~

d) Estimate 0.9'/4 to within 1% without a calculator, if you can. Explain your reasoning.
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Problem 7. problems-1/math-sa-solve-simple-equations.tex
Solve for t. Your answer should be an equation, although you may give a number answer for

the last one as well as the algebraic answer if you have a calculator handy. You may find
In(2) ~ 0.693 to be a useful thing to know if not.

a) vot —x9 =0 t=

b) ——gt? +ugt =0t

1
c) —§gt2+v0t+x020 t=

d) A/2 = Ae™? t=

(for A =5).
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Problem 8. problems-1/math-sa-solve-simultaneous-equations-soln.tex

Solve the following system of simultaneous equations for ¢ and T'. Show your work and give
algebraic answers in terms of my, ma, 6 and g:

Probably the easiest way is to add the two equations to eliminate T on the spot:

migsin(@) —T = ma
+T —mag = maa
migsin(@) —meg = (my +m2)a

SO:

mygsin(f) — mag

mi + mg

We then back-substitute this into the second equation (rearranged and put over a common
denominator for a useful cancellation and factorization) for:

mimag , .
T =|mog + moa = ——=7 (sin(f) + 1
29+ maa = 2 (sin(9) + 1)
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Problem 9. problems-1/math-sa-solve-simultaneous-equations.tex

Solve the following system of simultaneous equations for a and T. Show your work and give
algebraic answers in terms of my, ma, 6 and g:

mygsin(f) — T = mja

T —mog = moa
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Problem 10. problems-1/math-sa-solve-simultaneous-equations-soln.tex

Solve the following system of simultaneous equations for ¢ and T'. Show your work and give
algebraic answers in terms of mqy, ma, € and g:

Probably the easiest way is to add the two equations to eliminate T on the spot:

migsin(@) —T = ma
+T —mag = maa
migsin(@) —meg = (my +m2)a

SO:

mygsin(f) — mag

mi + mg

We then back-substitute this into the second equation (rearranged and put over a common
denominator for a useful cancellation and factorization) for:

mimag , .
T =|mog + moa = ——=7 (sin(f) + 1
29+ maa = 2 (sin(9) + 1)
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Problem 11. problems-1/math-sa-sum-two-vectors-1.tex

Suppose vector A =43+ 69 and vector B =9%& + 67. Then the vector C=A+B:

a) is in the first quadrant (x+,y+) and has magnitude 17.
b) is in the fourth quadrant (x+,y-) and has magnitude 12.
c) is in the first quadrant (x+,y+) and has magnitude 13.
d) is in the second quadrant (x-,y+) and has magnitude 17.
)

e) is in the third quadrant (x-,y-) and has magnitude 13.
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Problem 12. problems-1/math-sa-sum-two-vectors-soln.tex

1) Adding the two vectors componentwise, we get the vector:
C=0B-7%+(6-3)§=—4d + 33

Thus:

a) is in the first quadrant (x+,y+) and has magnitude 7.

b) is in the second quadrant (x-,y+) and has magnitude 7.
@ is in the second quadrant (x-,y+) and has magnitude 5.
d). is in the fourth quadrant (x+,y-) and has magnitude 5.

e). is in the third quadrant (x-,y-) and has magnitude 6.

2) Again, we simply subtract the vectors componentwise:
C =13z

So:

a) is in the z-direction and has magnitude 17.

b

is in the y-direction and has magnitude 13.

¢) is in the —y-direction and has magnitude 12.

)
)
)
)

d

is in the z-direction and has magnitude 5.

is in the —z-direction and has magnitude 13.
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Problem 13. problems-1/math-sa-sum-two-vectors.tex

a) Suppose vector A =38+ 67 and bector B=-7%— 3y. Then the vector C=A+B:

A) is in the first quadrant (x+,y+) and has magnitude 7.
B) is in the second quadrant (x-,y+) and has magnitude 7.
C) is in the second quadrant (x-,y+) and has magnitude 5.
D) is in the fourth quadrant (x+,y-) and has magnitude 5.
E) is in the third quadrant (x-,y-) and has magnitude 6.

b) Suppose vector A =43+ 6% and vector B =93 + 67. Then the vector C=A-B:
A) is in the z-direction and has magnitude 17.
B
C
D
E

) is in the y-direction and has magnitude 13.

) is in the —y-direction and has magnitude 12.
) is in the z-direction and has magnitude 5.

)

is in the —z-direction and has magnitude 13.
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Problem 14. problems-1/math-sa-sum-two-vectors-soln.tex

1) Adding the two vectors componentwise, we get the vector:
C=0B-7%+(6-3)§=—4d + 33

Thus:

a) is in the first quadrant (x+,y+) and has magnitude 7.

b) is in the second quadrant (x-,y+) and has magnitude 7.
@ is in the second quadrant (x-,y+) and has magnitude 5.
d). is in the fourth quadrant (x+,y-) and has magnitude 5.

e). is in the third quadrant (x-,y-) and has magnitude 6.

2) Again, we simply subtract the vectors componentwise:
C =13z

So:

a) is in the z-direction and has magnitude 17.

b

is in the y-direction and has magnitude 13.

¢) is in the —y-direction and has magnitude 12.

)
)
)
)

d

is in the z-direction and has magnitude 5.

is in the —z-direction and has magnitude 13.
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Problem 15. problems-1/math-sa-taylor-series.tex

Evaluate the first three nonzero terms for the Taylor series for the following expressions.
FExpand about the indicated point:

a) Expand about x = 0:

(14 2)" ~
b) Expand about z = 0:

sin(z) ~
c¢) Expand about z = 0:

cos(z) =~

d) Expand about x = 0:

e) Expand about x = 0 (note: i2 = —1):

T

Verify that the expansions of both sides of the following expression match:

¢ = cos(0) + isin(h)
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Problem 16. problems-1/math-sa-trig-basic.tex

hyp
opp

adj

Fill in the following in terms of the marked sides. For example, one of the answers below might

be (but probably isn’t) 2%5:

sin(f) = cos(f) = tan(f) =
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Problem 17. problems-1/math-sa-vector-components.tex

(@) 5 (b)

60°

Two simple problems in vector analysis are presented above. You may leave your answers in
terms of radical fractions (e.g. 4/7/13) where appropriate. You may not use calculators!

a) Find the cartesian coordinate components (X,Y) of the vector given.

b) Find the polar coordinate components (V,6) of the vector given.

v =
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2.1.2 Regular Problems

Problem 18. problems-1/math-pr-elliptical-trajectory.tex

The position of a particle as a function of time is given by:

Z(t) = zo cos(wt) & + yp sin(wt)y

where xg > yo.

a) What is 9(t) for this particle?
b) What is @(t) for this particle?

c) Draw a generic plot of the trajectory function for the particle. What kind of shape is
this? In what direction/sense is the particle moving (indicate with arrow on trajectory)?

d) Draw separate plots of x(¢) and y(t) on the same axes.
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Chapter 3

Essential Laws, Theorems, and
Principles

The questions below directly” review basic physical laws and concepts. They are the stuff that
one way or another a student should know” going into any exam or quiz following the lecture(s)
in which they are covered. Note that there aren’t really all that many of them, and a lot of
them are actually easily derived from the most important ones.

IMO ewvery student should memorize, internalize, learn, know the principles, laws, and and
theorems covered in this section (and perhaps a few that haven’t yet been added). These are
things upon which all the rest of the solutions are based.

25
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Short Problem 1.

problems-1/true-facts-angular-momentum-conservation.tex

When is the angular momentum of a system conserved?

Short Problem 2.

problems-1/true-facts-archimedes-principle.tex

What is Archimedes’ Principle? (Equation with associated diagram or clear and correct state-
ment in words.)

Short Problem 3.

problems-1/true-facts-bernoullis-equation.tex

What is Bernoulli’s equation? What does it describe? Draw a small picture to illustrate.

Short Problem 4.

problems-1/true-facts-coefficient-of-performance.tex

How is the coefficient of performance of a refrigerator defined? Draw a small diagram that
schematically indicates the flow of heat and work between reservoirs.

Short Problem 5.

problems-1/true-facts-conditions-static-equilibrium.tex

What are the two conditions for a rigid object to be in static equilibrium?

Condition 1:

Condition 1:

Short Problem 6.

problems-1/true-facts-coriolis-force.tex

What “force” makes hurricanes spin counterclockwise in the northern hemisphere and clockwise
in the southern hemisphere?
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Short Problem 7.

problems-1/true-facts-definition-of-decibel.tex

One measures sound intensity in decibels. What is a decibel? (Equation, please, and define
and give value of all constants.)

Short Problem 8.

problems-1/true-facts-doppler-shift-moving-source.tex

What is the equation for the Doppler shift, specifically for the frequency f’ heard by a stationary
observer when a source emitting waves with speed u at frequence fy is approaching at speed
Ug?

Short Problem 9.

problems-1/true-facts-equipartition-theorem.tex

What is the Equipartition Theorem?

Short Problem 10.

problems-1/true-facts-four-forces-of-nature.tex

Name the four fundamental forces of nature as we know them now.

Short Problem 11.

problems-1/true-facts-generalized-work-energy.tex

What is the Generalized Work-Mechanical-Energy Theorem? (Equation only. This is the one
that differentiates between conservative and non-conservative forces.)

Short Problem 12.

problems-1/true-facts-heat-capacity-monoatomic-gas.tex
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What is the heat capacity at constant volume Cy, of N molecules of an ideal monoatomic gas?
What is its heat capacity at constant pressure Cp?

Short Problem 13.

problems-1/true-facts-heat-engine-efficiency.tex

What is the algebraic definition of the efficiency of a heat engine? Draw a small diagram that
schematically indicates the flow of heat and work between reservoirs.

Short Problem 14.

problems-1/true-facts-inelastic-collision-conservation.tex

What is conserved (and what isn’t) in an inelastic collision?

Short Problem 15.

problems-1/true-facts-integral-definition-moment-of-inertia.tex

Write the integral definition of the moment of inertia of an object about a particular axis of
rotation. Draw a picture illustrating what “dm” is within the object relative to the axis of
rotation.

Short Problem 16.
problems-1/true-facts-keplerl.tex

What is Kepler’s First Law?

Short Problem 17.
problems-1/true-facts-kepler2.tex

What is Kepler’s Second Law and what physical principle does it correspond to?

Short Problem 18.
problems-1/true-facts-kepler3.tex

What is Kepler’s Third Law?
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Short Problem 19.

problems-1/true-facts-momentum-conservation.tex

Under what condition(s) is the linear momentum of a system conserved?

Short Problem 20.

problems-1/true-facts-nl.tex

What is Newton’s First Law?

Short Problem 21.

problems-1/true-facts-n2.tex

What is Newton’s Second Law?

Short Problem 22.

problems-1/true-facts-n3.tex

What is Newton’s Third Law?

Short Problem 23.

problems-1/true-facts-newtons-law-gravitation.tex

What is Newton’s Law for Gravitation? Draw a picture showing the coordinates used (for two
pointlike masses at arbitrary positions), and indicate the value of G in SI units.

Short Problem 24.

problems-1/true-facts-parallel-axis-theorem.tex

Write the parallel axis theorem for the moment of inertia of an object around an axis parallel
to one through its center of mass. Draw a picture to go with it, if it helps.

Short Problem 25.

problems-1/true-facts-pascals-principle.tex

What is Pascal’s principle? A small picture would help.
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Short Problem 26.

problems-1/true-facts-perpendicular-axis-theorem.tex

Write the perpendicular axis theorem for a mass distributed in the x — y plane. Draw a picture
to go with it, if it helps.

Short Problem 27.

problems-1/true-facts-toricellis-law.tex

What is Toricelli’s Law (for fluid flow) and what is the condition required for it to be approxi-
mately true?

Short Problem 28.

problems-1/true-facts-venturi-effect.tex

What is the Venturi Effect?

Short Problem 29.
problems-1/true-facts-wave-equation-string.tex

Write the wave equation (the differential equation) for waves on a string with tension 7' and
mass density p. Identify all parts.

Short Problem 30.

problems-1/true-facts-work-energy.tex

What is the Work-Kinetic Energy Theorem?

Short Problem 31.
problems-1/true-facts-youngs-modulus.tex

What is the definition of Young’s modulus Y'? Draw a picture illustrating the physical situation
it describes and define all terms used in terms of the picture.



Chapter 4

Dynamics

31
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4.1 Kinematics

4.1.1 Multiple Choice Problems

Problem 19. problems-1/kinematics-mc-cannonball-timed-trajectories-icp.tex

a)

Two cannons fire projectiles into the air along the trajectories shown. Neglect the drag force
of the air. Which one is in the air longer? Justify your answer in some (very terse) way.
|:| Cannonball a is in the air longer. |:| Cannonball b is in the air longer.

I:l Cannonballs a and b are in the air the same amount of time.

D We cannot tell which is in the air longer without more information than is given in the
picture.
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Problem 20. problems-1/kinematics-mc-cannonball-timed-trajectories-icp-soln.tex

a)

Two cannons fire projectiles into the air along the trajectories shown. Neglect the drag force
of the air. Which one is in the air longer? Justify your answer in some (very terse) way.

|X| Cannonball a is in the air longer. I:l Cannonball b is in the air longer.

|:| Cannonballs a and b are in the air the same amount of time.

D We cannot tell which is in the air longer without more information than is given in the
picture.

Solution: The motion in z and y are independent for 2D trajectory problems. You can
therefore ignore the x motion altogether when you assess the answer to this question. So,
considering only how high each cannonball goes, which one is in the air longer?

Hopefully, given this hint, you correctly selected cannonball a). This is the easy way.
Now let’s do it “the hard way”. Suppose a cannonball has an initial upward component of its
velocity of vgp,. Then:
1 2 2?}0
y(ty) = voyty — igtg =0 = t;,=0, Ty

are the times the cannonball is at y = 0 (the ground) and:

Vo t
’Uy(tH):O:’UQy—gtH = tH:_y:_g
g 2
We relate this to the maximum height H as:
1 v3 2¢H 2H
H:UOytH_agt%{:¥ = ’UQy:\/QgH = tg:2>< g =2/ —
g g g

Or (to conclude), the time the cannonball stays in the air scales monotonically with v/ H, so
explicitly, the higher the cannonball goes, the longer it is in the air before it hits the ground,
independent of its range because vy, can be selected independent of vg, and hence H.
You can literally make the cannonball have any range you like (within reason, limited by the
curvature of the Earth, relativity theory, drag etc) as long as you give it some positive vg, so
tg >0in R = ontg.
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Problem 21. problems-1/kinematics-me-range-of-cannon-on-plain-review.tex

A cannon sits on a horizontal plain. When it

T fires a cannonball of mass m at speed vy at an
J@fl R angle 0 relative to the ground it has a range
77777777777777777777 R (neglecting friction and drag). Suppose one

et wishes to fire at a target a distance 2R away

o - without altering the the elevation angle 6. The
-@ initial speed of the cannonball as it leaves the

cannon in terms of vy must then be:

D \/51)0 \:‘ 22}0 D 31)0 D 41)0

D We cannot tell because the answer depends upon 6.
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Problem 22. problems-1/kinematics-mc-range-of-cannon-on-plain-review-soln.tex

A cannon sits on a horizontal plain. When it

T fires a cannonball of mass m at speed vy at an
_@{I R angle 0 relative to the ground it has a range
77777777777777777777 R (neglecting friction and drag). Suppose one

e wishes to fire at a target a distance 2R away

ny/ . - without altering the the elevation angle 6. The
-@ initial speed of the cannonball as it leaves the

cannon in terms of vy must then be:

& \/51)0 \:‘ 2?}0 D 31)0 D 41)0

D We cannot tell because the answer depends upon 6.

Solution: This is a conceptual problem; we’ll use scaling to answer it. Note that the time the
cannonball is in the air is proportional to vg. Note that the distance in x that the cannonball
travels when it is in the air is also proportional to vg. We therefore expect:

Rx1} = 2Rx(zxv)? = |z=+2

Note that this reasoning only takes a few seconds. If you want to fill in details, or check your
answer with a full solution, you would note that (after solving the simple kinematics of constant
acceleration near-Earth gravitation):

1 20 sin 0
y(tf):vosinﬁtf—igtfczo = tfzo,%

We obviously want the second time as the time the cannonball lands; t; = 0 is when it is fired.
Then:

z(tf) =R=vgcosfty = |R= <2Slni%0%9> o2

verifying explicitly our verbal conclusion that R o vg above.
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Problem 23. problems-1/kinematics-mc-falling-time-mars-review.tex

Surface gravity on Mars is roughly 1/3 that of the Earth.
Suppose you drop a rock (initially at rest) from a height
H,, on Mars and it takes a time t, to hit the ground.
From what height H. do you need to drop the mass on
Earth so that it hits the ground in the same amount of
time?

DoO0dod

CHAPTER 4. DYNAMICS

H. = /3H,,
H, = H,,/3
H, = 9H,,
H. = Hypn/V3
H, = 3H,,
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Problem 24. problems-1/kinematics-mc-falling-time-mars-review-soln.tex

|:| He = \/gHm
Surface gravity on Mars is roughly 1/3 that of the Earth.
Suppose you drop a rock (initially at rest) from a height ‘:l He = Hyp /3
H,, on Mars and it takes a time t, to hit the ground. H o—on
From what height H. do you need to drop the mass on D e = 9Hm
Earth so that it hits the ground in the same amount of

H.=H 3

time? D ¢ m/\/_

X H.=3H,

Solution: Let’s answer this using scaling. On Mars (where the acceleration is g,,) we know
that:

1
H,, = §gmt3

(where g = 3g,,). We need:

1 1 1
Ho = gatt = g3onts =3 (50u82) =

Note that there are several other algebraically equivalent ways (for example, substitution) to
arrive at the same conclusion, all correct, but the virtue of this one is that we never have to
explicitly evaluate t, on either Mars or the Earth. You can almost do it in your head!
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4.1.2 Short Answer Problems

Problem 25. problems-1/kinematics-sa-green-laser-falls-review.tex

The Green Lantern’s daughter, Green Laserbeam,
steps off of a tall building to follow her dad to the
ground. She falls freely (from rest) to the ground,
falling the last half of the total distance in a time
to. Find the ratio of t5 to the total time it takes
for her to reach the ground t.;. Your answer
should be a number (and may have e.g. square
roots in it). Hint: to = tyor — t1.

ta

ttot
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Problem 26. problems-1/kinematics-sa-green-laser-falls-review-soln.tex

The Green Lantern’s daughter, Green Laserbeam,
steps off of a tall building to follow her dad to the
ground. She falls freely (from rest) to the ground,
falling the last half of the total distance in a time
to. Find the ratio of t5 to the total time it takes
for her to reach the ground ti,. Your answer
should be a number (and may have e.g. square
roots in it). Hint: to = tor — 1.

t 2
2 - 1-— v2 ~ 0.3
ttot 2

Solution: We use constant acceleration kinematics several times. Note the following:

B 1w o o= 2
2 — 291 L=\

1 2H
H = Qgtgot = tiot = 7

H ta  V2—-1 2—-+2
to =t —t1 = (V2-1)y /= = |== _ —1_
o =tot —t1 = (V2—1) J - 7 5

;s
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4.1.3 Ranking Problems

Problem 27. problems-1/kinematics-ra-scaling-fall-times-mongo-bongo-review.tex

A mass m is used to perform kinematics experiments on two distant planets, Mongo and Bongo.
You expect that the near-surface gravitational force on Mongo or Bongo, like that of Earth, is
given by:

Fy=-mg;  (i=M,B)

You observe that when it is dropped from 10 meters above the ground on Mongo, it takes 2
seconds to reach the surface. On the other hand, when it is dropped from 5 meters above the
ground on Bongo, it takes 1 second to reach the surface. Rank the surface gravity of Mongo
relative to Bongo below (put a symbol <, >, = in the provided box):

am 9B
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Problem 28. problems-1/kinematics-ra-scaling-fall-times-mongo-bongo-review-soln.tex

A mass m is used to perform kinematics experiments on two distant planets, Mongo and Bongo.
You expect that the near-surface gravitational force on Mongo or Bongo, like that of Earth, is
given by:

Fy=—mg; (i = M,B)

You observe that when it is dropped from 10 meters above the ground on Mongo, it takes 2
seconds to reach the surface. On the other hand, when it is dropped from 5 meters above the
ground on Bongo, it takes 1 second to reach the surface. Rank the surface gravity of Mongo
relative to Bongo below (put a symbol <, >, = in the provided box):

am | < | 9B

Solution: Let’s form the ratios:

Hu o 9wty o,
Hp s9Bt% 9B
or:
1
gM = 598
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4.1.4 Regular Problems

Problem 29. problems-1/kinematics-pr-2D-basketball-trajectory-review.tex

A basketball player shoots a jump hook at a
(horizontal) distance R from the basket, re-
leasing the ball at a height H above the rim Y
as shown. To shoot over his opponent’s out-
stretched arm, he releases the basketball at

an angle 6 with respect to the horizontal.

Find vy, the speed he must release the bas- 4@

ketball with (in terms of H, R, g and ) for
the ball to go through the hoop “perfectly”
as shown. Assume that his release is on line
and undeflected, at initial speed vy and that
the acceleration of the basketball is @ = —g7,
ignoring drag.
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Problem 30. problems-1/kinematics-pr-2D-basketball-trajectory-review-soln.tex

First, note that
a; = 0,vp, = vgcos(f),xg =0

and
Gy = —g,Voy = Vo Sin(e)ayo =0

define the initial conditions of two independent 1D constant acceleration problems.

Integrate a, = 0 twice to get:
x(t) = vo cos(0)t

Integrate a, = —g twice to get:
1 2 .
y(t) = —§gt + vo sin(0)t
Next, find the time t, that the basketball reaches the horizontal position of the hoop:
R = vy cos(0)ty = t, = R/(vg cos(h))
This must also be the time that the ball has exactly the height of the hoop:
1 2 .
—H = —§gtb + v sin(6)t
__9R
203 cos?(0)

_ 9B
202 cos2(6)

—-H = + Rtan(6)

= Rtan(f) + H

And finally, we solve for vg:

_ gR?
= 2(Rsin(0) cos(9) + H cos?(0))

After doing the algebra, check the dimensions. Are they OK?
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Check “common sense” — does the solution vary the way you expect? Well, if g goes up, he
must shoot the ball faster to overcome gravity on (say) Jupiter. Makes sense. If H goes up,
must shoot faster even here on Earth to reach the hoop. Makes sense.

Note that solution doesn’t tell us whether a shot at the given angle will hit the rim, but if 8
points directly at center of hoop (tan(f) = —H/R) then vp has to become “infinite” for ball to
travel in a straight line to the target. There are no solutions for angles less than this as we
can tell because the solution speed becomes imaginary! This too makes “sense”.

Note Well: There is a second, much more painful solution that involves finding the time that
the basketball reaches the right height H first, then substituting it into equation for R. This
solution can work, but it is not easy. The trick is to isolate the radical on one side of the
equals sign, square both sides (to make the radical go away), and then solve for vg. Done
perfectly, it will give you precisely the same answer obtained above.
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Problem 31. problems-1/kinematics-pr-monkey-gun.tex

A hunter aims his gun directly at a monkey in a distant tree. Just as she fires, the monkey lets
go and drops in free fall towards the ground. Show that the bullet hits the monkey.
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Problem 32. problems-1/kinematics-pr-bombing-run-trajectory-review.tex

A bomber flies with a constant horizontal velocity vg. It wishes to target a dummy tank on the
ground in a practice bombing run. The bombardier will drop a bomb (of mass m) when the
view angle of the tank relative to the bomber is 6;. The bomber’s height is H. Assume that
there are no drag forces.

What should the angle 8; be at the instant of release if the bomber wishes to hit the tank?



4.1. KINEMATICS 47

Problem 33. problems-1/kinematics-pr-golf-on-moon-icp.tex

R=7?

An astronaut on the moon hits a golf ball of mass m horizontally from a tee H meters above
the plane as shown. The initial speed of the ball is vg in the z-direction only. The gravitational
force law for the moon is:
ﬁm = _mgj
6
Note that there are no drag forces as the moon is in a vacuum, and that the lunar plane is flat

on the scale of this picture. Use Newton’s second law to answer the following questions:

a) How long does it take the ball to reach the ground?
b) How far from the base of the cliff where the tee is located does the ball strike?

c) How fast is the ball going when it hits the ground?
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Problem 34. problems-1/kinematics-pr-golf-on-moon-icp-soln.tex

1
~)

R P
1
N

N T BN ET
I g g
2H
b) R = x(ty) = voty = Vo / 7

c¢) This one is a bit tricky (and gets much easier with energy conservation later):

vz (tg) = vo
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Problem 35. problems-1/kinematics-pr-stopping-before-a-turtle.tex

D -

A

A distance of D meters ahead of your car you see a box turtle sitting on the road. Your car is
traveling at a speed of vy meters per second straight at the turtle (along the straight road).

a) What is the (algebraic) magnitude of the minimum acceleration your car must have in
order to stop before hitting the turtle? What is its direction?

b) How long does it take to stop your car at this acceleration?

c¢) Evaluate your algebraic answers for D = 50 m, vy = 20 m/sec (about 45 mph). If your
car’s maximum braking acceleration magnitude is a = 5 m/sec?, do you hit the turtle?
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Problem 36. problems-1/kinematics-pr-two-falling-balls.tex

-—R

When a trigger is pulled at time ¢t = 0, a compressed spring simultaneously drops ball 1 and
hits identical ball 2 so that it is shot out to the right as initial speed vy as shown. The two balls
then independently fall a height H. Answer the following questions, assuming that the balls
fall only under the influence of gravity. (Neglect drag forces, and express all answers in terms
of the givens, in this case H and vy and (assumed) gravitational acceleration g.).

a) Which ball strikes the ground first (or do they strike at the same time)? Prove your
answer by finding the time that each ball hits the ground.

b) Which ball is travelling faster when it hits the ground (or do they hit at the same speed)?
Prove your answer by finding an expression for the speed each ball has when it hits the
ground.

c¢) Find an expression for R, the horizontal distance ball 2 travels before hitting the ground.
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4.2 Newton’s Laws

4.2.1 Multiple Choice Problems

Problem 37. problems-1/force-mc-acceleration-two-masses-1.tex

+yym,=2kg m,=4Kkg

+X

A mass m1 = 2 kg and a mass of mg = 4 kg are both dropped from rest from the same height
at the same time. Mark the true statements with an “X” below (there can be more than one).
Neglect drag forces.

D While the two masses are falling, the force acting on m, and the force acting on mg are
equal in magnitude.

|:| While the two masses are falling, the acceleration of m; and the acceleration of mso are
equal in magnitude.

|:| Mass mo will strike the ground first.
I:l Mass m1 will strike the ground first.

|:| The two masses will strike the ground at the same time.
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Problem 38. problems-1/force-mc-acceleration-two-masses-1-soln.tex

+yym, =2kg m,=4Kkg

+X

We recall that for near-Earth gravity (Newton’s Second Law):
Fy = —mg = ma,

The masses are different: m1g # mog. The accelerations are the same, in both cases g because
m cancels in Newton’s Second Law.

If the accelerations are the same and the initial conditions (in y) are the same, the motion (in

y) must be the same! In fact:
L o

yi(t) = y2(t) = H — 59t

This is what Galileo observed in the (possibly apocryphal) experiment of dropping two different
masses off of the leaning tower of Pisa. They struck the ground at the same time (within a
small difference we can attribute to the neglected drag forces)!

|:| While the two masses are falling, the force acting on mq and the force acting on mg are
equal in magnitude.

& While the two masses are falling, the acceleration of m and the acceleration of mso are
equal in magnitude.

D Mass mo will strike the ground first.
|:| Mass my will strike the ground first.

IXI The two masses will strike the ground at the same time.
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Problem 39. problems-1/force-mc-block-on-paper-icp.tex

I —

e —
A block of mass m is resting on a long piece of smooth paper. The block has coefficient of
static and kinetic friction s, ur with the paper, respectively. You jerk the paper horizontally
so it slides out from under the block quickly in the direction indicated by the arrow without
sticking. Which of the following statements about the force acting on and acceleration of the
block are true?

a) F' = pusmg, a = psg, both to the right. b) F = ugmg to the right, a = purg to the
left.

¢) F = prmg, a = prg both to the left. d) F = ugmyg to the left, a = uxg to the right.

e) F = purmg, a = prg both to the right. f) None of the above.
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Problem 40. problems-1/force-mc-block-on-paper-icp-soln.tex

m

R
e —

Explanation: Friction opposes the relative sliding direction between the two surfaces. As
the paper is pulled out from under the block, it tries to pull the block along with it as it slides
back! You can easily verify this with a simple experiment in which you mark the position of a
“block” (e.g. cell phone, quarter, keys) on a sheet of paper relative to the table it sits on
with your finger and then pull the sheet out from under it sharply. You will see tht the block is
displaced in the direction the paper was pulled and does not move backwards in absolute
terms.

Students are often confused by this because their mental point of view “automatically” jumps
into the accelerating frame of the paper. Relative to the paper, the block appears to slide
backwards. But this is an illusion, the visualization of a pseudoforce in an accelerating frame,
just as no “force” pushes you back into your car seat when you accelerate, the car seat pushes
you forward so that you keep up with the car!

The answer therefore is:

a) F' = pusmg, a = psg, both to the right. b) F = ugmg to the right, a = purg to the
left.

¢) F = prmg, a = prg both to the left. d) F = uxmg to the left, a = uxg to the right.

F = ppmg, a = prg both to the right. f). None of the above.
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Problem 41. problems-1/force-mc-N3-pick-list-1-icp.tex

The following sentences each describe two specific forces exerted by objects in a physical situ-
ation. Circle the letter of the sentences where those two forces form a Newton’s Third Law
force pair. More than one sentence or no sentences at all in the list may describe a
Newton’s Third Law force pair.

a) In an evenly matched tug of war (where the rope does not move); team one pulls the
rope to the left with some force and team two pulls the rope to the right with an equal
magnitude force in the opposite direction.

b) Gravity pulls me down; the normal force exerted by a scale I'm standing on pushes me
up with an equal magnitude force in the opposite direction.

¢) The air surrounding a helium balloon pushes it up with a buoyant force; the balloon
pushes the air down with an equal magnitude force in the opposite direction.
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Problem 42. problems-1/force-mc-N3-pick-list-1-icp-soln.tex

Newton’s Third Law states:
F, p=—Fpay
or, in words, if object B exerts a force (with a named force law) on object A, then object A

exerts and equal and opposite force on object B. Note well: A and B must be the same
and the (named) force must be the same.

A common mistake is to interpret a problem statement with object A exertlng a force on object
C, object B exerting an opposite force on object C, and concluding that F Ac and F BC are a
Newton’s Third Law pair.

Therefore the only correct statement is c).
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Problem 43. problems-1/force-mc-N3-pick-list.tex

Identify the Newton’s Third Law pairs from the following list of forces (more than one could
be right). Explain why each answer that you come up with is correct.

‘:’ Gravity exerts a force on a block sliding down an incline. Kinetic friction and the normal
force exert a force up the incline on the block.

D Static friction prevents a block from sliding down an angled plank; the block exerts a
equal magnitude force of static friction down the incline of the plank.

D A block is dragged at constant speed across the ground by a rope with tension T. Kinetic
friction pulls back with an equal and opposite force.

I:l A person stands on a scale that reads the magnitude of the normal force pressing on its
top surface. Gravity pulls the person down with a force equal to their weight read by the
scale.

|:| Expanding gases push a bullet out of a gun. The bullet pushes back on the expanding
gases with an equal but opposite force.
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Problem 44. problems-1/force-mc-N3-pick-list-soln.tex

Identify the Newton’s Third Law pairs from the following list of forces (more than one could
be right). Explain why each answer that you come up with is correct.

‘:’ Gravity exerts a force on a block sliding down an incline. Kinetic friction and the normal
force exert a force up the incline on the block.

|X| Static friction prevents a block from sliding down an angled plank; the block exerts a
equal magnitude force of static friction down the incline of the plank.

‘:’ A block is dragged at constant speed across the ground by a rope with tension 7'. Kinetic
friction pulls back with an equal and opposite force.

I:l A person stands on a scale that reads the magnitude of the normal force pressing on its
top surface. Gravity pulls the person down with a force equal to their weight read by the
scale.

|Z| Expanding gases push a bullet out of a gun. The bullet pushes back on the expanding
gases with an equal but opposite force.

Explanations: In order to be an N3 pair, both the name of the named force law and the
two objects interacting via the force have to be the same, in which case N3 says the magnitudes
have to be the same and in the opposite direction.

In the first case, there are three forces, none of which form an interaction pair.
In the second case, it is static friction, same magnitude, opposite direction. Check!

In the third case, it is tension and kinetic friction, each of which has a different interaction
partner and name. So even though they happen to be equal and opposite, they aren’t an N3
pair.

In the fourth case, it is normal force and gravity, each of which has a different interaction
partner and name. So even though they happen to be equal and opposite, they aren’t an N3
pair.

In the fifth case, gas pushes on the bullet via pressure at the point of contact, so the bullet
pushes back on the gas, also via pressure at the surface of contact. Even without knowing the
name or origin of the macroscopic force (gas pressure), you can tell this is an N3 pair from the
problem statement!
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Problem 45. problems-1/force-mc-pushing-two-blocks.tex

F
M |'m

The figure shows two blocks of mass M and m that are being pushed along a horizontal
frictionless surface by a force of magnitude F' as shown. What is the magnitude of the force
that the block of mass M exerts on the block of mass m?
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Problem 46. problems-1/force-mc-sliding-block-and-tackle.tex

usluk

\ m,

S

A block of mass my sits on a rough table. The coefficient of static and kinetic friction between
the mass and the table are ug and uy, respectively. Another mass ms is suspended as indicated
in the figure above (where the pulleys are massless and the string is massless and unstretchable).
What is the maximum mass mo for which the blocks remain at rest?

a) mo = 2mqjig

b) ma = mqpu/2

d

)
)

c) my =m1/ps
) mao = 2maps
)

e) mg = mifs/2
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Problem 47. problems-1/force-mc-terminal-velocity-vsq-2bs.tex

Two spherical objects, both with mass m, are falling freely under the influence of gravity
through air. The air exerts a drag force on the two spheres in the opposite direction to their
motion with magnitude Fy = blv% and Iy = bg’U% respectively, with bg = 2b;.

Suppose the terminal speed for object 1 is v;. Then the terminal speed of object 2 is:

a) 2u;

b) \/§'Ut

£
g S

Ut

e) v/2
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CHAPTER 4. DYNAMICS

Problem 48. problems-1/force-mc-terminal-velocity-vsq.tex

g (down)

air

In the figure above, a spherical mass m is falling freely under the influence of gravity through
air. The air exerts a turbulent/quadratic drag force on the sphere in the opposite direction
to its motion with drag coefficient c. After a (long) time, the falling mass approaches a constant

terminal speed vy, where:

'Ut:%
'Ut:%
= (2
UVt = %

<
<~4-

I
/N
S
N——
~
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Problem 49. problems-1/force-mc-terminal-velocity-vsq-soln.tex

g (down)

air

In the figure above, a spherical mass m is falling freely under the influence of gravity through
air. The air exerts a turbulent/quadratic drag force on the sphere in the opposite direction
to its motion with drag coefficient c. After a (long) time, the falling mass approaches a constant
terminal speed vy, where:

Solution: Terminal velocity means no acceleration, which means in turn no net force:

Ftot:mg—cvgzmazo

or
cvt2 =1mg
or
mg
UV = —
c
Hence:
a) v = %
b) VU = %
2
c) v = (")
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Problem 50. problems-1/force-mec-terminal-velocity-v.tex

g (down)

air

In the figure above, a spherical mass m is falling freely under the influence of gravity through
air. The air exerts a drag force on the sphere in the opposite direction to its motion of magnitude
F; = bv (where the drag coefficient b is determined by the shape of the object and its interaction
with the air). After a (long) time, the falling mass approaches a constant terminal speed vy,
where:

a) vy =14
b) v = 78
¢) v = (%2)°
d) vy = /™8
e) vt:<%)t



4.2. NEWTON’S LAWS 65

Problem 51. problems-1/force-mc-two-constant-forces.tex

. m v,
gravity ==
=2mg

Frocket

X

In the figure above, a rocket engine exerts a constant force F = 2mg & to the right on a freely
falling mass near the surface of the earth. The object is initially moving at velocity vg
to the right (+x direction). No drag or frictional forces are present — consider only the two
forces of gravity and the rocket engine. The object:

a) Moves in a straight line with an acceleration of magnitude 3g.

b) Moves in a straight line with an acceleration of magnitude v/5g.

)

)
c) Moves in a parabolic trajectory with an acceleration of magnitude 3g.
d) Moves in a parabolic trajectory with an acceleration of magnitude v/5g.
)

e) We cannot determine the trajectory and/or the magnitude of the acceleration from the
information given.

Sketch your best guess for the trajectory of the particle in on the figure above as a dashed line
with an arrow.
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Problem 52. problems-1/force-mc-two-constant-forces-soln.tex

y Frocket = 2 mg

Fot
mg

X

Solution: The vector sum of the forces is:

ﬁtot:2mgi—mg@ = a=02&—-9)9 = a:]d’\:\/22+12)g:\/gg

so the acceleration is down and to the right. It has a nonzero initial velocity component
perpendicular to this direction so it moves in a parabolic, not a linear, trajectory:
a) Moves in a straight line with an acceleration of magnitude 3g.
b) Moves in a straight line with an acceleration of magnitude v/5g.
¢) Moves in a parabolic trajectory with an acceleration of magnitude 3g.
Moves in a parabolic trajectory with an acceleration of magnitude v/5g¢.

e). We cannot determine the trajectory and/or the magnitude of the acceleration from the
information given.



4.2. NEWTON’S LAWS 67

Problem 53. problems-1/force-mec-two-masses-falling-drag-icp.tex

+y,ym, =2 kg m, = 4 kg

+X

A mass m; = 2 kg and a mass of my = 4 kg have identical size, shape, and surface character-
istics, and are both dropped from rest from the same height H ~ 50 meters at the same time.
Air resistance (drag force) is present! Place a T/F in each box below as required:

Initially, the acceleration of both masses is the same.
The 2 kg mass hits the ground first.
The 4 kg mass hits the ground first.

Both masses hit the ground at the same time.

O 0O 00O

Just before they hit, the acceleration of the heavier mass is greater.
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Problem 54. problems-1/force-mc-two-masses-falling-drag-icp-soln.tex

+yym, =2kg m,=4kg

+X

Suppose that a = g — cv?/m (down) for either mass (quadratic drag). The answer will not
depend on this — you’ll get the same answer for linear drag.

Both masses initially accelerate with a = g when v = 0, but after they’ve fallen a short distance,
the larger mass will always have the larger acceleration down, although after a very long time
both accelerations will approach zero as terminal velocity is reached.

Note that the terminal velocity of the lighter mass will always be smaller than the terminal
velocity of the heavier one:

. mg . mg
quadratic: v = 4/ —= or linear: v; = s
c

Either way, the heavier mass will consistently move faster than the lighter mass, and hence will
reach the ground first.

It’s good to learn to use intuition, rather than computation, to answer questions like this —
it’s much faster! With masses of 2 kg and 4 kg that are relatively close together, the answer
may not be obvious. But what if one ball was coated styrofoam and had a mass of 0.1 kg
and the other was coated tungsten and had a mass of 100 kg? The first would float slowly
down, almost instantly reaching terminal velocity. The other would fall like a proverbial rock,
almost minimally affected by drag over a very long distance. Sometimes it helps to think about
extreme cases when looking at problems like this that are hard to resolve when things are close.

Initially, the acceleration of both masses is the same.
The 2 kg mass hits the ground first.
The 4 kg mass hits the ground first.

Both masses hit the ground at the same time.
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Just before they hit, the acceleration of the heavier mass is greater.
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Problem 55. problems-1/force-mc-inertial-reference-frames.tex

Newton’s Second Law states that ﬁtot = md where ﬁtot is the total force exerted on a given
mass m by actual forces of nature or force rules that idealize actual forces of nature (such
as Hooke’s Law, normal forces, tension in a string), but only if one defines @ in an inertial
reference frame.

Select the best (most complete and accurate) explanation for the inertial reference frame re-
quirement below:
|:| It is too difficult to solve for the acceleration of a mass in a non-inertial reference frame.

|:| In non-inertial reference frames, the sum of the actual forces acting on a mass is no
longer equal to the mass times its acceleration in the frame.

|:| The Earth’s surface is “the” reference inertial reference frame; we use it as the basis for
physics in all other frames moving at constant velocity relative to the Earth.

|:| Inertial reference frames allow one to use pseudoforces when forces alone are not enough.

‘:’ Because the inertia/mass of an object cannot be measured in a non-inertial reference
frame, Newton’s Second Law doesn’t hold there.
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Problem 56. problems-1/force-mc-inertial-reference-frames-soln.tex

Newton’s Second Law states that ﬁtot = md where ﬁtot is the total force exerted on a given
mass m by actual forces of nature or force rules that idealize actual forces of nature (such
as Hooke’s Law, normal forces, tension in a string), but only if one defines @ in an inertial
reference frame.

Select the best (most complete and accurate) explanation for the inertial reference frame re-
quirement below:
|:| It is too difficult to solve for the acceleration of a mass in a non-inertial reference frame.

|Z| In non-inertial reference frames, the sum of the actual forces acting on a mass is no
longer equal to the mass times its acceleration in the frame.

|:| The Earth’s surface is “the” reference inertial reference frame; we use it as the basis for
physics in all other frames moving at constant velocity relative to the Earth.

|:| Inertial reference frames allow one to use pseudoforces when forces alone are not enough.

‘:’ Because the inertia/mass of an object cannot be measured in a non-inertial reference
frame, Newton’s Second Law doesn’t hold there.
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Problem 57. problems-1/force-mc-weight-in-elevator-icp.tex

In the figure above, a person of mass m is standing on a scale in an elevator (near the Earth’s
surface) that is accelerating upwards with acceleration a. What does the scale read?

[] mg. [] ma. [[] m(g+a). [[] m(g—a).

I:l We cannot tell what the scale would show without more information.
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Problem 58. problems-1/force-mc-weight-in-elevator-icp-soln.tex

Vmg

From the force diagram and the given information, we know that:
Fyot = N —mg=ma (up)
Scales measure not weight but the normal force N. Solving for N,
N =mg+ma=m(g+a) =mg

Hence:

] mg. [] ma. X] m(g+a). [] m(g—a).

D We cannot tell what the scale would show without more information.
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Problem 59. problems-1/force-mc-coriolis-dropped-mass-at-equator.tex

A dense mass m is dropped “from rest” from a high tower built at the equator. As the mass
falls, it to a person standing on the ground appears to be deflected as it falls to the:

a) East.

b) West.

)
)
c) North.
d) South.
e) Cannot tell from the information given.
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Problem 60. problems-1/force-mc-coriolis.tex

The Earth is a rotating sphere, and hence is not really an inertial reference frame. Select the
true answers from the following list for the apparent behavior of e.g. naval projectiles or freely
falling objects:

a)

A naval projectile fired due North in the northern hemisphere will be (apparently) de-
flected East (spinward).

A naval projectile fired due South in the northern hemisphere will be (apparently) de-
flected East (spinward).

A bomb dropped from a helicopter hovering over a fixed point on the surface in the
northern hemisphere will be (apparently) deflected West (antispinward).

A bomb dropped from a helicopter hovering over a fixed point on the surface in the
northern hemisphere will be (apparently) deflected East (spinward).

An object placed at (apparent) “rest” on the surface of the Earth in the Northern hemi-
sphere experiences an (apparent) force to the North.

An object placed at (apparent) “rest” on the surface of the Earth in the Northern hemi-
sphere experiences an (apparent) force to the South.

The true weight of an object measured with a spring balance in a laboratory on the
equator is a bit larger than the measured weight.

The true weight of an object measured with a spring balance in a laboratory on the
equator is a bit smaller than the measured weight.
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4.2.2 Short Answer Problems

Problem 61. problems-1/force-sa-block-on-paper.tex

My
m

I
I ——

A block of mass m is resting on a long piece of smooth paper. The block has a coefficient of
kinetic friction pi with the paper. You pull the paper horizontally out from under the block
quickly in the direction indicated by the arrow.

a) Draw the direction of the frictional force acting on the block.

b) What is the magnitude and direction of the acceleration of the block?
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Problem 62. problems-1/force-sa-free-fall-cliff-icp.tex

A ball of mass m is dropped from rest over the edge of a very tall (kilometer high) cliff. It
experiences a drag force opposite to its velocity of Fy = —cv? where ¢ is the quadratic drag
coefficient.

a) On the axes above, qualitatively plot its downward speed as function of time.

b) What is its approximate speed when it hits after falling a long time/distance?
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Problem 63. problems-1/force-sa-free-fall-cliff-icp-soln.tex

CHAPTER 4.

Note that the terminal velocity (down) is given by:

F=mg—cv?=0 or

UV =

mg

Cc

This determines the dashed asymptote at the top and is the answer to part b)

DYNAMICS

We know that right after it is released, the drag force is zero, so the slope of v(t) must be g
(again, positive down). In between, v(t) has to smoothly start with slope g and bend over to
approach v;. In the textbook it is shown that the actual function is:

olt) = /" i Q/%)

(which is what is actually plotted above) but you don’t need to know this, or know what a
hyperbolic tangent function looks like, to get the qualitatively correct shape, asymptotically
approaching the easily found terminal velocity after initially falling with an acceleration (slope

of v(t)!) of g.
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Problem 64. problems-1/force-sa-kinematic-graphs-1-icp.tex

F.(0)

1 2 3 4 5 6 t(seconds)

The graph above represents the force in the positive = direction F,(t) applied to a mass m = 1
kg as a function of time in seconds. The mass begins at rest at x = 0. The force F' is given in
Newtons, the position z is given in meters.

a) What is the acceleration of the mass during the time interval from ¢ = 0 to ¢ = 6 seconds
(sketch a curve)?

b) How fast is the mass going at the end of 6 seconds?

c) How far has the mass travelled at the end of 6 seconds?
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Problem 65. problems-1/force-sa-kinematic-graphs-1-icp-soln.tex

a,(t)

1 2 3 4 5 6 t(seconds)

Since m is 1 kg, a, = F,/m has the same graph, just different units on the vertical scale. Since
it starts at rest, the speed in the positive x direction is just the area under the a, curve.
At the end of six seconds, then, it is at rest again, as the positive and negative areas (visibly)
cancel. The distance travelled is more difficult, but is (6) = 2 + 4 4+ 2 = 8 meters, where each
number represents a two second integral of the velocity/speed in the positive z-direction.
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Problem 66. problems-1/force-sa-parachutist.tex

A skydiver of mass m jumps from a helicopter and im-
mediately opens her parachute (so that her initial down-
ward speed with the parachute open is basically zero.) The
parachute exerts a quadratic drag force (proportional to
v?) with a drag coefficient b.

a) Draw a free body diagram showing the forces acting
on the skydiver a short time later when her downward
speed is v. Write down an expression for the magnitude
of her acceleration at this speed.

b) Find her terminal (asymptotic) speed as she falls over
a very long distance.

c¢) If her terminal speed needs to be reduced by a factor
of 2 for her to land safely, by what factor must b be
increased?
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Problem 67. problems-1/force-sa-pushing-two-blocks-2.tex

The figure shows two blocks of mass M and m that are being pushed along a horizontal
frictionless surface by a force of magnitude F as shown. What is the magnitude of the
(contact /normal) force that the block of mass m exerts on the block of mass M?
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Problem 68. problems-1/force-sa-pushing-two-blocks.tex

The figure shows two blocks of mass M and m that are being pushed along a horizontal friction-
less surface by a force of magnitude F' as shown. What is the magnitude of the (contact/normal)
force that the block of mass M exerts on the block of mass m?
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Problem 69. problems-1/force-sa-two-blocks-friction.tex

"'lsl I“lk

A block of mass mq is placed on a larger block of mass mo > my, where there is a coefficient
of static friction us = 0.25 and a coefficient of kinetic friction pi = 0.2 for the surface in
contact between the blocks. Both blocks are on a frictionless table. A force of magnitude
F = 3(my + mz2)g is applied to the bottom block only.

a) Is the magnitude of the acceleration of the lower block greater than, less than, or equal
to the magnitude of the accleration of the upper block?

b) Find the acceleration of the top block only (magnitude and direction).
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Problem 70. problems-1/force-sa-two-blocks-friction-soln.tex

2)

N

m

f, = .

\ m.g

m,

m.g

Solving this problem requires insight and careful reasoning.

Suppose that the two blocks “moved as one”. Then the acceleration of the system would

be:
F 3(mqy +ma)g
a = = = 39
(m1 + m2) (m1 + mQ)

That means that the force of static friction acting to the right on the upper block would
have to be fs1 = 3m1g > usmig = fi***. This exceeds the maximum static friction force
one can exert on the upper block, so that the upper block slides and they do not move
as one.

Be careful: the upper block slides backwards relative to the lower block, but they
both accelerate forward (to the right) with the acceleration of the lower block being (as
we shall see) much greater than the acceleration of the upper one.

This (preliminary) reasoning leads us to the force diagram above, which results in two
independent solutions, one for m; and one for ms. We observe nothing interesting in the
y-direction except that N = myg and Ny = (mq + ms)g as expected.

This suffices to tell us the magnitude of the force of kinetic friction between the two
blocks:
fe = N = ppmag

which acts (as drawn) to the right on block mq, to the left on block msy:
F— fu =F — ppmig = maag

e = pemig = miag

where a1 # asq, or:
_ F—pemig _ 3mag+ (3 — pr)mg
mo ma

a2
(to the right) and:
a1 = prg = 0.2g ~ 2 m/sec’
(also to the right).

As promised, as > aq.
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4.2.3 Ranking Problems

Problem 71. problems-1/force-ra-circular-motion-tension.tex

In the four figures above, you are looking down on a mass sitting on a frictionless table being
whirled on the end of a string. The mass, length of string, and speed of the mass in each figure
are indicated in the key on the right.

Rank the tension in the string in each of the four figures above, from lowest to highest.
Equality is a possibility. An example of a possible answer is thus: A < B=C < D.
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Problem 72. problems-1/force-ra-circular-motion-tension-soln.tex

T =1 m/sec

=2 m/sec

In the four figures above, you are looking down on a mass sitting on a frictionless table being
whirled on the end of a string. The mass, length of string, and speed of the mass in each figure
are indicated in the key on the right.

Rank the tension in the string in each of the four figures above, from lowest to highest.
Equality is a possibility. An example of a possible answer is thus: A < B=C < D.

Solution: In each figure, Newton’s Second Law (N2) is just

muv?
T=ma. = —
r

(T pulling towards the center of the circle, of course, with a. the centripetal acceleration.) We
note that m, v, and r all vary by a factor of 2, somewhat irregularly. Let’s let:

mvz

mg=m=1kg va =v=1m/sec ra=r=1m =| Tyh=
r

Then we can just use scaling:

2 2
Ty = MY _op,
2r
2
TC:(2m)v _7,
2r
2m)(2v)?
= M
r

so that:

|A=C<B<D| or [Ta=Tc<Ts<1Tp

as you prefer.
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Problem 73. problems-1/force-ra-tension-between-two-unequal-blocks-friction.tex

a)

Ty
Fm M

b)

In the figure above a block of mass m is connected to a block of mass M > m by a string.
Both blocks sit on a smooth surface with a coefficient of kinetic friction pj between either block
and the surface. In figure a), a force of magnitude F' (large enough to cause both blocks to
slide) is exerted on block M to pull the system to the right. In figure b), a force of (the same)
magnitude F' is exerted on block m to pull the system to the left.

Circle the true statement:

a) The tension T, > Tp.

)
b) The tension T, < Tp.
¢) The tension T, = Ty.
d)

There is not enough information to determine the relative tension in the two cases.
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Problem 74. problems-1/force-ra-tension-between-two-unequal-blocks-icp.tex

a)

In the figure above a block of mass m is connected to a block of mass M > m by a string. Both
blocks sit on a frictionless floor. In a), a force of magnitude F is exerted on block M to pull
the system to the right. In b), a force of (the same) magnitude F' is exerted on block m to pull
the system to the left. Circle the true statement:

a) The tension T, > Tp.

The tension T, = Tj.

)
b) The tension T, < Tp.
c)

)

d

There is not enough information to determine the relative tension in the two cases.
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Problem 75. problems-1/force-ra-tension-between-two-unequal-blocks-icp-soln.tex

In both cases the acceleration is the same. The force on the trailing mass is always that mass
times the acceleration, and is exerted only by the string. Hence:

b) Ty < Tp.
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4.2.4 Regular Problems

Problem 76. problems-1/force-pr-a-constant-simplest-icp.tex

v X
X0

A block of mass m sits on a horizontal frictionless table as shown. A constant force F = F#
in the +z-direction (to the right) is applied to it. The mass is initially moving to the left with
speed vy, and starts a the position zg as shown.

a) Draw a force diagram for the mass m onto the figure above. This should include all
the forces, including those that cancel.

b) Write down an expression for the acceleration @ of the mass.

c) Integrate the acceleration one time to find ¥(t).

)
)

d) Integrate the velocity one time to find Z(t).

e) How long will it take to bring the particle to rest (where infinity is a possible answer)?
)

f) Where will it be when it comes to rest?
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Problem 77. problems-1/force-pr-a-constant-simplest-icp-soln.tex

Yy
N N
% m or
F F
v — X
mg Xo

mg

A block of mass m sits on a horizontal frictionless table as shown. A constant force F = F#
in the +az-direction (to the right) is applied to it. The mass is initially moving to the left with
speed vg, and starts a the position xy as shown.

a) Draw a force diagram for the mass m onto the figure above. This should include all
the forces, including those that cancel.

b) Write down an expression for the acceleration @ of the mass.

c) Integrate the acceleration one time to find ¥(t).

e) How long will it take to bring the particle to rest (where infinity is a possible answer)?

f

)
)
d) Integrate the velocity one time to find Z(t).
)
) Where will it be when it comes to rest?

For a), see above.

For b) in the y-direction:
ZFy:N—mg:may:mOZO
y
ay =0

and nothing interesting happens in the y-direction. The block doesn’t jump into the air or fall
through the solid table! In the z-direction:

ZFx:F:max
x

a; = F/m

Acceleration is a vector so we must specify its magnitude and direction in some way or
some coordinate frame. Any of the following are acceptable ways:

d=F/m& = (F/m,0) = (|d@| = F/m,05 = 0)(polar) = F'/m “to the right”

or just ay = F'/m,a, = 0 as obtained above.
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For part c), ay = 0 = dv,/dt so v, = a constant. But its initial y-velocity is zero, so v, =
0 = dy/dt. Thus y is a constant. But the initial value for y is 0 in a reasonable coordinate
system and in any event it does not change, so we’ll choose coordinates where boring old y = 0
throughout.

Z is more interesting:

F F
fux:/dvy: (E /dt: (E)t—ﬂ)w

hence (using the given fact that v,(0) = —vp):

For part d) we now repeat this process for dz:

o= e [{(E)r- b (E) e

where we used the given fact that x(0) = —z¢ in the coordinate system shown.

Again, we could express both of these vector answers in any acceptable way. I'll use cartesian

coordinates:
(1) = {<E>t—v ]}gz
— ~ 0

For part e) we try to solve:
F
vy (ts) = (—) ts —vo =0
m

for the particular time ¢, that the block’s velocity will equal zero. We get:

muvg

SF

At that time its y-coordinate will remain zero (of course) but its z-coordinate will be:

F 2
— | t5 — vots — X0
m

() () (28) -

z(ts) =

1
2
1
2
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Note well! This last result can be made familiar to us by noting that the acceleration is constant,
so that v]% — U% = 2a,Ax, with a, = F/m. Hence:

1

zy — (—w0) = Az = —vj/(2F/m) = -3 (mTU%>

and x; = x(ts) as expected. There is yet another way to do it using work and energy.

This example solution has been worked in more detail than would usually be required on a
problem, but I would still recommend that you start out working homework and additional
examples from this guide at exactly this level. After a bit some of the steps will be so obvious
and easy and boring (like the discussion of the nothing interesting that happens in y above)
that you can safely omit them or cover them with a phrase like “a, = 0 so y is unchanged”, but
wait for that to happen and pay attention to the stated requirements of your class’s particular
grader(s).
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Problem 78. problems-1/force-pr-atwoods-machine-icp.tex

In the figure above Atwood’s machine is drawn — two masses m; and mq hanging over a massless
frictionless pulley, connected by a massless unstretchable string.

Draw free body diagrams (isolated diagrams for each object showing just the forces acting
on that object) for the two masses in the figure above.

Convert each free body diagram into a statement of Newton’s Second Law for that object.

Find the acceleration of the system and the tensions in the string on both sides of the
pulley in terms of my, mso, and g.

Suppose mass mo > mq and the system is released from rest with the masses at equal
heights. When mass ms has descended a distance H, find the speed of the masses.
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Problem 79. problems-1/force-pr-atwoods-machine-icp-soln.tex

In the figure above Atwood’s machine is drawn — two masses m; and mq hanging over a massless
frictionless pulley, connected by a massless unstretchable string.

a) I didn’t isolate the two objects because a force diagram like this is also acceptable. The
advantage of the diagram the way I draw it is that it is also used it to specify my “around
the corner” coordinate system in which the accelerations of the two masses are the same
including the same sign.

b) Using this coordinate frame (so positive is up on the left and down on the right): T—mqg =
mia

mog — T = moa

¢) Add these two equations to eliminate 7', solve for a, and back-substitute in either equation
to solve for T'. We will do this a lot this semester, so practice this!

_ (ma —mi)g
(mq + mg)
(2mima)g
T = = —
mi(a+ g) pep——

d) Lots of ways to get this, soon we’ll have even more:

- \/2H(m2 —mi)g

(m1 +ma)
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Problem 80. problems-1/force-pr-bead-on-hoop.tex

A bead of mass m is threaded on a metal hoop of radius R. There is a coefficient of kinetic
friction pj between the bead and the hoop. It is given a push to start it sliding around the
hoop with initial speed vg. The hoop is located on the space station, so you can ignore gravity.

a) Find the normal force exerted by the hoop on the bead as a function of its speed.

b) Find the dynamical frictional force exerted by the hoop on the bead as a function of its
speed.

c) Find its speed as a function of time. This involves using the frictional force on the bead
in Newton’s second law, finding its tangential acceleration on the hoop (which is the time
rate of change of its speed) and solving the equation of motion.

All answers should be given in terms of m, uy, R, v (where requested) and vy.
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Problem 81. problems-1/force-pr-bead-on-semicircular-hoop.tex

A small frictionless bead is threaded on a semicircular wire hoop with radius R, which is then
spun on its vertical axis as shown above at angular velocity (2.

a) Find the angle # where the bead will remain stationary relative to the rotating wire as a
function of R, g, and ).

b) From your answer to the previous part, it should be apparent that there is a minimum
angular velocity i, that the hoop must have before the bead moves up from the bottom
at all. What is it? (Hint: Think about where the previous answer has solutions.)
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Problem 82. problems-1/force-pr-bead-on-semicircular-hoop-soln.tex

A small frictionless bead is threaded on a semicircular wire hoop with radius R, which is then
spun on its vertical axis as shown above at angular velocity 2.

a) Find the angle # where the bead will remain stationary relative to the rotating wire as a
function of R, g, and 2.

b) From your answer to the previous part, it should be apparent that there is a minimum
angular velocity €,;, that the hoop must have before the bead moves up from the bottom
at all. What is it? (Hint: Think about where the previous answer has solutions.)

Solution: The bead has to be in a sort of dynamical equilibrium, moving in a circle of radius
Rsinf The only two forces acting are gravity (down) and the normal force between the bead
and the wire (directed in towards the center of the semicircle, not the circle of motion). Finally,
the tangential speed of the bead at this radius is vy = QRsin 6.

For a): Start by decorating the figure with forces (see above) decomposed into vertical (where
the total force component must be zero) and center-directed (where the force component must
equal mac):

Vertical: Ncosf —mg=0 = Ncost =mg

2

Central: Nsinf =m U_t = mO?Rsin 0
Rsin 0

Rearrange and take the ratio of these two equations to eliminate N,sin 6 (and incidentally, m):

Ns;»rre“:mmRM . a— COS_1< g )
XN cosf g RO2

For b): Note that the domain of cos™! is [~1,1]. This means that:

L<1 = |[Q> g

RO — R
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in order for a stable circular “orbit” angle 8 > 0 to exist.
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Problem 83. problems-1/force-pr-dropping-washington-duke-trajectory.tex

student

A physics student irritated by the personal mannerisms of their physics professor decides to rid
the world of him. The student plans to drop a large, massive object (the statue of Washington
Duke, actually, recently stolen by pranksters from his fraternity), mounted on nearly frictionless
casters, from a tall building of height H with a smooth roof sloped at the angle 6 as shown.
However, the student (being a thoughtful sociopath) wants to make sure that the mass M will
make it over the roses to the path a distance D from the base of the building and needs to
know how far to let the statue roll down the roof to get the right speed.

Unfortunately, the student isn’t very good at physics and comes to you for help. Since they
don’t want to tell you which building or which path they want to use (you might be able
to testify against them!) they want you to find (in two steps, each counting as a separate
problem) a general formula for the requisite distance.

a) Help them out. Start by finding vy in terms of H, M, D, 6 and g (the gravitational
constant) that will drop M on RGB assuming no friction or drag forces. (That way I'm
still pretty safe).

b) Now that you know the speed (or rather, assuming that you know the speed, as the case
may be) find h (the vertical distance the statue must roll down, released from rest, to
come off with the right speed). Explicitly show that your overall answer (in which vy
should NOT appear) has the right units. If you were clueless in problem 4) you may leave
vg in your answer but should still try to find SOME combination of the letters H, M, D,
0 and g that has the right units and varies the way you expect the answer to (more height
H means smaller h, for example, so it probably belongs on the bottom).



102 CHAPTER 4. DYNAMICS

Problem 84. problems-1/force-pr-flat-plane-three-blocks.tex

Tl T2
2M

3M

Three blocks of mass M, 2M and 3M are drawn above. The middle block (2M) sits on a
frictionless table. The other two blocks are connected to it by massless unstretchable strings
that run over massless frictionless pulleys. At time ¢t = 0 the system is released from rest. Find:

a) The acceleration of the middle block sitting on the table.

b) The tensions 77 and T» in the strings as indicated.
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Problem 85. problems-1/force-pr-flat-plane-two-blocks.tex

m,

A mass m; is attached to a second mass ms by an Acme (massless, unstretchable) string. my
sits on a frictionless table; ms is hanging over the ends of a table, suspended by the taut string
from an Acme (frictionless, massless) pulley. At time ¢ = 0 both masses are released.

a) Draw the force/free body diagram for this problem.
b) Find the acceleration of the two masses.

¢) How fast are the two blocks moving when mass my has fallen a height H (assuming that m,
hasn’t yet hit the pulley)?
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Problem 86. problems-1/force-pr-flat-plane-two-blocks-friction.tex

Mo My

m,

A mass m; is attached to a second mass mo by a massless, unstretchable string. my sits on a
rough table with coefficients of static and kinetic friction us and ug respectively. myo is hanging
over the end of the table, suspended by the taut string from a frictionless, massless pulley.

At time t = 0 both masses are released from rest. Answer the following two questions:

a) What is the minimum mass mg min such that the two masses begin to move?

b) Suppose mg > Mg min. Determine how fast the two blocks are moving when mass ms has
fallen a height H (assuming that m; hasn’t yet hit the pulley)?
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Problem 87. problems-1/force-pr-inclined-atwoods-machine-downhill-friction-icp.tex

I"ls’ uk

A block of mass my sits on a plane inclined at the angle 6 as shown. It is connected with
a massless, unstretchable string running over a massless, frictionless pulley to meo, which is
hanging over a drop to the ground. The two masses are released initially from rest. The
inclined plane has coefficients of static and kinetic friction with my of us and ug respectively.

a) Draw separate free-body diagrams for each mass m; and my, and select (indicate on your
figure) an appropriate coordinate system for each diagram;
b) Find the minimum mass mg min such that the two masses begin to move;

c) If my > mgomin (so that the block definitely slides), determine the magnitude of the
acceleration of the blocks.
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Problem 88. problems-1/force-pr-inclined-atwoods-machine-downhill-friction-icp-soln.tex

+X

m,

m.g

a) Draw separate free-body diagrams for each mass m; and my, and select (indicate on your
figure) an appropriate coordinate system for each diagram;

See above. It is also correct (and many textbooks advise or require it) to draw two
separate figures, one for each mass, separate from the provided diagram, and indicate the
forces on those, but as long as the result is clear (as it is on the figure above) it really
doesn’t matter.

b) Find the minimum mass mg mi, such that the two masses begin to move;

After decomposing all forces in the coordinate system selected (in the case above only
m1g needs it), writing Newton’s Second Law for each coordinate direction for each mass,
using fsmax = fsN in a force balance expression (because the maximum uphill static
friction will balance the larges mass mo that doesn’t quite move, and solving for mo we
get:

M2,min = M1 (s cosf —sinh)

c) If my > mgomin (so that the block definitely slides), determine the magnitude of the
acceleration of the blocks.

Now we change to fi = uxN and solve the two x-equations simultaneously to get:

_ myg(sin@ — py, cos ) + mag

Ay
mi + mo
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Note that this question could easily have asked for the tension 1" as well as or instead of
az. How would you get it?
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Problem 89. problems-1/force-pr-inclined-plane-three-blocks.tex

Three blocks of mass M, 2M and 3M are drawn above. The middle block (2M) sits on a
frictionless table tipped at an angle # with the horizontal as shown. The other two blocks are
connected to it by massless unstretchable strings that run over massless frictionless pulleys. At
time £ = 0 the system is released from rest. Find:

a) The magnitude of the acceleration of the middle block sitting on the table.
b) The tensions 77 and 75 in the strings as indicated.

¢) Suppose 6 = 30°. Which way will the system of blocks accelerate?

D Down on the right \:‘ Down on the left D They won’t move.
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Problem 90. problems-1/force-pr-inclined-plane-two-blocks-30deg-icp.tex

A block of mass 2m sits on a frictionless incline held at an angle @ relative to the horizontal as
shown in the figure above. It is connected by a massless, unstretchable string that runs over a
frictionless, massless pulley to a block m hanging over a drop. The two blocks are initially at
rest.

a) For what angle 6y will this system will be in force balance (and hence remain stationary).

b) If the incline is lifted from this angle to a new (given) angle 6 > 6y, what is the subsequent
direction of motion for both blocks? Indicate the direction on the figure above for each
block.

c) At this angle 6, find the magnitude of the acceleration a and the magnitude of the tension
T in the string.
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Problem 91. problems-1/force-pr-inclined-plane-two-blocks-30deg-icp-soln.tex

A block of mass 2m sits on a frictionless incline held at an angle @ relative to the horizontal as
shown in the figure above. It is connected by a massless, unstretchable string that runs over a
frictionless, massless pulley to a block m hanging over a drop. The two blocks are initially at
rest.

a) 90 = 30°
b) 2m slides down the incline, m rises.
c)
- 29 siné@) —g

T = 2&39(5110(9) +1)
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Problem 92. problems-1/force-pr-inclined-plane-two-blocks.tex

Two blocks of mass mj and mo > m; are drawn above. The block mj sits on a frictionless
inclined plane tipped at an angle 6 with the horizontal as shown. Block my is connected to mq
by a massless unstretchable string that runs over a massless, frictionless pulley to hang over a
considerable drop. At time ¢t = 0 the system is released from rest.

a) Draw a force/free body diagram for the two masses.

b) Find the magnitude of the acceleration of two masses.

)
)
c¢) Find the tension T in the string.

) When mass mq has fallen a height H, how fast are the two masses moving?

d
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Problem 93. problems-1/force-pr-pulling-rough-blocks-on-rough-table.tex

A rope at an angle 6 with the horizontal is pulled with a force vF'. It pulls, in turn, two blocks,
the bottom with mass M and the top with mass m. The coefficients of friction are ps between
the top and bottom block (assume that they do not slide for the given force ﬁ) and pg
between the bottom block and the table. Remember to show (and possibly evaluate) all forces
acting on both blocks, including internal forces between the blocks.

a) Draw a “free body diagram” for each mass shown, that is, draw in and label all real
forces acting on it;

b) Apply Newton’s Second Law in appropriate coordinates to each mass shown;

¢) Solve for the acceleration(s) of each mass shown and evaluate all unknown forces (such
as a normal force or the tension in a string) in terms of the given quantities.

Don'’t forget that the acceleration is a vector and must be given as a magnitude and a direction
(for example, “along the plane to the right” is ok) or in vector components.
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Problem 94. problems-1/force-pr-pushing-three-blocks.tex

y
2 F.m | M ™
A B C X
Y K ~R R
2 F.m | M ™
A B C X

Blocks A, B, and C each have mass M and are sitting on a smooth horizontal surface. A
horizontal force with magnitude F is applied to block A on the left in the x-direction as shown.

a) Initially, assume that the horizontal surface is frictionless. Determine:

e The acceleration of the system of blocks.
e The normal contact force Nap between block A and block B.
e The normal contact force Ngo between block B and block C.

b) Now, assume that in addition to the force F' the horizontal surface exerts a kinetic fric-
tional force with magnitude Fj < F' in the negative x-direction on each block. Deter-
mine:

e The acceleration of the system of blocks.
e The normal contact force Nap between block A and block B.
e The normal contact force Ngo between block B and block C.

e Evaluate your answers (for this part only) if F¥ = 100 N, M = 10 kg, and Fj, = 10
N.
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Problem 95. problems-1/force-pr-pushing-vertical-blocks-friction-icp.tex

A force F is applied to a large block with mass M, which pushes a smaller block of mass m
as shown. The large block is supported by a frictionless table. The coefficient of static friction
between the large block and the small block is us. Find the magnitude of the minimum force
Finin such that the small block does not slide down the face of the large one. Draw free body
diagrams and show all of your reasoning.
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Problem 96. problems-1/force-pr-pushing-vertical-blocks-friction-icp-soln.tex

N
F ol m s
N,
I
Mg
il N
g

A force F is applied to a large block with mass M, which pushes a smaller block of mass m
as shown. The large block is supported by a frictionless table. The coefficient of static friction
between the large block and the small block is 5. Find the magnitude of the minimum force
Fluin such that the small block does not slide down the face of the large one. Draw free body
diagrams and show all of your reasoning.

In this case I drew two actual “free body diagrams” distinct from the figure, largely because
there are a lot of forces acting on M so that the provided diagram would have gotten a bit
crowded.

Note Well the Newton’s Third Law Pairs: N and f;. V; is the normal force exerted by
the table on the bottom of the big block — do not confuse it.

Here are some questions to ask yourself as you (ideally working with your team) try to get the
answer below on your own after looking over these hints and putting them away:

e Static friction is always less than psIN. What must IV be in order to barely support
the weight of mass m?

mg
s

mg=fs<usN = N>

e What must the acceleration of the two masses together be?

F—-N=Ma and N=ma = F=(M+m

e How is that acceleration related to F'?
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for the box not to fall. If:

M
F | P = MEmM)9
s

then the little block will not slide down the front face of the big block!
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Problem 97. problems-1/force-pr-range-of-cannon-on-hill.tex

I

<o

R

A cannon sits on at the top of a rampart of height (to the mouth of the cannon) H. It fires a
cannonball of mass m at speed vy at an angle 6 relative to the ground. Find:

a) The maximum height ymax of the cannonball’s trajectory.

b) The time the cannonball is in the air.

c) The range of the cannonball.
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Problem 98. problems-1/force-pr-terminal-velocity-tom-and-jerry.tex

The script calls for Tom (cat) to chase Jerry (mouse) across the top of a cartoon skyscraper of
height H and off the edge where they both fall straight down (their initial z-velocity is negligible
as they fall off) towards a soft pile of dirt that will keep either one from getting hurt by the fall
no matter how hard they land (no toon animals were injured in this problem).

Your job is to work out the physics of a “realistic” fall for the animation team. You decide to
use the following for the drag force acting on either one:

FZ' = —biU2’l7

where hv is a unit vector in the direction of the velocity and i = t,j for Tom or Jerry respectively
and where:

b = CL?
m; = DL?

(that is, the drag force is proportional to their cross-sectional area and their mass is proportional
to their volume). Their relative size is L; = 5L; (Tom is five times the height of Jerry).

a) Draw a on the back of the preceding page showing the building, Tom and Jerry at the
instant that Tom runs off of the top. Jerry (who is ahead) should have fallen a short
distance d towards the ground.

b) Using the laws of physics, determine the equation of motion (find an expression for the
acceleration and write it as a differential equation) algebraically (so the solution applies
to Tom or Jerry equally well). Your answer can be given in terms of b; and m;.

c) Without solving the equation of motion, find an algebraic expression for the terminal
velocity of Tom or Jerry as functions of L;. Explain/show your reasoning, don’t just
write down an answer.
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Problem 99. problems-1/force-pr-triple-atwoods-machine.tex

. |

A block and tackle arrangement is built with three massless pulleys and three hanging masses
with masses M, m, and M as shown above. The two M masses are a height H off the ground,
and m is on the ground. At time ¢t = 0 the masses are released from rest from this configuration.

a) Draw a GOOD free body diagram. Clearly label all quantities.

b) Find the acceleration (magnitude and direction) of each block and the tension T in the
string as a function of the givens, assuming that M + M > m.

c¢) Find the velocity of each block when the blocks of mass M hit the ground.
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Problem 100. problems-1/force-pr-two-balls-1D-2.tex

A ball of mass m is dropped at time ¢ = 0 from rest (vg; = 0) from the top of the Duke Chapel
(which has height H) to fall freely under the influence of gravity. A short time ¢ = ty later a
second ball, also of mass m, is thrown down after it at speed vgs. Neglect drag.

a) (2 points) Draw a free body diagram for and compute the net force acting on each mass
separately.

b) (4 points) From the equation of motion for each mass, determine their one dimen-
sional trajectory functions, y;(t) and ya(t).

c¢) (3 points) Sketch qualitatively correct graphs of yi(t) and y2(t) on the same axes in the
case where the two collide.
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Problem 101. problems-1/force-pr-two-blocks-on-inclined-plane-plus-pulley.tex

Three blocks of mass M, 2M and 3M are drawn above. The two smaller blocks sit on a
frictionless table tipped at an angle  with respect to the horizontal as shown. The three blocks
are connected by massless unstretchable strings, one of which runs over a massless frictionless
pulley to the largest mass. At time ¢t = 0 the system is released from rest. Find:

a) The acceleration vector in Cartesian components of the middle block on the incline. Any
correct way of uniquely specifying the Cartesian vector will be accepted, for example
a = (az,ay), or @ = a; & + a,9.

b) The magnitude of the tensions 7} and T3 in the strings as indicated on the diagram.
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Problem 102. problems-1/force-pr-two-blocks-with-friction-icp.tex

/

frictionless

A small block of mass m sits on top of a large block of mass M that sits on a frictionless table.
The coefficient of static friction between the two blocks is us and the coefficient of kinetic
friction between the two blocks is uy. A force F=Fjis directly applied to the lower block as
shown. All answers should be given in terms of m, M, us, pux, and g.

a) What is the largest force Fi,.x that can be applied such that the upper block does not
slide on the lower block?

b) Suppose that F' = 2F,,x (so that the upper block slips freely). What is the acceleration
of each block?
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Problem 103. problems-1/force-pr-two-blocks-with-friction-icp-soln.tex

See force diagram above. All arrows start on the mass the force acts on. N and fy; are visible
Newton’s Third Law pairs where the blocks act on each other. To rigorously solve this, Use the
Force (Rubric), Luke!

a) What is the largest force Fi,ax that can be applied such that the upper block does not
slide on the lower block?

Gmax = Hsg (Why?) S0
Frax = (m + M)/Lsg (also Why?)

b) Suppose that F' = 2F,,x (so that the upper block slips freely). What is the acceleration
of each block?

Small block: amax = prg Large block: amax = (F — murg)/M
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Problem 104. problems-1/force-pr-two-masses-incline-different-friction.tex

s

Two blocks, each with the same mass m but made of different materials, sit on a rough
plane inclined at an angle 6 that is large enough that they will definitely slide down. The
first (upper) block has a coefficient of kinetic friction of ug; between block and inclined plane;
the second (lower) block has coefficient of kinetic friction pgo. The two blocks are connected
by a massless unstretchable string.

Find the acceleration of the two blocks a; and as down the incline:

a) when po > fig1-

b) when pg1 > pigo;
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Problem 105. problems-1/force-pr-vertical-block-friction.tex

Hs

A block of mass my is pushed on a frictionless table by a force F to the right. A mass mo is
positioned on the front face as shown. There is a coefficient of static friction us; between the
big and little block.

a) What is the horizontal force exerted on block mgy by the block m?

b) Find the minimum magnitude of force Fyi, that will keep the little block from slipping
down the big one.
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4.3 Circular Motion

4.3.1 Multiple Choice Problems

Problem 106. problems-1/circular-motion-mec-ball-on-string-breaks.tex

string breaks here

direction of rotation

A ball is being whirled on a string. At the instant shown, the string breaks. Select the correct
trajectory of the ball after it breaks.
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Problem 107. problems-1/circular-motion-mec-two-masses-on-strings-qual.tex

A block of mass m is tied to a cord of length L that is pivoted at the center of a frictionless
table. A second block of mass m is tied to the first block also on a cord of length L, and both
are set in motion so that they rotate together at angular speed w as shown above. The tensions
Ti and T5 in the cords are:

a

) T

b) T > 1T

C) T <1
)

d) Thy > T for w > 0and Ty < T3 for w <0



128 CHAPTER 4. DYNAMICS

Problem 108. problems-1/circular-motion-mec-two-masses-on-strings-icp.tex

A block of mass m is tied to a cord of length L that is pivoted at the center of a frictionless
table. A second block of mass m is tied to the first block also on a cord of length L, and both
are set in motion so that they rotate together counterclockwise at angular speed 2 as shown
above. The tensions 17 and 75 in the cords are:

a) Ty = 3mQO%L, Ty = 2mO%L

b) Ty = mQ2L, Ty = 2mQ%L

)
) T
c) Ty = mQ2L, Th = mQ2L
d) Ty = 2mQ2L, Ty = 2mQ2L
) T

e) T = mQ2L, Ty = 4mQ2L
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Problem 109. problems-1/circular-motion-mec-two-masses-on-strings-icp-soln.tex

Use Fiot = ma, = mr§? for each mass:
Ty = m(2L)Q? (toward center)
T, — Ty = mLQO? so T) = m(3L)Q? (toward center)

Alternative solution (faster). By inspection, 77 > T» — the inner string has to support both
masses moving in circles where the outer string only has to support one. Only answer a) has
T > 1!

Be sure to look for things like this. Short answer questions often have a trick to them, a
conceptual solution that doesn’t require major computation. In a few cases, one can’t reasonably
“compute” the solution as it is missing the data required to explicitly do so —it is only obtainable
by a mix of inspection and conceptual reasoning!
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4.3.2 Short Answer Problems

Problem 110. problems-1/circular-motion-sa-runner-on-track-icp.tex

Starting from point A, a runner runs at a constant speed
counter-clockwise along a circular race track of radius R =
20 m.

a) When the runner has reaches point B, draw and label
the runner’s velocity ¥p and acceleration dp;

b) If the speed of the runner is 4 m/s, find the angular

speed and the magnitude of the acceleration.

Q= and a =

c) If the runner runs on the same circular track, but he
finishes in one-half of the original time, his new angular
speed will be (say) 9, and the new magnitude of his
acceleration will be as. Find the following ratios:

Qo
O

ag
= and — =
a
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Problem 111. problems-1/circular-motion-sa-runner-on-track-icp-soln.tex

a)
Solution: For a), see above.

For b):

Q=v/R=4/20 :.

The acceleration is purely centripetal (the speed of the runner is constant) so

a=a.=v>/R=0°R=16/20 =|0.8 m/sec? |

For c), half the time is twice the speed, v — 2v, while R doesn’t change. Using the same
relations above but now only for scaling:

0/ =[2]

but

ag/a:.
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Problem 112. problems-1/circular-motion-sa-sliding-down-curve.tex
In the figure on the right, a small block slides down a fric-

tionless curved track of circular radius R. When it reaches
the angle 6 as shown, it has speed v (in a later chapter, we’ll
learn how to find v from initial conditions).

a) Draw a free body diagram for the mass. You may draw
it directly on the figure if you wish.

b) Select and draw the best coordinate system to use to
analyze its motion. This is tricky!

c¢) Find the normal force exerted by the track in terms of
v and 6.
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4.3.3 Regular Problems

Problem 113. problems-1/circular-motion-pr-conic-pendulum-tether-ball.tex

A tether ball of mass m is suspended by a rope of length L from the top of a pole. A youngster
gives it a whack so that it moves in a circle of radius r = Lsin(f) < L around the pole. Find
an expression for the speed v of the ball as a function of 6.
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Problem 114. problems-1/circular-motion-pr-puck-on-cylinder-friction-review.tex

Side View Top View
g (down) z
fo! (g (in)
/ \ m
\ /

= = = -
- - o

\/

A hockey puck with mass m is placed against the wall of a hollow cylinder of radius r that
is rotating at a constant angular speed () around the z-axis as shown in side and top
views above. The coeflicient of static fraction between the puck and the wall of the cylinder is
us. Gravity points in the negative —z direction: down in the left hand figure and into the page
in the right hand figure.

a) On the diagrams above draw in all real forces that act on the mass while the cylinder
rotates. For forces acting vertically, use the side view. For forces acting in the horizontal
directions, use the top view.

b) If the cylinder is rotating fast enough, the puck does not slide down the wall. What is
the value of f;, the magnitude of static friction, in this case?

fs:

c¢) What is the minimum angular speed Qmin such that the hockey puck does not slide
down the wall?

Qmin =
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Problem 115. problems-1/circular-motion-pr-puck-on-cylinder-friction-review-soln.tex

Side View Top View

z

Q g (in)

—— = - —_— e
- -

\/

A hockey puck with mass m is placed against the wall of a hollow cylinder of radius r that
is rotating at a constant angular speed () around the z-axis as shown in side and top
views above. The coefficient of static fraction between the puck and the wall of the cylinder is
us. Gravity points in the negative —z direction: down in the left hand figure and into the page
in the right hand figure.

a) See above.

b) Comment: f, is a variable force and is always equal to mg if the puck does not slide
down. Presumably this means that € > Qni,, obtained next!

o=

c) Here we need to use Newton’s Second Law and circular motion kinematics to find
N, use N to find Fs = un and Fy and fs = mg to determine Q5. That is:

F.= N =ma, = mQ*R
Fs = usN = ,ust2R
Js=mg < Fs= ,Ust2R

so (cancelling m and rearranging):

Q> quR = Qmin
or:
Qmin = ,uSgR
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Scoring:

a) +6 total. +2 each for the three forces in the figure. The common mistakes are making
fs tangent to the circle of motion instead of opposite to gravity, and to use mQ?R outward
(“centrifugal force”) instead of N inward. These mistakes will likely cost more points later.

b) +5 points straight up, not much room for partial credit. Student loses all five if they write
fs = psN.

c) +9 total. +2 each for each of the three equations above. +3 for the general algebra and final
result. Note that they lose at least another 2-3 points if they got b) wrong and hence fail to
write fs < Fi and even if they wrote F, and F§ correctly.
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Problem 116. problems-1/circular-motion-pr-puck-on-wheel-friction.tex

hockey puck | Disk

ﬂﬂ block

A disk is rotating with a constant angular velocity 0 (up). A small hockey puck of mass m
is placed on the disk at a distance r from the center, and is attached to another block with mass
M hanging below by a massless unstretchable string that passes through a tiny (frictionless)
hole right in the center of the disk. The static friction coefficient between the hockey puck m
and the disk is .

a) Which direction(s) could static friction need to point to keep the puck stationary on the
rotating disk (check all that are possible for different/given Q, r, M, m, pus):

‘:’ In (towards hole) I:l Out ‘:’ Tangent to circle of motion

b) Find a formula for the largest M that will not move down (as the puck slips on the
disk), given €.

c¢) Find a formula for the smallest M that will not move up (as the puck slips on the disk),
given (2.
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Problem 117. problems-1/circular-motion-pr-puck-on-wheel-friction-soln.tex

2)

Which direction(s) could static friction need to point to keep the puck stationary on the
rotating disk (check all that are possible for different/given Q, r, M, m, us):

lE In (towards hole) |Z Out ‘:’ Tangent to circle of motion

Reason: If it is stationary with respect to the disk, rotating at a constant (angular)
velocity, there is no tangential force or resultant torque to speed it up or slow it down.
But there may be frictional forces needed to add, or subtract from, the tension 7" so that
the total force acting on the puck adds up to the kinematically specified ma. towards the
center.

Find a formula for the largest M that will not move down (as the puck slips on the disk),
given (2.

Find a formula for the smallest M that will not move up (as the puck slips on the disk),
given (2.

It’s easiest to do both at once. First, for M to be stationary, T—Mg = 0 or T = Mg. Next, look
at the inset in the figures above that shows the forces only on the hocky puck along the radial
line towards the hole. If it is rotating slowly enough, and M is large enough, T = Mg > m$Q?r
and if there were no friction, the puck would move towards the hole and mass M would move
down. In this case, fs has to point out, away from the hole. Then:

T — fo = mQ%r = fo = Mg — mQ?r < usN = pgmg

This can be rearranged into:

Mg < p%r + mugmg
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and the largest M can be without slipping down is just less than the critical value:

b) | M. = %(QZT‘ + psg)

If it is rotating quickly enough (and/or M is small enough), the tension in the string won’t be
large enough to keep it moving in a circle and the puck will move out (causing M to rise) if
there is no friction. Friction in this case will have to point in towards the hole to help hold the
puck in place. Then:

T+fs:771927":fs:mQ27"—Mg<,usN:,usmg

This can be rearranged into:
mQ%r — pgmg < Mg

not to slip, and the smallest M can be without slipping up is just greater than the critical
value:

m
c)| M. = ?(927* — 1s9)

Scoring: Let’s do a generous +2 each for getting the directions right, and a -2 for putting
down tangential incorrectly, for a maximum total loss of 6 possible if you answer tangential only
(and hence never have a chance to solve the problem correctly). That leaves 12 to split among
the next two, but really, we're going to put over half of that in just writing some version(s) of:
T = Mg (2 points) F. = T + f, = mQ?r (4 points) and f; < psmg 2 points. This leaves us 4
points for minor algebra errors, direction problems, confusion over the inequality, “getting the
wrong answer” with the right general physics and ideas. And yes, if they write f; = us/N in
any direct form, they lose 5 points on the spot.
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Problem 118. problems-1/circular-motion-pr-rounding-a-banked-curve-frictionless.tex

towards center

(top view) (side view)

A car of mass m is rounding an icy frictionless banked curve that has radius of curvature R
and banking angle . What must the speed v of the car be such that it can succeed in making
it around the curve without sliding off of the road uphill or down?
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Problem 119. problems-1/circular-motion-pr-rounding-a-banked-curve.tex

towards center

R

(top view) (side view)

A car of mass m is rounding a banked curve that has radius of curvature R and banking angle
0. The coefficient of static friction between the car’s tires and the road is us. Find the range
of speeds v of the car such that it can succeed in making it around the curve without skidding.
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Problem 120. problems-1/circular-motion-pr-rounding-a-flat-curve.tex

[ (= N

z(out)

(top view) (side view)

A car of mass m is rounding a flat (unbanked) curve that has radius of curvature R. The
coefficient of static friction between the car’s tires and the road is us. We will define vy, such
that the car makes it around the curve without skidding as long as:

U < Umax

a) Suppose that the car is travelling at some constant speed v < vpax (so it does not skid
and successfully rounds the curve). Find the total frictional force f; exerted by the tires
as it rounds the curve at that speed. Note that force is a vector — be sure to give its
magnitude and direction using the provided coordinate frame(s).

b) Find vpax.
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Problem 121. problems-1/circular-motion-pr-rounding-a-flat-curve-soln.tex

z(out)

N
y y | z
| m %R
X R X

mg

(top view) (side view)

A car of mass m is rounding a flat (unbanked) curve that has radius of curvature R. The
coefficient of static friction between the car’s tires and the road is us. We will define vy, such
that the car makes it around the curve without skidding as long as:

U < Umax

a) Suppose that the car is travelling at some constant speed v < vpax (so it does not skid
and successfully rounds the curve). Find the total frictional force f; exerted by the tires
as it rounds the curve at that speed. Note that force is a vector — be sure to give its
magnitude and direction using the provided coordinate frame(s).

b) Find vpax.

Solution: Part a) asks for f;, We find it from N2 plus circular motion (centripetal acceleration)
as it is the only force pushing the car towards the center of the curve:

mu? - mv?
R

fe=mac=— = |f,="d

For part b), we note that:
fs <psN and N —mg=ma, =0
so:

fs =7 < Hsg

or:
2 2
v° < psgR = v 4

and the car will just start to slide as:

U — | Umax = V UsgR

from below.
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5.1 The Work-Kinetic Energy Theorem

5.1.1 Multiple Choice Problems

Problem 122. problems-1/wke-mc-block-and-friction-icp.tex

A block of mass m is on a floor. The kinetic friction
coefficient between the block and the floor is ux. A stu-
dent pulls a block with a force F directed upward at an
angle 6 with respect to the horizontal as shown. What
is the work done by friction when the block moves a
distance L along the floor to the right?

[] —wumgL [] —ur(mg + Fsin(0))L
|:| FL cos(0) — ppmgL + pu Fsin(0) L

[] FL cos(9) [] —mk(mg — Fsin(0))L

M
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Problem 123. problems-1/wke-mc-block-and-friction-icp-soln.tex

A block of mass m is on a floor. The kinetic friction
coefficient between the block and the floor is up. A stu-
dent pulls a block with a force F directed upward at an
angle 6 with respect to the horizontal as shown. What
is the work done by friction when the block moves a
distance L along the floor to the right?

fi L
[ ] —mmgL (] —ux(mg + Fsin(6))L
|:| FL cos(0) — pgmgL + pF sin(0) L
[] FL cos(9) X —ur(mg — Fsin(0))L

Solution: Force balance in y:

Fsing+N—-mg=may, =0 = N =mg—Fsin0 = f, =N = p(mg—Fsinf) (left or —&)

L L
W:/ﬁ d[z/ — frdx = —,uk(mg—FsiHQ)/ dw:‘—,uk(mg—Fsin(Q))L‘
0 0
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Problem 124. problems-1/wke-mc-block-and-friction.tex

A block of mass m is on a floor. The kinetic friction coefficient between the block and the floor
is pg. A student pushes a block with a force F' directed down at an angle 6 with respect to the
horizontal as shown that makes the block slide to the right. What is the work done by the
student (the force F') when the block moves a distance L along the floor?

FL cosf

pr(mg + Fsing)L

FL

prkmgL

O Od o

Cannot tell from the information given.
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Problem 125. problems-1/wke-mc-block-and-friction-soln.tex

A block of mass m is on a floor. The kinetic friction coefficient between the block and the floor
is ux. A student pushes a block with a force F directed down at an angle 6 with respect to the
horizontal as shown that makes the block slide to the right. What is the work done by the
student (the force F') when the block moves a distance L along the floor?

|X| FL cosf
[] wx(mg+ Fsind)L
[] FL

[ ] semgL

|:| Cannot tell from the information given.

Solution: Note the emphasis on the words ‘by the student’. This is a direct hint that one
shouldn’t try to compute e.g. the work done by friction or the net total work — both are foolers
in the list of possibilities. One also does need to use the dot product, as part of F appears
to just push the block harder into the table (increasing kinetic friction) — only the component
parallel to the table contributes. Hence:

W= F 16 = [FL 0]
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Problem 126. problems-1/wke-mc-cannonball-energy-speed-trajectories-icp.tex

Two cannons fire cannonballs at the same initial speed vg into the air along the trajectories
shown. Neglect the drag force of the air.

Which cannonball strikes the ground faster?

a) Cannonball a hits going faster.

b) Cannonball b hits going faster.

¢) Cannonball a and b hit at the same speed

)
)
)
d) We cannot tell which hits the ground going faster without more information than is given
in the problem and picture.
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Problem 127. problems-1/wke-mc-cannonball-energy-speed-trajectories-icp-soln.tex

Which cannonball strikes the ground faster?
Cannonball a and b hit at the same speed because total mechanical energy is conserved or
the work done by gravity going up equals the work done going back down to the same height,
so there is no change in the kinetic energies of the cannonballs (which are initially equal).

a) Cannonball a hits going faster.

b) Cannonball b hits going faster.

@ Cannonball a and b hit at the same speed

d). We cannot tell which hits the ground going faster without more information than is given
in the problem and picture.
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5.1.2 Short Answer Problems

Problem 128. problems-1/wke-sa-block-on-paper-icp.tex

Hi

I

D —~

A block of mass m is initially at rest on a long piece of smooth paper on a frictionless table.
The block has a coefficient of kinetic friction uj with the paper. You pull the paper horizontally
out from under the block quickly in the direction indicated by the arrow, such that the block
moves a distance D (relative to the ground) while still on the paper.

a) What is the magnitude of the work done by kinetic friction on the block?

b) Is the work done positive (increasing the kinetic energy of the block) or negative (decreas-
ing the kinetic energy of the block).

¢) What is the final velocity of the block when it comes off of the paper and slides along the
frictionless table? Use +x to the right!
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Problem 129. problems-1/wke-sa-block-on-paper-icp-soln.tex

A block of mass m is initially at rest on a long piece of smooth paper on a frictionless table.
The block has a coefficient of kinetic friction uj with the paper. You pull the paper horizontally
out from under the block quickly in the direction indicated by the arrow, such that the block
moves a distance D (relative to the ground) while still on the paper.

a) What is the magnitude of the work done by kinetic friction on the block?

Wy, = ‘/f’k d4 — pmgD

b) Is the work done positive (increasing the kinetic energy of the block) or negative (decreas-
ing the kinetic energy of the block).

The force of friction acts to the right and the block moves to the right. So the work

done by friction is:

¢) What is the final velocity of the block when it comes off of the paper and slides along the
frictionless table? Use +x to the right!

Again, use the work-kinetic energy theorem:

1
W = pupND = ppymgD = §mv2

or:
U=/ 2urgDE

(which is also v = v2aD as usual, from N2.) Don’t forget the direction! Velocity is a
vector!
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Problem 130. problems-1/wke-sa-graph-work-1.tex

T

0 — e ————+——+——
L 1 2 3 4 5 6 8 9 1011 12 X
_2 L

The graph above represents a force in the positive x direction F'(z) applied to a mass m as a
function of its position. The mass begins at rest at x = 0. The force F' is given in Newtons,
the position x is given in meters.

a) How much work is done going from z = 0 to x = 67

b) How much work is done going from x = 6 to x = 127

c) Assuming m = 1 kg, what is the final velocity of the object at x = 127
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Problem 131. problems-1/wke-sa-graph-work-icp.tex

F(x)

The graph above represents the total one-dimensional force in the x direction F'(x) being applied
to a mass m as a function of its position. The mass begins at rest at x = 0 and moves only
along the z axis. The force F' is given in Newtons, the position x is given in meters. Answer
the following questions (and give the units of your answers):

a) How much work is done going from x =0 to z =37 W (0 — 3) =

b) How much work is done going from z =3 to x =67 W(3 —6) =

c) Assuming that m = 1 kg and that it begins at rest at the beginning of the motion, what

is the speed of the particle at x = 67 vizr=6) =
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Problem 132. problems-1/wke-sa-graph-work-icp-soln.tex

F(x)

— work

3] a5 6«

Work is the area under the force curve, positive for positive area, negative for negative
area. In this case, count the boxes! Each box represents 0.25 Joules.

a) How much work is done going from z =0 to z =37 W (0 — 3) = 7/4 7.

b) How much work is done going from z =3 to z =67 W (3 —6) = -7/4 7.

c) Assuming that m = 1 kg and that it begins at rest at the beginning of the motion, what

is the speed of the particle at x = 67 v(x=6) = 0.0 m/sed|
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Problem 133. problems-1/wke-sa-work-done-by-force.tex

d d

In the figure above a force with a constant magnitude F)4 = Fg = F' is applied to a block of
mass M resting on a table with a rough surface at two different angles as shown. The coefficient
of kinetic friction between the block and table is pj. As the block slides to the right a distance
d, the work done by Fis W, and the work done by friction is Wy, in the two cases, A and B.

a) For case A, find the work done by F and friction, WI? and Wﬁ, respectively. Your
answers should have the correct sign.

b) For case B, find the work done by F and friction, Wg and Wfi , respectively. Your
answers should have the correct sign.
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5.1.3 Ranking Problems

Problem 134. problems-1/wke-ra-work-by-force-2.tex

o F—— s
~

In the figure above a force with a constant magnitude F is applied to a block of mass M
resting on a table with a rough surface at two different angles as shown. The coefficient of kinetic
friction between the block and table is u,. As the block slides to the right a distance d,
the work done by F is W, and the work done by friction is W7, .

a) Rank the magnitude of the work done by F in the two cases (put <>= in box):

wi [ w§

b) Rank the magnitude of the work done by friction in the two cases (put <>= in box):

wi L W
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Problem 135. problems-1/wke-ra-work-by-force-2-soln.tex

F P : / P 1
A) M — : : B) M L F ; ;
1 1 F ! :

\\

In the figure above a force with a constant magnitude F is applied to a block of mass M
resting on a table with a rough surface at two different angles as shown. The coefficient of kinetic
friction between the block and table is u,. As the block slides to the right a distance d,
the work done by F is W, and the work done by friction is W, .

a) Rank the magnitude of the work done by F in the two cases (put <>= in box):

wi > w#

b) Rank the magnitude of the work done by friction in the two cases (put <>= in box):

A B
Wfk Wfk
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Problem 136. problems-1/wke-ra-work-by-force-3.tex

0
A) M—F, 77777777 B) M/ 77777777

In the figure above a force with a constant magnitude F' < Mg is applied to a block of mass
M resting on a table with a rough surface at two different angles as shown. The coefficient of
kinetic friction between the block and table is . As the block slides to the right a distance d,
the work done by F is W, and the work done by friction is W7, .

a) Rank the magnitude of the work done by F in the two cases (<>= in box):

wi W

b) Rank the magnitude of the work done by friction in the two cases (<>= in box):

wi LR
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Problem 137. problems-1/wke-ra-work-by-force-3-soln.tex

A) M—F, 77777777 B) M/’(e/ 77777777

a) Rank the magnitude of the work done by F in the two cases (<>= in box):

Wi >WwE

b) Rank the magnitude of the work done by friction in the two cases (<>= in box):

A B
Wfk > Wfk
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Problem 138. problems-1/wke-ra-work-by-force.tex

In the figure above a force with a constant magnitude F' is applied to a block of mass M resting
on a smooth (frictionless) table at three different angles as shown. Rank the work done by F as
the block slides to the right a distance d, where equality is allowed. (A possible answer might
be A= B > C for example.)
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5.1.4 Regular Problems

Problem 139. problems-1/wke-pr-painball-gun-exponential-example.tex

A simple schematic for a paintball gun with a barrel of length D is shown above; when the
trigger is pulled carbon dioxide gas under pressure is released into the approximately frictionless
barrel behind the paintball (which has mass m). The expanding, cooling gas exerts a force on
the ball of magnitude:

F =Fye b

on the ball to the right, where x is measured from the paintball’s initial position as shown.

a) Find the work done on the paintball by the force as the paintball is accelerated down the
barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after
it has been accelerated.

c¢) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.
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Problem 140. problems-1/wke-pr-painball-gun-exponential-solution.tex

A simple schematic for a paintball gun with a barrel of length D is shown above; when the
trigger is pulled carbon dioxide gas under pressure is released into the approximately frictionless
barrel behind the paintball (which has mass m). The expanding, cooling gas exerts a force on
the ball of magnitude:

F = Fye D

on the ball to the right, where x is measured from the paintball’s initial position as shown.

a) Find the work done on the paintball by the force as the paintball is accelerated down the
barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after
it has been accelerated.
c¢) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.

The only force acting on the paintball is the force applied by the prssurized gas (gravity
is countered by a normal force from the barrel, and in any case neither does work when
the motion is horizontal; we are neglecting friction which may be less realistic). So WKE
reads simply

f
Kf—Ki:/ be'dX

:/ODFOe_gda; (5.1)
- (o)

= —FD(e ' —1)=FD(1 —1/e) .

This is the work done by the gas. Since the paintball starts at rest so K; = 0 it is also
the kinetic energy the ball has when it leaves the barrel. To find the speed with which it
leaves we set

mv2

T = K;=FD(1-1/e)

U:,/M' (5.2)
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Problem 141. problems-1/wke-pr-paintball-gun-adiabatic.tex

4X,

X

® ——

X,

?
A simple schematic for a paintball gun is shown above; when the trigger is pulled carbon dioxide
gas under pressure is released into the approximately frictionless barrel behind the paintball

(which has mass m) initially resting at zp. The gas expands approximately adiabatically and
exerts a force on the ball of magnitude:

,
X

F=F=>=
xY

on the ball to the right, where Fj is the initial force exerted at x = xg, and x is measured from
the end of the barrel as shown. « is a constant (equal to 1.4 for carbon dioxide). This force is
only exerted up to the end of the barrel at x = 4zg.

a) Find the work done on the paintball by the force as the paintball is accelerated down the
barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after
it has been accelerated.

c¢) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.
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Problem 142. problems-1/wke-pr-paintball-gun-linear.tex

A simple schematic for a paintball gun is shown above; when the trigger is pulled carbon dioxide
gas under pressure is released into the approximately frictionless barrel behind the paintball
(which has mass m). The gas exerts a force on the ball of magnitude:

F
D

(D —x)
on the ball to the right, where x is measured from the paintball’s initial position as shown.
a) Find the work done on the paintball by the force as the paintball is accelerated down the

barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after
it has been accelerated.

c¢) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.
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5.2 The Non-Conservative Work-Mechanical Energy Theorem

5.2.1 Multiple Choice Problems

Problem 143. problems-1/wme-mc-battleship.tex

battleship

A battleship simultaneously fires two shells at enemy ships along the trajectories shown, such
that the shells have the same initial speed. One ship (A) is close by; the other ship (B) is
far away. Ignore drag forces.

a) Which ship is hit first (circle both if they are hit at the same time)?

A B

b) Which shell has the greater speed when it hits the ship (circle both if the speeds are equal)?

A B
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Problem 144. problems-1/wme-mc-zero-of-potential-energy.tex

Tommy is working on a physics problem involving energy. “Look,” he says, “the total energy
of this block at rest is zero at the top of this incline of height H and therefore must be zero at
the bottom.”

Sally disagrees. “Impossible. The block is at the top of the incline. It has total energy mgH
at the top and so its total energy must still be mgH at the bottom.”

a) Tommy is right, Sally is wrong.

b) Sally is right, Tommy is wrong.

d

)
)

¢) Both Tommy and Sally are right.
) Both Tommy and Sally are wrong.
)

e) There isn’t enough information to tell who is right and who is wrong.
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5.2.2 Short Answer Problems

Problem 145. problems-1/wme-sa-ball-to-ground.tex

A ball is thrown with some speed vy from the top of a cliff of height H. Show that the speed
with which it hits the ground is independent of the direction it is thrown (and determine that
speed in terms of g, H, and vp).
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Problem 146. problems-1/wme-sa-potential-energy-graph-2.tex

A conservative one-dimensional force F (x) acts on a par-

ticle of mass m = 2 kg. The potential energy U(x) asso-

ciated with F(z) is shown in the figure to the left, where

x is in meters and U is in joules. The particle is
i at initially located z; = 3 m with kinetic energy K; = 2
- J, moving to the left (along the negative z direction).

a) Mark all points on the x-axis where the force on
the mass would vanish. Label the points “stable”
or “unstable according to the kind of equilibrium
point they are.

b) Between what limits of x does the particle move?
Mark them as “turning points” on the x-axis of
the graph.

. . . . . . = i 1 c) Whatis the particle’s velocity (magnitude and di-
0 1 2 3 45 6 7 8 9 10 x rection) ¥(x) when it is at first at zo = 6 meters
after being released as described above?

d) What is the force (magnitude and direction) F(z)
acting on the particle when it arrives at 3 = 9
meters?
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Problem 147. problems-1/wme-sa-potential-energy-graph-2-soln.tex

A conservative one-dimensional force F (x) acts on a par-
ticle of mass m = 2 kg. The potential energy U(x) asso-
ciated with F(z) is shown in the figure to the left, where
x is in meters and U is in joules. The particle is

i at initially located z; = 3 m with kinetic energy K; = 2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- J, moving to the left (along the negative z direction).

- a) Mark all points on the x-axis where the force on

the mass would vanish. Label the points “stable”

unstable Stable or “unstable according to the kind of equilibrium
point they are.

: irang:e of rhotior;ﬁ ‘ ; ; ;
b) Between what limits of x does the particle move?
Mark them as “turning points” on the z-axis of

N the graph.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

. . . . . . . i 1 c) Whatis the particle’s velocity (magnitude and di-
0 1 2 3 4506 7 8 9 10 x rection) ¥(x) when it is at first at zo = 6 meters
after being released as described above?

d) What is the force (magnitude and direction) F(z)
acting on the particle when it arrives at 3 = 9
meters?

U(6) = 2& m/sec F(9) = — 3% newtons

Solution: For a), recall that:

Stable equilibria (marked in blue above) are cupped “up”; unstable ones are cupped “down”
because the force points towards or away from the equilibrium, respectively, a short distance
to either side of the point(s) where the slope of U is zero.

For b), at 1 = 3 m, K = 2 J and we can read off U(3) = —2 J so that Ei, = 0 J. At the
(red) dots on the graph, F = U = K = 0, making these turning points of the motion.
Wherever U > FE, K would have to be negative, which is impossible, so these points are said to
be “classically forbidden” and we can never find the particle with this total energy to the left
of the first or right of the second one. The allowed range of motion is then the red thick arrow
region in between.

For c) we read off U(6) = —4 J. Then:

K(6) = %mvz — E—U(®6)
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or
=0 =

at x = 6 m. It is positive (to the right, +x) because the particle initially goes left, hits the
turning point at x = 1 m, and returns to the right, eventually reaching o = 6 m on its way to
the RH turning point at z3 = 9 m.

Finally, for d) we just have to read off the slope at 9 meters. At x =8 m, U = -3 J. At z = 10
m, U = 3 J. Then:

AU 6J

Fx:_—————— N
Ax 2 m 3

The direction is to the left, negative z, as positive slope in x implies a force in the —x direction.
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Problem 148. problems-1/wme-sa-potential-energy-to-force-icp.tex

A one-dimensional force F'(x) acts on a 2 kg particle which moves along the x axis. The
potential energy U(z) associated with F'(z) is shown in the graph.

When the particle is at = 11 m, its speed is 2 m/s.

a) What is the magnitude and direction of F'(x) at:

r= -3 m:
r=4m:
r =6 m:
z =11 m:

b) Between what limits of x does the particle move?

c) What is its speed at x = 7 m?
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Problem 149. problems-1/wme-sa-potential-energy-to-force-icp-soln.tex

From the graph, the slope of the graph in the region from 0 to 5 is -3 J/m. In the region from

10 to 15 it is +4 J/m. Recall, Eot = U 4+ K everywhere, so we need to find it using the data.
1 dUu

Ux=11)=-16J. K = §mv2 = 4J. Therefore Eyo, = —12 J. Also, F, = ———, which is the

dx
(negative) slope of the potential energy curve.

a) What is the magnitude and direction of F(x) at:
r=-3m: F,=0N
r=4m: F,=3N
r=6m: F,=0N
r=11m: F, = —4N

b) These are the values of x for which Eiot = U(z). On the left, the turning point is at
x = 7/3 m, on the right it is at = 12 m.

¢) K=—12—(-20) =8 J, so v = 2v/2 m/sec.
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Problem 150. problems-1/wme-sa-sliding-block-friction.tex
A block of mass m sitting on a horizontal surface is given an initial speed vy. Travelling in a

straight line it comes to rest after sliding a distance d. Find an algebraic expression for the
coefficient of kinetic friction in terms of the givens.

M =
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Problem 151. problems-1/wme-sa-sliding-block-friction-soln.tex
A block of mass m sitting on a horizontal surface is given an initial speed vy. Travelling in a

straight line it comes to rest after sliding a distance d. Find an algebraic expression for the
coefficient of kinetic friction in terms of the givens.

2
- Yo
pr = 5gd

Solution: Use the non-conservative work, mechanical energy theorem:

d
1
Whe = / {—,ukmg} dr = _:ukmgd = —gmvg = Ef —E; = AE
0

or (rearranging):
mv 3

- 2mgd  2gd

Hi
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Problem 152. problems-1/wme-sa-spring-jumper-straight-up.tex

A simple child’s toy is a jumping frog made up of an approximately massless spring with spring
constant k that propels a molded “frog” of mass m. The frog is pressed down onto a table
(compressing the spring by a distance d) and at t = 0 the spring is released so that the frog
leaps high into the air.

Use work and/or mechanical energy to determine how high the frog leaps. Neglect drag forces.
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Problem 153. problems-1/wme-sa-spring-jumper-straight-up-soln.tex

A simple child’s toy is a jumping frog made up of an approximately massless spring of uncom-
pressed length d and spring constant k that propels a molded “frog” of mass m. The frog is
pressed down onto a table (compressing the spring by d) and at ¢ = 0 the spring is released so
that the frog leaps high into the air.

Use work and/or mechanical energy to determine how high the frog leaps.

It is by far the easiest to use conservation of mechanical energy. Initially, the frog is located,
at rest (so its kinetic energy K = 0), at y = 0 (so U, = mgy = 0) with the spring compressed
a distance d (so Uy = %de). When the frog reaches its maximum height, it is again at rest
(so K =0), its gravitational potential energy is now U, = mgy = mgH, and the spring is fully
expanded so its spring potential energy is U, = 0. Hence:

1
Ei:0+0+§kd2:0+mgH+0

or 1
mgH = 3 kd?

or )
= k.
2mg
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Problem 154. problems-1/wme-sa-tension-pendulum-height-R-icp.tex

m
R
@ B=m2;

< '
-

In the figure above, a mass m is attached to a massless unstretchable string of length R and
held at an initial position at an angle § = /2 relative to the horizontal as shown. At time
t = 0 it is released from rest. Find the tension T in the string when it reaches 8 = 0.
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Problem 155. problems-1/wme-sa-tension-pendulum-height-R~icp-soln.tex

mg

In the figure above, a mass m is attached to a massless unstretchable string of length R and
held at an initial position at an angle § = 7/2 relative to the horizontal as shown. At time
t = 0 it is released from rest. Find the tension 7" in the string when it reaches 6 = 0.

This is “like” the loop the loop example. We use energy conservation to get an expression
containing v at the bottom. Note that experience tells us (eventually) to solve directly for muv?
as we look ahead to what we will need to form the right hand side of N2 for circular motion:

1
E; =mgR = §mfu2 =k — mv? = 2mgR

At the bottom, N2 in the vertical direction becomes

1)2

T—mg:maup:mﬁ

or (using the first result):
T = mg +mv?/R = 3mg

Note this is a substantial net force. In the accelerating frame of a person swinging on a swing
up to the highest point one can go without jerking the chains, it feels like one “weighs” (a bit
less than, because one’s center of mass isn’t at one’s bottom) three times as much as normal!
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5.2.3 Ranking Problems

Problem 156. problems-1/wme-ra-two-skiers-icp.tex

A finish

Two skiers start at the same point on a (frictionless) slope. One (A) skis straight down the
slope to the finish line. The other (B) passively skis off of a ski jump to arrive at the finish more
flamboyantly. Rank the answers to the following questions, where equality is a possibility, that
is, possible answers are A < B or A = B. Ignore friction and drag forces and assume that the
jumper does not use their leg muscles to “jump”.

a) Rank the relative speed of the two skiers when they reach the finish line.

b) Rank the finish time — who arrives at the finish line first (or is it at the same time)?
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Problem 157. problems-1/wme-ra-two-skiers-icp-soln.tex

N

e A finish

a) Energy conservation says that their final kinetic energies, and hence their speeds, have to
be equal.

b) Skier A both goes a shorter distance and spends a lot of his/her time going faster than
skier B, who slows down as he/she rises and only reaches his/her final speed (equal
to A) at the finish. A is at that speed from the bottom of the slope all the way to the
finish line! So A wins.
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5.2.4 Regular Problems

Problem 158. problems-1/wme-pr-double-inclines-with-friction.tex

A block with mass m is released from rest at a height Hy on an inclined plane that makes an
angle 6 with the ground. When it reaches the bottom, it smoothly slides up a second incline,
also at an angle 8 with respect to the ground as shown. The coefficient of static friction between
the block and the inclines is us; the coefficient of kinetic friction between the block and the
inclines is .

a) Find the minimum angle 6,,;, such that the block will be able to slide down the incline
after being released from rest.

Hmin =

b) Suppose 6 > O,in. When the block is released from the initial height Hy, what height H;
will it reach as it slides up the opposite incline before coming momentarily to rest?

o, =

c) Bonus question: 5 points
Suppose that the coefficient of kinetic friction is very small so that it can slide back and
forth many times. Approximately how many times will the block slide back and forth
before it loses 1/2 of its initial energy?

N

(NI
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Problem 159. problems-1/wme-pr-loop-the-loop-block.tex

A block of mass M sits at the top of a frictionless loop-the-loop of height H.
a) Find the normal force exerted by the track when the mass is at an angle € on the loop as
shown.

b) Find the minimum height H such that the block loops the loop without coming off of the
track.
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Problem 160. problems-1/wme-pr-loop-the-loop-classic-example.tex

A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-
the-loop of radius R.

a)

Find the minimum height H,,;, for which the block barely goes around the loop staying on
the track at the top. (Hint: What is the condition on the normal force when it “barely”
stays in contact with the track? This condition can be thought of as “free fall” and will
help us understand circular orbits later, so don’t forget it.).

Discuss within your recitation group why your answer is a scalar number times R and
how this kind of result is usually a good sign that your answer is probably right.

If the block is started at this position, what is the normal force exerted by the track at
the bottom of the loop, where it is greatest?

If you have ever ridden roller coasters with loops, use the fact that your apparent weight
is the normal force exerted on you by your seat if you are looping the loop in a roller
coaster and discuss with your recitation group whether or not the results you derive here
are in accord with your experiences. If you haven’t, consider riding one aware of the
forces that are acting on you and how they affect your perception of weight and change
your direction on your next visit to e.g. Busch Gardens to be, in a bizarre kind of way,
a physics assignment. (Now c¢’'mon, how many classes have you ever taken that assign
riding roller coasters, even as an optional activity?:-)
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Problem 161. problems-1/wme-pr-loop-the-loop-classic-solution.tex

mg

A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-
the-loop of radius R.

a) Find the minimum height Hy,;, for which the block barely goes around the loop staying on
the track at the top. (Hint: What is the condition on the normal force when it “barely”
stays in contact with the track? This condition can be thought of as “free fall” and will
help us understand circular orbits later, so don’t forget it.).

Discuss within your recitation group why your answer is a scalar number times R and
how this kind of result is usually a good sign that your answer is probably right.

b) If the block is started at this position, what is the normal force exerted by the track at
the bottom of the loop, where it is greatest?

If you have ever ridden roller coasters with loops, use the fact that your apparent weight
is the normal force exerted on you by your seat if you are looping the loop in a roller
coaster and discuss with your recitation group whether or not the results you derive here
are in accord with your experiences. If you haven’t, consider riding one aware of the
forces that are acting on you and how they affect your perception of weight and change
your direction on your next visit to e.g. Busch Gardens to be, in a bizarre kind of way,
a physics assignment. (Now c¢’'mon, how many classes have you ever taken that assign
riding roller coasters, even as an optional activity?:-)

Let us follow the hint and think about what is going on here. In this problem the block is not
bound to the looping track. This means that when it goes over the top of the loop nothing is
“holding it up.” Like any other object not held up by anything, it must accelerate down with
an acceleration g. Yet experience with toy cars, roller coasters, and strings tells us that if it is
going fast enough it will not fall off the track. The reason is that going around a circular track
does involve an acceleration, towards the center of the circle, of magnitude v?/R where v is the
speed. We will reproduce this in the last problem on this set. If this acceleration is at least ¢
then at the top of the track the block can be in free fall without leaving the track. If the speed
is higher, the acceleration required to complete the circle will be higher than g. This means if
the track broke, the block would in fact fly off above the circular trajectory. This is prevented
by a normal force applied by the track. The point of all this is that if the block is moving too
slowly around the loop it will leave the track. As the speed is reduced past this minimum, the
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first failure to stay on the track will occur at the very top of the loop. This is intuitively clear,
we will work it out in detail in another problem.

To turn these words into equations, consider applying Newton’s second law to the block at the
instant when it is at the apex of the looping track, moving (horizontally, to the left) at a speed
v¢. The figure indicates forces, velocity, and acceleration at this point, including the initially
unknown normal force applied by the track. Newton’s second law then reads

F=—-mgy — Ny =ma.. (5.3)

In order for the block to continue its circular motion along the track this downward vertical
acceleration must be equal to the centripetal acceleration, directed downward towards the center

— . ei.4

Since N > 0 we see that if the block is moving too slowly it will not stay on the track. The
minimum speed needed to just maintain contact with the track at the top is the speed at which
N =0, i.e.

v =gR . (5.5)

Now our job is to find how high the initial ramp must be in order for the block to reach the top
of the look with this speed. Of course, as it goes down the ramp the block accelerates under the
influence of gravity, but as it goes up the looping track it slows down under the same influence.
Since all forces acting on the block are conservative (gravity) or do no work at all (the normal
forces, which are everywhere perpendicular to the direction of motion) the total mechanical
energy of the block is conserved throughout its travels along our track. We can thus relate
its speed at the top of the loop to the height of the ramp where it was released from rest by
equating the total mechanical energy in both configurations, including kinetic and gravitational
potential energy. Setting U, = 0 at the base of the loop to determine the irrelevant additive
constant we have for these initial and final configurations the following expressions for total
energy

E; =mgH
2
E, = % +mg2R . (5.6)

Setting these equal to each other we find that the speed of the block at the top of the loop is
determined by H, R as
v? = g(2H — 4R) . (5.7)

The minimum H needed to clear the loop will lead to a value for v equal to the minimal value
(5.5) i.e.

g(2H —4R) = gR
H= gR . (5.8)

As predicted, we find a number, determined by various geometric factors, times R. This makes
sense, because R is the only parameter in the problem with the right dimensions, length. So
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to determine a length H related in some way to R we expect to find a result like this. That it
makes sense does not make it trivial. Neglecting friction, we predict that to double the height
of the loop you must double the height of your ramp. And we could have predicted that just
using this kind of dimensional reasoning, without doing any calculations at all!

We now want to find the normal force applied by the track at the bottom of the loop when the
block is released from this height. The figure indicates forces, velocity, and acceleration at this
instant. The total force on the block is now

F=—-mgy+ Ny . (5.9)

Once more the net acceleration is vertical. In order to be moving around a circle at speed v
we must have a = vg /Ry directed upward towards the center of the circle. This requires

2
Y%

N = . 5.10
This makes sense. At the bottom, in addition to holding up the block’s weight, the track must

apply additional normal force to provide the centripetal acceleration.

To find the value of N we again use energy conservation to find v,. At the bottom of the loop
the gravitational potential energy vanishes but the conserved total energy is equal to its value
at the top of the ramp (or at any other time during the block’s travels). This means

Ey=—"=FE;,=mgH , (5.11)

or
v? =2gH = 5gR | (5.12)

where the last equality used (5.8). Inserting this we find

N =mg+ 5mg = 6mg . (5.13)

If you are sitting in this block and travelling at the minimal speed needed to traverse the loop,
then at the top of the loop (where N = 0 you will just barely touch your seat. At the bottom
your seat needs to apply six times your weight to your bottom to accelerate you up. Your
diaphragm needs to apply six times the force it is accustomed to to hold up the contents of
your abdominal cavity, and most importantly your heart must lift your blood out of your feet
against an apparent 6g of gravity. This is why pilots of WWII planes that first achieved high
speeds had trouble with blacking out. Their hearts failed to overcome the increased apparent
gravity at the bottom of maneuvers and their oxygen-starved brains lost consciousness. The
remedy at the time was inserting wood blocks on the pedals, to raise their feet and put them
in a cramped position amenable to tightening their abdominal muscles to restrict blood flow.
Modern pressure suits simply squeeze the lower extremities in any configuration so that blood
flow is unaffected by acceleration.
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Problem 162. problems-1/wme-pr-loop-the-loop-difficult.tex

A block of mass m sits at the top of a frictionless hill of height H. It slides down and around
a loop-the-loop of radius R to an angle 8 as shown.

a) Find the magnitude of the normal force as a function of the angle 6.

b) From this, deduce an expression for the angle 6y at which the block will leave the track if
the block is started at a height H = 2R.
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Problem 163. problems-1/wme-pr-loop-the-loop-difficult-soln.tex

A block of mass m sits at the top of a frictionless hill of height H. It slides down and around
a loop-the-loop of radius R to an angle 8 as shown.

a) Find the magnitude of the normal force as a function of the angle 6.

b) From this, deduce an expression for the angle 6, at which the block will leave the track if
the block is started at a height H = 2R.

WME theorem:

1
mgH = mgR(1 — cos ) + §m1)2

or
muv? = 2mgH — 2mgR + 2mgR cos 0

Also, in the radial direction:

mv2

N — 0= —
mg cos 7

or

H H
N =mgcosf + 2mg§ —2mg + 2mgcos 0 = 3mgcos 6 + 2mg§ —2mg

The block leaves the track when N — 0. When H = 2R,

3mg cos 8y + 4mg — 2mg = 3mg cos Oy + 2mg = 0

Solving this,

2
cos by = —3

0y = cos™" <—§>

or
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Problem 164. problems-1/wme-pr-loop-the-loop-from-spring.tex

ko

J Sy

AX

A block of mass M sits in front of a spring with spring constant k compressed by an amount
Ax on a frictionless track leading to a circular loop-the-loop of radius R as shown.

a) Draw two force diagrams, one with the block at the top of the loop and one with the
block at the bottom of the loop. Clearly label all forces, including ones that you might
set to zero or ignore. Use these force diagrams to help answer the following two questions.

b) Find the minimum value of Az for which the block barely goes around the loop staying
on the track at the top.

c) If the block is started at this position, what is the normal force exerted by the track at
the bottom of the loop, where it is greatest?
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Problem 165. problems-1/wme-pr-loop-the-loop-from-spring-soln.tex

mg

ks )

[y

AX mg

A block of mass M sits in front of a spring with spring constant & compressed by an amount
Az on a frictionless track leading to a circular loop-the-loop of radius R as shown.

a) Draw two force diagrams, one with the block at the top of the loop and one with the
block at the bottom of the loop. Clearly label all forces, including ones that you might
set to zero or ignore. Use these force diagrams to help answer the following two questions.

b) Find the minimum value of Az for which the block barely goes around the loop staying
on the track at the top.

c) If the block is started at this position, what is the normal force exerted by the track at
the bottom of the loop, where it is greatest?

Solution: For a) see above. The only two forces at the top and bottom are the weight of the
block and the normal force.

For b), we have to use energy conservation to relate Az to the speed at the top of the loop,
write Newton’s Second Law at the top of the loop in the limit that N — 0 (“barely” loops the
loop on the track) and using circular motion kinematics:

1 1
E; = §krA3:2 = mg2R + imvf =E; = mv=kAz?—4mgR

N2:

bl )

EAx?
R

mu
R

_ [5mgR
Ar = -

For c¢) we can (again) use energy conservation, N2, and circular motion kinematics (plus Az
from part b)):

mg+ N =

mg = —4dmg

1 omgR 1
E;, = §k‘AJE2 = % = émvg =E; = muj=>5ngR
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N2:
N-mg=—7> = N =5mg+mg=06mg

or
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Problem 166. problems-1/wme-pr-loop-the-loop-skier-ambitious-amy.tex

Ambitious Amy has a mass m. She skis from initial rest down the (frictionless) ski slope of
height H to a ski ramp whose radius of curvature R and whose lowest point is A above the
ground (as shown).

Amy’s leg strength must oppose her apparent weight at the bottom of the jump. Is she strong
enough? It would be good to know how strong she has to be so that she can work on leg presses
if need be before trying the actual jump. So (in terms of the given quantities m, g, R, H,h) :

a) How fast is Amy going when she reaches the lowest point in the curved jump?

b) What is the total force that must be directed towards the center of the circle of motion
at that point (again, in terms of the given).

c¢) Using your knowledge of the actual forces acting on her that have to sum to this force,
determine her ”apparent weight” — the peak force she has to push down on the ground
with her skis with in order to stay on the circular curve.
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Problem 167. problems-1/wme-pr-loop-the-loop-skier.tex

H=35R

A skier of mass m at an exhibition wants to loop-the-loop on a special (frictionless) ice track
of radius R set up as shown. Suppose H = 3.5R. All answers should be given in terms of g, m
and R. (Note that the skier is really much shorter than R; the picture is not drawn strictly to
scale for ease of viewing.)

a) What is her apparent “weight” (the normal force exerted by the track on her skis) when
she is upside down at the top of the loop-the-loop?

b) What is her maximum apparent “weight” on the loop-the-loop and where (at what point
on the loop-the-loop track) does it occur? Indicate the position on the figure.
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Problem 168. problems-1/wme-pr-loop-the-loop-skier-weight.tex

H=35R

A skier of mass m at an exhibition wants to loop-the-loop on a special (frictionless) ice track
of radius R set up as shown. Suppose H = 3.5R. All answers should be given in terms of g, m
and R. (Note that the picture is not drawn strictly to scale for ease of viewing.)

a) What is her apparent weight (the normal force exerted by the track on her skis) when
she is upside down at the top of the loop-the-loop? If she closed her eyes, what direction
would she think of as “down”?

b) What is her maximum apparent “weight” on the loop-the-loop and where (at what point
on the loop-the-loop track) does it occur? Indicate the position on the figure.
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Problem 169. problems-1/wme-pr-loop-the-loop.tex

A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-
the-loop of radius R.

a) Find the minimum height H,;, for which the block barely goes around the loop staying
on the track at the top.

b) If the block is started at this position, what is the normal force exerted by the track at
the bottom of the loop, where it is greatest?
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Problem 170. problems-1/wme-pr-loop-the-loop-to-spring.tex
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A block of mass m is travelling to the right at the top of a frictionless circular loop-the-loop
track of radius R, travelling at speed v; to the right as shown. vy is large enough that the mass
remains on the track at the top. It then slides around the track to the bottom, slides across
the (frictionless) ground, and hits a spring with spring constant k& which slows it to rest after
the spring has compressed a distance Az from its initial equilibrium length.

a) What is the speed v, at the bottom of the circular loop?

b) What is the normal force exerted by the track at the bottom just before/as it leaves the
circular loop?

¢) By what distance Ax is the spring compressed at the instant the block comes to rest?
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Problem 171. problems-1/wme-pr-loop-the-loop-to-spring-soln.tex

ty

kii\
Ay

eq

A block of mass m is travelling to the right at the top of a frictionless circular loop-the-loop
track of radius R, travelling at speed v; to the right as shown. vy is large enough that the mass
remains on the track at the top. It then slides around the track to the bottom, slides across
the (frictionless) ground, and hits a spring with spring constant k& which slows it to rest after
the spring has compressed a distance Az from its initial equilibrium length.

a) What is the speed v, at the bottom of the circular loop?

1 1
E; = §mvt2 +2mgR = §mv§ =FE;

vp = \/v? + 4gR

b) What is the normal force exerted by the track at the bottom just before/as it leaves the
circular loop?

SO

2 2
mu mu
N-mg=—t=N= —b
mg R mg + R
From the first equation:
9 9 muv?
mvy, = mv; + 4mgR = N:5mg+?

¢) By what distance Ax is the spring compressed at the instant the block comes to rest?

Mechanical energy is conserved from the top of the loop to the fully compressed spring;:

1 1 / /
E; = imvg +2mgR = §/<;Ax2 =FEr=|Ax = % "Utz +4gR
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Problem 172. problems-1/wme-pr-razor-cuts-loop-string-1.tex

v = gRi

razor

A small ball of mass m (which can be treated as a point particle for this problem) is attached
to a massless, unstretchable string whose other end is attached to a fixed, frictionless pivot.
The ball swings in a vertical circle, with gravity acting downward as usual.

When the ball is at the top of the circle it has velocity 1/gR to the left as shown, the minimum
needed to keep the particle moving in a circle. After the ball has gone half way around the
circle and the string is again vertical, a razor blade cuts the string. You can assume that the
impulse delivered to the string by the very sharp razor is small enough that it can be ignored.

a) Find the velocity of the ball just before the string is cut.
b) Find the tension in the string just before the string is cut.

¢) On the diagram, qualitatively show the path of the ball just after the string is cut.
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Problem 173. problems-1/wme-pr-razor-cuts-loop-string.tex

A small ball (which can be treated as a point particle for this problem) is attached to an Acme
(massless, unstretchable) string whose other end is attached to a fixed, frictionless pivot. The
ball swings in a vertical circle, with gravity acting downward as usual.

When the ball is at the top of the circle it has velocity 1/gR to the left as shown. After the ball
has gone three quarters of the way around and the string is horizontal, a razor blade cuts the
string. You can assume that the impulse delivered to the string by the razor is small enough
that it can be ignored.

a) Find the tension in the string just before it is cut.

b) On the diagram, show the path of the ball after the string is cut. Describe in words any
features of the path that you intended to illustrate and be sure to indicate the maximum
height you expect the ball to reach relative to the center of the circle of motion.
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Problem 174. problems-1/wme-pr-sliding-off-a-cylinder-review.tex

In the figure to the left, a small (treat as a point mass)
block of mass m is on top of a frictionless cylinder so
that its center of mass is a distance R from the axis of
the cylinder. It is given a nudge so that it slides with
negligible initial speed down the side of the cylinder.

a) When its angular position is € as shown, what is
its speed (assuming that it is still on the cylinder)?

b) What is the magnitude of the normal force exerted
on the block by the cylinder at this point?

c) For what value of § will the block leave the cylin-
der?

Express your answers in m, R, g and 6.

U(H) = N(e) = Hcritical =
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Problem 175. problems-1/wme-pr-sliding-off-a-cylinder-review-soln.tex

v(f) = 2gR(1 — cos0)

der?

Express your answers in m, R, g and 6.

N(0) = (3cos 0—2)mg

ecritical =

203

In the figure to the left, a small (treat as a point mass)
block of mass m is on top of a frictionless cylinder so
that its center of mass is a distance R from the axis of
the cylinder. It is given a nudge so that it slides with
negligible initial speed down the side of the cylinder.

a) When its angular position is € as shown, what is
its speed (assuming that it is still on the cylinder)?

b) What is the magnitude of the normal force exerted
on the block by the cylinder at this point?

c) For what value of § will the block leave the cylin-

Solution: For a) use Energy Conservation. Let’s set U, = 0 at the top of the slope. As it
slides, it falls by a vertical height H = R(1 — cosf) (why?). Then E; = U; + K; = 0 Hence:

1
E; = imv2 —mgR(1 —cosf)=0=FE; =

v(0) = v/2gR(1 — cos 0)

As a quick check, this correctly predicts v = /2gR at § = /2 and v = 0 at § = 0, and has the

right units.

For b) we need to write Newton’s Second Law for the component of F or @ towards the
center of the circle. As long as one uses this component only, any coordinate frame above

can be made to work. That is:

F.=mgcosf — N =

mv2

ma. = —— and mv? = 2mgR(1 — cos )

R

‘N(H) =mgcosf —2mg(1l — cos @) = (3cos f — 2)mg‘

For c), note that N — 0 at the specific angle Ocyitical Where it comes off of the cylinder. From
N(#) in b), Oeritical is then easily found:

or:

3mgcos B, = 2mg

(2 .
Ocritical = COS ! <§> =48.2

Note that because the use of calculators is discouraged, this angle is perfectly well and uniquely
(enough) expressed as an inverse cosine, but I put down the angle in degrees just for fun.
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Problem 176. problems-1/wme-pr-smooth-inclined-plane-friction-table-2.tex

A block of mass m is given a push so that it begins sliding at a speed vy from the right to the
left over a rough surface of length D leading up to a smooth (frictionless) incline. The incline
makes an angle 6 with the horizontal as shown. The coefficient of friction between the block
and the rough surface is ug.

a) What is the minimum speed vg min the block must have at the right-hand end of the rough
surface such that the block will reach the bottom of the incline a distance D away?

b) Assuming that the block is travelling at some vy > vg min When it starts at the right-hand
end of the rough patch as drawn, how high (to what maximum height ymax) will the block
slide up the incline (use the coordinate system given)?
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Problem 177. problems-1/wme-pr-smooth-inclined-plane-friction-table.tex

\ K, at rest
; / -

A block of mass m slides down a smooth (frictionless) incline of length L that makes an angle
f with the horizontal as shown. It then reaches a rough surface with a coefficient of kinetic
friction pug.

a) How fast is the block going as it reaches the bottom of the incline?

b) What distance D does the block slide across the rough surface before coming to rest?
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Problem 178. problems-1/wme-pr-spring-to-inclined-plane-friction-numbers.tex

~Xo with friction .
frictionless

A Dblock of mass M = 1 kg is propelled by a spring with spring constant £ = 10 N/m onto
a smooth (frictionless) track. The spring is initially compressed a distance of 0.5m from its
equilibrium configuration (x; —z¢9 = 0.5 m). At the end of the track there is a rough inclined
plane at an angle of 450 with respect to the horizontal and with a coefficient of kinetic friction
M = 0.5.

a) How far up the incline will the block slide before coming to rest (find Hy)?

b) The coefficient of static friction is pus = 0.7. Will the block remain at rest on the incline?
If not, how fast will it be going when it reaches the bottom again?
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Problem 179. problems-1/wme-pr-spring-to-inclined-plane-friction-icp.tex

frictionless friction

N 4

A spring with spring constant k is initially compressed a distance of xy from its equilibrium
configuration as shown in the top diagram above. A block of mass m is placed against it and
the spring is released, propelling it forward on a smooth (frictionless) track. At the end of the
track there is a rough inclined plane at an angle of  with respect to the horizontal and with a
coefficient of kinetic friction puy.

a) How far up the incline will the block slide before coming momentarily to rest (find Lyax)?

b) Suppose the coefficient of static friction is ps. Find the maximum angle 6,y such that
the block will remain at rest at the top of the incline instead of sliding back down.
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Problem 180. problems-1/wme-pr-spring-to-inclined-plane-friction-icp-soln.tex

frictionless friction

TN 4

A spring with spring constant k is initially compressed a distance of xy from its equilibrium
configuration as shown in the top diagram above. A block of mass m is placed against it and
the spring is released, propelling it forward on a smooth (frictionless) track. At the end of the
track there is a rough inclined plane at an angle of # with respect to the horizontal and with a
coefficient of kinetic friction pug.

a)

How far up the incline will the block slide before coming momentarily to rest (find Lyax)?

The easiest way to answer this is to use the non-conservative work, mechanical energy
theorem:
Whe = AE

The (negative!) non-conservative work is done by kinetic friction on the incline. Hence:
. 1,
Wie = —pgmg cos(0) Liyax = mgLmax sin(f) — §kx0 = AFech

One can then solve for L,,x. First we rearrange:

1
51“'33 == mg (sin(#) + p cos(#)) Lmax
and then we get:
Lo ka?
B 29mg (sin(8) + p cos())

Suppose the coefficient of static friction is ps. Find the maximum angle 6, such that
the block will remain at rest at the top of the incline instead of sliding back down.

We use force balance, assuming that static friction is sufficient to prevent the slide:
mgsin(f) — fs =0

This means that:
fs = mgsin(0)
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We know that:
fs < Fs = ,UfsN

(where Fy is the force at which static friction fails). N = mg cos(6), so:
fs = mgsin(0) < psmg cos(9)

or
s > tan(0)

Take the inverse tangent of both sides to get:

Omax = tan_l(,us) >0

(where O,y is the angle at which it just starts to slide).
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Problem 181. problems-1/wme-pr-spring-to-plane-friction.tex

A \

frictionless with kinetic friction My

A block of mass m sits against a spring with spring constant & that is initially compressed a
distance Axz. At some time the block is released and slides across a frictionless surface until it
reaches a rough surface with a coefficient of kinetic friction py as shown.

a) How fast is the block going as it leaves the spring at zeq?

b) What distance D down the rough surface does the block slide before coming to rest?
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5.3 Power

5.3.1 Multiple Choice Problems

Problem 182. problems-1/power-mc-two-blocks-hard.tex

2F
B 2m 2

In the figures A and B above a force of magnitude F' is applied to mass m and a force of
magnitude 2F is applied to mass 2m as shown, where both masses are sitting initially at
rest on a frictionless table. For all values of ¢ > 0, identify the true statement in the list below:

|:| The power provided to block m in A is larger than that provided to block 2m in B at
any time t > 0.

|:| The power provided to the block 2m in B is larger than that provided to block m in A
at any time ¢t > 0.

|:| The power provided to both blocks is identical at any time ¢ > 0.

I:l It is impossible to tell from the information given which block receives more power from
the forces.
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Problem 183. problems-1/power-mc-two-blocks-hard-soln.tex

2F
B 2m 12

In the figures A and B above a force of magnitude F' is applied to mass m and a force of
magnitude /2F is applied to mass 2m as shown, where both masses are sitting initially at
rest on a frictionless table. For all values of ¢ > 0, identify the true statement in the list below:

D The power provided to block m in A is larger than that provided to block 2m in B at
any time t > 0.

D The power provided to the block 2m in B is larger than that provided to block m in A
at any time ¢t > 0.

IXI The power provided to both blocks is identical at any time ¢ > 0.
I:l It is impossible to tell from the information given which block receives more power from

the forces.

Solution: The fundamental (scaling) principle is (at any given time, for constant force in

the direction of ¥)

aw = F; F?
P=— =F %= Fu; wherev; =a;it=—t = P =-"t (i=ADB)
dt m m;
Thus:
F? 2F)?2  F?
Py =—t versus |Pp= (V2F) t=—t=Ps|())
m 2m m
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Problem 184. problems-1/power-mc-two-blocks.tex

In the figures A and B above an identical magnitude of force is applied to two masses m and
2m respectively, sitting initially at rest on a frictionless table. For all values of £ > 0 identify
the true statement in the list below:

a) The power provided to both blocks is identical throughout this time, and they end up
with the same final kinetic energy at time ¢.

b) The power provided to block m in A is larger than that provided to block 2m in B, and
mass m in A ends up with more kinetic energy at time ¢.

¢) The power provided to the block 2m in B is larger than that provided to block m in A,
but block m in A travels further in time ¢.

d) It is impossible to tell from the information given which block receives more power from
the forces.
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5.3.2 Regular Problems

Problem 185. problems-1/power-pr-constant-power-v-of-t.tex

3
< |
_@ o

In the figure above, a mass m is pulled along on a frictionless table by a motor with constant
power Py. At the instant shown, the mass has been previously accelerated to a speed v towards
the motor.

a) Find F' as a function of Py and v (in the direction of the motor).

b) Write Newton’s second law for the mass m in terms of your answer to a), using a = dv/dt
for the acceleration.

c) Solve the equation of motion you get for v(t), assuming that v(0) = 0.

d) Qualitatively sketch what you expect to get for v(¢) (or what you did get in the previous
section). Note that you can do this one even if you fail to do the integral correctly, if you
think about what happens to the force as the speed gets bigger and bigger.
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6.1 The Center of Mass

6.1.1 Multiple Choice Problems

Problem 186. problems-1/center-of-mass-me-disk-with-hole-icp.tex

mo OW

A uniform circular disk has a circular hole cut out of it as shown above. Which letter represents
the best estimate for the position of its new center of mass?

A B C D E
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Problem 187. problems-1/center-of-mass-me-disk-with-hole-icp-soln.tex

A uniform circular disk has a circular hole cut out of it as shown above. Which letter represents
the best estimate for the position of its new center of mass?

Solution: Recall that the center of mass of a collection of objects can be evaluated using the
mass of the objects and locating the objects “at” their own centers of mass as if they were point
masses. In this case, we can treat the hole as the remowal of a mass centered at the middle
of the hole, or the “addition” of a negative mass at that position to add to the mass that was
already there and produce a (mathematical) “hole”.

To put it another way, the problem above is equivalent to the problem given on the right,
where myg is the mass of the disk, my, is the mass removed to make the hole, and my > my, (by
inspection). We can handle the idea of “negative mass” at a positive y-position by changing it
mentally to a “positive mass” at the same negative y-position as indicated by the curved arrow.
The center of mass must be lower than the center of disk because of the hole, but not TOO
low. D is at the (reflected) position of the center of the hole, which is not possible because the
mass removed creating the hole my, is less than the total mass mgy. E is out of the question. C
is obviously the best (and only possible) choice.

A B @ D E



218 CHAPTER 6. MANY PARTICLE SYSTEMS

Problem 188. problems-1/center-of-mass-mec-particles-1.tex

A collection of four equal masses m (including the uniform half-circle of wire) is shown above.
Which of the points A-E is a plausible location of the center of mass?
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Problem 189. problems-1/center-of-mass-mec-particles-2.tex

m

mO ©
\ . 1

A ° !

e Cel

m T,

~ E i

m©
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Pick (circle) the point A-E closest to the center of mass of the system above, given four equal
masses m arranged as shown. Note that the dashed lines are drawn simply as a guide to the

eye.
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Problem 190. problems-1/center-of-mass-mc-particles-2-soln.tex

m
mO ©
.A .
: Ce
NS
N
4

Rationale: Since the “extra” mass in the triangle of masses is on the midpoint of the line
connecting the hypotenuse, and the center of mass of the triangle itself must (from symmetry)
also lie on this line, the center of mass must lie on the line between the upper right corner and
the mass on the hypoteneuse. This eliminates A, D and E. C is in the center of this line, but
there is clearly more mass along the hypoteneuse than there is on the corner, so the center of
mass has to be closer to the central mass on the hypoteneuse than the middle of the line. This
leaves B. In actual fact, one expects it to be 2/3 + 1/9 = 7/9 of the way along the line, starting
from the corner, which is very close to where B is drawn.
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Problem 191. problems-1/center-of-mass-mc-particles-3.tex

y

2m |
15m )Zkg

M o ©1kg
2kg</ 1; 5 3kg x

In the figure above, various given masses (in kilograms) are located at the positions shown
shown. The center of mass of this system is at:

a) =5/4m, y=1/2m

b) x =1m,y=1/2m

)
)
c) x=1/2m, y=1/4m
d) x=3/4m, y =1m

)

e) x=1/2m,y=1m
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Problem 192. problems-1/center-of-mass-mc-particles-4.tex

y In the figure above, various given masses (in kilograms)
are located at the positions shown shown. The center of
mass of this system is at:

2m |

rom (@ 2 kg [J2z=5/4m,y=1/2m [Jaz=1m,y=1/2
m
R I @3kg
Dx:3/4m,y:5/8m Dx:5/8m,
y=3/4m
: 1kg
2kg® | o x [Jez=12my=1/4m

im 2m
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Problem 193. problems-1/center-of-mass-mc-particles-4-soln.tex

y In the figure above, various given masses (in kilograms)
are located at the positions shown shown. The center of
mass of this system is at:

w50 2 kg [J2z=5/4m,y=1/2m [Jrz=1my=1/2

2m |

@ m
R I 3 kg
Dx:3/4m,y:5/8m |X|3:=5/8m,
y=3/4m
‘ 1kg
2kg® | @ £ [Je=12my=1/4m

im 2m
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Problem 194. problems-1/center-of-mass-me-particles-icp.tex

y
o | O1 kg
im | OZ kg
)
2 ng . 73kg X

In the figure above, various given masses (in kilograms) are located the positions shown in the
coordinate frame (in meters) above. The center of mass of this system is at:

a) =5/4m,y=1/2m b) z=1Im,y=1/2m ¢) x=3/2m,y=3/4m

d) x=5/4m,y=3/4m e) x=3/2m,y=1/2m
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Problem 195. problems-1/center-of-mass-mc-particles-icp-soln.tex

y
o | O1 kg
im | OZ kg
)
2 ng . 73kg X

This is straightforward. We use:

1 1
Lo = —— mix; and = m;ivy;
cm Mtot ; (A A ycm ]\4—t0t ; Zyl

independently. Obviously:

Mot =) mi=2+2+3+1=8kg

2

Then, using m; - x; order:

1 5
g;cm:B—kg(2-0—|—2-1—|—3-2+1-2:10kg—m):Zm

1 1
ycm:m(2-0+2-1+3-0+1-2:4kg-m)zim

Thus the center of mass of this system is at:

3::5/4m,y:1/2m b). z=1m,y=1/2m c¢). = =3/2m,y=3/4m

d). x=5/4m,y=3/4m e). x=3/2m,y=1/2m
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Problem 196. problems-1/center-of-mass-mc-particles-6.tex

2 kg

2m

b

im

£
2kgQ | ~/3kg X

im

In the figure above, various given masses (in kilograms) are located at the positions shown
above. The center of mass of this system is at:

a) z=>5/4m,y=3/4m

=3

r=1m,y=3/4m

)

)
c)r=1m,y=1m
d) x=5/3m,y=5/4m

)

e) x=3/4m,y=1m
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6.1.2 Short Answer Problems

Problem 197. problems-1/center-of-mass-sa-particles.tex

+ ! In the figure shown to the left, various given masses (in
! | kilograms) are located at the corners of a square with
o L . X sides of length 10 meters as shown. Using the provided
+ 5m coordinate frame, find the coordinates of the center of
mass of this system and enter them in the boxes below

U,

and place an “x” on the the graph at its location.

LCoM =

YCoM =
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Problem 198. problems-1/center-of-mass-sa-particles-soln.tex

+ ; In the figure shown to the left, various given masses (in
: kilograms) are located at the corners of a square with

! e ! X sides of length 10 meters as shown. Using the provided
-5m + 5m coordinate frame, find the coordinates of the center of
T ‘ mass of this system and enter them in the boxes below
1 and place an “x” on the the graph at its location.
)
1 kg 4 kg
Tem = 2 meters
Yem = 0 meters

Solution: We simply use the formula for (mass-weighted average) for the center of mass:

—

1 g
Lem = 5 m;a;
Mtot i

per coordinate. First find the total mass:
Mit =14+44+24+3=10kg

(that was pretty easy!) Next:

1 2
xcm:1—0(1*(—5)+2*(—5)+3*5+4*5):£:2meters

1 0
ycm:1—()(1*(—5)4—4*(—5)—1—2*5—1—4*5):E:0meters
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6.1.3 Regular Problems

Problem 199. problems-1/center-of-mass-pr-rod-variable-lambda-icp.tex

Ax) = 2Mx

I

0 L +X

In the figure above a rod of total mass M and length L is portrayed (with shading that increases
with mass density) that has been machined so that it has a mass per unit length that increases

linearly along the length of the rod:
2M

2
This might be viewed as a very crude model for the way mass is distributed in something like
a human leg or a baseball bat. The rod is so thin that ycn, = zem = 0 by inspection.

AMz) = x

a) verify that the total mass of the rod is indeed M for this mass distribution;

b) find Zey, the z-coordinate of the center of mass of the rod.
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Problem 200. problems-1/center-of-mass-pr-rod-variable-lambda-icp-soln.tex

dm:M X dx

T TN

Oxa L X

Solution: Draw a small chunk dx at general position x on the rod. Start with the litany: “The
charge of the chunk is the charge per unit length times the length of the chunk”, or:

)\(x):(fi—?:i—]\gx = dm:)\dx:i—]\fxdx

Then:

oM [T
/dm:—2 xzdr = M
L> Jy

which indeed checks out. We can now evaluate:

1 [(F 2 (L, 2 2°
xcm:M/O xdm:ﬁ/oxdx:ﬁg

This last result is basically the same result you would get evaluating the position of the center
of mass along any leg of a uniform sheet of mass in the shape of a right triangle, where the
height of the triangle increases linearly with (for example) x.

b)
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Problem 201. problems-1/center-of-mass-pr-right-triangle.tex

In the figure to the left, a uniformly thick sheet
of plastic is cut into the a x b right triangle with

y mass M shown. Find the center of mass of the

o ) triangle in the coordinate system given, using

— integration to find the z.y, and yen components

y(X) — (b/a)x int tion to find th d t
separately.

\ / M Suggested solution strategy:

a) Form o = M /A where A is the area of the
triangle.

b) Form dm = o dA where dA = dx dy.

c¢) Do the integrals of e.g. [z dm, using
the provided functional form of the hy-
a X potenuse to set the y-limit of integration.

d) Use symmetry to determine ey, !

Tem = Yecm =
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Problem 202. problems-1/center-of-mass-pr-right-triangle-soln.tex

y(x) = (b/a)x

I

In the figure to the left, a uniformly thick sheet
of plastic is cut into the a x b right triangle with
mass M shown. Find the center of mass of the
triangle in the coordinate system given, using
integration to find the x¢y and yem components
separately.

/ M Suggested solution strategy:

a) Form o = M /A where A is the area of the
triangle.

b) Form dm = o dA where dA = dx dy.

c¢) Do the integrals of e.g. [z dm, using
the provided functional form of the hy-

potenuse to set the y-limit of integration.

” d) Use symmetry to determine ey, !
Tem = ga Yem = %b
Solution: Not much to say here — let’s just go through the steps listed above. The area of
the triangle is (recall) A = %ab so:
a:%:% dm:adA:%dwdy

Tem = M/a:dm

v(@) on

ab

y(x)
ab/ rdx / dy

_X_

/ 22dr =

You can see that z.y, is one-third of the distance from the wide end of the triangle. Applying

the same rule to yem:

_b
em = 3
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Problem 203. problems-1/center-of-mass-pr-arc-270.tex

In the figure to the left, a uniformly thick
piece of wire with mass M and radius R is
bent into 3/4 of a circular arc as shown. Find
the center of mass of the wire in the coordi-
nate frame given.

Yem =
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Problem 204. problems-1/center-of-mass-pr-arc-270-soln.tex

R M y In the figure to the left, a uniformly thick
ino rdo piece of wire with mass M and radius R is
N rSingy------------ ‘ bent into 3/4 of a circular arc as shown. Find
AN i the center of mass of the wire in the coordi-
A } nate frame given.
R » r w
\.‘ :
6 | 2R
AN 4}) rcod x Tem = F
center of mass | ‘&
7
AR\Y
Y
\?/))@, _ 2R
N \a ycm 37T
N

Solution: We can’t sensibly integrate the center of mass formula in the problem in cartesian
coordinates, but it is pretty easy in polar coordinates. So we find p (mass per unit length),
form dm for a differential chunk of the wire at angle 0, express e.g. * = Rcos
and then integrate to find e.g. Tcny.

Give this a try before looking further below.

M 2M
"~ 37R/2  37R

1 1 [37/2 oM
xcmzﬁ/xdmzﬁ/o Rcosﬂng

_ 9= 2 [ gin 2= — i _ =
37 /. cosfd 3 (Sm 5 sm(0)> 3

2M
u ds = Rdf dmz,uds=3—d9
T

At this point one can either set up and do the second integral for y.,, — not a bad idea if you
are practicing setting up integrals and doing them! — or (smarter!) invoke symmetry. It’s
pretty obvious that the center of mass has to be on the dashed line bisecting the figure (so it
has reflection symmetry about this line), s0 yem = Zem without any additional work...
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Problem 205. problems-1/center-of-mass-pr-arc-90.tex

In the figure above, a uniformly thick piece of
wire is bent into 1/4 of a circular arc as shown.
Find the center of mass of the wire in the
coordinate system given, using integration
to find the z., and yem components separately.
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Problem 206. problems-1/center-of-mass-pr-arc-90-soln.tex

y=Rsin@{-—— \ 777777 ds = R®

X = R cosd X

. (Xo¥or) In the figure above, a uniformly thick piece of
””””” ' wire is bent into 1/4 of a circular arc as shown.
| Find the center of mass of the wire in the
coordinate system given, using integration
to find the z., and yem components separately.

Solution: First, select a differential chunk of the wire in polar coordinates at the angle 6 and

with angular width df as drawn above. This chunk has length:

ds = Rdbf

Next, find the mass per unit length of the entire wire:

_M_ M 2M
F=T " @/2R ™ =R

Use this to find the mass of the differential chunk ds:

2M 2M
dm = uds = —RRdH = —d0

Next, express its x and y coordinates in polar form:

x = Rcosf y = Rsinf

Finally, evaluate the center of mass coordinates by integrating 6 : 0 — 7/2:

1 1 2M 2R
wcm—M/xdm / Rcos@d9—7s1n§—

1 1 2
ycm:M/ydm M/ R51n9d9——RcosO—

If a student only evaluates one of these explicitly and invokes symmetry to assert that xey =
Yem, that’s perfectly all right! It is good to use symmetry and conceptual reasoning, when

possible, to shorten and simplify a problem!

Note that the solution point is marked in on the figure above, and does lie within the “envelope”
of the arc itself, as it must. It’s pretty close to where one might guess that it is located!
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Problem 207. problems-1/center-of-mass-pr-circular-cone.tex

<y

To the left is drawn a solid circular cone with
uniform mass density p. The cone side makes
an angle 6y with the positive z axis. The cone
height is H.

Find the center of mass of the cone in terms
of the quantities given above. Hint: Consider
circular slabs of thickness dz a height z above
the origin and use symmetry where possible.

Lem =
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Problem 208. problems-1/center-of-mass-pr-circular-cone-soln.tex

To the left is drawn a solid circular cone with
uniform mass density p. The cone side makes
an angle 6y with the positive z axis. The cone
height is H.

Find the center of mass of the cone in terms
of the quantities given above. Hint: Consider
circular slabs of thickness dz a height z above
the origin and use symmetry where possible.

Tem = 0

Yem = 0
3

Zem — ZR

X

Solution: First, note that the cone has full rotational symmetry around the z-axis!
That let’s immediately fill in Z¢p = Yem = 0 above.

Next, we need to find the “volume element” of the cone in terms of z. This is the disk-shaped
slab illustrated above at a height z above the origin. It has a radius r(z) = ztanfy (why?),
cross-sectional area A = 7r(2)? = 7z2tan® 6, and thickness dz. From this we can evaluate
several important quantities:

dV = Adz = mtan® 0y2* dz dm = pdV = prtan?0pz? dz

H H3
M = /dm = pr tan? 6’0/ 22dz = prtan? 6’0?
0

and finally:
Z —i/zdm—L/H}r zgdz—§H
TN - prtan’® Oy H [ / 0 4

Note that (interestingly!) the center of mass doesn’t depend on the angle of the cone 0! Tt is
a fixed fraction of the height of the cone for all right circular cones!
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Problem 209. problems-1/center-of-mass-pr-semicircular-sheet.tex

Find the center of mass of the two-dimensional
semicircular sheet drawn above. It has a uni-
form mass per unit area ¢ and radius R. You
R may invoke symmetry for one of the two vector
components of the center of mass location.
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Problem 210. problems-1/center-of-mass-pr-semicircular-sheet-soln.tex

Find the center of mass of the two-dimensional
semicircular sheet drawn above. It has a uni-
form mass per unit area ¢ and radius R. You
may invoke symmetry for one of the two vector
components of the center of mass location.

rcoP X

Solution: We have to use the definition of (vector) center of mass position in integral form,
but we have to choose good coordinates to integrate over. In the case of a semicircular domain,
polar coordinates are “obviously” the right choice. Things we will need to describe “a chunk of
mass at position (r,6)” include: include:

r=rcosf y=rsind dA=rdrdd dm=ocdA

Then (to get answers in terms of the given o):

R ™
M:/adA:/ / ordrdf = 1c77TR2
o Jo 2

xcm:M/wdm: /0 /0 arcos@rdrd@zT—m%(sinﬂ—sinO):O

omR?

(which is obvious from symmetry) and:

1 9 R 9 3 4
ycm:M/ydm:JﬂR2/0 /0 arsin@rdrdﬂz—W—Rz%(cosw—cosO):3—]:

Hence:

Zem = 02 + — Ry
3T

or any other (equivalent) way of correctly specifying two vector coordinates.
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Problem 211. problems-1/center-of-mass-pr-dog-in-a-boat.tex

L2 —

R -

A dog of mass m is sitting at one end of a boat of mass M and length L that is sitting next to
a dock as shown. The dog decides he wants some tasty dog chunks that are waiting for him at
home and walks to the other end of the boat, expecting to step out onto the dock. Sadly, when
he gets there he finds himself a distance D away from the dock.

a) What is D in terms of m, M, and L. You may assume that the boat is symmetric, so
that its center of mass is at L/2, although this is not strictly necessary to get the answer.

b) The dog can successfully jump to the dock from the boat if D < L/2, but otherwise he’ll
have to swim. Find the ratio m/M for which the dog (first, barely) can’t make the leap
and has to take a bath to get to the chunks.
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Problem 212. problems-1/center-of-mass-pr-dog-in-a-boat-soln.tex

a)

+X

L/2—

The idea is that the water is “frictionless” in the direction of the dock so that there is
no net force exerted on the dog-boat system while the dog walks. That means that the
center of mass, initially at rest, remains at rest while the dog walks!

So we equate the center of mass before the dog moves to the center of mass after:
- mL+ML/2 mD+ M(D+ L/2)

me - -

m+ M m+ M

cancel m + M and factor a bit:
mL+ ML/2=(m+ M)D+ ML/2
cancel the M L/2 and divide to get:

mL
m+ M

D=

This is now easy. In algebra-speak, we require D < L/2. The marginal case is then:

mL
D= =L/2
m+ M /

Even if you don’t immediately see that m = M works, you can multiply out the m + M
on both sides and also multiply both sides by 2:

2mL = (m+ M)L=mL+ ML

Cancel the L from both sides and simplify to get:

Scoring: +7 points for recognizing that it is a center of mass problem, +3 for writing a
correct expression for the CoM before and after, +2 for the algebra to get the correct
answer (give or take a point or two for details). Also +5 for recognizing that you set D
from a) equal to L/2, +3 for getting the answer from this (give or take a point ditto).
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Problem 213. problems-1/center-of-mass-pr-romeo-and-juliet.tex

Romeo and Juliet are out in their damn boat again, this time for a picnic on the lake. The
boat is initially at rest. Juliet decides she wants a piece of tasty watermelon, and throws the
watermelon at horizontal speed vy to Romeo at the other end of the boat a distance L away
so he can cut her a piece with his ever-handy bodkin (dagger). The combined mass of Romeo,
Juliet and the boat is Mj; the mass of the watermelon is m,,. Assume that the boat can move
horizontally on the water without drag or friction.

a) What is the horizontal speed of the boat while the watermelon is in the air (neglect its
vertical motion — assume that Juliet has thrown it on a flat trajectory as shown).
b) What is the horizontal speed of the boat after Romeo catches the watermelon?

¢) How long is the watermelon in the air?



244 CHAPTER 6. MANY PARTICLE SYSTEMS

Problem 214. problems-1/center-of-mass-pr-romeo-and-juliet-soln.tex

SOESSE

Romeo and Juliet are out in their damn boat again, this time for a picnic on the lake. The
boat is initially at rest. Juliet decides she wants a piece of tasty watermelon, and throws the
watermelon at horizontal speed vy to Romeo at the other end of the boat a distance L away
so he can cut her a piece with his ever-handy bodkin (dagger). The combined mass of Romeo,
Juliet and the boat is Mjp; the mass of the watermelon is m,,. Assume that the boat can move
horizontally on the water without drag or friction.

a) What is the horizontal speed of the boat while the watermelon is in the air (neglect its
vertical motion — assume that Juliet has thrown it on a flat trajectory as shown).

b) What is the horizontal speed of the boat after Romeo catches the watermelon?

¢) How long is the watermelon in the air?

Solution: For a), use conservation of (1D) momentum. Everything begins at rest (p; = 0 in
the & direction) so:
pi = 0 =myvo + Myvy = py

where py is the momentum while the watermelon is in the air. Hence:

That is, the boat recoils backwards at a speed that is a smallish fraction of the speed that the
watermelon goes forward, assuming reasonably that M > my,.

b) To find the horizontal speed of the boat after Romeo catches the watermelon, use conservation
of momentum again, but now consider p; to be when Romeo has caught the watermelon and
everything is moving “as one” again:

Di = (mw + Mb)O =0= (mw + Mb)vf = py

The boat and everything in it are at rest again as soon as he catches the watermelon.

or
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c¢) The easiest way to determine how long the watermelon is in the air is to consider the relative
speed of the watermelon and the boat. This is:
My
Urel = Vo — (_MUO)
This is the speed with which the watermelon in the air, and Romeo sitting in the boat, come
together, each covering its part of the distance L in between. That is:

L LM,
At= - =27
Urel (mw + Mb)UO

This makes sense — if the boat were very massive compared to the watermelon, the time would
just be L/vy and that’s what this goes to in that limit. In the opposite limit, with a very heavy
watermelon and a very light boat, by the time the watermelon is travelling at any decent speed
vg the boat is rocketing the other way many times faster so the time is very small, much less
than L /vg.

One can get the same result by saying that the watermelon travels a distance D to the right,

while Romeo/boat travel a distance L — D to the left, each at its own speed, to meet at time
At:

VAt = D
UbAt =L-D
Add these two equations, and get:
L L LM,
(v + v)At = LAt = At = = __ = |At=—""b
Uy + vy Vot JEV0 (Mmyy + Mp)vo

as before.
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6.2 Momentum

6.2.1 Multiple Choice Problems

Problem 215. problems-1/momentum-mc-also-energy-football-icp.tex

Two football players, one large (L — bigger mass) and one small (S — smaller mass) are running
in a straight line directly at one another. They have the same magnitude of momentum.
Rank their mechanical energies and speeds right before they collide.

a) Es < Er,vs<wvr, b) Es<FEp,vs>wvr, ¢) Eg>FEpvs>v, d) Eg>Ep,
vg < vp,
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Problem 216. problems-1/momentum-mec-also-energy-football-icp-soln.tex

This problem is intended to help you internalize the relationship between the scalar magni-
tude of the momentum P of an object and K, its kinetic energy:

1 P
= = — K=-mv’=-—
p=|p] =mv mu —

To answer these two questions, note that £ = K (we might as well set their unchanging
potential energy to zero as it is irrelevant). Then ask yourself: “How does (K or v) vary with
mass, given equal magnitudes of momentum for the two players?” Now it is easy:

ps = Mgvs = Mpvr, = pr =p

SO
MS < ML — Ug§ > v,
Similarly:
P’ P’
ST ong T T oM,

which go like the inverse of the masses, so:

Es=Kg>K; =FEp
Hence:

a) FEg < Er, vs < vp, b) Es < Er, vg > vp, @ Eg > Er, vsg > vp, d).
Eg > EL, vs < vy,

Note that working out K using your answer for v is much more difficult (try it)! The form
p?/2m is often the most convenient way to compute kinetic energy in momentum conservation
problems.
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Problem 217. problems-1/momentum-mec-baseball-and-bat-icp.tex

Ker-pow!
—

-~

Michelle is playing baseball and hits a home run with a solid wood bat (mass of 3 kg). The
baseball (mass of 0.5 kg) is knocked clean out of the park. The magnitude of the force exerted
by the bat on the baseball is:

a) Greater than the magnitude of the force exerted by the baseball on the bat.
b) Less than the magnitude of the force exerted by the baseball on the bat;

c) The same as the magnitude of the force exerted by the baseball on the bat.
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Problem 218. problems-1/momentum-mc-baseball-and-bat-icp-soln.tex

& ..

bB

Solution: This is pure Newton’s Third Law! The following should be passing through your
mind as you answer:

“The bat exerts a (normal) force on the baseball during the collision. The baseball therefore
exerts an (equal and opposite normal) force on the bat during the collision.”

Note well that the named force is the same, the two objects are the same (but in
opposite order), and the force acts along the line connecting the two objects which are
the exact conditions requied for Newton’s Third Law.

The answer does not depend on the mass, velocity, time, or any other property of
ball and bat, or car and truck, or any other pair of objects that push on one another
via a named force law. If it were not true, momentum would not be conserved, objects
made out of many particles would not behave like “particles” themselves, and physics would be
very sad...

The magnitude of the force exerted by the bat on the baseball is thus:

a) Greater than the magnitude of the force exerted by the baseball on the bat.
b) Less than the magnitude of the force exerted by the baseball on the bat;

@ The same as the magnitude of the force exerted by the baseball on the bat.
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Problem 219. problems-1/momentum-mc-cement-truck-and-bug.tex

A cement truck with a mass M; is travelling at speed v; collides with a bug of mass my that
is hovering above the road (so v, =~ 0). One can safely assume that M; > m;. Which of the
following statements are unambiguously true (circle all definitely true statements)?

a) If the bug recoils off of the windshield elastically, its final speed is roughly 2v; (in the
same direction as the truck).

b) The magnitude of the momentum change of the truck is much smaller than the magnitude
of the momentum change of the bug.

c) If the bug splatters and sticks to the windshield of the truck, the total kinetic energy of
the bug and truck will be conserved.

d) At all times during the collision, the bug exerts exactly the same magnitude of force on
the truck that the truck exerts on the bug.

e) The final speed of the bug as it recoils off of the windshield is roughly 24, (in the same

mp
direction as the truck).
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Problem 220. problems-1/momentum-mc-elastic-collision-blocks-2.tex

T A block of mass m slides on a friction-
X less table at velocity ¥ = v& to the
V _12m . Vin lom| V2n right (positive z-direction) to collide
ith a block of mass 2m initially at
before after rest as shown.

Assuming that the collision is one dimensional and elastic, the velocities of the two blocks
after the collision are:

— v A — _ 3v s — _ ~ — _ v A
Uy = —35& om = T & |:| U = 02 Uom = 5
— v A 40 4 — _ v — _21),\
’Um——gm ’Ugm:?a} D ’Um—gilﬁ ’lJQm—?m
— 2v 5,

~
3
Il
|
wle
(e
St
3
Il
<
8
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Problem 221. problems-1/momentum-mc-elastic-collision-blocks-2-soln.tex

T A block of mass m slides on a friction-
X less table at velocity ¥ = v& to the
V _12m . Vin lom| V2n right (positive z-direction) to collide
ith a block of mass 2m initially at
before after rest as shown.

Assuming that the collision is one dimensional and elastic, the velocities of the two blocks
after the collision are:

v — _31},\ — _ ~ — v a
Uy = —5& Vo, = T& |:| U = 02 Uom = 5
— v 4 Y TP - oy - 2.
’Um——gm ’Ugm—?a} D ’Um—gilﬁ ’lJQm—?m
— _ VoA — _27_),\

’Um——gm va—?m

Solution: Use the solution to the 1D elastic collision problem we derived in class using the
center of mass reference frame:
vf = —v; + 2Vem

for each mass! First we have to find Mo, = m + 2m = 3m and:

1
Vem = Mo (mv +2m % 0) = 3V

The z-velocity of the smaller block m after the collision is then:

1 1
vm:—v+2*§fu:—§v

That of the large block 2m is:

1 2
Vo = —0+2*§v:+§v
I checked the correct answer above, which (since the problem asks for velocity needs to include
direction) contains the appropriate unit vectors in the prowvided coordinate frame and the
correct signs and not just the magnitudes. Note that the smaller mass recoils to the left! This
is typical of elastic collisions where the incoming mass has less mass than the stationary target,
something well worth remembering]!
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Problem 222. problems-1/momentum-mec-fission-1.tex

‘3 v, Zm% P
3m m® ~
VO

An atomic nucleus of mass 3m is travelling to the
right at velocity Uinitial = UOZ as shown. It sponta-
neously fissions into two fragments of mass m and
2m. The smaller fragment m travels straight down

at velocity ¥, = —v(ﬁ after the fission. What is
the velocity of the larger fragment?
[] om = Svot [] @am = 2v0]
(] %om = 3v0t + Lugg (] tom =

3oy 1 :
—3v? — 3%0J]

D Vo = 31)0% + 22)05
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Problem 223. problems-1/momentum-mec-fission-1-soln.tex

‘3 v, Zm% P
3m m® ~
VO

An atomic nucleus of mass 3m is travelling to the
right at velocity Uinitial = UOZ as shown. It sponta-
neously fissions into two fragments of mass m and
2m. The smaller fragment m travels straight down

at velocity ¥, = —v(ﬁ after the fission. What is
the velocity of the larger fragment?
[] om = Svot [] @am = 2v0]
X tom = 3v0 + Lugg (] tom =

3oy 1 :
—3v? — 3%0J]

D Vo = 31)0% + 22)05
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Problem 224. problems-1/momentum-mec-fission-review.tex

£

N
12m, v,

y

8m, \y =7

D \

AN X
4m, Vv, = 2v,

An atomic nucleus of mass 12m is travelling to the right at velocity ¥initiai = vo® as shown. It
spontaneously fissions into two fragments of mass 4m and 8m (releasing energy). The smaller
fragment 4m travels straight down at velocity U4, = —2v9 after the fission. What is the

velocity of the larger fragment?

a) Ugm = %'Uoi + vy b) Vsgm = 209Z + 209y

—

— 3 . N 3 .
¢) Tsm = —35v02 —vog  d) Ugm = 500 + 2009

, 3 . N
e) Usm = 500 + VoY
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Problem 225. problems-1/momentum-mec-fission-review-soln.tex

y

8m, \y =7
o D
N < N
12m, v, am, v, = 2v,

Use momentum conservation:

—

P; = 12mu@ = 8mug, & + 8mug, g — 4m(2v0)g = P
and equate the z and y components:

3
12mug = 8mug, = Vs = 00 8mugy = 8muy = vgy = Vg
or:

a) 68m = %’Uoi + U()’g b) ’l?gm = 2’[)0@ + 2’[)0’!]

—

3, A " 3, A «
¢) Tsm = —35v0& —vog  d) Ugm = 5002 + 2009

— 3 A ~
Ugm = 5V0Z + VoY



6.2. MOMENTUM 257

Problem 226. problems-1/momentum-mec-simple-inelastic-collision-icp.tex

3m

A mass m travelling at (one-dimensional) velocity vg to the right collides with mass 3m travelling
at velocity —uvg to the left and sticks to it. The final velocity vy of the blocks after the collision
is:

a) vp=—2v9 b) vp=wvg/2 c¢) vp=-vg d) vf=-2v9/3 e) vf=—uvp/2
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Problem 227. problems-1/momentum-mec-simple-inelastic-collision-icp-soln.tex

\Y
f

%3m

A mass m travelling at (one-dimensional) velocity vg to the right collides with mass 3m travelling
at velocity —wg to the left and sticks to it.

Solution: Momentum is conserved in all collisions (in the impulse approximation), elastic and
partially or fully inelastic. This is a fully inelastic collsion as the two blocks stick together, but
we only need to use momentum conservation to answer the question.

The initial total momentum (positive to the right) is:
Ptot = Pi = Muy — 3mv0 = —2m’u0 = (4m)'uf = pf

so the final velocity vy of the blocks after the collision is:

a) vp=—2v9 b) vF=1v9/2 ¢) vp=-vy d) vy=—2v9/3 vf = —v9/2

(to the left, as drawn above).
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Problem 228. problems-1/momentum-mec-two-masses-spring-2.tex

—Imh e aml——

Two masses, m and 3m, are separated by a compressed spring as shown above. At time ¢t = 0
they are released from rest and the (massless) spring expands. There is no gravity or friction.
As they move apart, which statement about the magnitude of each mass’s relative kinetic
energy K; and the magnitude of each mass’s relative momentum p; is true?

Km - 3K3m7 Pm = p3m/3
Km - K3m/37 Pm = 3p3m

)
)

¢) K= Kzm/3, Pm = P3m
) K =3Ksm, Pm = Dsm
)

Km = K3m/4> Pm = P3m
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Problem 229. problems-1/momentum-mec-two-masses-spring.tex

Two masses, mo = 2m; are separated by a compressed spring. At time ¢ = 0 they are released
from rest and the (massless) spring expands. There is no gravity or friction. As they move
apart, which statement about the magnitude of each mass’s kinetic energy K; and momentum

p; is true?
[] Ki=2K, p1=2ps [] Ki=2Ks, p1=ps [[] Ki=K>, p1=2p

[] Ki=Ks/2, p1 = p2/2 [] Ki=Ks/4, p1=po
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Problem 230. problems-1/momentum-mec-two-masses-spring-soln.tex

Two masses, mo = 2m; are separated by a compressed spring. At time ¢ = 0 they are released
from rest and the (massless) spring expands. There is no gravity or friction. As they move
apart, which statement about the magnitude of each mass’s kinetic energy K; and momentum

p; is true?
[] Ki=2K, p1=2ps X Ki=2Ks, p1 =p> [[] Ki=K>, p1=2p

[] Ki=Ks/2, p1 = p2/2 [] Ki=Ks/4, p1=po

Solution: Recall momentum conservation (no external forces act) in 1D:
pi=0=p2 —p1 =py

or
b1 =p2=p

Also recall the following expression for kinetic energy of a particle:

p
K==
2m
Hence: )
p
K, =
! 2m1
2 2
ngp—:p—:—Kl — K =2K5
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Problem 231. problems-1/angular-momentum-mc-collapsing-star.tex

Q
\ / QO
/ \ after
before

When a star rotating with an angular speed ; (eventually) exhausts its fuel, escaping light
energy can no longer oppose gravity throughout the star’s volume and it suddenly shrinks,
with most of its outer mass falling in towards the center all at the same time.

As this happens, does the magnitude of the angular speed of rotation €2:

a) increase
b) decrease

¢) remain about the same

Why (state the principle used to answer the question)?
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Problem 232. problems-1/angular-momentum-mec-collapsing-star-soln.tex

Angular momentum is (approximately) conserved and the moment of inertial decreases, so 2
increases.
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Problem 233. problems-1/angular-momentum-mec-forming-star.tex

N\
/TN

before

Gravity gradually assembles a star by pulling a cloud of rotating gas together into a rotating
ball that then gradually shrinks. The figure above represents a star at two different stages in
its formation, the first where a gas of total mass M has formed a ball of radius 2R rotating
at angular speed );, the second where the ball has collapsed to a radius R (compressing the
nuclear fuel inside closer to the point of fusion and ignition), rotating at a possibly new angular
speed (1.

Assuming that the mass is uniformly distributed in both cases, what is the best estimate for
1y in terms of €2;7?

[] Qr=0/4 [] Q=92 [] Q=9 [] Q=29 []

Qf = 49,
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Problem 234. problems-1/angular-momentum-mec-forming-star-soln.tex

N\
/TN

before

Gravity gradually assembles a star by pulling a cloud of rotating gas together into a rotating
ball that then gradually shrinks. The figure above represents a star at two different stages in
its formation, the first where a gas of total mass M has formed a ball of radius 2R rotating
at angular speed );, the second where the ball has collapsed to a radius R (compressing the
nuclear fuel inside closer to the point of fusion and ignition), rotating at a possibly new angular
speed (1.

Assuming that the mass is uniformly distributed in both cases, what is the best estimate for
1y in terms of €2;7?

[ 2 =i/4 L o =ai/2 ] =9 L] 97 =20 X

Qf = 49,
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Problem 235. problems-1/angular-momentum-mec-rotating-rod-sliding-beads.tex

> L2

2 -L2

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its
center at angular speed w;. Two beads, each with mass m, are stuck a distance L/4 from the
center. The rotating system initially has a total kinetic energy K; (which you could actually
calculate if you needed to). At a certain time, the beads are released and slide smoothly to the
ends of the rod where again, they stick. Which statement about the final angular speed and
rotational kinetic energy of the rotating system is true:
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Problem 236. problems-1/angular-momentum-mec-two-circular-plates-collide.tex

y
/M

]
\Qi%F/’R/ X

<~ oM

A disk of uniformly distributed mass M and radius R sits at rest on a turntable that permits
it to rotate freely. A second uniform disk of mass M with the same radius, centered on the
same axis of rotation, is rotating at an (initial) angular speed €2; and is dropped gently onto it
so that (after sliding for an instant) they stick together and rotate together as one.

How do the final angular velocity and final kinetic energy relate to the initial angular velocity

and initial kinetic energy?

a Qf— s Kf:KZ'

b) Qp =20;, Kj=K;/2

)

)

) Qp =0/2, K;=K;/2

d) Qf =0/4, Kj=K;/4
)

e) We cannot tell from the information given.
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Problem 237. problems-1/angular-momentum-mec-two-circular-plates-collide-soln.tex

1
Angular momentum is conserved, inelastic collision: In z/axial direction, L = L; = §M R*Q =
1
2(§MR2)Qf =Ly, so Qp = Q;/2.

L2 L2
Onl has this, but just i Ki=—— _K=—— =K,/2
nly one answer has this, but just i case, ££; Z(lMR2)’ f 2(MR2) Z/ , SO answer

is ¢) on both counts.
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6.2.2 Short Answer Problems

Problem 238. problems-1/momentum-sa-elastic-recoil.tex

(incident) (target)

(b)

In the three figures above, mass M > m. The mass on the left is incident at speed vy on the
target mass (initially at rest in all three cases) on the right . The two particles undergo an
elastic collision in one dimension and the target mass recoils to the right in all three cases.
In the spaces provided below you are asked to provide a qualitative estimate of the speed and
direction of the incident particle after the collision.

Your answer should be given relative to vg and should look like “v, > v, to the left” or
“vp = 07 or vy, < vy, to the right” where x = a,b,c. In other words, specify the speed
qualitatively compared to vy and then the direction, per figure.
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Problem 239. problems-1/momentum-sa-elastic-recoil-soln.tex

(incident) (target)

You should remember/know (or even be able to derive):
Vf = —V; + 2Vem

for 1 dimensional elastic collisions. In the first case vem &~ 0 < vg. In the second, vem =~ vg. In
the third, ven = vo/2. So:

a)

Uy R — to the left

Vg A Vg to the right

vy =0 (other particle recoils to the right at v)
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Problem 240. problems-1/momentum-sa-hammer-impacts-head.tex

A hammer of mass m falls from rest off of a roof and drops a height H onto your head. Ouch!

a) Assuming that the tool is in actual contact with your head for a time At before it stops

(thud!) and slides off, what is the algebraic expression for the average force it exerts on
your hapless skull while stopping?

b) Estimate the magnitude of this force using m = 1 kg, H = 1.25 meters, At = 1072
seconds and g = 10_75. Compare this force to the weight of the hammer of 10 Newtons!
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Problem 241. problems-1/momentum-sa-impact-orc-spears-frodo.tex

An Orc throws a 2 kg spear at Frodo Baggins at point blank range, but it is stopped by his
hidden mithril mail shirt. Assuming that the spear was travelling at 20 m/sec when it hit and
that it stopped in 0.1 seconds, what was the average force exerted on the spear by the mail
coat (and the hobbit underneath)? Ouch!
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Problem 242. problems-1/momentum-sa-shark-eats-fish.tex

A great white shark of mass mq, coasting through the water in a nearly frictionless way at
speed v1, engulfs a tuna of mass mo < mq travelling in the same direction at speed vy < w1,
swallowing it in one bite.

a) What is the speed of the shark after its tasty meal, sadly eaten without wasabi (mmm,
sashimil)?

b) Did the shark gain (kinetic) energy, lose energy, or have its energy remain the same in
the process.
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Problem 243. problems-1/angular-momentum-sa-bug-on-rotating-disk.tex

A disk of mass M and radius R is rotating about its axis with initial angular velocity y. A
rhinoceros beetle with mass m is standing on its outer rim as it does so. The beetle decides to
walk in to the very center of the disk and stand on the axis as it feels less pseudoforce there
and it is easier to hold on. What is the angular velocity of the disk when it gets there?

(Ignore friction and drag forces).
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Problem 244. problems-1/angular-momentum-sa-conserved-quantities.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a
rigid wall that cannot move, returning at the D D D
same speed it had before the collision.

A piece of space junk strikes the orbiting space
shuttle and sticks to it. I:l I:l I:l
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Problem 245. problems-1/angular-momentum-sa-conserved-quantities-soln.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a C N
rigid wall that cannot move, returning at the
same speed it had before the collision.

Explanation: It bounces off at the same speed (given) so the collision is elastic as given.
Linear momentum is not conserved, period (so blank). Angular momentum is conserved only
if the pivot is on the line of motion of the particle so it is zero before and after the collision.
This is rather unlikely (and not helpful in solving any sort of problem) but is enough for this
to earn an N as it could happen if a coordinate system of this sort was given.

Total Linear Angular
Energy Momentum Momentum

A piece of space junk strikes the orbiting space C C
shuttle and sticks to it.

Explanation: The collision is “fully inelastic” as they stick together and lose all of the kinetic
energy initially present in the center of mass reference frame, so total mechanical energy is
definitely not conserved. In the (usual) impulse approximation gravity (holding the shuttle “in
orbit” exerts a negligible force during the short time of the collision and no other forces are
present (it’s in a vacuum so no drag etc). Hence both momentum and angular momentum are
conserved, as no external torques act either.
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Problem 246. problems-1/angular-momentum-sa-conserved-quantities-soln.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a C N
rigid wall that cannot move, returning at the
same speed it had before the collision.

Explanation: It bounces off at the same speed (given) so the collision is elastic as given.
Linear momentum is not conserved, period (so blank). Angular momentum is conserved only
if the pivot is on the line of motion of the particle so it is zero before and after the collision.
This is rather unlikely (and not helpful in solving any sort of problem) but is enough for this
to earn an N as it could happen if a coordinate system of this sort was given.

Total Linear Angular
Energy Momentum Momentum

A piece of space junk strikes the orbiting space C C
shuttle and sticks to it.

Explanation: The collision is “fully inelastic” as they stick together and lose all of the kinetic
energy initially present in the center of mass reference frame, so total mechanical energy is
definitely not conserved. In the (usual) impulse approximation gravity (holding the shuttle “in
orbit” exerts a negligible force during the short time of the collision and no other forces are
present (it’s in a vacuum so no drag etc). Hence both momentum and angular momentum are
conserved, as no external torques act either.
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Problem 247. problems-1/angular-momentum-sa-rotating-rod-sliding-beads.tex

> L2

2 -L2

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its
center at angular speed w;. Two beads, each with mass m, are stuck a distance L/4 from the
center. The rotating system initially has a total kinetic energy K; (which you could actually

calculate if you needed to). At a certain time, the beads are released and slide smoothly to the
ends of the rod where again, they stick.

A) What quantities of the system (rod plus two beads) are conserved by this process? (Place
a Y or N in the provided answer boxes.)

Total Kinetic Energy

Total Linear Momentum

Total Angular Momentum

B) Determine the ratio of the following quantities:

Iy

1
w

s
|

> |

.



6.2. MOMENTUM 279

6.2.3 Regular Problems

Problem 248. problems-1/momentum-pr-ballistic-pendulum-partially-inelastic.tex

In the figure above, a bullet of mass m and initial velocity vy passes through a block of mass M
suspended by an unstretchable, massless string of length L from an overhead support as shown.
It emerges from the collision on the far side travelling at v; < vg. This happens extremely
quickly (before the block has time to swing up) and the mass of the block is unchanged by the
passage of the bullet (the mass removed making the hole is negligible, in other words). After
the collision, the block swings up to a maximum angle . and then stops.

Find 0,4x-
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Problem 249. problems-1/momentum-pr-bullet-block-free-fall-1.tex

m Vo ;; .

A bullet of mass m travelling at speed vy in the direction shown above strikes a block of mass
M and embeds itself in it. The block is sitting on the edge of a frictionless table of height H
and is knocked off of the table by the collision.

a) What is the speed v, of the block immediately after the bullet sticks?
b) What distance R from the base of the table does the block land?
Note: If you cannot solve a), just use the symbol v, where needed to get possibly full credit for

b). Do not just use a memorized formula for b): Clearly state the physical principle(s) you are
using and work out the answers.
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Problem 250. problems-1/momentum-pr-bullet-stops-at-block.tex

In the figure above a bullet of mass m is travelling at initial speed vy to the right when it strikes
a larger block of mass M that is resting on a smooth (frictionless) horizontal table.

Instead of “sticking” in the block, the bullet is stopped cold by the block and falls to the ground,
while the block recoils from the collision to the right. Note that this collision is partially inelastic,
so some mechanical energy will be lost.

a) What is the velocity of the block v, immediately after the collision.

b) How much energy is lost in the collision?
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Problem 251. problems-1/momentum-pr-bullet-through-block-rough-surface.tex

(block at rest)

In the figure above a bullet of mass m is travelling at initial speed v; to the right when it
strikes a larger block of mass M that is resting on a rough horizontal table (with coefficient of
friction between block and table of py). Instead of “sticking” in the block, the bullet blasts its
way through the block (without changing the mass of the block significantly in the process). It
emerges with the smaller speed vy, still to the right.

a) Find the speed of the block v, immediately after the collision (but before the block has
had time to slide any significant distance on the rough surface).
b) Find the (kinetic) energy lost during this collision. Where did this energy go?

¢) How far down the rough surface D does the block slide before coming to rest?
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Problem 252. problems-1/momentum-pr-bullet-through-block.tex

In the figure above a bullet of mass m is travelling at initial speed v; to the right when it strikes
a larger block of mass M that is resting on a horizontal table. Instead of “sticking” in the block,
the bullet blasts its way through the block (without changing the mass of the block significantly
in the process). It emerges with the smaller speed vy, still to the right.

a) What is the velocity of the block v, immediately after the collision.

b) How much energy is lost in the collision?
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Problem 253. problems-1/momentum-pr-collision-icy-hill-to-rough-snow.tex

Tommy

rough snow

D

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a
frictionless slope of height H above a flat plane, where he runs into Mom. The two of them
stick together and slide forward a distance D across a patch of rough snow with coefficient of
kinetic friction pj until they come to rest. The mass of Tommy is my, the mass of his mother
is M,,,. Answer the following algebraic questions in terms of H, ug, m¢, My, and g:

a) How fast is Tommy going immediately before he collides with his mother?
b) Find D.

¢) How much energy is gained or lost during the collision between Tommy and his mother?
Indicate clearly whether the energy is gained or lost.
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Problem 254. problems-1/momentum-pr-collision-icy-hill-to-rough-snow-soln.tex

Tommy

rough snow

D

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a
frictionless slope of height H above a flat plane, where he runs into Mom. The two of them
stick together and slide forward a distance D across a patch of rough snow with coefficient of
kinetic friction pj until they come to rest. The mass of Tommy is my, the mass of his mother
is M,,. Answer the following algebraic questions in terms of H, ug, m¢, M,,, and g:

a) How fast is Tommy going immediately before he collides with his mother?
b) Find D.
¢) How much energy is gained or lost during the collision between Tommy and his mother?

Indicate clearly whether the energy is gained or lost.

Solution: For part a), use conservation of mechanical energy and solve it for Tommy’s speed
at the bottom of the hill:

1
mygH = §mtv§ = v = 2gH

For b) we have to solve the inelastic collision using conservation of momentum:

i = myvy = myn/29H = (my + My, vy = py

Note that I'm not bothering to solve for vy as we don’t really need it to answer the questions.
After the collision (and using things like N — (my + M,,)g = 0, fr = —uiN), we use non-
conservative work, mechanical energy:

p% - m22gH

W, = — MYD=E;—E =0— — -4 %97
ne = ik (me + Mn)g ;o= 2(my + M) 2(my + My,

We rearrange to solve for:
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Finally, c) is easy:

2 2
P p M 1 M
AK =K;— K; = ! L o T (Cpe?) = ——— mygH
2(my + My,)  2my my + M, \ 2 mg + My,

Note that this is (as it must be!) expressed in terms of the givens, and indicates the fraction of
Tommy’s initial potential energy that was lost in the collision.
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Problem 255. problems-1/momentum-pr-collision-on-icy-hills.tex

Tommy

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a
frictionless slope of height H above a small valley, where he runs into Mom. The two of them
stick together and slide up the slope on the far side to a new height h. The mass of Tommy is
my, the mass of his mother is M,,. Ignore all drag and friction, and answer the following
algebraic questions in terms of H, m;, M,,, and g:

a) How fast is Tommy going immediately before he collides with his mother?
b) Find h.

¢) How much energy is gained or lost during the collision between Tommy and his mother?
Indicate clearly whether the energy is gained or lost.
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Problem 256. problems-1/momentum-pr-collision-on-icy-hills-soln.tex

Tommy

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a
frictionless slope of height H above a small valley, where he runs into Mom. The two of them
stick together and slide up the slope on the far side to a new height h. The mass of Tommy is
my, the mass of his mother is M,,. Ignore all drag and friction, and answer the following
algebraic questions in terms of H, m;, M,,, and g:

a) How fast is Tommy going immediately before he collides with his mother?
b) Find h.

¢) How much energy is gained or lost during the collision between Tommy and his mother?
Indicate clearly whether the energy is gained or lost.

Solution:  For a), use Conservation of Mechanical Energy, as we are neglecting all non-
conservative forces like drag and friction:

1
Ei = mtgH = §mtvt2 = EZ’

SO

UVt = QQH

For b), momentum only is conserved during the collision, so:
pi = myvy = (my + Mp)vp = py

Energy is lost as it is a fully inelastic collision, and c) below has you explicitly compute
this. Using the final combined momentum as the initial state, though, energy is once again
conserved on the way up the hill, so:

2 2 2
Dy mi2gH mygH
" 20my + M) 2(my + M) (my + M) (mq + Mm)g !
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We solve algebraically, substituting as needed to make all answers appear in terms of the givens,
for:

Finally for c), we simply find the change in (kinetic) energy during the collision directly:

ot = << TR 1) mgH

AE=F;—F; = Tt
! ! m my + M,

M
AEF=—|—T" H
<(mt + Mm)) g

where the minus sign means energy is lost.
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Problem 257. problems-1/momentum-pr-dog-jumps-from-boat.tex

M v Lp-

A dog of mass m gets hungry while sitting at the end of a boat of mass M and length L that
is at rest on the water of a lake. He jumps out onto the dock to go get some tasty dog chunks
that are waiting for him at home when the boat is a distance D away from the dock as shown.

The dog travels at a horizontal speed vy relative to the ground/lake as he flies through the
air.

a) What is the recoil speed of the boat, vy, while the dog is in the air? Assume that dog and
boat are both at rest before the jump.

b) How much work did the dog’s legs do during the jump?
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Problem 258. problems-1/momentum-pr-dog-jumps-from-boat-soln.tex

M v Lp-

A dog of mass m gets hungry while sitting at the end of a boat of mass M and length L that
is at rest on the water of a lake. He jumps out onto the dock to go get some tasty dog chunks
that are waiting for him at home when the boat is a distance D away from the dock as shown.
The dog travels at a horizontal speed vy relative to the ground/lake as he flies through the
air.

a) What is the recoil speed of the boat, vy, while the dog is in the air? Assume that dog and
boat are both at rest before the jump.

b) How much work did the dog’s legs do during the jump?

The initial momentum of the boat is zero. Hence remains zero while the dog is in the air:

m
pi =0=—Muvy, +mvg =p; = v = 7Y

(where I put in the minus sign so the answer would be positive, the boat’s speed is the magnitude
of the boat’s velocity).

The work done by the dog’s legs is the total kinetic energy of the boat and the dog after the
dog jumps; nothing else does work in the system. Hence:

1 1 my 1
W = §Mv§ + imvg = (1 + M> §mv3

in terms of the givens (several other ways to write this answer, all of them OK).
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Problem 259. problems-1/momentum-pr-elastic-collision-proton-neon.tex

mp e, M=20mp
*— A oos
Vo oos

A Proton of mass m,, is directly incident on a Neon nucleus with mass 20m,. It is initially
(far away from the nucleus) travelling with speed vg. The two particles repel each other (like
charges repel) as they approach, and the force of repulsion is strong enough to prevent the
particles from touching. The “collision” that takes place gradually between the two particles is
elastic.

a) At some distant time in the future (after the collision) is the proton moving to the left or
to the right?

b) What is the speed of the proton when it and the Neon nucleus are at the distance of
closest approach?

c) What is the speed of the Neon nucleus at a distant time in the future (after the collision)
when they are once again far apart.
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Problem 260. problems-1/momentum-pr-elastic-two-balls.tex

In the figure above, a ball with mass m = 1lkg and speed vy = 5 m/sec elastically collides
with a stationary, identical ball (all resting on a frictionless surface so gravity is irrelevant). A
student measures the top ball emerging from the collision at a speed vy = 4 m/sec at an angle
0; ~ 37° as shown.

a) Find the speed v of the other ball.

b) Find the angle 6, of the other ball. (Hint: Draw a triangle with sides of length vg, vy, v3.)

¢) What does 6; + 6, add up to? (This is a characteristic of all elastic collisions between
identical masses in 2 dimensions.)
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Problem 261. problems-1/momentum-pr-fission.tex

y
2m
V. v?
$— =
3m % f

An atomic nucleus of mass 3m is travelling to the right at velocity ¥Uinitiai = vo& as shown. It
spontaneously fissions into two fragments of mass m and 2m. The smaller fragment m travels

straight down at velocity ¥, = —vo¥ after the fission.

a) What is the velocity of the larger fragment?

b) What is the net energy gain or loss (indicate which!) from the fission process, in terms

of the initial kinetic energy?
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Problem 262. problems-1/momentum-pr-h3-he4-fusion.tex

y
Be, Vi
v, &
‘:: 0
3m X
3v,
He, & 4m

In the figure above, a Tritium (Hs) nucleus and a Helium (Hey) nucleus collide and fuse inelas-
tically into Beryllium (Bey), an important nucleosynthesis process in the early Universe. The
velocity of the Hj is 4vge, the velocity of the Hey is 3ugj as drawn. Show your work and
reasoning to answer the following questions in terms of the given quantities m and vg:

a) Find the final velocity vector of the combined object, expressed using vector notation (e.g.
A=A1+Ay7);

b) Find the magnitude of the final velocity vy and its angle 6 with respect to the x-direction;

c¢) Find the change of momentum vectors Ap'y for the Hs nucleus and Apy, for the Hey
nucleus. (Recall that Ap'== p’; — p;.) Briefly discuss how they are related and what this
means.
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Problem 263. problems-1/momentum-pr-inelastic-collision-ball-bearing-spring.tex

block comes to rest

collision

A ball bearing of mass m = 50 grams travelling at 200 m/sec smacks into a block of mass
M = 950 gms and sticks in a hole drilled therein. The block is initially at rest on an Acme
frictionless table and is also connected to an Acme spring with spring constant k¥ = 400 N/m
at its equilibrium position (see figure).

a) What is the maximum distance = the spring is compressed by the recoiling ball bearing-
block system?

b) How much mechanical energy is lost in the collision (noting that an answer of ‘none’ is
one possibility)?
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Problem 264. problems-1/momentum-pr-inelastic-elastic-collision.tex

3m

. v T

Two masses A and B rest on a frictionless surface, with a massless spring with spring constant
k connected to B. A bullet coming from the left with speed v hits A and becomes embedded in
it. The masses of the bullet, A and B are m, 2m and 3m respectively.

a) What is the speed vey of the center of mass of the system consisting of A, B and the
bullet?

b) Immediately after A gets hit by the bullet, what is the speed v4 of A (with the bullet
embedded in it) before it hits the spring?

c¢) In the subsequent motion of the system, what is the maximum compression Az .y of the
spring?
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Problem 265. problems-1/momentum-pr-neutron-collides-with-helium.tex

initially at rest

In the figure above, a neutron of mass m collides elastically with a helium nucleus of mass 4m,
striking it head on so that the collision is one dimensional. The initial speed of the the neutron
is vg; the helium nucleus is initially at rest. In answering the following questions you may either
find or just remember the solution for one dimensional elastic collisions — you do not have to
derive it, although you may if you wish or cannot remember it.

a) What is the final velocity of the neutron (magnitude and direction) after the collision.
b) What is the final velocity of the helium nucleus after the collision.

c¢) Is the helium nucleus moving faster or slower than the neutron is moving after the colli-
sion? (Does your answer make sense?)
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Problem 266. problems-1/momentum-pr-two-astronauts.tex

before

after

Two astronauts with identical mass
M (including their spacesuits) in free-
fall are working on a satellite. They
are connected by a taut tether rope of
length L. The first astronaut on the
needs a tool of mass m that the second
astronaut is carrying (also initially a
distance L away), so the second one
tosses the tool to the first at speed vy.

a) What is the speed of the two
astronauts while the tool is
in space flying freely between
them?

b) What is the speed of the two
astronauts after the first one
catches the tool?

c) The first astronaut cannot reach the satellite if he has drifted a distance d further away
while the tool was in flight. Find the maximum length L that the tether can have such
that the first astronaut can still reach the satellite. Does the answer depend on vy?

d) The tool apparently makes a fully inelastic collision with the second astronaut. We have
learned that inelastic collisions lose total mechanical energy. Yet the initial and final
energy of the system is the same! Explain how that can be.
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Problem 267. problems-1/momentum-pr-two-astronauts-soln.tex

Two astronauts with identical mass
M (including their spacesuits) in free-
fall are working on a satellite. They
/’V' are connected by a taut tether rope of
length L. The first astronaut on the
needs a tool of mass m that the second
astronaut is carrying (also initially a

before distance L away), so the second one
- tosses the tool to the first at speed vy.
) > a) What is the speed of the two
‘*‘Ej ®<d> 000 astronauts while the tool is
e O /) in space flying freely between
%{% them?
after

b) What is the speed of the two
astronauts after the first one
catches the tool?

c) The first astronaut cannot reach the satellite if he has drifted a distance dpax further
away while the tool was in flight. Find the maximum length L that the tether can have
such that the first astronaut can still reach the satellite. Does the answer depend on vy?

d) The tool apparently makes a fully inelastic collision with the second astronaut. We have
learned that inelastic collisions lose total mechanical energy. Yet the initial and final
energy of the system is the same! Explain how that can be.

Solution: a) is simply a matter of (1D, z-direction) momentum conservation. Initially the
momentum is zero. While the tool is in the air, then:

pi=0=mvy —2Mv, =0=p; = Vg = ——10

b) is the same idea:

pi:O:(2M+m)Uf:O:pf =

(you could have done this one “by inspection” with no algebra at all).
To answer c¢), we need to find d, the “drift distance”, after the second astronaut has caught the
tool. Note that:

dz
p=0= Mitvem = (2M +M)Very, = Ve =0 = d;m

at all times, even when the tool is in the, umm, ‘air’! We then pop a coordinate frame onto
the picture (provided for you this time) and write:

= xn = Constant!
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ME+mL = (m+ M)d+ ML+ Md

or (solving for d):

mL

d= ———
2M +m

The astronaut can’t reach the satellite if d > dpyax:

mL

S e
2M—|—m> ma

so the largest L that allows him to still reach occurs when these two terms are equal:

MLmax 2M +m
ﬁ = dmax = Lmax = %dmax

which obviously doesn’t depend on vg. Hopefully it makes sense that it would not depend on
v, since momentum is conserved independent of its (intermediate) value!

Finally, to answer d) we need only note that the first astronaut did non-conservative work on
the system when he threw the wrench. You could even compute how much work he did:

1 1 1 m? 1 m\ 1
I/I/in = Ka + Kt = 5(2M)Ug + 5771,’[)(2] = 5(2M)m’0(2] + 5771/[)(2] = (1 + m) 577’”18 = —Wout

Obviously, this is also exactly equal to the work lost in the collision when the second astronaut
catches the tool, so total mechanical energy is still conserved because the non-conservative work
being done a both ends cancels!
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Problem 268. problems-1/momentum-pr-two-block-elastic-collision.tex

v
3m
m
k
MY
A B

Two blocks A and B collide elastically on a frictionless surface. A massless spring with spring
constant k is connected to block B. Initially, block A moves to the right with a speed v to
collide with block B which is initially stationary.

Show your work.

a) Before the collision, what is the speed vy of the center of mass of the system consisting
of blocks A and B?

VUem =

b) During the collision, what is the maximum compression Ay, of the spring?

AZpmax =
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Problem 269. problems-1/angular-momentum-pr-circular-orbit-on-table.tex

F

A particle of mass M is tied to a string that passes through a hole in a frictionless table and
held. The mass is given a push so that it initially moves in a circle of radius r; at speed v;. We
will now conceptual review and algebraically analyze the physics of its motion in two stages.
Please answer the following questions. While the string is fixed (so that r; is constant):

a) What is the torque exerted on the particle by the string?

b) What is the vector angular momentum L; of the particle? Use the provided coordinate
system to give the direction.

c) Show that the magnitude of the force (the tension in the string) that must be exerted to
keep the particle moving in this circle is:

L2

3
mr;

F=

Note that this is a general result for a particle moving in a circle and in no way
depends on the fact that the force is being exerted by a string in particular.

d) Show that the kinetic energy of the particle in terms of its angular momentum is:

L
Y omr

2

i

From under the table, the string is slowly pulled down (so that the puck is always moving in
an approximately circular trajectory and the tension in the string remains radial) to where the
particle is moving in a circle of radius 7.

e) If the tension in the string remains radial, what quantity ought to be conserved?
f) Find its velocity v; using conservation of that quantity.

g) Compute the work done by the force from part ¢) above and identify the answer as the
work-kinetic energy theorem. Use this principle instead to to find the velocity vy. You
should get the same answer!
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Problem 270. problems-1/angular-momentum-pr-circular-orbit-on-table-soln.tex

F

A particle of mass M is tied to a string that passes through a hole in a frictionless table and
held. The mass is given a push so that it initially moves in a circle of radius r; at speed v;. We
will now conceptual review and algebraically analyze the physics of its motion in two stages.
Please answer the following questions. While the string is fixed (so that r; is constant):

a) What is the torque exerted on the particle by the string?

b) What is the vector angular momentum L; of the particle? Use the provided coordinate
system to give the direction.

c) Show that the magnitude of the force (the tension in the string) that must be exerted to
keep the particle moving in this circle is:

2

Lz'
3
mr;

F=

Note that this is a general result for a particle moving in a circle and in no way
depends on the fact that the force is being exerted by a string in particular.

d) Show that the kinetic energy of the particle in terms of its angular momentum is:

1.2
K;=—

2mr?2

i

From under the table, the string is slowly pulled down (so that the puck is always moving in
an approximately circular trajectory and the tension in the string remains radial) to where the
particle is moving in a circle of radius 7.

e) If the tension in the string remains radial, what quantity ought to be conserved?
f) Find its velocity v; using conservation of that quantity.

g) Compute the work done by the force from part c¢) above and identify the answer as the
work-kinetic energy theorem. Use this principle instead to to find the velocity vy. You
should get the same answer!

Solution:

a) =7 x (—T)7

I
o
I
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L; = |¥; x m¥;| = muv;r;. The direction, given by the right hand rule, is & (or “up”,
although using coordinates is better).

Using Newton’s Second Law and centripetal acceleration:

(mu;r;)? B L?

3
mr;

F(=T)=—t=—%x

T T 3

mr?
mr? mr;
Note that we multipled by “1” in a convenient form in the middle.
We'll start with the standard “easy” version of the kinetic energy:

(mu;r;)? L?

2mri2

2

270 2 oy 2mr;

ERCIED S

Note that we multipled again by “1” in that same convenient form in the middle.

Because the force exerted by the tension is almost always perpendicular to the velocity
of the particle, the torque exerted by the tension remains (almost exactly) zero. We
therefore ezpect the angular momentum to be (almost exactly) conserved.

This permits us to use angular momentum conservation to find vy given (in the problem)
r f:
T
L; = mvir; =muvgry =Ly = wvp= Evi

We have to be very careful here. The tension T is also nearly perpendicular to ¥ through-
out the motion, so one might conclude that no work is done and energy is also conserved.
However, one’s hand, pulling down on the string, absolutely does work and that work is
not dissipated by any non-conservative forces, so it must appear as a change in kinetic
energy! Expressing F in terms of (constant) L = muw;r;:

Ty Ty L2 L2
W:/ Fdr:—/ =~ r3dr =
r ,m 2mr?

k3

rf

= fracL22mr]2c — fracL22mr2-2 =AK

Ti

which is the WKE theorem. The final step is easy — note that:

)2 .
f %p{vf Mr]% v vaz

as before. Pay careful attention to this problem, as it is a conceptual key to steps involved
in solving several problems in this course as well as deriving things like the “angular
momentum barrier” in the chapter on gravitation.
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Problem 271. problems-1/angular-momentum-pr-collapse-of-sun.tex

before

The sun reaches the end of its life and gravitationally collapses quite suddenly, forming a white
dwarf. Before it collapses, it has a mass m, a radius R;, and a period of rotation 7;. After it
collapses, its radius is Ry < R; and we will assume that its mass is unchanged. We will also
assume that before and after the moment of inertia of the sun is given by I = fmR? where R
is the appropriate radius.

a) What is its final period of rotation 7 after the collapse?

b) Evaluate the escape velocity from the surface of the sun before and after its collapse.

For 2 points of extra credit, evaluate the numbers associated with these expressions given
B =025 m=2x10% kg, R; =5 x 10° km, Ry = 100 km, and T; = 108,000 seconds. These
numbers are actually quite interesting in cosmology, as the escape velocity from the surface of
the white dwarf approaches the speed of light...
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Problem 272. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod.tex

Qoz 0 ™ L
@ v t ®
m ° v=0
L/4 f
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.
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Problem 273. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod-soln.tex

Q=0 L
.TO' )
m
L/4
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.

Solution: a) Energy (because the problem states that the collision is elastic!); Angu-
lar momentum (because the frictionless pivot exerts no torque); but Not linear momentum.
The pivot can (and in this case obviously does, see below) exert an external impulse force on
the rod+disk system during the collision!

b) Using angular momentum conservation (with L out of the page before and after from the
RHR):

¢ 1
L:Li:TRUOZ:EM€2Qf:Lf = Qf:3——

c¢) We need AK = K; — K; = 0 for the collision to be elastic as given. Using Ky = L?/2];:

m2v3 (2 1 5 3m 1 5
AK = m — im'l)o = <—— — 1) =mug
12

This is clearly zero when:

QO o~

SE
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Note: Consider the initial momentum, p; = mvo® # 0 (with & to the right as usual). The
final momentum is clearly zero! The bullet is at rest and the center of mass of the rod is not
moving as the rod rotates! The change in the momentum of the system is thus:

Ap = py — p; = —muod

If we were given, or could estimate, the time of actual contact in the collision as (say) At = t.,
we could evaluate the average force exerted by the pivot during the collision as:
Ap  —muy

F..==t_
WE AL te

&40

Momentum is clearly not conserved, and the average force exerted by the pivot during the
collision is not negligible.
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Problem 274. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod-soln.tex

Q=0 L
.TO' )
m
L/4
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.

Solution: a) Energy (because the problem states that the collision is elastic!); Angu-
lar momentum (because the frictionless pivot exerts no torque); but Not linear momentum.
The pivot can (and in this case obviously does, see below) exert an external impulse force on
the rod+disk system during the collision!

b) Using angular momentum conservation (with L out of the page before and after from the
RHR):

¢ 1
L:Li:mUOZ:EMﬂQf:Lf = Q=3

Ml

c¢) We need AK = K; — K; = 0 for the collision to be elastic as given. Using Ky = L?/2];:

m2v3 (2 1 5 3m 1 5
AK = m — im'l)o = <—— — 1) =mug
12

This is clearly zero when:

SE
wl
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Note: Consider the initial momentum, p; = mvo® # 0 (with & to the right as usual). The
final momentum is clearly zero! The bullet is at rest and the center of mass of the rod is not
moving as the rod rotates! The change in the momentum of the system is thus:

Ap = py — p; = —muod

If we were given, or could estimate, the time of actual contact in the collision as (say) At = t.,
we could evaluate the average force exerted by the pivot during the collision as:
Ap  —muy

F..==t_
WE AL te

&40

Momentum is clearly not conserved, and the average force exerted by the pivot during the
collision is not negligible.
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Problem 275. problems-1/angular-momentum-pr-marble-and-rod.tex

In the figure above, a marble with mass m travelling to the right at speed vy collides with a
rigid rod of length L pivoted about one end, also of mass m, . The marble strikes the rod L/2
down from the pivot and comes precisely to rest in the collision. Ignore gravity, drag forces,
and any friction in the pivot.

a) What is the rotational velocity 2y of the rod after the collision?

b) What is the change in linear momentum in the x direction Ap, (to the right) during
this collision?

c) What is the change in kinetic energy AK in this collision? The sign of your answer
should indicate whether energy was gained or lost.
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Problem 276. problems-1/angular-momentum-pr-marble-and-rod-soln.tex

a) Angular momentum is conserved, so L = L; = mvgL/2 = 1,42 = %mLZQ = Ly. Hence

_ 3muy 3vg

T omL | 2L

b) pzi = mug initially. pyr = muem = mL/2 finally. So use answer to a) and form
Ap, = Pxf — Pxi-

. 2
c) Easiest to use K; = %mv%, Ky = 2IL—d, and subtract.
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Problem 277. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod-gravity.tex

M

A rod of mass M and length L is hanging vertically from a frictionless pivot (where gravity is
“down”). A blob of putty of mass m approaches with velocity v from the left and strikes the
rod a distance d from its center of mass as shown, sticking to the rod.

a) Find the angular velocity wy of the system about the pivot (at the top of the rod) after
the collision.

b) Find the distance x.y, from the pivot of the center of mass of the rod-putty system
immediately after the collision.

c) After the collision, the rod swings up to a maximum angle 0y,,x and then comes momen-
tarily to rest. Find O ax.

All answers should be in terms of M, m, L, v, g and d as needed. The moment of inertia of a
rod pivoted about one end is I = %M L?, in case you need it.
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Problem 278. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod.tex

M

A rod of mass M and length L rests on a frictionless table and is pivoted on a frictionless nail
at one end as shown. A blob of putty of mass m approaches with velocity v from the left and
strikes the rod a distance d from the end as shown, sticking to the rod.

a) Find the angular velocity w of the system about the nail after the collision.

b) Is the linear momentum of the rod/blob system conserved in this collision for a general
value of d? If not, why not?

c) Is there a value of d for which it is conserved? If there were such a value, it would be
called the center of percussion for the rod for this sort of collision.
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Problem 279. problems-1/angular-momentum-pr-putty-sticks-to-unpivoted-rod.tex

A rod of mass M and length L rests on a frictionless
m table. A blob of putty of mass m approaches with ve-
locity v from the left and strikes the rod a distance d
from the end as shown, sticking to the rod.

a) Find the angular velocity 2y of the system after
L the collision. Note that the rod and putty will be
rotating about the center of mass of the system,
not the center of mass of the rod by itself!

d
b) Is the linear momentum of the rod/blob system
ml v o conserved in this collision for a general value of d?
If not, why not?
M— All answers should be in terms of M, m, L, v and d as

needed.
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Problem 280. problems-1/angular-momentum-pr-putty-sticks-to-unpivoted-rod-soln.tex

A rod of mass M and length L rests on a frictionless
table. A blob of putty of mass m approaches with ve-
locity v from the left and strikes the rod a distance d
from the center of the rod as shown, sticking to the

rod.
cm

a) Find the angular velocity €1y of the system after

the collision. Note that the rod and putty will be

Ve rotating about the center of mass of the system,
center of mass not the center of mass of the rod by itself!

m b) Is the linear momentum of the rod/blob system
conserved in this collision for a general value of d?
If not, why not?

M All answers should be in terms of M, m, L, v and d as
needed.

Solution: In this problem there are no meaningful external forces acting on the
system! Gravity is canceled by the (frictionless) normal force of the table. Consequently we
expect linear momentum to be conserved in the collision. However, there are also no
external torques acting, so we expect angular momentum to be conserved as well! Which
one should we use to answer the questions? What coordinate system should we use to answer
the questions?

If we just consider momentum conservation:
pi = mv = (m+M)Ucm =Dy

(to the right, say #). This would make it very easy to find:

muv
VUem =
m+ M

as usual, but doesn’t help us find Q. It seems that angular momentum conservation is our
best bet here. The problem remaining is choosing a good pivot!. After the collision, the center
of mass will move in a straight line to the right in a predictable way, but every other point in
the system will be undergoing somewhat complicated motion around the center of mass as it
simultaneously moves. It therefore makes sense for us to use the center of mass as our
pivot for conservation of angular momentum. This in turn is made simple by using the center
of the rod as the origin of coordinates:

The steps:
~ md+M(@O)  md Md

cm — = d d- cm —
‘ m+M  m+M Tom = M

(radii of circles of motion of the putty and rod centers of mass around the center of mass of the
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system) so that:

Li =m(d — Tem)v = {m(d — Zem)? + <1—12ML2 + Mx§m> } Q

mM M? mM M 1 m+ M L?
vd =3 ——— d — ¢ Qy
m + M (m+ M)? m+ M

1
P+ —=ML*} Q= —
meE T T }f mi M 12 m &

Note that we used the parallel axis theorem to find the moment of inertia of the rod rotating
around the new center of mass. Now we just solve for:

: (2)
M 1 M L2 d
{m+M+ﬁm+ _}

m  d?

Qp =

where the final direction is (obviously, RHR) out of the page.

This can be simplified to:

B 12m(m + M)d? <3)
I~ 12mMd + (m + M)2L2 \d

which obviously has the correct dimensions as the entire fraction on the left is dimensionless.
If M > m, Q; — 0 as we might expect as well. It could be wrong — a lot of algebra in there,
and I make algebra errors as easily as the next person — but it isn’t crazy!
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Problem 281. problems-1/angular-momentum-pr-spinning-cups-catch-balls.tex

¢3

In the figure above, a bar of length L with two cups at the ends is freely rotating (in space —
ignore gravity and friction or drag forces) about its center of mass with angular velocity wy.
The bar and cups together have a mass M and a moment of intertia of I = M L?. When the
bar reaches the vertical position, the cups catch two small balls of mass m that are at rest,
which stick in the cups. The balls have a negligible moment of inertia about their own center
of mass — you may think of them as particles.

a) What is the velocity of the center of mass of the system after the collision?

b) What is the angular velocity of the bar after it has caught the two balls in its cups? Is
kinetic energy gained or lost in this process?
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Problem 282. problems-1/angular-momentum-pr-swinging-rod-strikes-putty.tex

A uniform rod of mass m and length L swings about a frictionless peg through its end. The rod
is held horizontally and released from rest as shown in the figure. At the bottom of its swing
the rod strikes a ball of putty of mass m that sits at rest on a frictionless table. In answering
the questions take the magnitude of acceleration due to gravity to be g and assume that gravity
acts downward (in the usual way). The questions below should be answered in terms of the
given quantities.

a) What is the angular speed €2; of the rod just before it hits the putty?

immediately after the collision?

b) If the putty sticks to the rod, what is the angular speed €2 of the rod-putty system

c) What is AFE, the mechanical energy change of the system in this collision (be sure to
specify its sign).
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Problem 283. problems-1/angular-momentum-pr-swinging-rod-strikes-putty-soln.tex

a) Energy conservation, with I = %mLQ:

1
mgL/2 = 5[922 —Q; = 3fg

b) Angular momentum conservation:

1 4
L=L;=1I9= gmL%/ggL = gmL2Qf =Ly
SO
1. 1 /39
L= = T

¢) Subtract initial energy from energy after collision:

L?  mgL _ _3mgL

AE =2 —
2I; 2 8
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Problem 284. problems-1/angular-momentum-pr-two-circular-plates-collide.tex

A disk of mass M and radius R sits at rest on a turntable that permits it to rotate freely.
A second identical disk, this one rotating around their mutual axis at an angular speed wy, is
dropped gently onto it so that (after sliding for an instant) they rotate together. In terms of
the givens M, R,wg and known constants:

a) Find the final angular speed wy of the two disks moving together after the collision:

wf:

b) What fraction of the original kinetic energy of the system Kj is gained (+) or lost (-)
in this rotational collision?

AK = XKO
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Problem 285. problems-1/angular-momentum-pr-two-circular-plates-collide-soln.tex

This is a fully inelastic rotational collision. There are no external torques about the axis of
rotation, so angular momentum in this direction (relative to a pivot at the orgin of the bottom
disk say) is conserved. In this (z) direction:

a)
L:Li:Iw0:2wa:Lf

where I = %M R? for both disks. Hence:

wyr = w0/2

b) There are many ways to get this, but the easiest (since angular momentum is conserved)

is to write: 2 2 "
- Kp—e_—- 220
21 f

Ko 2(21) ~ 2

or

AK:Kf—KOZ— XKO

1
2

and energy is in the collision, as expected.
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Problem 286. problems-1/angular-momentum-pr-rotating-bar-elastic-collision-balls.tex

Vi

m
@

rotation direction
Q , (out of page)

bar at rest after collision

In the figure above, a unpivoted solid rod of length ¢ and mass M is rotating around its center
of mass with an angular velocity 2y out of the page. It simultaneously strikes two hard balls
of mass m sitting at rest a distance £/2 from the center of rotation as shown, causing them to
recoil to the left and right respectively. After the collision the rod is at rest.

a) Is momentum conserved in this collision? b) Find the final speed of either ball, vy.

c¢) Find the ratio of masses m/M such that the collision as described is elastic.
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Problem 287. problems-1/angular-momentum-pr-rotating-bar-elastic-collision-balls-soln.tex

rotation direction
Q, (out of page)

bar at rest after collision

In the figure above, a unpivoted solid rod of length ¢ and mass M is rotating around its center
of mass with an angular velocity 2y out of the page. It simultaneously strikes two hard balls
of mass m sitting at rest a distance £/2 from the center of rotation as shown, causing them to
recoil to the left and right respectively. After the collision the rod is at rest.

a) Is momentum conserved in this collision? b) Find the final speed of either ball, vy.
c¢) Find the ratio of masses m/M such that the collision as described is elastic.
Solution: a) As it happens, the answer is , momentum is conserved. Before the center

of mass is at rest, and afterwards (from symmetry) it is still at rest. But this doesn’t really
help us solve the problem.

b) To find the speed of the balls, we need to use conservation of angular momentum.
1 2 14
L = Liyoq + Lipais = EMK Qo (+0)=(0+) 2 mgvr | = Ly roqd + Ly pans

(out of the page, RHR) using L = muvsr; = muvsf/2 for the magnitude of the angular momen-
tum of the two balls, each, as well as I,,q = %M £? for the moment of inertia of a rod pivoted
in the middle. Thus:

M
= Qe
VT om0

¢) We can use K = L?/2] for both initial and final kinetic energies (with I; = 2 x m(¢/2)? =
m¢?/2 for the two balls after the collision), and take their ratio:
Ky L*20; I,  sml*  6m

= g pumny :—:1
K, L*)2;  I; LMe T M
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or

SE
| =

for the collision to be elastic.
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7.1 Torque and Moment of Inertia

7.1.1 Short Answer Problems

Problem 288. problems-1/moment-of-inertia-sa-3-masses-1.tex

§2m

(y—axis) a

In the figure above, massless rigid rods connect three masses at the origin so that they can
freely rotate around the y-axis (rotating initially into the page as shown). The masses are fixed
so that they are at three corners of a square of side a. Find the moment of inertia about
the y-axis of this arrangement in terms of m and a.
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Problem 289. problems-1/moment-of-inertia-sa-3-masses-1-soln.tex

§2m

(y—axis) a

In the figure above, massless rigid rods connect three masses at the origin so that they can
freely rotate around the y-axis (rotating initially into the page as shown). The masses are fixed
so that they are at three corners of a square of side a. Find the moment of inertia about
the y-axis of this arrangement in terms of m and a.

Solution: We simply sum:

Itot:Zmir?:mx02+2mxa2+3mxa2: 5ma’

7

Note well that we are treating all three masses as “point masses” with no moment of inertia
of their own, and that “r” in this case is the radius of the circle each mass moves in
around the y-axis.
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Problem 290. problems-1/moment-of-inertia-sa-3-masses.tex

pivot - &
(z—axis) a

In the figure above, massless rigid rods connect three masses to a pivot at the origin so that
they can freely rotate around the z-axis (perpendicular to the page). The masses are fixed so
that they are at three corners of a square of side a, with the pivot at the fourth corner as shown.
Find the moment of inertia about the z-axis of this arrangement in terms of m and a.
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Problem 291. problems-1/moment-of-inertia-sa-3-masses-soln.tex

I= Z mir? = ma® + 3m(v/2a)? 4+ 2ma® = 9ma®

(2
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Problem 292. problems-1/moment-of-inertia-sa-4-masses-1.tex

oD
1 kg 2 kg

In the figure, massless rigid rods connect four point-like masses centered at points A, B, C, D
to form a rigid body. The rigid body can rotate about any axis perpendicular to the plane of
the figure.

[Showing your work is recommended, but not mandatory.]

a) Find the center of mass (CM) location of the rigid body (Note: proper units should be
included in your answer).

Tem = ; Yem =

b) Mark the CM’s location in the figure.

¢) The moment of inertia about an axis perpendicular to the plane of the figure depends on
the location of the axis. Answer the following by filling the box using A, B, C, D, or CM.

e The smallest moment of inertia is about an axis going through point ‘:’

e The next smallest moment of inertia is about an axis going through point D
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Problem 293. problems-1/moment-of-inertia-sa-4-masses-1-soln.tex

3 kg

2 kg

OD
2 kg

a) Using: ,
Tem = Mo, Zl:mzwz

(and ditto for yem):

1 1 1 1
$Cm:§{—2—4—|—4+6}: gmeter ycm:§{—2—4—|—4+6}: gmeter

b) Mark the CM’s location in the figure. (See above.)

¢) The moment of inertia about an axis perpendicular to the plane of the figure depends on
the location of the axis. Answer the following by filling the box using A, B, C, D, or CM.

e The smallest moment of inertia is about an axis going through point .

e The next smallest moment of inertia is about an axis going through point .

Scoring: +1 for each correct answer, up to 4 (or 5 per final exam) points.
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Problem 294. problems-1/moment-of-inertia-sa-4-masses-2.tex

2 kg " 2 kg

S S
-5m T 4 kg 5m
2kg " 2 kg

In the figure above, massless rigid rods connect five masses to form a rigid body. The rigid
body can be rotated about any axis perpendicular to the plane of the figure. Find a point with
coordinates (zg,yo) on the provided coordinate frame (units of meters) so that the moment of
inertia of the system is smallest if the axis goes through this point. Then, enter the moment
of inertia of the system about this axis.

To = meters

Yo = meters

Iin = kg—meter2
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Problem 295. problems-1/moment-of-inertia-sa-4-masses-2-soln.tex

2 kg Y 2 kg
(€ 2

S S

-5m T 4 kg 5m
CA— o

2 kg 2 kg

In the figure above, massless rigid rods connect five masses to form a rigid body. The rigid
body can be rotated about any axis perpendicular to the plane of the figure. Find a point with
coordinates (zg,yo) on the provided coordinate frame (units of meters) so that the moment of
inertia of the system is smallest if the axis goes through this point. Then, enter the moment
of inertia of the system about this axis.

The moment of inertia is minimal when it goes through the center of mass, which is clearly at
the origin (from symmetry).

To = @ meters
Yo = @ meters

Iin = kg-meter?



336

CHAPTER 7. 1D ROTATION

Problem 296. problems-1/moment-of-inertia-sa-4-masses.tex

In the figure below, four 2 kilogram masses are held at the corners of a rigid square by massless
rods as shown. The center of mass of the system is located at the origin of the provided z — y
coordinate frame (units in meters). The z-axis points out of the page.

2 kg 1Y 2 kg
2nd pivot
Ol N
-5m | 5m
2kg " 2 kg

Find the moment of inertia of this system around the z-axis through the center of mass:

Icm -

Now find the moment of inertia of this system around an axis parallel to the z-axis but passing
through a new pivot point at (—5,0,0) meters.

Inew -
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Problem 297. problems-1/moment-of-inertia-sa-disk-axis-in-plane.tex

---- rotation axis

You flip a coin with a friend to see who pays for lunch. The flipped coin spins rapidly around
an axis in the plane of the coin as shown. Assuming the coin to be a uniform disk of mass M
and radius R, find the moment of inertia of the coin about this axis.
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Problem 298. problems-1/moment-of-inertia-sa-disk-axis-in-plane-soln.tex

axis

)

v) R

We know that the moment of inertia of a disk around its axis of symmetry (in this case z) is
1= %M R?. We also know that I, and I, in the figure above must be identical in magnitude,
also from symmetry. The perpendicular axis theorem is thus:

1
2Q:Q+@:Q:§Mﬁ

or

1
I, = - MR?
1 R
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7.1.2 Ranking Problems

Problem 299. problems-1/moment-of-inertia-ra-parallel-axes.tex

A two-dimensional cardboard cut-out of an elephant is drawn above. Small holes are drilled
through it at the points A, B, C and D indicated. Hole C is at the center of mass of the figure.
Rank the moment of inertia of the elephant about axes through each of the holes (with equality
permitted) so that a possible (but unlikely) answer is [y < Ip = I < Ip.

[ [ [
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Problem 300. problems-1/moment-of-inertia-ra-parallel-axes-soln.tex

The parallel axis theorem says that the moment of inertia about each axis parallel to the one
through point C isI = Iy, + mh?, where h is the distance between the C' pivot and the point
in question. Hence:

Ioc<Ip<Ip<lIy
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Problem 301. problems-1/moment-of-inertia-ra-point-masses-massless-rods-2.tex

e—@
s
r=1m B
@ =1Kkg ‘
2m
C D@

N sm_~
Im rotation axes

In the figure above, all of the masses m are identical and are connected by rigid massless rods
as drawn. Rank the moments of inertia of the four objects about the rotation axes drawn
as dashed lines. Equality is permitted, so a possible answer might be A > C =D > B.

[ [ [
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Problem 302. problems-1/moment-of-inertia-ra-point-masses-massless-rods-2-soln.tex

e—@
s
r=1m B
@ =1Kkg ‘
2m
C D@

A

N 3m_~
Im rotation axes

In the figure above, all of the masses m are identical and are connected by rigid massless rods
as drawn. Rank the moments of inertia of the four objects about the rotation axes drawn
as dashed lines. Equality is permitted, so a possible answer might be A > C =D > B.

D| [ |[B| [ |Al [ |c¢

Solution: We use I = mr? for each mass, and just add it up! Hence: I4 = 6 kg-m?. Ig = 16
kg-m?. I = 4 kg-m?. Ip = 18 kg-m?.
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Problem 303. problems-1/moment-of-inertia-ra-point-masses-massless-rods.tex

A B
oo o :
e
r=1
In the figure above, all of the masses m are iden-
. ‘ tical and are connected by rigid massless rods
m ——— as drawn. Rank the moments of inertia of the
! c / 2 four objects about the rotation axes drawn as
D dashed lines. A possible answer could look like
I I A < C =D < B (but probably isn’t).
—_—
P 3
1 rotation axes

L L L
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Problem 304. problems-1/moment-of-inertia-ra-point-masses-massless-rods-soln.tex
PA B

.
r=1

c /m\/mzfv

i

D

1

—_———
| 3 !
1 ™ rotation axes ~

2
I= E m;r;
i

SO:
Iy<Io<Ip<lIp
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7.1.3 Regular Problems

Problem 305. problems-1/moment-of-inertia-pr-disk-pivoted-at-rim.tex

pivot

e

In the figure above, a disk of mass M and radius R is pivoted about a point on the rim as
shown. What is the moment of inertia of the disk about this pivot?
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Problem 306. problems-1/moment-of-inertia-pr-disk-pivoted-at-rim-soln.tex

pivot

S

In the figure above, a disk of mass M and radius R is pivoted about a point on the rim as
shown. What is the moment of inertia of the disk about this pivot?

Solution Use the parallel axis theorem!

Inew =lem + Mh2

In this case, direct application, using I, = %M R? for a disk, is:

1 3
I, = 5MR2 + MR?* = 5MR2

Note that this problem is likely to be solvable using direct integration and some fairly nasty
calculus involving the law of cosines, but nobody sane would want to do it that way...
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Problem 307. problems-1/moment-of-inertia-pr-disk-with-holes.tex

You are employed by a company that makes cogs, pulleys, and other widgets for lawnmower
engines. They have designed a new pulley that is basically an annular disk of thickness ¢, outer
radius R, and inner radius a, with approximately uniform density otherwise, as shown. To save
on material costs (and to be able to deliver more torque to the real payload, instead of the
pulley itself) they have removed all the material in four large circular holes of radius b through
the solid part of the disk, centered on a circle of radius R/2 as shown. Your job is to compute
the new moment of inertia as a function of p, ¢, R and a,b < R/2.

Hints: Note that you SHOULDN'T have to actually do any integrals in this problem if you
remember that the moment of inertia of a disk is %M R?. You are also welcome to introduce
quantities like M = prR%*t, m, = pra®t and my = prb*t into the problem if it would make the
final answer simpler. Explain/show your reasoning regardless.
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Problem 308. problems-1/moment-of-inertia-pr-moments-of-a-leg.tex

pivot

This problem will help you learn required concepts such as:

e Finding the Center of Mass using Integration

e Finding the Moment of Inertia using Integration

so please review them before you begin.

A simple model for the one-dimensional mass distribution of a human leg of length L and mass
M is:
Mz)=C-(L+z9—x)

Note that this quantity is maximum at z = 0, varies linearly with x, and vanishes smoothly at
x = L 4+ xg. That means that it doesn’t reach A = 0 when & = L, just as the mass per unit
length of your leg doesn’t reach zero at your ankles.

a) Find the constant C in terms of M, L, and z( by evaluating:

M:/OL)\(:L') dx

and solving for C.

b) Find the center of mass of the leg (as a distance down the leg from the hip/pivot at the
origin). You may leave your answer in terms of C' (now that you know it) or you can
express it in terms of L and xg only as you prefer.

¢) Find the moment of inertia of the leg about the hip/pivot at the origin. Again, you may
leave it in terms of C' if you wish or express it in terms of M, L and xy. Do your answers
all have the right units?

d) How might one improve the estimate of the moment of inertia to take into account the
foot (as a lump of “extra mass” my out there at = L that doesn’t quite fit our linear
model)?

This is, as you can see, something that an orthopedic specialist might well need to actually do
with a much better model in order to e.g. outfit a patient with an artificial hip. True, they
might use a computer to do the actual computations required, but is it plausible that they
could possibly do what they need to do without knowing the physics involved in some detail?
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Problem 309. problems-1/moment-of-inertia-pr-ring-axis-in-plane.tex

axis

In the figure above, a ring of mass M and radius R is rotated around an axis through the middle
in the plane of the ring as shown.

a) Find the moment of inertia of the ring about this axis through direct integration.

b) Find the moment of inertia of the ring about this axis using the perpendicular axis theo-
rem. Which is easier?
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Problem 310. problems-1/moment-of-inertia-pr-ring-pivoted-at-rim.tex

pivot

.

In the figure above, a ring of mass M and radius R is pivoted about a point on the rim as
shown. What is the moment of inertia of the ring about this pivot?
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7.2 Torque and 1D Rotation

7.2.1 Multiple Choice Problems

Problem 311. problems-1/rotation-mc-cable-spool-rolls-on-line.tex

A cable spool of mass M, radius R and moment of inertia I = M R? around an axis through
its center of mass is wrapped around its outer disk with fishing line and set on a rough rope
as shown. The fishing line is then pulled with a force of magnitude F' to the right as shown so
that it rolls down the rope on the spool at radius r to the right without slipping.

What is the direction of static friction as it rolls?

a) To the right.
b) To the left.

c¢) Not enough information to tell (depends on e.g. the size of r relative to R, the numerical
value of 3, or other unspecified data).
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Problem 312. problems-1/rotation-mc-K-scaling.tex

CHAPTER 7. 1D ROTATION

Sphere A has mass M and radius R. Sphere B has mass M and radius 2R. In order for the
two spheres to have the same kinetic energy, the ratio of their angular velocities must be:

wA
WB
wA

wB
wA
wp
wA
wp

=4
=2
=1/2

=1/4
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Problem 313. problems-1/rotation-mc-K-scaling-soln.tex

1
K = §Iw2, so we just need to compare I4 to Ig. I goes like the product M R?. (Note well:

We don’t need to know the exact formula I = %M R?, only that I for rolling objects usually
scales with M and R? independently.) The spheres have the same mass but B has twice the
radius of A, so Ip = 414. Hence we need wg = %wA, or:

WA
wB

=2

One can also explicitly compute K4 and Kp algebraically using the exact formula for the I’s,
set them equal, and solve for wy4 in terms of wp but that is somewhat more work and has more
opportunities to make a mistake.
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Problem 314. problems-1/rotation-mc-K-scaling-with-I.tex

M

/\

A B C

Three wheels have the same mass M and outer radius R. This mass is distributed
uniformly (but differently) in each wheel, with the inner radius of the uniform distribution
varying as illustrated in the figure above. Each is rotating about its axis of symmetry through
its center of mass in the center, and all three have the same kinetic energy. Which wheel is
rotating the fastest?

a) [ ] Wheel A b) [ ] Wheel B

c) |:| Wheel C  d) \:‘ Two or more of these wheels are tied for fastest
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Problem 315. problems-1/rotation-mc-K-scaling-with-I-soln.tex

M

/\

A B C

First we mentally rank the moments of inertia:
Ip <Ij<lIo

Then we note that Q = \/2K/I, so the angular speed scales opposite to I. Hence the smallest
I has the largest 2 at constant K:

a) [ ] Wheel A b) [X] Wheel B

c) |:| Wheel C  d) \:‘ Two or more of these wheels are tied for fastest

Scoring: +4 for correct box checked. +2 for any reasonable progress: correct ranking of I,
expression such as K = %I 02
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Problem 316. problems-1/rotation-mc-K-sharing-with-m.tex

A very light string is wrapped many times around a disk of mass m and radius R that is pivoted
in the center and free to rotate. A block with the same mass m is attached to the end of the
string and released from rest so that the disk spins as the string unrolls as it falls.

At the instant that the mass m has fallen to where it has kinetic energy K, the disk has kinetic
energy:

a) K
b) K/2
¢) 2K
)

d) None of these.
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Problem 317. problems-1/rotation-mc-rolling-disk-friction-1.tex

In the figure above a force is applied to the center of a disk (initially at rest) sitting on a rough
table by means of a rope attached to its frictionless axle in the direction shown. The disk

then accelerates and rolls without slipping. The net horizontal force exerted by the table on
the disk is:

a) kinetic friction to the right.

b) kinetic friction to the left.

d

)
)
c) static friction to the right.
) static friction to the left.
)

e) Cannot tell from the information given.
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Problem 318. problems-1/rotation-mec-rolling-disk-friction-1-soln.tex

The angular acceleration is into the page. F is applied at the pivot in the middle and exerts
no torque. Gravity and the normal force act along a line through the pivot and exert no torque.
Only friction exerts a torque, and this torque must be in the same direction as o as 7 = Ia.
The disk rolls without slipping which implies static, not kinetic, friction. Hence the right hand
rule tells us:

Static friction to the left.
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Problem 319. problems-1/rotation-mec-rolling-disk-friction.tex

In the figure above a force is applied to the center of a disk (initially at rest) sitting on a rough
table by means of a rope attached to its frictionless axle in the direction shown. The disk then

accelerates and rolls without slipping. The net horizontal force exerted by the table on the
disk is:

a) kinetic friction to the right.

b) kinetic friction to the left.
d

static friction to the left.

)
)
c) static friction to the right.
)
e)

Cannot tell from the information given.
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Problem 320. problems-1/rotation-mc-rolling-race-1.tex

O

Mr. Hoop Ms. Disk

Mr. Hoop and Ms. Disk had a race rolling down two identical hills without slipping. They
both started at the top at the same time. Who won?

a) Mr. Hoop

b) Ms. Disk
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Problem 321. problems-1/rotation-mec-rolling-race-1-soln.tex

Lot of ways to see that it is Ms. Disk that wins. If I = 3M R? for some dimensionless scalar
B, then its rotational kinetic energy per unit mass scales like j3:

K rot
M

1 1
= 5(5R2)W2 = 5‘”2111
This means that its total kinetic energy per unit mass is:

K tot
M

=1+ ﬁ)%vim

The disk and hoop both descend the same distance (say) H. AU = MgH = AK = Kiq, S0
(dividing by the mass M):

AU

1 K
i =gH = (1+5)§U<2;m: =t

M

were gH is the same for both, so that the one with the highest 8 has to have the lowest vey,
and loses the race.

An alternative is to look at acm, which will always have the 1+ 8 in the denominator, so again
larger 5 means smaller acy, and hence smaller v, throughout (again, losing the race).

Note well that the result is independent of the mass and radius of the disk and/or hoop
— it depends only on the relative size of (3. So a small, massive ring loses to a large, light
disk, and a large, light ring still loses to a small, massive disk!
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7.2.2 Short Answer Problems

Problem 322. problems-1/rotation-sa-rolling-race-1.tex

M~

m
@ H

m
m
(b) H
M
(©) H

Its a race! Three wheels made out of two concentric rings of mass connected by light spokes
are identically placed at the top of an inclined plane of height H as shown. At time ¢ = 0 they
are all three released from rest to roll without slipping down the incline. You are given the
following information about each double ring:

a) Inner ring mass m is less than outer ring mass M.
b) Inner ring mass m is the same as outer ring mass m.

c¢) Inner ring mass M is greater than outer ring mass m.

In what a, b, ¢ order do the rings arrive at the bottom of the incline? (4 points)
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Problem 323. problems-1/rotation-sa-rolling-race-2.tex

SN
M,R

You are given two inclined planes with different maximum heights H > h as shown. If a ring
and disk of identical radius R and mass M are each placed at the top of one of the two planes
and released, they will roll without slipping to arrive at the bottom travelling at the same
speed. If placed at the top of the planes in the other order, they will not.

Draw and label the ring and disk at the tops of the correct planes such that they will roll to
the bottom and arrive travelling at the same speed.
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Problem 324. problems-1/rotation-sa-rolling-race-3.tex

ring disk
M,R

You are given two inclined planes with the same height H as shown. A ring and disk of identical
radius R and mass M are each placed at the top of one of the two planes and released at the
same instant to roll without slipping to the bottom of their respective inclines..

a) Which one gets to the bottom first? (Circle) ring disk

b) Which one has the greatest speed at the bottom? ring disk

¢) Which one has the greatest rotational kinetic energy at the bottom? ring disk
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7.2.3 Ranking Problems

Problem 325. problems-1/rotation-ra-hoop-and-disk.tex

A hoop and a disk of identical mass and radius are rolled up two identical inclined planes
without slipping and reach a maximum height of Hyop, and Hgigk respectively before coming
momentarily to rest and rolling back down.

Use one of the three signs <, > or = in the boxes below to correctly complete each statement.

a) If both hoop and disk start with the same total kinetic energy then:

Hhoop Hdisk

b) If both hoop and disk start with the same total center of mass speed then:

H hoop H disk

c) If both hoop and disk start with the same total center of mass speed then comparing
the magnitude of the work done by gravity when they have reached their maximum
height:

’ Wgravity,hoop ’ ’ Wgravity,disk
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Problem 326. problems-1/rotation-ra-loop-the-loops-balls.tex

() (b)

Va Vb
rolling sliding

string

In the figures above, (a) shows a ball rolling without slipping on a track; (b) shows the ball
sliding on a frictionless track; (c) shows the ball on a string; (d) shows the ball attached to a
rigid massless rod attached to a frictionless pivot. In all four figures the ball has the smallest
velocity at the bottom of its circular trajectory that will suffice for the ball to reach the top
while still moving in a circle (note that the velocities are not drawn to scale).

Correctly ordinally rank these minimum velocities, for example v, = vy < v, < vq is a possible
(but probably incorrect) answer.

Note: You must either justify your answer with simple physical arguments or just solve for the
minimum velocity needed at the bottom in terms of m, r, 5 = 2/5 (for a ball), g and then order
the results. You can’t just put down a “guess” for an order with no valid physical reasoning
backing it and have it count, but it is possible to reason your way all or most of the way to an
answer without doing all of the algebra.
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7.2.4 Regular Problems

Problem 327. problems-1/rotation-pr-asymmetric-atwoods-2.tex

3

A pulley of mass M, radius R and moment of inertia I = M R? has a massless, unstretchable
string wrapped around it many times and has a mass my suspended from the string. A second
massless, unstretchable string is wrapped the opposite way around a massless, frictionless axle
with radius R/2 as shown and has mass ms suspended from the string. The system begins at
rest.

a) What must mg be in terms of m; for the system to remain stationary?

b) Suppose m; = mg = M. Find &, the angular acceleration of the pulley about its center
of mass. This is a vector! Indicate the direction of the angular acceleration on the
figure or in your answer.
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Problem 328. problems-1/rotation-pr-asymmetric-atwoods.tex

Two blocks of mass m are attached to massless unstretchable ropes
that are wrapped around spools on a common, frictionless axle.

The total moment of inertia of the spools is given as I = 3M R2.

The radii of the wrapped spools are R for the left mass and R/2

N for the right one as shown in the figure.
/ \ a) Draw in and label all relevant forces in on the provided
R R/2 figure. You do not need to include the force in the strap

that connects the wheel axle to the ceiling — you may assume
that it is large enough to keep the axle perfectly fixed.

b) When the left mass m e.g. falls a distance =, by what dis-
tance 2’ does the right mass m rise? Use this to relate the
accelerations and rolling constraint(s).

m ¢) Find the angular acceleration « of the spools. Is it into or
out of the page?

d) Find the speed of the left mass after it falls a distance H.

a = DIn |:|Out Vieft =
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Problem 329. problems-1/rotation-pr-asymmetric-atwoods-soln.tex

Two blocks of mass m are attached to massless unstretchable ropes
that are wrapped around spools on a common, frictionless axle.
The total moment of inertia of the spools is given as I = 3M R2.

The radii of the wrapped spools are R for the left mass and R/2

M/ for the right one as shown in the figure.
T, R\ R/2/T, a) Draw in and label all relevant forces in on the provided
k/ figure. You do not need to include the force in the strap
that connects the wheel axle to the ceiling — you may assume

2 that it is large enough to keep the axle perfectly fixed.

T ‘ m b) When the left mass m e.g. falls a distance =, by what dis-
tance 2’ does the right mass m rise? Use this to relate the
mg accelerations and rolling constraint(s).

Find the angular acceleration « of the spools. Is it into or

c)
m
¢ out of the page?

d) Find the speed of the left mass after it falls a distance H.

2mg dmgH
S L — I Out ot = __TmgE
“ (4BM +5m) R [Jm  [XOu Vleft (4BM + 5m)

Solution: a) (see figure). b) The right mass rises a distance when the left one
descends by z. This is important because it lets us write the following constraints:
a ay

r = 2 r = 2 = — =
T =x/2 = a =a/2 « R~ Rp

c) Now to work. We use N2 for translation and rotation, with the constraint(s) (expressing
everything for the moment in terms of a of the left mass):

R a
_ 2. _ 2
g = BMRa= MR =
We divide out and cancel R in the rotation equation, then scale and add all three equations:

mg—%:ma

left: mg — 11 = ma right: T —mg = mg spools: T1R — 15

THAT2 T
T
+1—2—,8Ma
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or (using RHR):

a= g = 2myg = |a= __2mg Out
~2(BM 4+ m+qm)  (48M +5m) ~ (4BM +5m) R

Conservation of energy (plus the rolling constraints) yields:

1 1 51 21 5 V2 1 5 1 9
E,=0= §mgH—mgH+§mfu +§mZ+§5MR i E;, = §mgH = gm—l— 55]\/[ v
Or:

dmgH
=4/ ——>——|=V2aH
Y=\ (4BM 1 5m) ¢

(the latter, as expected from kinematics as an alternative).
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Problem 330. problems-1/rotation-pr-atwoods-machine.tex

In the figure above Atwood’s machine is drawn — two masses m; and mo hanging over a massive
pulley which you can model as a disk of mass M and radius R, connected by a massless
unstretchable string. The string rolls on the pulley without slipping.

a) Draw three free body diagrams (isolated diagrams for each object showing just the forces
acting on that object) for the three masses in the figure above.

b) Convert each free body diagram into a statement of Newton’s Second Law (linear or
rotational) for that object.

c¢) Using the rolling constraint (that the pulley rolls without slipping as the masses move up
or down) find the acceleration of the system and the tensions in the string on both sides
of the pulley in terms of m1, ms, M, g, and R.

d) Suppose mass my > my and the system is released from rest with the masses at equal
heights. When mass mo has descended a distance H, find the velocity of each mass and
the angular velocity of the pulley.
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Problem 331. problems-1/rotation-pr-atwoods-machine-soln.tex

a) See above.

b)

Fr = T1 —mig=ma

Fy, = mgg—To =moa

1
T = (Tg—Tl)RziMRQ

a

RIa

where we’ve put in the rolling constraint « = a/R.

¢) Divide last equation by R, add all three, get:

1
(mg —my)g = (m1 +ma+ §M)a
Solve for a, then back substitute into F} and F5 equations to get 17 and T5.
d) Using mechanical energy conservation is easiest:

1 1 1
E;=0=migH — mogH + §m1v2 + Emgvz + §Iw2

Using the rolling constraint w = v/R and the moment of inertia, this turns into:

1 1
§(m1 + mag + §M)v2 = (mg —my)gH

Solve for v, then divide by R to get w.
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Problem 332. problems-1/rotation-pr-bowling-ball-friction.tex

(Df
Y
——

A bowling ball of mass M and radius R is released horizontally moving at a speed vy so that it
initially slides without rotating on the bowling lane floor. py is the coefficient of kinetic friction
between the bowling ball and the lane floor. It slides for a time ¢t and distance d before it rolls
without slipping the rest of the way to the pins at speed vy.

a) Find t.
b) Find d.

c) Find vy.
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Problem 333. problems-1/rotation-pr-cable-spool-rolls-on-line.tex

A cable spool of mass M, radius R and moment of inertia I = 3M R? around an axis through
its center of mass is wrapped around its OUTER disk with fishing line and set on a rough rope
as shown. The fishing line is then pulled with a force F' to the right as shown so that it rolls
down the rope on the spool at radius r without slipping.

a) Which way does the spool roll (left or right)?

b

Find the magnitude of the acceleration of the spool.

¢) Find the force the friction of the rope exerts on the spool.

)
)
)
)

d) Is there a value of the radius r relative to R for which friction exerts no force on the

spool? 1If so, what is it?
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Problem 334. problems-1/rotation-pr-disk-on-ice-example.tex

This problem will help you learn required concepts such as:

e Conservation of Mechanical Energy
e Rotational Kinetic Energy

e Rolling Constraint.

so please review them before you begin.

A disk of mass m and radius R rolls without slipping down a rough slope of height H onto an
icy (frictionless) track at the bottom that leads up a second icy/frictionless hill as shown.

a) How fast is the disk moving at the bottom of the first incline? How fast is it rotating
(what is its angular velocity)?

b) Does the disk’s angular velocity change as it leaves the rough track and moves onto the
ice (in the middle of the flat stretch in between the hills)?

¢) How far up the second hill (vertically, find H') does the disk go before it stops rising?
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Problem 335. problems-1/rotation-pr-disk-on-ice-solution.tex

This problem will help you learn required concepts such as:

e Conservation of Mechanical Energy
e Rotational Kinetic Energy

e Rolling Constraint.

so please review them before you begin.

A disk of mass m and radius R rolls without slipping down a rough slope of height H onto an
icy (frictionless) track at the bottom that leads up a second icy/frictionless hill as shown.

a) How fast is the disk moving at the bottom of the first incline? How fast is it rotating
(what is its angular velocity)?

As the disk rolls down the incline without slipping, the velocity of its center and the angu-
lar velocity with which it rotates are related by the rolling without slipping constraint:

v=wR . (7.1)

Because it is not slipping, friction does no work, so that the total mechanical energy
is conserved during the descent. Initial kinetic energy is zero, so F; = U; = mgH,
where I am setting U = 0 at the bottom of the incline. With this choice, final potential
energy vanishes and total energy in final state is kinetic. This, in turn, is a sum of
a translational term representing the motion of the center of mass and a rotational
contribution representing the motion as seen by an observer moving with the center of
mass. Thus:

1 1
Eyf=K;= §mv2 - 51& . (7.2)

Inserting the constraint as well as the value of the moment of inertia for a uniform disk
I = %mR2 we have
1mR? /v 1

mH—lmv2+——(—)2——771212(1—1—1/2)—§ 2 (7.3)
7T 2 2 \R) "2 —am ‘
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.o ”

Note that this is less than the v/2gH we would find were the disk sliding down a frictionless
incline. This makes sense, because friction has been acting to enforce the constraint, but
has also slowed the disk. Alternatively, the expression for the kinetic energy above shows
that some of the work done by gravity was converted into rotational kinetic energy, leaving
less of it to be converted to translational kinetic energy.

whence

Using the constraint we then have

v 49H

== =1/ ==. 7.5

TR V3R (7.5)
Does the disk’s angular velocity change as it leaves the rough track and moves onto the
ice (in the middle of the flat stretch in between the hills)?

During the disk’s accelerating descent down the incline, friction acted to retard the ac-
celeration and increase the angular acceleration, in order to maintain the condition of
no slipping, but it did no work because it acts at the one point on the wheel that is
always stationary with respect to the ground. Instead it served to redistribute the
gravitational potential energy between translational and rotational kinetic energy.

Once the horizontal stretch is reached, the disk continues at the constant translational
and angular velocity given by the values we computed above. Since these satisfy the
rolling constraint and no energy is entering the system, friction does not act on the disk
as it rolls along the horizontal rough stretch.

This is an important fact! A perfectly round wheel (with frictionless bearings) rolling
without slipping on a level surface experiences no friction and does not slow down. This
is why we use wheels!

When the disk moves onto the ice the change in the coefficient of friction thus produces
no change in its motion, since friction was not applying any force on the rough surface
anyway.

How far up the second hill (vertically, find H') does the disk go before it stops rising?

As it begins to climb the second incline, the disk’s velocity decreases as kinetic energy
is converted to potential energy. As its motion acquires a vertical component gravity is
doing negative work on the disk and this force slows the disk. On the other hand, with no
friction the only forces on the disk, gravity and the normal force, exert no torque about
the disk’s center so its angular velocity remains constant at the value found above. The
disk slows as it climbs but continues spinning at a constant rate. When it comes to a stop
at the highest point it can reach, its total mechanical energy is:

1
Ey =mgH' + 5[&)2 . (7.6)

where its rotational kinetic energy is unchanged.

This is equal to the total energy found above since during the climb all work was done by
gravity, whence we find

1 1 4
mgH' = émv2 =-m <—gH> , (7.7)
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or 9
H'=ZH. (7.8)

The disk does not recover its original height, though energy is conserved, because the
energy converted to rotational kinetic energy cannot, without friction, be converted to
potential energy. If we throw sand on the ice as the disk comes to a halt, the resulting
friction will act to propel the disk farther up the hill, slowing its rotation and recovering
this stored energy.
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Problem 336. problems-1/rotation-pr-disk-rolling-on-slab-difficult.tex

m,R

This problem will help you learn required concepts such as:

e Newton’s Second Law (linear and rotational)
e Rolling Constraint

e Static and Kinetic Friction

so please review them before you begin.

A disk of mass m is resting on a slab of mass M, which in turn is resting on a frictionless
table. The coefficients of static and kinetic friction between the disk and the slab are us and
1, respectively. A small force F to the right is applied to the slab as shown, then gradually
increased.

a) When F is small, the slab will accelerate to the right and the disk will roll on the slab
without slipping. Find the acceleration of the slab, the acceleration of the disk, and the
angular acceleration of the disk as this happens, in terms of m, M, R, and the magnitude
of the force F'.

b) Find the maximum force Fi,.x such that it rolls without slipping.

c) If F is greater than this, solve once again for the acceleration and angular acceleration of
the disk and the acceleration of the slab.

Hint: The hardest single thing about this problem isn’t the physics (which is really pretty
straightfoward). It is visualizing the coordinates as the center of mass of the disk moves with
a different acceleration as the slab. I have drawn two figures above to help you with this — the
lower figure represents a possible position of the disk after the slab has moved some distance to
the right and the disk has rolled back (relative to the slab! It has moved forward relative to the
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ground! Why?) without slipping. Note the dashed radius to help you see the angle through
which it has rolled and the various dashed lines to help you relate the distance the slab has
moved x4, the distance the center of the disk has moved x4, and the angle through which it
has rolled 0. Use this relation to connect the acceleration of the slab to the acceleration and

angular acceleration of the disk.

If you can do this one, good job!
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Problem 337. problems-1/rotation-pr-disk-rolls-to-loop.tex

A disk of mass m and radius r (and moment of inertia I = %mrz) sits at rest at the top of slope
of height 2R and rolls without slipping down the hill to a circular track curving upwards.
Ignore drag forces and answer the following questions:

a) How fast is the disk travelling when it reaches the top/end of the curved track (as shown)?

b) Find the normal force acting on the disk due at this point, just before it comes off of the
circular curve of the track.

c) How high (relative to the lower dashed line) will the disk go above the point where the
disk leaves the track before falling back?
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Problem 338. problems-1/rotation-pr-disk-rolls-to-loop-soln.tex

A disk of mass m and radius r (and moment of inertia I = %mr2) sits at rest at the top of slope
of height 2R and rolls without slipping down the hill to a circular track curving upwards.
Ignore drag forces and answer the following questions:

a) How fast is the disk travelling when it reaches the top/end of the curved track (as shown)?

b) Find the normal force acting on the disk due at this point, just before it comes off of the
circular curve of the track.

c) How high (relative to the lower dashed line) will the disk go above the point where the
disk leaves the track before falling back?

Solution:  Static friction does no work. Hence, our strategy must be to a) use energy
. . v . .
conservation plus the rolling constraint, Q = —, to find v as it leaves the track on the right,

use this in N2 in the centripetal direction only plus circular motion kinematics to answer b),
and then use energy conservation again to answer c, noting that it continues to spin as it
rises.

a)

1/1 1 3
E; =mg2R =mgR + = <—mr2> 02 + §mv2 =mgR+ “mv? = Ey

2\ 2 4
2 4 24
= mv'=-mgR = v ==-gR = |v==-139R
3 3 3
b)
mv? 4
N:—:—
R 3"

1 1 1
E; = ng+§/fé—|— émv2 = mgHmax —l—;}fé: Ey
5

2
= mgR+ gng = gmﬂR = WHmax = Hpax = gR
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Problem 339. problems-1/rotation-pr-falling-mass-spins-disk.tex

A disk of mass M and radius R placed on
a frictionless table can rotate freely about a
fixed frictionless spindle as shown in the fig-
ure. A massless, unstretchable string is tightly
wound around the disk and then passes over a
small massless, frictionless pulley, where it is
. attached to a hanging mass m. At time ¢t =0
' the hanging mass and disk are released from
1 rest.

Y
a) Find the tension T in the string while the mass is falling and the disk is rotating.

b) Find the speed v, of the mass m when it has fallen a height H from its initial position.
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Problem 340. problems-1/rotation-pr-falling-mass-spins-disk-soln.tex

A disk of mass M and radius R placed on
a frictionless table can rotate freely about a
fixed frictionless spindle as shown in the fig-
ure. A massless, unstretchable string is tightly
wound around the disk and then passes over a
small massless, frictionless pulley, where it is
attached to a hanging mass m. At time ¢t =0
the hanging mass and disk are released from
rest.

a) Find the tension T in the string while the mass is falling and the disk is rotating.

b) Find the speed v, of the mass m when it has fallen a height H from its initial position.

Solution: Write N2 for the mass and N2 for rotation for the disk, with tension 7' shared
between them and the rolling constraint connecting acceleration to angular acceleration. Elim-
inate acceleration (and/or angular acceleration) in favor of the unknown tension 7. For b),
one can either back substitute for the acceleration a and use v,, = vV2aH, or (preferred) use
energy conservation plus the rolling constraint.

a) Using down positive:

1 2T
mg — T =ma RT:IazﬁMRQ}% = a=—r = mng(l—{—Q%)

or

M
T=(—"
(M—i—2m)mg

To find a, it is a bit easier to add the two equations (and use T from the second one to check
the answer to a) above):

M 2mg 1 M
= _ = T:— = —_—
mg (m—l— 2)a = a 9m & M = 2Ma ( )mg

Then b):

Uy = V2aH = 2gH

M 4+ 2m




7.2. TORQUE AND 1D ROTATION 385

or:

1 o 1/1 S\ v2, 1/2m+M\ , m
mgHzimvm+§<§MR>—”;:§<T v, = vy = ngH
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Problem 341. problems-1/rotation-pr-flat-plane-two-blocks-massive-pulley.tex

A mass m; is attached to a second mass ms by an Acme (massless, unstretchable) string. my
sits on a frictionless table; ms is hanging over the ends of a table, suspended by the taut string
from pulley of mass M and radius R. At time ¢ = 0 both masses are released.

a) Draw the force/free body diagram for this problem.
b) Find the acceleration of the two masses.

¢) Find the angular acceleration of the pulley.
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Problem 342. problems-1/rotation-pr-gyroscope-torque.tex

)
I

A child spins a gyroscope with moment of inertia I and a frictionless pivot by wrapping a
(massless, unstretchable) string of length L around it at a radius R and then pulling the string
with a constant force F' as shown. Find:

a) The angular acceleration of the gyroscope while the string is being pulled.

b) The angular speed of the gyroscope as the string comes free (assume that the force F is
exerted through the entire distance L).
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Problem 343. problems-1/rotation-pr-loop-the-rolling-disk.tex

A disk of mass m and radius r sits at the top of a loop-the-loop of height H. Find the minimum
height H such that the disk goes around the loop the loop without coming off of the track,
assuming that it rolls without slipping the entire way. Ignore drag forces.
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Problem 344. problems-1/rotation-pr-mass-unrolls-spool.tex

A pulley of mass m, radius R and moment of inertia
I = fmR? has a massless, unstretchable string wrapped
around it many times with a mass (also) m attached to
the end. The system begins at rest and is released
at time ¢ = 0 so that the falling mass and the string
unrolling without slipping makes the spool rotate.

a) Find «, the magnitude of the angular acceleration
of the pulley about its center of mass as the mass
falls.

b) Find the tension T in the string as the mass falls..

c) After the mass m has fallen through a height H,
how fast is it moving?
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Problem 345. problems-1/rotation-pr-mass-unrolls-spool-soln.tex

A pulley of mass m, radius R and moment of inertia
I = fmR? has a massless, unstretchable string wrapped
around it many times with a mass (also) m attached to
the end. The system begins at rest and is released
at time ¢ = 0 so that the falling mass and the string
g unrolling without slipping makes the spool rotate.

m a) Find «, the magnitude of the angular acceleration
of the pulley about its center of mass as the mass
T falls.

b) Find the tension T in the string as the mass falls..

mg

c) After the mass m has fallen through a height H,
how fast is it moving?

Solution: N2 for both masses (only rotation needed for pulley) along with the rolling con-
straint:

F=mg—T=ma Tout:RT:Ia:ﬁmRZ}%,

Add to elimimate T', find a, back substitute to find « = a/R and T

_ _ ! |9 — Bma —
mg=(1+p)ma = a—1+ﬁg = a= 17 AR = T =pma= 1_i_ﬁmg

With a in hand, we know that v = v/2aH from experience, but the best way to actually show the
work needed to get it is conservation of mechanical energy with the rolling constraint Q = v/R:

1 1 1 1 2
Ei:mgH+O+0:O+§mv2+§IQQ:§mv2+§BmRZ<;—Z> =Ey

or:

_1 2 | [ 29H |
p{gH—2(1+ﬁ)p’[v = v = T 0 (=V2aH
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Problem 346. problems-1/rotation-pr-rolling-spool-pulled-right.tex

A spool of mass M, radius R and moment of inertia I = %M R? is wrapped around its spindle
(radius R/2) with fishing line and set on a rough table as shown. The line is then pulled with
a force F' as shown so that it rolls without slipping.

a) Which way does the spool roll (left or right)? Put another way, does it roll up the string or
unroll the string?

b) Find the magnitude of the acceleration of the spool and the force exerted by the table on
the spool.
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Problem 347. problems-1/rotation-pr-rolling-wheel-static-friction-review.tex
AT
@

A force of magnitude F' (to the right) is applied to the frictionless axle of a wheel made of a
uniform disk with mass M and radius R. It rolls without slipping on a rough table (with
a coefficient of static friction given by pus). Find:

a) What is the moment of inertia of this disk about its center of mass? If you cannot
remember, use the form I,m = M R? to answer the remaining questions.

ICI’I’I -

b) The magnitude of the acceleration of the wheel.

¢) The magnitude of the force exerted by static friction. Indicate its direction on the
figure above.

fs:

d) The minimum coefficient of static friction ps such that the wheel does not slip for this
force.

Hs,min =
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Problem 348. problems-1/rotation-pr-rolling-wheel-static-friction-review-soln.tex

) « positive into page

Mg

A force of magnitude F' (to the right) is applied to the frictionless axle of a wheel made of a
uniform disk with mass M and radius R. It rolls without slipping on a rough table (with
a coefficient of static friction given by pus). Find:

a) What is the moment of inertia of this disk about its center of mass? If you cannot
remember, use the form I.m = BM R? to answer the remaining questions.

1
Qm:§MR2

b) The magnitude of the acceleration of the wheel.

This follows from using Newton’s Second Law twice, once for translation and once for
rotation, plus the rolling constraint o = a/R. There is no net vertical force, so N = Mg.
N, mg, and F exert no torque (about the center of mass — there is an entirely different
solution possible using the point of contact with the ground as the pivot, using the parallel
axis theorem). So N2 for rotation is:

a

1
R=Ta=_-MR?
fsR a2RR

If we divide this by R on both sides and line it up with N2 for translation:

F—fs=Ma

1
fs = §Ma

and add them to eliminate f;, we get:

2 F
3 M

¢) The magnitude of the force exerted by static friction. Indicate its direction on the
figure above.
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Backsubstitute this into the expression above for f;:

1 1
fS:§Ma: gF

Note Well! Any answer such as f; = usMg is wrong!

d) The minimum coefficient of static friction ps such that the wheel does not slip for this
force.

Here we use:

1
fs:§F<Fs:,UsN:,UsM9

Note Well the inequality! We rearrange this to obtain:

- 1 F
He> 3302
or
1 F
Hs,min = gM—g
Scoring:

a) +2 points. This is something they were told they should know.

b),c) +12 points together. +4 for each N2, 42 for rolling constraint, +2 for algebra including
back substitution. Instant -4 if they assert f; = usMg.

d) +6 points. If they wrote the wrong answer for c) above, they may well lose more points
here, but we’'ll cap it at an additional -3 (basically giving them +3 total for knowing that pusN
is relevant in some way to the problem. But we’ll give successful students +4 for writing down
the correct inequality, and save the last +2 for algebra or confusion.
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Problem 349. problems-1/rotation-pr-rolling-wheel-static-friction-top.tex

A massless rope that is wrapped around a a uni-
R form disk with mass M and radius R is pulled
M to the right with a force F' as shown. As long
as F' is less than some maximum value it will
roll without slipping on a rough table (with

a coefficient of static friction given by ps).

a) Find the magnitude of the acceleration of the wheel, assuming that it rolls without
slipping.

b) Find the magnitude of the force exerted by static friction, assuming that it rolls without
slipping.

¢) Indicate the actual direction that the static friction points when it rolls without
slipping.

d) What is the largest force Fiax that can be exerted before the wheel starts to slip?

a4 — fo = Circle: = <«

Fmax —
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Problem 350. problems-1/rotation-pr-rolling-wheel-static-friction-top-soln.tex

a(in) =

& A massless rope that is wrapped around a a uni-
form disk with mass M and radius R is pulled
to the right with a force F' as shown. As long

Mg a as F' is less than some maximum value it will
I roll without slipping on a rough table (with
f a coefficient of static friction given by ps).

a) Find the magnitude of the acceleration of the wheel, assuming that it rolls without

slipping.

b) Find the magnitude of the force exerted by static friction, assuming that it rolls without

slipping.

c) Indicate the actual direction that the static friction points when it rolls without

slipping.

d) What is the largest force Fy,ax that can be exerted before the wheel starts to slip?

1
—F
3

AF
=l 3m > =
Frax = 3Mg

Circle: @ <=

Solution for a-c: Use N2 for translation and rotation, using the CM as a pivot and the rolling

constraint a = a/R:

a

F+ fo=Ma R(F—fs):%MRZR

=

2F = —Ma

where we divided out the Rs and added the equations. Solving for a and backsubstituting:

4 F

“T3M

1

fo=Ma—F=+-F

3

and the drawn/guessed direction above is apparently correct. The disk accelerates faster than

it would from the force vF alone in empty space!

Solution for d: We know that f; = F/3 < usN if it does not slip. We also know that
N — Mg = Ma, = 0 in the vertical direction, so N = Mg. Hence it will not slip for:

F < 3usN = 3Mg = Fax
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Alternate Solution for a-c: Same as before, but using the point of contact with the table as
the pivot and the parallel axis theorem:

3 AF
ToCMRE o g

1
F+f,=M 2RF = (MR? + =~ MR? 2
+ f a R ( R—|—2 R)R 5 7 i

etc. as before. The advantage here is one gets a in one step, but you still have to backsubstitute
to get fs = F/3.
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Problem 351. problems-1/rotation-pr-sliding-rolling-bowling-ball.tex

A uniform bowling ball of radius R, mass M, and moment of inertia I about its center of mass is
initially launched so that it is sliding with speed vy without rolling on an alley with a coefficient
of friction .

a) Analyze the forces acting on the bowling ball to find the acceleration of the center of mass
and angular acceleration of the bowling ball about its CM;

b) Find the CM velocity as a function of time (¢) and angular velocity of the ball as a function
of time (t).

c¢) Find the CM velocity of the bowling ball when it starts rolling without slipping.
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Problem 352. problems-1/rotation-pr-two-spools-one-mass.tex

In the figure above, a mass M is connected to two independent massive spools of radius R, also
of mass M (each), wrapped with massless unstretchable string. You may consider the spools
to be disks as far as their moment of inertia is concerned. At t = 0, the mass M and spools
are released from rest and the mass M falls. Find:

a) The magnitude of the acceleration a of the mass M.
b) The tension T in either string (they are the same from symmetry).

c¢) When the mass M has fallen a distance H, what is its speed?
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Problem 353. problems-1/rotation-pr-unrolling-a-falling-spool-algebraic.tex

A spool of fishing line is tied to a beam and released from rest in the position shown at time
t = 0. The spool has a mass M, a radius of R, and a moment of inertial I = M R?. The line
itself has negligible mass per unit length. Once released, the disk falls as the taut line unrolls.

a) What is the tension in the line as the disk falls (unrolling the line)?

b) After the disk has fallen a height H, what is its angular velocity w?
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Problem 354. problems-1/rotation-pr-unrolling-a-falling-spool-numeric.tex

A spool of fishing line is tied to a beam and released from rest in the position shown at time
t = 0. The spool is a disk and has a mass of 50 grams and a radius of 5 cm. The line itself has
negligible mass per unit length. Once released, the disk falls as the taut line unrolls.

a) What is the tension in the line as the disk falls (unrolling the line)?

b) After the disk has fallen 2m, what is its speed?
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Problem 355. problems-1/rotation-pr-unrolling-a-falling-spool-reversed.tex

M

A spool of fishing line is tied to a beam and released from rest in the position shown at time
t = 0. The spool has a mass M, a radius of R, and a moment of inertial I = M R?. The line
itself has negligible mass per unit length. Once released, the spool falls as the taut line unrolls.

a) What is the tension in the line as the spool falls (unrolling the line)?

b) What is the magnitude of the angular acceleration of the spool a about its center of mass
as it falls?

c) After the spool has fallen a height H, what is the direction of its angular velocity, &7
Indicate this direction with a labelled arrow symbol on a suitable diagram.
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Problem 356. problems-1/rotation-pr-unrolling-a-falling-yo-yo.tex

R R/2

A yo-yo is tied to a beam and released from rest in the position shown at time ¢ = 0. The
yo-yo has a mass M, a radius of R, and a moment of inertia I = SM R?. The unstretchable line
itself has negligible mass per unit length and is wrapped around an inner spindle with radius
R/2 as shown. Once released, the yo-yo falls as the taut line unrolls.

a) What is the angular acceleration & of the yo-yo as it falls (unrolling the line)? Note
that this is a vector quantity, so please indicate its direction in your answer and/or on
the figure.

b) What is the tension 7" in the line as the yo-yo falls (unrolling the line)?

c) After the yo-yo has fallen a height H, what is its angular velocity w?
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Problem 357. problems-1/rotation-pr-unrolling-a-falling-yo-yo-soln.tex

R~ RP2

As always, we start with a free body diagram (easy, only a single body). Then we write both,
note well, both ' = ma in the vertical direction and ™ = Ia around a pivot chosen to be
the center of mass of the yo-yo:

F=Mg—-T = Ma (down +)

R
T = §T = Ila (out of page +)

Note well that the torque due to tension is exerted at radius R/2, not R the radius of the yo-yo.

Next we substitute / = M R? and the rolling constraint at the radius R/2, that is a = 2a/R,
into the second equation, multiply the whole equation by 2 (to simplify the algebra), cancel the
R’'s from both sides, and get:

T =4BMa

We add this to the first equation:

F=Mg—-T = Ma
T = 48Ma

to get:
Mg=(1+4B8)Ma

This gives us a = g/(1 + 453) and we can get the magnitude of a using the expression above.
Now we can answer all of the questions easily:

a)

29
=— t of
o' 1T 49)R (out of page)
b) Backsubstitute a to get:
4
ST

(1+48)
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c¢) Finally, use mechanical energy conservation plus the rolling constraint, now expressed as

v = Rw/2:
1 1 1 1
MgH = —Mv* + =M R*v* = ~MR?*(- + B)w?
2 2 2 4
to get:
2gH 2 2gH 2v

w = = _— = —

rRRA4+p R\ (+48) R
where v = v2aH as usual.
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Problem 358. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-1.tex

In the figure to the left, a pulley at rest of mass

M and radius R with frictionless bearings

and moment of inertia I = BM R? is fixed at
Q. =0 the top of a fixed, frictionless inclined plane
that makes an angle  with respect to the hori-
zontal. The pulley is wrapped with many turns
of (approximately massless and unstretchable)
fishing line. The line is also attached to a block
of mass m. The block and pulley are released
from rest: v; =0 (block) and ©; = 0 (pulley).

a) Find the magnitude of the accelera-
tion a of the block as it slides down the
incline.

/\b;\Find the tension T in the string as it
slides.

c) Find the speed v with which the block
reaches the bottom of the incline.
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Problem 359. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-2.tex

In the figure above, a pulley of mass M and radius R with frictionless bearings and moment
of inertia I = BM R? is fixed at the top of a rough inclined plane that makes an angle § with
respect to the horizontal that is large enough that the block will definitely overcome static
friction and slide. The coefficient of kinetic friction between the block and the plane is pu. The
pulley is wrapped with many turns of (approximately massless and unstretchable) fishing line.
The line is also attached to a block of mass m. At time ¢t = 0 the block and pulley are released
Jrom rest.

a) Draw a force diagram for both the block and the pulley separately. You do not have
to represent the forces acting at the pivot of the pulley that keep it stationary, only the
one(s) relevant to the solution of the problem. Represent all the forces on the block.

b) Find both the magnitude of the acceleration a of the block and the tension 7" in the string
as the block slides down the incline in terms of the givens.

c¢) Find the kinetic energy of the block when it reaches the bottom of the incline.

d) Find the kinetic energy of the pulley when the block reaches the bottom of the incline.
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Problem 360. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-friction.tex

A pulley with frictionless bearings and moment of inertia I = SMR? is at the top of a fixed
inclined plane that makes an angle 6 with respect to the horizontal. The pulley is wrapped
with many turns of (approximately massless and unstretchable) fishing line that is attached to
a block of mass m resting on the incline a height H above the bottom. The coefficient of kinetic
friction between the block and the incline is pg. At time ¢t = 0 the block and pulley are released
from rest at an angle 6 that is large enough that the block will definitely overcome static
friction and begin to slide.

a) On the figure above or in a free body diagram to the side, draw in and label all of the
forces acting on the block only.
b) Find the magnitude of the acceleration a of the block as it slides down the incline.

c¢) Find the speed v with which the block reaches the bottom of the incline.
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Problem 361. problems-1/rotation-pr-walking-the-spool.tex

In the figure above, a spool of mass M is wrapped with string around the inner spool. The
spool is placed on a rough surface and the string is pulled with force F' in the three directions
shown. The spool, if it rolls at all, rolls without slipping. (Note that if pulled too hard, the
spool can both slip and/or roll.)

Find the acceleration and frictional force vectors (magnitude and direction) for all three
figures. Use I, = SM R?.

Note Well: You can use either the center of mass or the point of contact with the ground
(with the parallel axis theorem) as a pivot, the latter being slightly easier.
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8.1 Angular Momentum

8.1.1 Multiple Choice Problems

Problem 362. problems-1/angular-momentum-mec-collapsing-star.tex

Q,

N2
/N

before

after

When a star rotating with an angular speed ; (eventually) exhausts its fuel, escaping light
energy can no longer oppose gravity throughout the star’s volume and it suddenly shrinks,
with most of its outer mass falling in towards the center all at the same time.

As this happens, does the magnitude of the angular speed of rotation €:

a) increase
b) decrease

c¢) remain about the same

Why (state the principle used to answer the question)?
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Problem 363. problems-1/angular-momentum-mec-collapsing-star-soln.tex

Angular momentum is (approximately) conserved and the moment of inertial decreases, so 2
increases.
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Problem 364. problems-1/angular-momentum-mec-forming-star.tex

N\
/TN

before

Gravity gradually assembles a star by pulling a cloud of rotating gas together into a rotating
ball that then gradually shrinks. The figure above represents a star at two different stages in
its formation, the first where a gas of total mass M has formed a ball of radius 2R rotating
at angular speed );, the second where the ball has collapsed to a radius R (compressing the
nuclear fuel inside closer to the point of fusion and ignition), rotating at a possibly new angular
speed (1.

Assuming that the mass is uniformly distributed in both cases, what is the best estimate for
1y in terms of €2;7?

[ 2 =i/4 L o =ai/2 ] =9 L] 97 =20 []

Qf = 49,
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Problem 365. problems-1/angular-momentum-mec-forming-star-soln.tex

N\
/TN

before

Gravity gradually assembles a star by pulling a cloud of rotating gas together into a rotating
ball that then gradually shrinks. The figure above represents a star at two different stages in
its formation, the first where a gas of total mass M has formed a ball of radius 2R rotating
at angular speed );, the second where the ball has collapsed to a radius R (compressing the
nuclear fuel inside closer to the point of fusion and ignition), rotating at a possibly new angular
speed (1.

Assuming that the mass is uniformly distributed in both cases, what is the best estimate for
1y in terms of €2;7?

[ 2 =i/4 L o =ai/2 ] =9 L] 97 =20 X

Qf = 49,
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Problem 366. problems-1/angular-momentum-mec-rotating-rod-sliding-beads.tex

> L2

2 -L2

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its
center at angular speed w;. Two beads, each with mass m, are stuck a distance L/4 from the
center. The rotating system initially has a total kinetic energy K; (which you could actually
calculate if you needed to). At a certain time, the beads are released and slide smoothly to the
ends of the rod where again, they stick. Which statement about the final angular speed and
rotational kinetic energy of the rotating system is true:
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Problem 367. problems-1/angular-momentum-mec-two-circular-plates-collide.tex

y
/M

]
\Qi%F/’R/ X

<~ oM

A disk of uniformly distributed mass M and radius R sits at rest on a turntable that permits
it to rotate freely. A second uniform disk of mass M with the same radius, centered on the
same axis of rotation, is rotating at an (initial) angular speed €2; and is dropped gently onto it
so that (after sliding for an instant) they stick together and rotate together as one.

How do the final angular velocity and final kinetic energy relate to the initial angular velocity
and initial kinetic energy?

a Qf— Kf:KZ'

b) Qp =20;, Kj=K;/2

d) Q= 0/4, Kj=K;/4

)

)
c) Qp=9Q;/2, Kp=K;/2

)
e) We cannot tell from the information given.
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Problem 368. problems-1/angular-momentum-mec-two-circular-plates-collide-soln.tex

1
Angular momentum is conserved, inelastic collision: In z/axial direction, L = L; = §M R*Q =
1
2(§MR2)Qf =Ly, so Qp = Q;/2.

L2 L2
Onl has this, but just i Ki=—— _K=—— =K,/2
nly one answer has this, but just i case, ££; Z(lMR2)’ f 2(MR2) Z/ , SO answer

is ¢) on both counts.
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8.1.2 Short Answer Problems

Problem 369. problems-1/angular-momentum-sa-bug-on-rotating-disk.tex

A disk of mass M and radius R is rotating about its axis with initial angular velocity €. A
rhinoceros beetle with mass m is standing on its outer rim as it does so. The beetle decides to
walk in to the very center of the disk and stand on the axis as it feels less pseudoforce there
and it is easier to hold on. What is the angular velocity of the disk when it gets there?

(Ignore friction and drag forces).
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Problem 370. problems-1/angular-momentum-sa-conserved-quantities.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a
rigid wall that cannot move, returning at the D D D
same speed it had before the collision.

A piece of space junk strikes the orbiting space
shuttle and sticks to it. I:l I:l I:l
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Problem 371. problems-1/angular-momentum-sa-conserved-quantities-soln.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a C N
rigid wall that cannot move, returning at the
same speed it had before the collision.

Explanation: It bounces off at the same speed (given) so the collision is elastic as given.
Linear momentum is not conserved, period (so blank). Angular momentum is conserved only
if the pivot is on the line of motion of the particle so it is zero before and after the collision.
This is rather unlikely (and not helpful in solving any sort of problem) but is enough for this
to earn an N as it could happen if a coordinate system of this sort was given.

Total Linear Angular
Energy Momentum Momentum

A piece of space junk strikes the orbiting space C C
shuttle and sticks to it.

Explanation: The collision is “fully inelastic” as they stick together and lose all of the kinetic
energy initially present in the center of mass reference frame, so total mechanical energy is
definitely not conserved. In the (usual) impulse approximation gravity (holding the shuttle “in
orbit” exerts a negligible force during the short time of the collision and no other forces are
present (it’s in a vacuum so no drag etc). Hence both momentum and angular momentum are
conserved, as no external torques act either.
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Problem 372. problems-1/angular-momentum-sa-conserved-quantities-soln.tex

For each of the collisions described below, say whether the total mechanical energy, total mo-
mentum, and total angular momentum of the system consisting of the two colliding objects are
conserved or not. Indicate your answer by writing “C” (for “is definitely conserved”) or “N”
(for “not necessarily conserved”) in each box. You may write a brief word of explanation if
you think there is any ambiguity in the answer.

Total Linear Angular
Energy Momentum Momentum

A hard ball (point particle) bounces off of a C N
rigid wall that cannot move, returning at the
same speed it had before the collision.

Explanation: It bounces off at the same speed (given) so the collision is elastic as given.
Linear momentum is not conserved, period (so blank). Angular momentum is conserved only
if the pivot is on the line of motion of the particle so it is zero before and after the collision.
This is rather unlikely (and not helpful in solving any sort of problem) but is enough for this
to earn an N as it could happen if a coordinate system of this sort was given.

Total Linear Angular
Energy Momentum Momentum

A piece of space junk strikes the orbiting space C C
shuttle and sticks to it.

Explanation: The collision is “fully inelastic” as they stick together and lose all of the kinetic
energy initially present in the center of mass reference frame, so total mechanical energy is
definitely not conserved. In the (usual) impulse approximation gravity (holding the shuttle “in
orbit” exerts a negligible force during the short time of the collision and no other forces are
present (it’s in a vacuum so no drag etc). Hence both momentum and angular momentum are
conserved, as no external torques act either.
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Problem 373. problems-1/angular-momentum-sa-rotating-rod-sliding-beads.tex

> L2

2 -L2

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its
center at angular speed w;. Two beads, each with mass m, are stuck a distance L/4 from the
center. The rotating system initially has a total kinetic energy K; (which you could actually

calculate if you needed to). At a certain time, the beads are released and slide smoothly to the
ends of the rod where again, they stick.

A) What quantities of the system (rod plus two beads) are conserved by this process? (Place
a Y or N in the provided answer boxes.)

Total Kinetic Energy

Total Linear Momentum

Total Angular Momentum

B) Determine the ratio of the following quantities:

Iy

1
w

s
|

> |

.
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8.1.3 Regular Problems

Problem 374. problems-1/angular-momentum-pr-circular-orbit-on-table.tex

A particle of mass M is tied to a string that passes through a hole in a frictionless table and
held. The mass is given a push so that it initially moves in a circle of radius r; at speed v;. We
will now conceptual review and algebraically analyze the physics of its motion in two stages.
Please answer the following questions. While the string is fixed (so that r; is constant):

a) What is the torque exerted on the particle by the string?

b) What is the vector angular momentum L; of the particle? Use the provided coordinate
system to give the direction.

¢) Show that the magnitude of the force (the tension in the string) that must be exerted to
keep the particle moving in this circle is:

2

Lz'
3
mr;

F=

Note that this is a general result for a particle moving in a circle and in no way
depends on the fact that the force is being exerted by a string in particular.

d) Show that the kinetic energy of the particle in terms of its angular momentum is:

1.2
K;=—

2mr?2

i

From under the table, the string is slowly pulled down (so that the puck is always moving in
an approximately circular trajectory and the tension in the string remains radial) to where the
particle is moving in a circle of radius 7.

e) If the tension in the string remains radial, what quantity ought to be conserved?
f) Find its velocity v; using conservation of that quantity.

g) Compute the work done by the force from part c¢) above and identify the answer as the
work-kinetic energy theorem. Use this principle instead to to find the velocity vy. You
should get the same answer!
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Problem 375. problems-1/angular-momentum-pr-circular-orbit-on-table-soln.tex

F

A particle of mass M is tied to a string that passes through a hole in a frictionless table and
held. The mass is given a push so that it initially moves in a circle of radius r; at speed v;. We
will now conceptual review and algebraically analyze the physics of its motion in two stages.
Please answer the following questions. While the string is fixed (so that r; is constant):

a) What is the torque exerted on the particle by the string?

b) What is the vector angular momentum L; of the particle? Use the provided coordinate
system to give the direction.

c) Show that the magnitude of the force (the tension in the string) that must be exerted to
keep the particle moving in this circle is:

2

Lz'
3
mr;

F=

Note that this is a general result for a particle moving in a circle and in no way
depends on the fact that the force is being exerted by a string in particular.

d) Show that the kinetic energy of the particle in terms of its angular momentum is:

1.2
K;=—

2mr?2

i

From under the table, the string is slowly pulled down (so that the puck is always moving in
an approximately circular trajectory and the tension in the string remains radial) to where the
particle is moving in a circle of radius 7.

e) If the tension in the string remains radial, what quantity ought to be conserved?
f) Find its velocity v; using conservation of that quantity.

g) Compute the work done by the force from part c¢) above and identify the answer as the
work-kinetic energy theorem. Use this principle instead to to find the velocity vy. You
should get the same answer!

Solution:

a) =7 x (—T)7

I
o
I
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b)

c)

CHAPTER 8. VECTOR TORQUE AND ANGULAR MOMENTUM

L; = |¥; x m¥;| = mu;r;. The direction, given by the right hand rule, is & (or “up”,
although using coordinates is better).

Using Newton’s Second Law and centripetal acceleration:

F(eT) = T Z T mr? _ (muvjr;)? _ L?
T T ’I’rl,’r’i2 mrf’ mrf’

Note that we multipled by “1” in a convenient form in the middle.
We'll start with the standard “easy” version of the kinetic energy:

(mu;r;)? L?

1 1
K; = —mv? = —mv? x T
2 2 mr

2mri2

ERCIED S

2m7‘2-2

Note that we multipled again by “1” in that same convenient form in the middle.

Because the force exerted by the tension is almost always perpendicular to the velocity
of the particle, the torque exerted by the tension remains (almost exactly) zero. We
therefore ezpect the angular momentum to be (almost exactly) conserved.

This permits us to use angular momentum conservation to find vy given (in the problem)
r f:

T

L; = mvir; =muvgry =Ly = wvp= T‘_Ui

f
We have to be very careful here. The tension T is also nearly perpendicular to ¥ through-
out the motion, so one might conclude that no work is done and energy is also conserved.
However, one’s hand, pulling down on the string, absolutely does work and that work is
not dissipated by any non-conservative forces, so it must appear as a change in kinetic

energy! Expressing F in terms of (constant) L = muw;r;:

Ty Ty L2 L2
W:/ Fdr:—/ =~ r3dr =
r ,m 2mr?

k3

rf

= fracL22mr]2c — fracL22mr2-2 =AK

Ti

which is the WKE theorem. The final step is easy — note that:

)2 .
f %p{vf Mr]% v vaz

as before. Pay careful attention to this problem, as it is a conceptual key to steps involved
in solving several problems in this course as well as deriving things like the “angular
momentum barrier” in the chapter on gravitation.
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Problem 376. problems-1/angular-momentum-pr-collapse-of-sun.tex

before

The sun reaches the end of its life and gravitationally collapses quite suddenly, forming a white
dwarf. Before it collapses, it has a mass m, a radius R;, and a period of rotation 7;. After it
collapses, its radius is Ry < R; and we will assume that its mass is unchanged. We will also
assume that before and after the moment of inertia of the sun is given by I = fmR? where R
is the appropriate radius.

a) What is its final period of rotation 7 after the collapse?

b) Evaluate the escape velocity from the surface of the sun before and after its collapse.

For 2 points of extra credit, evaluate the numbers associated with these expressions given
B =025 m=2x10% kg, R; =5 x 10° km, Ry = 100 km, and T; = 108,000 seconds. These
numbers are actually quite interesting in cosmology, as the escape velocity from the surface of
the white dwarf approaches the speed of light...
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Problem 377. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod.tex

Qoz 0 ™ L
@ v t ®
m ° v=0
L/4 f
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.
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Problem 378. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod-soln.tex

Q=0 L
.TO' )
m
L/4
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.

Solution: a) Energy (because the problem states that the collision is elastic!); Angu-
lar momentum (because the frictionless pivot exerts no torque); but Not linear momentum.
The pivot can (and in this case obviously does, see below) exert an external impulse force on
the rod+disk system during the collision!

b) Using angular momentum conservation (with L out of the page before and after from the
RHR):

¢ 1
L:Li:mUOZ:EMﬂQf:Lf = Q=3

Ml

c¢) We need AK = K; — K; = 0 for the collision to be elastic as given. Using Ky = L?/2];:

m2v3 (2 1 5 3m 1 5
AK = m — im'l)o = <—— — 1) =mug
12

This is clearly zero when:

SE
wl
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Note: Consider the initial momentum, p; = mvo® # 0 (with & to the right as usual). The
final momentum is clearly zero! The bullet is at rest and the center of mass of the rod is not
moving as the rod rotates! The change in the momentum of the system is thus:

Ap = py — p; = —muod

If we were given, or could estimate, the time of actual contact in the collision as (say) At = t.,
we could evaluate the average force exerted by the pivot during the collision as:
Ap  —muy

Fag =37 =, 270

Momentum is clearly not conserved, and the average force exerted by the pivot during the
collision is not negligible.
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Problem 379. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod-soln.tex

Q=0 L
.TO' )
m
L/4
(!
initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia
%M L? sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of
mass m approaches with velocity vy from the left and strikes the rod a distance L/4 from the
lower end as shown. This elastic collision instantly brings the disk to rest and causes the rod
to rotate with angular velocity Q} (rotating counterclockwise as drawn).

a) What quantities are conserved in this collision?

b) Find the angular velocity qu of the rod about the pivot after the collision (don’t forget
direction).

c¢) Find the ratio m/M such that the collision occurs elastically, as described.

Solution: a) Energy (because the problem states that the collision is elastic!); Angu-
lar momentum (because the frictionless pivot exerts no torque); but Not linear momentum.
The pivot can (and in this case obviously does, see below) exert an external impulse force on
the rod+disk system during the collision!

b) Using angular momentum conservation (with L out of the page before and after from the
RHR):

¢ 1
L:Li:mUOZ:EMﬂQf:Lf = Q=3

Ml

c¢) We need AK = K; — K; = 0 for the collision to be elastic as given. Using Ky = L?/2];:

m2v3 (2 1 5 3m 1 5
AK = m — im'l)o = <—— — 1) =mug
12

This is clearly zero when:

SE
wl
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Note: Consider the initial momentum, p; = mvo® # 0 (with & to the right as usual). The
final momentum is clearly zero! The bullet is at rest and the center of mass of the rod is not
moving as the rod rotates! The change in the momentum of the system is thus:

Ap = py — p; = —muod

If we were given, or could estimate, the time of actual contact in the collision as (say) At = t.,
we could evaluate the average force exerted by the pivot during the collision as:
Ap  —muy

Fag =37 =, 270

Momentum is clearly not conserved, and the average force exerted by the pivot during the
collision is not negligible.
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Problem 380. problems-1/angular-momentum-pr-marble-and-rod.tex

In the figure above, a marble with mass m travelling to the right at speed vy collides with a
rigid rod of length L pivoted about one end, also of mass m, . The marble strikes the rod L/2
down from the pivot and comes precisely to rest in the collision. Ignore gravity, drag forces,
and any friction in the pivot.

a) What is the rotational velocity 2y of the rod after the collision?

b) What is the change in linear momentum in the x direction Ap, (to the right) during
this collision?

c) What is the change in kinetic energy AK in this collision? The sign of your answer
should indicate whether energy was gained or lost.
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Problem 381. problems-1/angular-momentum-pr-marble-and-rod-soln.tex

a) Angular momentum is conserved, so L = L; = mvgL/2 = 1,42 = %mLZQ = Ly. Hence

_ 3muy 3vg

T omL | 2L

b) pzi = mug initially. pyr = muem = mL/2 finally. So use answer to a) and form
Ap, = Pxf — Pxi-

. 2
c) Easiest to use K; = %mv%, Ky = 2IL—d, and subtract.
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Problem 382. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod-gravity.tex

M

A rod of mass M and length L is hanging vertically from a frictionless pivot (where gravity is
“down”). A blob of putty of mass m approaches with velocity v from the left and strikes the
rod a distance d from its center of mass as shown, sticking to the rod.

a) Find the angular velocity wy of the system about the pivot (at the top of the rod) after
the collision.

b) Find the distance x.y, from the pivot of the center of mass of the rod-putty system
immediately after the collision.

c) After the collision, the rod swings up to a maximum angle 0y,,x and then comes momen-
tarily to rest. Find O ax.

All answers should be in terms of M, m, L, v, g and d as needed. The moment of inertia of a
rod pivoted about one end is I = %M L?, in case you need it.
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Problem 383. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod.tex

M

A rod of mass M and length L rests on a frictionless table and is pivoted on a frictionless nail
at one end as shown. A blob of putty of mass m approaches with velocity v from the left and
strikes the rod a distance d from the end as shown, sticking to the rod.

a) Find the angular velocity w of the system about the nail after the collision.

b) Is the linear momentum of the rod/blob system conserved in this collision for a general
value of d? If not, why not?

c) Is there a value of d for which it is conserved? If there were such a value, it would be
called the center of percussion for the rod for this sort of collision.
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Problem 384. problems-1/angular-momentum-pr-putty-sticks-to-unpivoted-rod.tex

A rod of mass M and length L rests on a frictionless
m table. A blob of putty of mass m approaches with ve-
locity v from the left and strikes the rod a distance d
from the end as shown, sticking to the rod.

a) Find the angular velocity 2y of the system after
L the collision. Note that the rod and putty will be
rotating about the center of mass of the system,
not the center of mass of the rod by itself!

d
b) Is the linear momentum of the rod/blob system
ml v o conserved in this collision for a general value of d?
If not, why not?
M— All answers should be in terms of M, m, L, v and d as

needed.
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Problem 385. problems-1/angular-momentum-pr-putty-sticks-to-unpivoted-rod-soln.tex

A rod of mass M and length L rests on a frictionless
table. A blob of putty of mass m approaches with ve-
locity v from the left and strikes the rod a distance d
from the center of the rod as shown, sticking to the

rod.
cm

a) Find the angular velocity €1y of the system after

the collision. Note that the rod and putty will be

Ve rotating about the center of mass of the system,
center of mass not the center of mass of the rod by itself!

m b) Is the linear momentum of the rod/blob system
conserved in this collision for a general value of d?
If not, why not?

M All answers should be in terms of M, m, L, v and d as
needed.

Solution: In this problem there are no meaningful external forces acting on the
system! Gravity is canceled by the (frictionless) normal force of the table. Consequently we
expect linear momentum to be conserved in the collision. However, there are also no
external torques acting, so we expect angular momentum to be conserved as well! Which
one should we use to answer the questions? What coordinate system should we use to answer
the questions?

If we just consider momentum conservation:
pi = mv = (m+M)Ucm =Dy

(to the right, say #). This would make it very easy to find:

muv
VUem =
m+ M

as usual, but doesn’t help us find Q. It seems that angular momentum conservation is our
best bet here. The problem remaining is choosing a good pivot!. After the collision, the center
of mass will move in a straight line to the right in a predictable way, but every other point in
the system will be undergoing somewhat complicated motion around the center of mass as it
simultaneously moves. It therefore makes sense for us to use the center of mass as our
pivot for conservation of angular momentum. This in turn is made simple by using the center
of the rod as the origin of coordinates:

The steps:
~ md+M(@O)  md Md

cm — = d d- cm —
‘ m+M  m+M Tom = M

(radii of circles of motion of the putty and rod centers of mass around the center of mass of the
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system) so that:

Li =m(d — Tem)v = {m(d — Zem)? + <1—12ML2 + Mx§m> } Q

mM M? mM M 1 m+ M L?
vd =3 ——— d — ¢ Qy
m + M (m+ M)? m+ M

1
P+ —=ML*} Q= —
meE T T }f mi M 12 m &

Note that we used the parallel axis theorem to find the moment of inertia of the rod rotating
around the new center of mass. Now we just solve for:

: (2)
M 1 M L2 d
{m+M+ﬁm+ _}

m  d?

Qp =

where the final direction is (obviously, RHR) out of the page.

This can be simplified to:

B 12m(m + M)d? <3)
I~ 12mMd + (m + M)2L2 \d

which obviously has the correct dimensions as the entire fraction on the left is dimensionless.
If M > m, Q; — 0 as we might expect as well. It could be wrong — a lot of algebra in there,
and I make algebra errors as easily as the next person — but it isn’t crazy!
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Problem 386. problems-1/angular-momentum-pr-spinning-cups-catch-balls.tex

¢3

In the figure above, a bar of length L with two cups at the ends is freely rotating (in space —
ignore gravity and friction or drag forces) about its center of mass with angular velocity wy.
The bar and cups together have a mass M and a moment of intertia of I = M L?. When the
bar reaches the vertical position, the cups catch two small balls of mass m that are at rest,
which stick in the cups. The balls have a negligible moment of inertia about their own center
of mass — you may think of them as particles.

a) What is the velocity of the center of mass of the system after the collision?

b) What is the angular velocity of the bar after it has caught the two balls in its cups? Is
kinetic energy gained or lost in this process?
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Problem 387. problems-1/angular-momentum-pr-swinging-rod-strikes-putty.tex

A uniform rod of mass m and length L swings about a frictionless peg through its end. The rod
is held horizontally and released from rest as shown in the figure. At the bottom of its swing
the rod strikes a ball of putty of mass m that sits at rest on a frictionless table. In answering
the questions take the magnitude of acceleration due to gravity to be g and assume that gravity
acts downward (in the usual way). The questions below should be answered in terms of the
given quantities.

a) What is the angular speed €2; of the rod just before it hits the putty?

b) If the putty sticks to the rod, what is the angular speed €2 of the rod-putty system
immediately after the collision?

c) What is AFE, the mechanical energy change of the system in this collision (be sure to
specify its sign).

441
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Problem 388. problems-1/angular-momentum-pr-swinging-rod-strikes-putty-soln.tex

a) Energy conservation, with I = %mLQ:

1
mgL/2 = 5[922 —Q; = 3fg

b) Angular momentum conservation:

1 4
L=L;=1I9= gmL%/ggL = gmL2Qf =Ly
SO
1. 1 /39
L= = T

¢) Subtract initial energy from energy after collision:

L?  mgL _ _3mgL

AE =2 —
2I; 2 8
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Problem 389. problems-1/angular-momentum-pr-two-circular-plates-collide.tex

A disk of mass M and radius R sits at rest on a turntable that permits it to rotate freely.
A second identical disk, this one rotating around their mutual axis at an angular speed wy, is
dropped gently onto it so that (after sliding for an instant) they rotate together. In terms of
the givens M, R,wg and known constants:

a) Find the final angular speed wy of the two disks moving together after the collision:

wf:

b) What fraction of the original kinetic energy of the system Kj is gained (+) or lost (-)
in this rotational collision?

AK = XKO




444 CHAPTER 8. VECTOR TORQUE AND ANGULAR MOMENTUM

Problem 390. problems-1/angular-momentum-pr-two-circular-plates-collide-soln.tex

This is a fully inelastic rotational collision. There are no external torques about the axis of
rotation, so angular momentum in this direction (relative to a pivot at the orgin of the bottom
disk say) is conserved. In this (z) direction:

a)
L:Li:IwOZQIOJf:Lf

where I = %M R? for both disks. Hence:

wyr = w0/2

b) There are many ways to get this, but the easiest (since angular momentum is conserved)

is to write: 2 2 "
- Kp—e_—- 220
21 f

Ko 2(21) ~ 2

or

AK = K;— Ko = —

1
§XK0

and energy is in the collision, as expected.
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Problem 391. problems-1/angular-momentum-pr-rotating-bar-elastic-collision-balls.tex

Vi

m
@

rotation direction
Q , (out of page)

bar at rest after collision

In the figure above, a unpivoted solid rod of length ¢ and mass M is rotating around its center
of mass with an angular velocity 2y out of the page. It simultaneously strikes two hard balls
of mass m sitting at rest a distance £/2 from the center of rotation as shown, causing them to
recoil to the left and right respectively. After the collision the rod is at rest.

a) Is momentum conserved in this collision? b) Find the final speed of either ball, vy.

c¢) Find the ratio of masses m/M such that the collision as described is elastic.
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Problem 392. problems-1/angular-momentum-pr-rotating-bar-elastic-collision-balls-soln.tex

rotation direction
Q, (out of page)

bar at rest after collision

In the figure above, a unpivoted solid rod of length ¢ and mass M is rotating around its center
of mass with an angular velocity 2y out of the page. It simultaneously strikes two hard balls
of mass m sitting at rest a distance £/2 from the center of rotation as shown, causing them to
recoil to the left and right respectively. After the collision the rod is at rest.

a) Is momentum conserved in this collision? b) Find the final speed of either ball, vy.
c¢) Find the ratio of masses m/M such that the collision as described is elastic.
Solution: a) As it happens, the answer is , momentum is conserved. Before the center

of mass is at rest, and afterwards (from symmetry) it is still at rest. But this doesn’t really
help us solve the problem.

b) To find the speed of the balls, we need to use conservation of angular momentum.
1 2 14
L = Liyoq + Lipais = EMK Qo (+0)=(0+) 2 mgvr | = Ly roqd + Ly pans

(out of the page, RHR) using L = muvsr; = muvsf/2 for the magnitude of the angular momen-
tum of the two balls, each, as well as I,,q = %M £? for the moment of inertia of a rod pivoted
in the middle. Thus:

M
= Qe
VT om0

¢) We can use K = L?/2] for both initial and final kinetic energies (with I; = 2 x m(¢/2)? =
m¢?/2 for the two balls after the collision), and take their ratio:

Ky L*20; I,  sml*  6m

K, L?)2I; Iy Lme M
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or

SE
[N

for the collision to be elastic.
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8.2 Vector Torque and Precession

8.2.1 Multiple Choice Problems

Problem 393. problems-1/torque-vector-me-rotational-collision-two-disks.tex

Two identical disks with mass M and radius R have a common axis and frictionless bearing.
Initially, one disk is spinning with some angular velocity wg and the other is rest. The two
disks are brought together quickly so that they stick and rotate as one without the application
of any external torque. Circle the true statement below:

a) The total kinetic energy and the total angular momentum are unchanged.

b) The total kinetic energy and total angular momentum are both reduced to half their
original values.

c¢) The total kinetic energy is unchanged, but the total angular momentum is reduced to half
of its original value.

d) The total angular momentum is unchanged, but the total kinetic energy is reduced to half
of its original value.

e) We cannot tell what happens to the angular momentum and kinetic energy from the
information given.
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8.2.2 Short Answer Problems

Problem 394. problems-1/torque-vector-sa-direction-of-precession-1.tex

4 4 =

a) b) c) d)

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very
rapidly in the direction shown, and is suspended/pivoted from one end as shown at the big
arrow (gravity points down). For each figure a-d indicate whether the gyroscope will precess
in or out of the page at the other (non-pivoted, free) end at the instant shown.
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Problem 395. problems-1/torque-vector-sa-direction-of-precession-1-soln.tex

0 o

a) b) C) d)

I
029
&




8.2. VECTOR TORQUE AND PRECESSION 451

Problem 396. problems-1/torque-vector-sa-direction-of-precession-2.tex

4 4 =

a) b) 0) d)

*

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very
rapidly in the direction shown, and is suspended/pivoted from one end as shown at the big
arrow (gravity points down). For each figure a-d indicate whether the gyroscope will precess
in or out of the page at the other (non-pivoted, free) end at the instant shown.
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Problem 397. problems-1/torque-vector-sa-direction-of-precession.tex

o
*

:éf

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very
rapidly in the direction shown, and is suspended from one end as shown (at the big arrow).
For each figure indicate whether the gyroscope will precess in or out of the page at the other
(free) end at the instant shown.
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Problem 398. problems-1/torque-vector-sa-evaluate-the-torque-1.tex

<1

In the figure above, a force

Newtons is applied to a disk at the point

T = 2%+ 29

453

as shown. (That is, F;, =2 N, F, = =1 N, x =2 m, y = 2 m). Find the total torque about a

pivot at the origin.

Don’t forget that torque is a vector, so either give the answer in cartesian coordinates or

otherwise specify its direction!
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Problem 399. problems-1/torque-vector-sa-evaluate-the-torque-1-soln.tex

!l

Sy
X
e 1]

roly —ryFy)2
2% (—1)—2x%2)2
—62 N-—m

—~~
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Problem 400. problems-1/torque-vector-sa-evaluate-the-torque-2.tex

X
; F
y r
K
K
In the figure above, a force
F=2%+ 1y
Newtons is applied to a disk at the point
T =2% — 29

as shown. (That is, F;, =2 N, F, =1 N, 2 =2 m, y = —2 m). Find the total torque about a
pivot at the origin. Don’t forget that torque is a wvector, so specify its direction as well as its
magnitude (or give the answer as a cartesian vector)! Show your work!
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Problem 401. problems-1/torque-vector-sa-precession-of-top-1.tex

,,,,,,,,,,,,

rotation
direction

Draw the direction of L onto the spinning top in the figure above, and circle the direction
that the upper tip of the top will precess:

in out

of the page. Draw this direction onto the figure as well.



8.2. VECTOR TORQUE AND PRECESSION 457

Problem 402. problems-1/torque-vector-sa-precession-of-top-1-soln.tex

precession

T T
rotation 0
direction L IN\T
mg

Draw the direction of L onto the spinning top in the figure above, and circle the direction
that the upper tip of the top will precess:

out

Solution: Curl fingers of the right hand (mentally) around the axis of rotation in the direction
of rotation; the right thumb points down and to the right along the axis as the direction of
L as drawn. Again, the RHR indicates that the gravitational torque on the top is out of the
page. In order for AL to point out of the page, the upper tip of the top has to go the other
way and precess into the page.
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Problem 403. problems-1/torque-vector-sa-precession-of-top-2.tex

A top tipped at some angle 6 is spinning with an angular velocity directed towards the
point where it rests on the ground, as shown.

The torque due to gravity about a pivot at the point where the top rests on the ground is:
I:l Into the page D Out of the page

The top will precess:
|:| Into the page \:‘ Out of the page

at the instant drawn above.
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Problem 404. problems-1/torque-vector-sa-precession-of-top-2-soln.tex

A top tipped at some angle 6 is spinning with an angular velocity directed towards the
point where it rests on the ground, as shown.

The torque due to gravity about a pivot at the point where the top rests on the ground is:
& Into the page D Out of the page

The top will precess:
|:| Into the page |Z| Out of the page

at the instant drawn above.



460 CHAPTER 8. VECTOR TORQUE AND ANGULAR MOMENTUM

8.2.3 Regular Problems

Problem 405. problems-1/torque-vector-pr-crane-boom.tex

boom
! 1
\ sin(30°) = cos(60°) = 3
L
y 30 45 cos(30°) = sin(60°) = ?
i \ pivot sin(45°%) = cos(45°) = g
z (out) X

A crane with a “massless” boom (the long support between the body and the load) of length
L holds a mass M suspended as shown. Note that the wire with the tension T is fixed to the
top of the boom, not run over a pulley to the mass M.

a) Find the torque (magnitude and direction) exerted by the tension in the wire on the
boom, relative to a pivot at the base of the boom.

b) Find the torque (magnitude and direction) exerted by the hanging mass, relative to a
pivot at the base of the boom.
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Problem 406. problems-1/torque-vector-pr-crane-boom-soln.tex

B
T Mgy - sin(30°) = cos(60°) = %
y goo S Lo c0s(30°) = sin(60°) = g
\ pivot sin(45°) = cos(45°) = g

z (out) X

This is by far easiest to do using the cartesian form for the torques. Note that L, = L, =
LV?2/2. T, = —/3/2T. T, = —T/2. The weight pulls down with a force F, = —Mg, all as
drawn above. No fair using calculators!

a) Find the torque (magnitude and direction) exerted by the tension in the wire on the
boom, relative to a pivot at the base of the boom.
6

42 ) = LTL(*/g — 1)

4

If you want to cause yourself more pain, you can instead try to figure out sin(15°) =
% using all three triangles and the law of sines... it takes me about ten minutes

and some careful pictures and reasoning.

It’s a bit faster if you use the following trig identity (one that you probably don’t remember
but that is fairly easy to derive using complex exponentials):

sin(A 4+ B) = sin(A) cos(B) + sin(B) cos(A)

Let A = 45° and B = —30° and there you have it in one step (don’t forget, the sine
function is odd). Using the Cartesian form is really the simplest approach though, and is
a useful thing to remember.

b) Find the torque (magnitude and direction) exerted by the hanging mass, relative to a
pivot at the base of the boom. Here the easy way and cartesian form are identical:

V2

TZ,Mg = L;EF = —MgL7
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Problem 407. problems-1/torque-vector-pr-precessing-bicycle-wheel.tex

HdH/M
|
[

O

\ z(out) X

A bicycle wheel (basically a ring) of mass M and radius R has massless spokes and a massless
axle of length d. The other end O of the axle rests on a conical support as shown. The axle is
held in a horizontal position and the wheel is spun with a large angular velocity Q that points
towards O, and then released so that the wheel precesses about O.

(Note: To specify the direction of vectors you may use up, down, towards O, away from O, into
the page, out of the page as shown.)

a) What is the angular momentum L of the wheel about its center of mass?

b) What is (find, with any argument) the angular frequency of precession J, of the
wheel? Don’t forget to give the direction!

c) What is the kinetic energy K of the wheel in the frame of O (i.e., the lab frame) including
the contribution from the motion of the center of mass as it precesses! This
is one of the factors we ignored in our elementary treatment in class.
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Problem 408. problems-1/torque-vector-pr-precessing-bicycle-wheel-soln.tex

HdH/M
|
[

O

\ z(out) X

A bicycle wheel (basically a ring) of mass M and radius R has massless spokes and a massless
axle of length d. The other end O of the axle rests on a conical support as shown. The axle is
held in a horizontal position and the wheel is spun with a large angular velocity Q that points
towards O, and then released so that the wheel precesses about O.

(Note: To specify the direction of vectors you may use up, down, towards O, away from O, into
the page, out of the page as shown.)
a) What is the angular momentum L of the wheel about its center of mass?

b) What is (find, with any argument) the angular frequency of precession Qp of the
wheel? Don’t forget to give the direction!

c) What is the kinetic energy K of the wheel in the frame of O (i.e., the lab frame) including
the contribution from the motion of the center of mass as it precesses! This
is one of the factors we ignored in our elementary treatment in class.

Solution: a) is simple:

L =19 =—-MR?Q& (or MR*Q “to the left” or “in the direction of 7 etc.)

There are three ways to show b). All start by noting that:
T = Mgd (in)

at the position drawn.

The worst (but adequate) way is to note that in one period of precession T),, the angular
momentum sweeps out a circle with (angular momentum radius) L = M R?Q, so that:

AL  2rMR?*Q 27 gd
TE AT T, - T T, T RM
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A slightly better treatment considers only the differential precession in a very short time At.
In that time, the angular momentum will change only by:

AL = LA

where A¢ is the small angle of the change in direction (but not magnitude) of the angular
momentum vector. Then:

AL  MR*QAé ) o gd

The final, best way to derive it uses the full vector form:

-

dL -
T=—dx (—mg)Z
7 &% (=mg)
and is beyond the scope of the course at this point (as we have not yet covered the simple
harmonic oscillator equation) but if a student uses it and gets the right magnitude and direction
of precession, so much the better.

In all cases, the free end will precess out of the page, opposite to the direction of
the torque!

For c), we have to add the “orbital” angular energy of the wheel (neglecting axle etc) to the
“spin” angular energy. Using the form K = %192 for both:

Ko = %(MRQ)QQ + %(MdZ)le,
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Problem 409. problems-1/torque-vector-pr-precession-of-equinoxes.tex

ecliptic north

rotational
north

The Earth revolves on its axis. Its north (right handed) axis is significantly tipped relative to
the “ecliptic” pole of the Earth’s revolution around the Sun. It is currently aligned with Polaris,
the pole star, but because the Sun exerts a small torque on it due to tides acting on its slightly
oblate spheroidal shape, it also precesses around the ecliptic north once every (approximately)
26,000 years!

a) Assuming that the average torque on the earth over the course of any given year remains
perpendicular to its angular momentum in the direction/handedness shown, derive an
algebraic expression for the angular frequency of precession in terms of the magnitude of
the torque. You may use I as the moment of inertia for the earth about its rotational
axis as that quantity is given below.

b) Given the data that the moment of inertia of the Earth about its axis of rotation is roughly
8 x 1037 kg-m?, that its axis is tipped at roughly 20 degrees relative to the ecliptic and
that its period of revolution about its own axis is one day, estimate the approximate
magnitude of the average torque exerted by the Sun on the Earth over the course of a
year.

(You may find it useful to know that 1 day = 86400 seconds, and 1 year = 3.15 x 107 seconds
— you can remember the latter as approximately m x 107 seconds.)



466 CHAPTER 8. VECTOR TORQUE AND ANGULAR MOMENTUM

Problem 410. problems-1/torque-vector-pr-precession-of-spherical-top.tex

A top is made from a ball of radius R and mass M with a very thin, light nail (r < R and
m < M) for a spindle so that the center of tha ball is a distance D from the tip. The top is
spun with a large angular velocity €2, and has a moment of inertia I = %M R?.

a) What is the angular momentum of the spinning ball? Indicate its (vector) direction with
an arrow on the figure.

b) When the top is spinning at a small angle 6§ with the vertical (as shown) what is the
angular speed (2, of the top’s precession?

c) Does the top precess into or out of the page at the instant shown?
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Problem 411. problems-1/torque-vector-pr-precession-of-spherical-top-soln.tex

a) Magnitude:
L=1Q= %M}#Q

b) When the top is spinning at a small angle 6§ with the vertical (as shown) what is the
angular frequency 2, of the top’s precession?

7=|D x (=Mg)2| = MgD, = MgDsin(d) (in) =L,Q,= Lsin(d)Q,
or

_ MgD 59D
L 2R2Q

Qp

¢) In (in direction of torque, given direction of E)
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Problem 412. problems-1/torque-vector-pr-precession-of-top-3-parts.tex

pivot

F X
A top is made of a uniform disk of radius R and mass M with a very thin, light (assume
massless) nail for a spindle so that the center of the disk is a distance D from the tip. The top
is spun with a large angular velocity w with the nail vertically above the y-axis as shown above.

a) Find the vector torque 7 exerted about the pivot at the instant shown in the figure.
You may express the vector however you wish (e.g. magnitude and direction, cartesian
components).

b) What is the axis of precession?
c) Derive the precession frequency wy,. Any of the derivations used in class or discussed in

the textbook are acceptable.

Express all answers in terms of M, R, g, D, and 6 as needed.
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Problem 413. problems-1/torque-vector-pr-precession-of-top.tex

This problem will help you learn required concepts such as:

e Vector Torque
e Vector Angular Momentum

e Geometry of Precession

so please review them before you begin.

A top is made of a disk of radius R and mass M with a very thin, light nail (r < R and
m < M) for a spindle so that the disk is a distance D from the tip. The top is spun with
a large angular velocity w. When the top is spinning at a small angle 6 with the vertical (as
shown) what is the angular frequency w,, of the top’s precession?
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9.1 Static Equilibrium

9.1.1 Multiple Choice Problems

Problem 414. problems-1/statics-mc-elephant-mouse.tex

CM Elephant

pivot

CM mouse

An elephant and a mouse sit at either end of a really long, really strong see-saw. The elephant,
whose mass is mq, sits so that its center of mass is a distance L; from the pivot. The mouse,
whose mass is mo, sits at Lo. The see-saw is balanced so the mouse and elephant are not
moving up or down. Which is the following must be true:

D mo = My D mo = my L2/L1)

D my = mo(La/L1) D my =ma(Ly/L1)? D The mouse can never balance
the elephant!



9.1. STATIC EQUILIBRIUM 473

Problem 415. problems-1/statics-mc-elephant-mouse-soln.tex

CM Elephant

pivot
E CM mouse
\§ m,
L, | L, 'm,g
m.g

An elephant and a mouse sit at either end of a really long, really strong see-saw. The elephant,
whose mass is mq, sits so that its center of mass is a distance Lq from the pivot. The mouse,
whose mass is mo, sits at Ls. The see-saw is balanced so the mouse and elephant are not
moving up or down. Which is the following must be true:

I:l mo = my ‘:’ ma = mi(La/L1)

|X| my = ma(La/Ly) ‘:’ my = ma(Lay/L1)? |:| The mouse can never balance
the elephant!

Solution: All we need do is consider the torque around the labelled pivot. Algebraically:

L L
Tout:mlng—mgngzo = TTLQZTleL—; = mlzmQL—?

All that is left is to search the provided answers for the match, shown above.
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Problem 416. problems-1/statics-mc-hanging-rope.tex

- M.L |gravity

In the figure above, a rope of mass M, length L is hanging from the ceiling in static equilibrium.
Select the correct rank order of the tension in the rope at the points a and b:

[] T.<T,
[] 7.>1

[] T.=1,

|:| Insufficient information given to determine the answer.



9.1. STATIC EQUILIBRIUM 475

Problem 417. problems-1/statics-mc-hanging-rope-soln.tex

- M,L | gravity

b~

In the figure above, a rope of mass M, length L is hanging from the ceiling in static equilibrium.
Select the correct rank order of the tension in the rope at the points a and b:

[] T.<T,
X 1.>1,

[] T.=1,

|:| Insufficient information given to determine the answer.

Solution: The tension at point b only has to support the weight of the lower segment (colored
yellow above) of rope. The tension at point a has to support both the yellow and the green
colored segments — which is simply more rope! Hence



476

CHAPTER 9. STATIC EQUILIBRIUM

Problem 418. problems-1/statics-mc-leaning-bar-reaction-pairs.tex

In the figure above, a board is sitting on a rough floor and leaning against a wall. Circle three
action-reaction pairs in the list below:

The ladder top pushes against the wall; the wall pushes back against the ladder top.

The floor pushes up on the ladder base; gravity pulls the ladder base down towards the
floor.

Static friction from the floor pushes the ladder base towards the wall; the wall pushes
back on the ladder.

The floor pushes down on the ground; the ground pushes back on the floor.

The Earth pulls down on the ladder via gravity; the ladder pulls up on the Earth via
gravity.
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Problem 419. problems-1/statics-mc-leaning-bar-reaction-pairs-soln.tex

Newton’s Third Law (describing action-reaction pairs) is simple:

If object A exerts a named force Fpa on object B, object B exerts an
equal and opposite named force, Fpsp = —F g4, on object A.

Note that A and B must be the same in both directions. Note also that the force F
must be the same — have the same origin, have the same name, be the same interaction. Thus:

2)

The ladder top pushes against the wall; the wall pushes back against the ladder top.

A = ladder; B = wall; Force = Normal force. This statement describes a Newton’s
Third Law pair of forces.

The floor pushes up on the ladder base; gravity pulls the ladder base down towards the
floor.

A = floor surface; B = ladder base; Force on ladder base is Normal force; Force on ladder
is gravity. This statement is not! It fails on multiple counts.

Static friction from the floor pushes the ladder base towards the wall; the wall pushes
back on the ladder.

A = floor; B ladder; C = wall. Fpg4 is static friction. Fgp is normal force. This
statement is not! It fails on multiple counts.

The floor pushes down on the ground; the ground pushes back on the floor.

A = floor (of building); B = ground (under building); Force is Normal force. This
statement describes a Newton’s Third Law pair of forces.

The Earth pulls down on the ladder via gravity; the ladder pulls up on the Earth via
gravity.

A = the Earth; B = ladder; Force = gravity. This statement describes a Newton’s
Third Law pair of forces.
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Problem 420. problems-1/statics-mc-pick-reaction-pairs-2.tex

Which of the following list are not action-reaction force pairs? (More than one answer is
possible.)

a) A hydraulic piston pushes on the fluid in its cylinder; the fluid pushes back on the hydraulic
piston.
b) The earth’s gravity pulls a pendulum bob at rest down; the string pulls it up.

c) My finger pushes down against a grape I'm squeezing; my thumb pushes up against the
grape.

d) My hammer pushes on a nail as it hits it; the nail pushes back on the hammer.

e) A bathroom scale pushes up on my feet as I stand on it; my feet push down on the scale.
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Problem 421. problems-1/statics-mc-pick-reaction-pairs-2-soln.tex

Which of the following list are not action-reaction force pairs?

The rules are that the two objects exerting force and reaction force must be the same
(reversed) and the interaction force must be the same. See notes below in boldface.

(More than one answer is possible.)

a) A hydraulic piston pushes on the fluid in its cylinder; the fluid pushes back on the hydraulic
piston.

The earth’s gravity pulls a pendulum bob at rest down; the string pulls it up. earth #
string, gravity # tension.

@ My finger pushes down against a grape I'm squeezing; my thumb pushes up against the
grape. finger # thumb, the normal forces are exerted at two different places.

d). My hammer pushes on a nail as it hits it; the nail pushes back on the hammer.

e). A bathroom scale pushes up on my feet as I stand on it; my feet push down on the scale.
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Problem 422. problems-1/statics-mc-pick-reaction-pairs.tex

(3 points) Which of the following list are not action-reaction force pairs? (More than one answer
is possible.)

a) The earth’s gravity pulls down on an apple; the stem of the apple holds it up.

b) Water pressure pushes out against a glass, the glass holds in the water.

d

)
)
¢) I push forward on a bow; the bowstring pulls forward on me (as I draw an arrow).
) Ilean my head on the wall; the wall pushes back on my head.

)

e) I pull down on the rope with my hand; the rope pulls up on my hand.
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Problem 423. problems-1/statics-mc-plank-mass-rod.tex
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(3 points) In the figure above, a very light (approximately massless) plank supports a mass m.
The plank is resting on (not attached to) a sawhorse that can support as much weight as you
like, and a rod is attached to the plank as shown (where the other end is firmly attached to
the ceiling or floor as the case may be). The rod, however, will break if it is compressed or
stretched with a force Fj, = mg, the weight of the mass.

Circle all of the configurations where the plank and mass will not move and the rod will not
break.
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Problem 424. problems-1/statics-mc-plank-mass-string.tex
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In the figure above, a very light (approximately massless) plank supports a mass m. The plank
is resting on (not attached to) a sawhorse/pivot that can support as much weight as you like,
and a massless string is attached to the plank as shown (the other end is tied to the ceiling or
floor as the case may be). The string, however, will break at a force F, = mg, the weight of
the mass.

Circle all of the configurations where the plank and mass will not move and the string will not
break.
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Problem 425. problems-1/statics-mc-string-and-bar.tex

A bar of mass M and length L is pivoted by a hinge on the left and is supported on the right
by a string attached to the wall and the right hand end of the bar. The angle made by the
string with the bar is # = 30°. Select the true statement from the list below.

[] T=Mg/2
[] T=Mg

|:| T:?Mg
[] T=2Mg

|:| There is not enough information to determine 7.
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Problem 426. problems-1/statics-mc-string-and-bar-soln.tex

b) T'= Mg. (This balances 7o,y = T'Lsin(30°) — MgL/2 = 0.)
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Problem 427. problems-1/statics-mc-support-the-picture.tex

ettt
R LR RRERERS

A picture of mass m has been hung by a piece of thread as shown. The thread will break
at a tension of mg. Find the smallest angle theta such that the thread will not break. FYI:
sin(30°) = cos(60°) = 1/2, cos(30°) = sin(60°) = 1/3/2, sin(45°) = cos(45°) = v/2/2, sin(90°) =
cos(0°) = 1.

a) 30°

)

b) 45°
c) 60°
d) 90°
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Problem 428. problems-1/statics-mc-tipping-blocks.tex

In the figure, four blocks are placed on an inclined plane that has sufficient static friction that
the blocks will not slip. The dots in the figures indicate the center of mass of each block. Which
of the following is/are true?

a) A and D will tip.

b) A B and D will not tip.

C

)
)
) B and C will tip.
)

d) C and D will tip.
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Problem 429. problems-1/statics-mc-tipping-blocks-soln.tex

b) A B and D will not tip. That is, only C will tip! Only in case C is the center of mass/center
of gravity to the left of the lower left corner pivot.
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Problem 430. problems-1/statics-mc-torque-direction-block-held-to-wall-friction.tex

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal
force F' as shown. Gravity is down as usual as shown. What is the direction of the torque
about the point P due to the force of friction exerted by the wall on the block?

a) Left.

b) Right.

(¢

e) Into the plane of the figure.

f

)
)
) U

d) Down.
)
) Out of the plane of the figure.
)

g) The torque is zero, so the direction is undefined.
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Problem 431. problems-1/statics-mc-torque-direction-block-held-to-wall-normal.tex

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal
force F' as shown. Gravity is down as usual as shown. What is the direction of the torque
about the point P due to the normal force exerted by the wall on the block?

a) Left.

b) Right.

(¢

e) Into the plane of the figure.

f

)
)
) U

d) Down.
)
) Out of the plane of the figure.
)

g) The torque is zero, so the direction is undefined.
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Problem 432. problems-1/statics-mc-torque-direction-block-held-to-wall.tex

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal
force F' as shown. Gravity is down as usual as shown. What is the direction of the torque
about the point P due to the force of friction exerted by the wall on the block?

Into the plane of the figure.
Out of the plane of the figure.

The torque is zero, so the direction is undefined.

Now, what is the direction of the torque about the point P due to the normal force exerted
by the wall on the block?

a) Left.

b) Right.

(¢

e) Into the plane of the figure.

f) Out of the plane of the figure.

)
)
) U
d) Down.
)
)
)

g) The torque is zero, so the direction is undefined.
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Problem 433. problems-1/statics-mc-torque-direction-block-held-to-wall-soln.tex

e) Into the plane of the figure.

Gravity exerts no torque about P. F exerts no torque about P. Friction (as shown above) is
required to oppose gravity and exerts a torque into the page. Consequently, the normal force
must exert a torque:

f) Out of the plane of the figure.

This basically means that the normal force must be larger near the bottom corner than it is
near the top corner.
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9.1.2 Short Answer Problems

Problem 434. problems-1/statics-sa-balance-the-mobile-1.tex
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A static mobile suspends three beautifully patterned blocks over a baby’s bed. The lengths of
the supporting rigid rods (of negligible mass) are given in the figure above, as is the mass of the
central block, M. You must find My and Mp (in terms of /units of M as shown) so that the
mobile perfectly balances, and you must also make sure that the string you are using to hang
the mobile is strong enough to support its weight. Note well that the unknown blocks are not
necessarily drawn to scale!

) Ma
Y M

Mg
M

¢) What is the total tension 7" in the top supporting string when the mobile perfectly bal-
ances?

T —
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Problem 435. problems-1/statics-sa-balance-the-mobile-1-soln.tex

Ma
M
Mg
M
c) What is the total tension 7" in the top supporting string when the mobile perfectly bal-
ances?

9
T=-M
1 9

= 3/4

=1/2
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Problem 436. problems-1/statics-sa-balance-the-mobile-2.tex

3d d
Ct‘f g ‘ ‘ ‘ 2
BOSS
seee AR 1
M . T ;\I/I' T HHHH
M,

A static mobile suspends three patterned blocks over a baby’s bed. The lengths of the support-
ing rigid rods (of negligible mass) are given in the figure above, as is the mass of the central
block, M. Find M4 and Mp in terms of M so that the mobile perfectly balances. Note well
that the unknown blocks are not necessarily drawn to scale!

a) My =

b) Mp =
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Problem 437. problems-1/statics-sa-balance-the-mobile-reversed.tex

A static mobile suspends three patterned blocks over a baby’s bed. The masses of the blocks
and the lengths of the supporting rigid rods (of negligible mass) are given in the figure above
(although the relative distances may not be correctly to scale). Find x and y in terms of d so
that the mobile perfectly balances when:

Mlzlkg,M2:3kg,M3:1kg
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Problem 438. problems-1/statics-sa-balance-the-mobile.tex
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A static mobile suspends three patterned blocks over a baby’s bed. The masses of the blocks
and the lengths of the supporting rigid rods (of negligible mass) are given in the figure above.
Find z and y in terms of d so that the mobile perfectly balances when M7 = 1 kg, My = 4
kg, M3 = 1 kg.

xr =
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Problem 439. problems-1/statics-sa-diving-board.tex

(A 2

Albert tries to make a diving board for his backyard swimming pool by attaching the board
firmly to two vertical supports. The perfectly rigid uniform board has a length of 6 m and a
mass of 40 kg. The left hand support is attached to the left end, and the right hand support is
attached 3 m to the right of the left support (at the center of the board).

a) What force (magnitude and direction) does the middle support exert on the board when
Albert (whose mass is 80 kg) stands on the right hand end of the board as shown?

b) What force (magnitude and direction) does the left support exert on the board at this
time?

¢) Which support needs to be bolted down?
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Problem 440. problems-1/statics-sa-leaning-bar-reaction-pairs.tex

In the figure above, a board is sitting on a rough floor and leaning against a wall. Identify three
action-reaction force pairs in the figure.
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Problem 441. problems-1/statics-sa-pendulum-bob.tex

4 N

A 4 N pendulum bob supported by a massless string is held motionless at an angle 6 from the
vertical by a horizontal force F' = 3 N as shown. The string used to hang the mass will break
at any tension T' > T, = 4/2 N.

a) What is the angle 6 (expression OK).

b) The force F is slowly increased (while keeping the force horizontal). At what value will
the string break?

c¢) What is the angle 6 at which the string breaks?
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Problem 442. problems-1/statics-sa-pendulum-bob-soln.tex

a) # =tan"!(3/4) = 37°.
b) T = /42 4+ F? = 4y/2 = T,. This implies F' = 4 N.
c) 0 =45° =7/4.
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Problem 443. problems-1/statics-sa-suspended-food-bag.tex

A gold prospector living in a rustic cabin mounts a sturdy wooden peg and three (approximately
massless and frictionless) pulleys in fixed positions on the wall and rafters as shown in the
diagram so he can suspend his food bag up off the floor and away from mice. He hangs a bag
of food of mass m so that the rope makes an angle 6 with the central pulley as shown.

Help him find the magnitude of the force F' that his rafter must exert downward on the pulley
when he has hung his bag of food.
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Problem 444. problems-1/statics-sa-suspended-food-bag-soln.tex

No torques! Force balance on the bag on the left tells you T, force balance on the picture in
the middle tells you that:

F = 2T'sin(#) = 2mgsin(0)
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Problem 445. problems-1/statics-sa-which-mass-breaks-string.tex
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In the figure above, a massless plank supports a massive block m placed at the locations shown.
The plank is supported by a wedge shaped support and a string that will break at the same
tension Tiax (in all three cases) positioned as shown.

a) Suppose the mass m is gradually increased (in all three figures). In which configuration
(A, B, or C) will the string break first?

b) For that configuration (that you picked in part a), what is the value of the upward
support force Fy exerted by the wedge right as (just before) the string breaks?
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Problem 446. problems-1/statics-sa-which-mass-breaks-string-soln.tex
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In the figure above, a massless plank supports a massive block m placed at the locations shown.
The plank is supported by a wedge shaped support and a string that will break at the same
tension Tiax (in all three cases) positioned as shown.

a) Suppose the mass m is gradually increased (in all three figures). In which configuration
(A, B, or C) will the string break first?

b) For that configuration (that you picked in part a), what is the value of the upward
support force Fy exerted by the wedge right as (just before) the string breaks?

Solution:  The easiest way to answer this is to consider the torques around the sup-
port/pivot only! The support can either add to or subtract from the force required to balance
the mass.

By inspection, then, in the first figure the weight is shared between the support and T, with
2/3 of it supported by T and 1/3 by the support force. In the second figure, we can see that
the moment arm of 7' is twice that of the mass m, so we expect to balance its weight mg with
half its weight mg/2 — again less than the weight itself.

In case C), however, this is reversed! It therefore breaks first, with the explicit calculations:

omagl, TF
. S

Note that while I show all of the details, here, one should be able to solve the entire problem
with your eyeballs only if you understand the relationship between forces, moment arms, and
torque. All of the ratios are 2:1, so it is really pretty easy!

and
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9.1.3 Ranking Problems

Problem 447. problems-1/statics-ra-board-and-pivot-force.tex

C i

In the three figures above, a massless board is held in static equilibrium by a hinge at the
left end and a trestle. A mass M is placed on the board at the three places shown. For each
figure:

a) Draw an arrow at the hinge indicating the direction of the force (if any) exerted by the
hinge for all three figures. If the force is zero please indicate this.

b) Rank the three figures in the order of the magnitude of the force exerted on the board
by the trestle, from least to greatest.
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Problem 448. problems-1/statics-ra-board-and-pivot-force-soln.tex

b) For the trestle force magnitude F;:
F,<F.< F
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Problem 449. problems-1/statics-ra-chain-of-hanging-monkeys.tex

3

a
Mg~ b
mg™ ¢
mg d
5m

In the figure above four monkeys, each of mass m, are shown holding very still as they hang
from a pole at the top of a circus tent. The top monkey (a) is holding a strap attached to
the pole above, and the bottom monkey (d) is holding a mass 5m above with his foot. Which
monkey (a-d) is pulling up with the largest force with its feet?
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Problem 450. problems-1/statics-ra-holding-up-the-bar.tex

A bar of mass M is pivoted by a hinge on the left and has a wire attached to the right as shown.
The wire can be attached to the ceiling on eyebolts on any one of the three angles shown to
suspend the rod so that it is in static equilibrium. Rank the force F exerted on the rod by the
wire when the wire comes off in the a, b, ¢ directions (where equality is a possibility). That is,
your answer might look like F,, < F, = F, (but don’t count on this being the answer). Note
well: The arrows in the figure above are not proportional to the forces, they indicate only
the directions.



9.1. STATIC EQUILIBRIUM 509

Problem 451. problems-1/statics-ra-stack-of-standing-monkeys.tex
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(3 points) In the figure above four monkeys, each of mass m, are shown holding very still in
a tower they’ve made at the circus. The bottom monkey (d) is standing on the floor, the top
monkey (a) is holding a mass 5m above his head. Which monkey is pushing up with the largest
force with its arms?
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Problem 452. problems-1/statics-ra-tipping-shapes-2.tex

In the four figures above, the coefficient of static friction is high enough that the uniform objects
shown will not slip before they tpp. Rank the angles at which each mass will tip over as the
right end of the plank they sit on is raised, from smallest (the block that tips first) tipping

angle 0 to the largest (the block that tips last). Your answer will be some permutation of
A,B,CD.
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Problem 453. problems-1/statics-ra-tipping-shapes-2-soln.tex

511

In the four figures above, the coefficient of static friction is high enough that the uniform objects
shown will not slip before they tpp. Rank the angles at which each mass will tip over as the
right end of the plank they sit on is raised, from smallest (the block that tips first) tipping
angle 0 to the largest (the block that tips last). Your answer will be some permutation of

A,B,C.D.

Solution:

D

9

B

I

A

I

C

where D should already have tipped, B is almost “at” the tipping point, A is fairly stable, and
C is extremely stable. The trick to it is simply deciding which blocks will have their center of
mass come over the lower right corner first, second, etc.
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Problem 454. problems-1/statics-ra-tipping-shapes.tex

In the figure above, three shapes (with uniform mass distribution and thickness) are drawn
sitting on a plane that can be tipped up gradually. Assuming that static friction is great
enough that all of these shapes will tip over before they slide, rank them in the order they will
tip over as the angle of the board they are sitting on is increased. Be sure to indicate any ties.
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9.1.4 Regular Problems

Problem 455. problems-1/statics-pr-arm-with-barbell.tex

An exercising human person holds their arm of mass M and a barbell of mass m at rest at an
angle # with respect to the horizontal in an isometric curl as shown. The muscle that supports
the suspended weight is connected a short distance d up from the elbow joint. The bone that
supports the weight has length D.

a) Find the tension 7" in the muscle, assuming for the moment that the center of mass of
the forearm is in the middle at D/2. Note that it is much larger than the weight of the
arm and barbell combined, assuming a reasonable ratio of D/d & 25 or thereabouts.

b) Find the force F (magnitude and direction) exerted on the supporting bone by the elbow
joint. Again, note that it is much larger than “just” the weight being supported.
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Problem 456. problems-1/statics-pr-bar-and-pulleys.tex

m,?

Find the components of the pivot force F = (Fy, Fy) and find m; in terms of M and m as
givens in the figure above, if the bar of mass m is in static equilibrium.



9.1. STATIC EQUILIBRIUM 515

Problem 457. problems-1/statics-pr-bear-seeking-goodies.tex

A bear of mass Mp walks out on a beam of mass
my, to get a basket of food of mass of mass my. The
beam has length L, and is supported by a wire at
an angle of 60 degrees, as in the sketch.

a) Find the vector force that the wall exerts on
the left end of the beam when the bear is a
distance = from the wall.

b) Also find the tension in the wire.

¢) Suppose that the bear is too heavy to reach
the basket without breaking the wire. If the
maximum tension that the wire can support
without breaking is Tinax, find an expression
for the largest distance from the wall .y
that the bear can walk without breaking the
wire.
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Problem 458. problems-1/statics-pr-bear-seeking-goodies-soln.tex

A bear of mass Mg walks out on a beam of mass
my, to get a basket of food of mass of mass my. The
beam has length L, and is supported by a wire at
an angle of 60 degrees, as in the sketch.

a) Find the vector force that the wall exerts on
the left end of the beam when the bear is a
distance = from the wall.

b) Also find the tension in the wire.

¢) Suppose that the bear is too heavy to reach
the basket without breaking the wire. If the
maximum tension that the wire can support
without breaking is Ti,.x, find an expression
for the largest distance from the wall .y
that the bear can walk without breaking the

wire.
L 3 2/3 2/3
Tou = LT'sin60° — Smpg — Lmyg — xMyg = 0= | T = §mbg + Tfmfg + —*{%Mbg
3 3 3
Fp—Tcos30° =0=| Fp = %mbg + gmfg + %%Mbg

m x
Fy 4+ Tcos60° — (mp +mys + My)g = 0= F, :(mb+mf+Mb)g—Tbg—mfg—ZMbg

Or:

L

m, L—=x
Fy:—bg+< >Mb9
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Problem 459. problems-1/statics-pr-brace-against-house.tex

pivot

In the figure above, a “massless” rigid beam of length L that makes an angle of # with the
ground is leaned against a frictionless wall at the upper end, which exerts a normal force
only N as shown on the beam. A mass M is suspended vertically from a point 2/3 of the way
from the pivot attached to the ground. Find:

a) The magnitude of the normal force N exerted by the wall on the beam when the entire
beam is in static equilibrium.

b) The vector force ﬁp exerted by the pivot on the ground on the beam to hold the beam
in place. It is probably easiest to express this answer as I, and F),.
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Problem 460. problems-1/statics-pr-crane-boom.tex
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A crane with a boom (the long support between the body and the load) of mass m and length
L holds a mass M suspended as shown. Assume that the center of mass of the boom is at L/2.

Note that the wire with the tension T is fixed to the top of the boom, not run over a pulley to
the mass M.

a) Find the tension in the wire.

b) Find the force exerted on the boom by the crane body.
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Problem 461. problems-1/statics-pr-crane-vertical-support.tex

F

pivot

In the figure above, a “massless” rigid beam of length L that makes an angle of # with the
ground is braced with a piece of wood a distance L/4 from the end on the ground. This piece
of wood is attached at right angles to the beam as shown. At the upper end of the beam a
mass M is suspended. Find:

a) The magnitude F of the force exerted by the support bar when the entire beam is in
static equilibrium.

b) The vector force Fp exerted by the pivot on the ground on the beam (not the support
bar) to hold the beam in place. It is probably easiest to express this answer as F, and
Fyy.
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Problem 462. problems-1/statics-pr-cylinder-and-corner-2.tex

A cylinder of mass M and radius R sits against a step of height h = R/2 as shown above. A
force F' is applied parallel to the ground as shown. All answers should be in terms of M, R, g.

a) Find the minimum value of | F| that will roll the cylinder over the step if the cylinder does
not slide on the corner.

b) What is the force exerted by the corner (magnitude and direction) when that force Fis
being exerted on the center?
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Problem 463. problems-1/statics-pr-cylinder-and-corner-2-soln.tex

Use the force diagram above and the associated triangle diagram to figure out the geometry
that describes the stuff below. Note that if h = R/2, § = 30° = 7/6 and the two sides are R/2
and v/3R/2, but the solution I give below is more general than this specific case!

a)

At the critical /minimum value, the normal force, and hence the torque into the page by
the normal force (exerted by the step above) “barely” goes to zero. If we choose the
corner (where two unknown force components act) as the pivot, we can write the total
torque equation including the torque due to N as:

7. =+R?—(R—h)?Mg—+/R*>— (R—h)?2N—-F(R—h)=0
where positive z is out of the page. In the “critical” N — 0 case this then becomes:

B2 (R —h)?
R—h

Froin = Mg:\/gMg

(at h = R/2). Any F > Fp,;, will cause the cylinder to rotate up and over the corner.

Here we need to use the two remaining non-trivial equations for equilibrium, where I've
used the fact that F, will certainly point in the negative x direction already (note the
minus sign). F, from this equation will be a positive number, but represents a negative
x force component.

F-F, = 0 — F, =+/3Mg
Fy—Mg +(N—=0) = 0 = F,= Mg
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Problem 464. problems-1/statics-pr-cylinder-and-corner.tex

A cylinder of mass M and radius R sits against
a step of height H = R/2 as shown above. A
force F is applied at right angles to the line
connecting the corner of the step and the center
of the cylinder as shown to the left. All answers
should be in terms of M, R, g.

=

a) Find the minimum value of | F'| that will roll the cylinder over the step if the cylinder does
not slide on the corner.

b) What is the force exerted by the corner (magnitude and direction) when that force Fis
being exerted on the center?
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Problem 465. problems-1/statics-pr-cylinder-and-corner-soln.tex

A cylinder of mass M and radius R sits against
a step of height H = R/2 as shown above. A
force F is applied at right angles to the line
connecting the corner of the step and the center
of the cylinder as shown to the left. All answers
should be in terms of M, R, g.

a) Static equilibrium is 3. F = 0 and 3. 7 = 0. We start with the torque and balance it in
the limit that N — 0 to get the critical value of F' = |F'|, noting that the components
of F are the sides of a 30,60,90 triangle (as are the components of R):

RF —mg(V3/2)R=0=

b) Then balance the forces:

Fmin = mg?

F 3
——F.,.=0 Fcy—i-F\/j—mg:O
2 2
or
V3 3 1
Fep = mg— - Fey =mg — mgy =|mgy

Note that these are also components of a 30,60,90 triangle!
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Problem 466. problems-1/statics-pr-dangling-bar.tex

T

In the figure above, a rod of length L with mass m is suspended by a hinge on the left and a
horizontal string on the right. A second mass 2m is suspended from the rod a distance L/4
from the hinge end. Find:

a) The tension 7" in the horizontal string.

b) The vector force F exerted by the hinge, in any of the acceptable forms we use to com-
pletely specify a vector.
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Problem 467. problems-1/statics-pr-disk-in-corner.tex

Find the magnitude of the normal forces N, and NV, exerted by the two walls on the disk of
mass M and radius R at the points a and b such that it sits in static equilibrium in the picture
above:

[ ] Na =

[ ] Nb =
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Problem 468. problems-1/statics-pr-disk-in-corner-soln.tex

No torque! N, and N along the radii as drawn above. Decompose them both into components
and write force balance in x and y:

Ngsin(f) — Nycos(6) = 0
Ny cos(f) + Npsin(0) — Mg =

For example, solve the first equation for N, = N, sin()/ cos(f), substitute this into the second

equation:
sin?()
Na COS(H) + Nam = Mg

and multiply both sides by cos(theta)) and back substitute to get:

N, = N,(cos*(0) +sin*(f)) = Mg cos(6)
Ny, = Mgsin(0)
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Problem 469. problems-1/statics-pr-double-diagonal-pulleys.tex

In the figure above, two massless pulleys and a massless unstretchable string support a mass
M in static equilibrium as shown. The pulleys are fixed on unmoveable frictionless axles.

a) (3 points) Draw a force diagram for the mass M and both pulleys.
b) (5 points) Find the vector force F exerted by the axle of the upper pulley at equilbrium.

¢) (1 point) If the angle € is increased (by lowering the lower pulley, for example) is there
more or less force exerted by the upper axle to keep the pulley in place?
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Problem 470. problems-1/statics-pr-floating-buoy.tex

A round buoy at the beach floats in fresh water when it is exactly half submerged. Its spherical
volume is 1 cubic meter. If it is pulled all the way underwater and suspended from the bottom
by means of an anchored rope, what is the tension in the rope?
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Problem 471. problems-1/statics-pr-hang-a-stable-T.tex

//
\ Mg/2
W k)

Mg/2

The “T” shaped object above has mass M, and has both a height and width of W. Assume
that this mass is uniformly distributed in the long arm and the crossbar, that is, that the center
of mass of the long arm is at W/2 and the center of mass of the crossbar is also at W/2 and
that the long arm and crossbar each has mass M /2 (and hence gravity exerts a downward force
at their centers of mass of Mg/2 as shown).

Find the tension T 23 in each of the three ropes that support the T above. Note that the
ropes all pull straight up (they are vertical) and the T is completely horizontal.
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Problem 472. problems-1/statics-pr-hanging-ball-2.tex

(9 points total) In the figure above, a mass m is hanging from two massless, unstretchable
ropes. Gravity pulls straight down on the mass with a force of magnitude mg. Assume that the
tension in both ropes has the equal magnitude 7. The mass is hanging 4 meters beneath the
ceiling, and each rope is fastened to the ceiling offset by 4 meters from where the mass hangs
as shown.

a) (3 points) Draw a coordinate system and free body diagram representing all the forces
acting on the hanging mass. Label any angles that might be of use to you.

b) (3 points) Write the algebraic equations for the total force in the z and y directions that
are the conditions for static equilibrium.

c¢) (3 points) Find the tension T in terms of mg.
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Problem 473. problems-1/statics-pr-hanging-ball.tex

mg

In the figure above, a mass m is hanging from two massless, unstretchable ropes. Gravity pulls
straight down on the mass with a force of magnitude mg. Assume that the tension in both
ropes has the equal magnitude T'. The length of the each rope is 5 meters, and the mass is
hanging 4 meters beneath the ceiling as shown

a) Draw a coordinate system and free body diagram representing all the forces acting on the
hanging mass. Label any angles that might be of use to you.

b) Write the algebraic equations for the total force in the z and y directions that are the
conditions for static equilibrium.

c¢) Find the tension T in terms of mg.
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Problem 474. problems-1/statics-pr-hanging-door.tex

di/}

<—W—>

A door of mass M that has height H and width W is hung from two hinges located a distance
d from the top and bottom, respectively. Assuming that the weight of the door is equally
distributed between the two hinges, find the total force (magnitude and direction) exerted by
each hinge. (Neglect the mass of the doorknob. The force directions drawn for you are NOT
likely to be correct or even close.)



9.1. STATIC EQUILIBRIUM 533

Problem 475. problems-1/statics-pr-hanging-tavern-sign.tex

massless rod of length L
massless wire

i < ,
F? /T'
]
| L
Mechanic-Ale

and
. Physics Beer

wall : _
sign (mass m)

b-0-0-0-0-0-0-0-0-0-0-0-00-0-0-0-0

for sale

xxxxxxxxxxxxxxxxxxxxxxxxxx

In the figure above, a tavern sign belonging to a certain home-brewing physics professor is
shown suspended from the middle of a massless supporting rod of length L (at L/2). Find
the tension in the (massless) wire, T, and the total force exerted on the suspending rod by
the wall, ﬁ, in terms of m, g, L, and 6.

Please indicate the coordinate system you are using on the figure and the location of the pivot
point used, if any.



534 CHAPTER 9. STATIC EQUILIBRIUM

Problem 476. problems-1/statics-pr-inclined-plane.tex

This problem will help you learn required concepts such as:

e Newton’s Third Law
e Momentum Conservation

e Fully Inelastic Collisions

so please review them before you begin.

In the inclined plane problem above all masses are at rest and the pulley and string are both
massless. Find the normal force exerted by the inclined plane on the mass M and the mass m
required to keep the system in static balance in terms of M and 6.
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Problem 477. problems-1/statics-pr-ladder-on-glacier.tex

An ultralight (assume massless) ladder of length L rests against a vertical block of (frictionless)
ice during a hazardous ascent of a glacier at an angle § = 30° as drawn. A mountaineer of mass
m climbs the ladder. When the mountaineer is standing at rest at the very top of the ladder

and about to reach over the cliff edge, what is the net force exerted on the base of the ladder
by the glacier?
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Problem 478. problems-1/statics-pr-ladder-on-wall.tex

In the figure above, a ladder of mass m and length L is leaning against a wall at an angle 6. A
person of mass M begins to climb the ladder. The ladder sits on the ground with a coefficient
of static friction us between the ground and the ladder. The wall is frictionless — it exerts only
a normal force on the ladder.

If the person climbs the ladder, find the height A where the ladder slips.
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Problem 479. problems-1/statics-pr-mass-two-strings.tex

A ball of mass m hangs from the ceiling on a massless string. A second massless string is
attached to the ball and a force F is applied to it in the horizontal direction so that the system
remains in static equilibrium in the position shown, where 6 is the angle between the first string
and the vertical. Gravity acts down as usual. Each string can support a mazimum tension
Thax = 2mg without breaking.

a) If F is slowly increased while keeping its direction horizontal, which string will break
first? Explain your reasoning.

b) Find the maximum value 6,,, that the hanging string can have when the system is in
static equilibrium with both strings unbroken. (You may express this angle as an inverse
sine, cosine, or tangent if you wish — you do not need a calculator.)

c¢) Find the force magnitude Fy,x that produces the maximum angle 0y, in static equilib-
rium. Express this answer in terms of m and g.
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Problem 480. problems-1/statics-pr-pendulum-bob-pulley.tex

A pendulum bob of mass m is attached both to the ceiling and to a mass M hanging over
a pulley by unstretchable massless strings as shown. The pulley is fixed on an unmoveable
frictionless axle.

a) (3 points) Draw free body diagrams for both mass m and mass M.
b) (3 points) Find an expression for the angle 6 at which the system is in static equilibrium.

¢) (3 points) Find the total tension 7" in the string connecting the pendulum bob to the
ceiling.
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Problem 481. problems-1/statics-pr-pushing-down-wall.tex

T T T T T T 7T T 7T 7]

- C C C [ [ [ T[]

- T =

pivot

Tom is a hefty construction worker (mass M = 100 kilograms) with a good sense of balance
who wants to push down a brick wall. The wall, however, is strong enough to withstand any
horizontal push up to 2000 N and Tom can only exert a sideways equal to his weight with his
muscles.

Fortunately, Tom has a perfectly rigid 4 x 4 beam (of negligible mass), and there is a solid rock
(that can withstand essentially any push) a distance D = 5 meters from the wall to brace it
on. Even more fortuitously, Tom has taken introductory physics! He therefore cuts the beam
to lean against the wall a height H as shown and proceeds to walk up the beam towards the
wall..

a) Assuming that the beam is frictionless where it presses against the wall what is the largest
value of H that will permit him to knock down the wall if he walks to the end of the
beam so that his horizontal distance x = D?

b) Suppose that he has cut the beam so that it rests a height H = 1 meter above the ground
against the wall. What is his horizontal position x when the beam knocks down the wall
(if it does at all)?

c¢) Of course the beam is not frictionless where it rests against the wall. Does this fact mean
that, for any given value of H, the wall is easier to knock down (happens when he has
walked a smaller horizontal distance = toward the wall), harder to knock down (happens
when he has walked a greater horizontal distance z), or just the same (it falls at the same
horizontal distance z) as it is without friction?
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Problem 482. problems-1/statics-pr-rod-mass-on-hinge.tex

z(out) X

A small round mass M sits on the end of a rod of length L and mass m that is attached to a
wall with a hinge at point P. The rod is kept from falling by a thin (massless) string attached
horizontally between the midpoint of the rod (L/2 from either end) and the wall. The rod
makes an angle 6 with the ground. Find:

a) the tension 7' in the string;

b) the vector force F), exerted by the hinge on the rod.
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Problem 483. problems-1/statics-pr-rod-mass-on-hinge-soln.tex

y

z(out) X

A small round mass M sits on the end of a rod of length L and mass m that is attached to a
wall with a hinge at point P. The rod is kept from falling by a thin (massless) string attached
horizontally between the midpoint of the rod (L/2 from either end) and the wall. The rod
makes an angle 6 with the ground. Find:

a) the tension 7' in the string;
b) the vector force F), exerted by the hinge on the rod.
Solution: This is a classic two force, one torque problem, solving for 1", F},,, and F},, as

shown above.
F,=F,,—T=0 = Fp,=T

Fy=Fy—mg—Mg = |Fy,=(m+M)g

TZ:Tgsine—mg§c080—Mch080:0 = |T = Fpp = (mg+ 2Mg) cot 0

It is not really necessary to explicitly write out the vector, but here it is anyway:

—

Fj, ={(mg+2Mg)cot 0} & + {(m + M)g} g




542 CHAPTER 9. STATIC EQUILIBRIUM

Problem 484. problems-1/statics-pr-supporting-a-disk.tex

Find the force exerted by each of the two rods supporting the disk of mass M and radius R as
shown. Note that the two triangles shown are both 30-60-90 triangles with side opposite the
small angle of R/2.
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Problem 485. problems-1/statics-pr-tipping-vs-slipping.tex

3cm

4cm _
T we=2/3

A block of mass M with width 3 ¢cm and height 4 cm sits on a rough plank. The coefficient
of static friction between the plank and the block is us = 2/3. The plank is slowly tipped up.
Does the block slip first, or tip first?
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Problem 486. problems-1/statics-pr-vector-torque-plexiglass-table.tex

Top view

The figure below shows a mass m placed on a table consisting of three narrow cylindrical legs
at the positions shown with a light (presume massless) sheet of Plexiglas placed on top. Find
the vertical forces FY, F», F3 exerted on the Plexiglas by each leg when the mass is at rest in
the position shown.
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10.1 Fluids

10.1.1 Multiple Choice Problems

Problem 487. problems-1/fluids-mc-boat-catches-fish.tex

I go fishing in a pond where there is a big, fat fish perfectly suspended by buoyant forces in the
water under the boat. I catch him and reel him in up into the boat. As I do so, the level of the
water in the pond will:

a) Rise a bit.

b) Fall a bit.

¢) Remain unchanged.

)
)
)
)

d) Can’t tell from the information given (it depends, for example, on the kind of fish...).
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Problem 488. problems-1/fluids-mc-boat-floats-wood.tex

OO0/ --t-?

A person stands in a boat floating on a pond and containing several pieces of wood. He throws
the wood out of the boat so that it floats on the surface of the pond. The water level of the

pond will:

a) Rise a bit.

b) Fall a bit.

)
)

¢) Remain unchanged.
)

d) Can’t tell from the information given (it depends on, for example, the shape of the boat,
the mass of the person, whether the pond is located on the Earth or on Mars...).
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Problem 489. problems-1/fluids-mc-boat-floats-wood-soln.tex

The wood is “floating” in both cases, so the total displacement of the water level:

¢) Remain unchanged.
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Problem 490. problems-1/fluids-mc-boat-lowers-anchor.tex

I go fishing in a pond and spot a big, fat fish in the water under the boat and decide to anchor
for a bit to try to catch it. As I lower the anchor into the water (so that it hangs suspended
under the boat as shown) level of the water in the pond will:

a) Rise a bit.

b) Fall a bit.

)
)

¢) Remain unchanged.
)

d) Can’t tell from the information given (it depends, for example, on whether the anchor is
made of iron or lead...).
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Problem 491. problems-1/fluids-mc-boat-releases-balloons.tex

The fish aren’t biting, so a person standing in a
boat floating on a pond and inflates a bunch of

helium balloons instead. Then an enormous fish

?  jumps nearby and he is so startled that he acciden-

\ ;; / % 1o tally releases the balloons. As he does so, the water
level of the pond will:

[ ] Rise a bit. [] Fall a bit.

|:| Remain unchanged. |:| Can’t tell from the information given.
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Problem 492. problems-1/fluids-mc-boat-releases-balloons-soln.tex

The fish aren’t biting, so a person standing in a
boat floating on a pond and inflates a bunch of

helium balloons instead. Then an enormous fish

?  jumps nearby and he is so startled that he acciden-

\ ;; / % 1o tally releases the balloons. As he does so, the water
level of the pond will:

X] Rise a bit. [[] Fall a bit.

|:| Remain unchanged. |:| Can’t tell from the information given.

Explanation: The balloons support part of the weight of the person, so the boat needs to
displace less water while he’s holding them to support the weight of person and boat.
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Problem 493. problems-1/fluids-mc-boat-sinks-rocks.tex

A person stands in a boat floating on a pond and containing several large, round, rocks. He
throws the rocks out of the boat so that they sink to the bottom of the pond. The water level
of the pond will:

a) Rise a bit.

b) Fall a bit.

)
)

¢) Remain unchanged.
)

d) Can’t tell from the information given (it depends on, for example, the shape of the boat,
the mass of the person, whether the pond is located on the Earth or on Mars...).
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Problem 494. problems-1/fluids-mc-boat-sinks-rocks-soln.tex

Before, the boat displaces a volume of water whose weight equals the weight of the rocks.
After, the rocks themselves displace a volume of water equal to the volume of the rocks.
This is surely much less than the volume of the water with the same weight as the rocks! Hence:

b) Fall a bit.
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Problem 495. problems-1/fluids-mc-buoyant-boxes.tex

Two wooden boxes with the same shape but different density are held in the same orientation
beneath the surface of a large container of water. Box A has a smaller average density than
box B. When the boxes are released, they accelerate up towards the surface. Which box has
the greater acceleration when they are initially released?

a) Box A.

b) Box B.

¢) They are the same.

)
)
)
)

d

We cannot tell from the information given.
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Problem 496. problems-1/fluids-mc-density-of-fluid-from-stone.tex

g% 90 N
.//mzlo kg

fluid

A block of lead has a mass of m = 10 kg (that weighs 100 Newtons in air) and a density of
p = 1.1 x 10* kg/m? is hung from a scale and immersed in an unknown fluid. The scale then
reads 90 Newtons. What is the approximate density of the fluid? (Use g = 10. m/sec?)

Py = kg/m?
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Problem 497. problems-1/fluids-mc-density-of-stone-underwater.tex

®)

water

i//mzlo kg

A stone of mass m = 10 kg (that weighs 100 Newtons in air) is hung from a scale and immersed
in water. The scale reads 60 Newtons. What is the density of the stone? (Use g = 10 m/sec?)

a) p= 1000 kg/m?>

b 4000 kg/m?

p

)

)

¢) p=6000 kg/m>

d) p = 1667 kg/m?
)

e) p = 2500 kg/m?
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Problem 498. problems-1/fluids-mc-floating-mass-on-spring-different-rho.tex

A) B)

p/2

A

N N
| F

In the figures above, two identical springs (with spring constant k) are attached to the
bottoms of two identical containers filled with two different fluids with densities (A) p and
(B) p/2 respectively. Identical wooden blocks (that would ordinarily float in both fluids) are
attached to these springs, which stretch out to total lengths D4 and Dp and suspend the blocks
so that they are fully immersed as shown. Near-Earth gravity (g) is also the same for both
scenarios.

Identify the true statement:

[] Da> Dgp [] Da < Dp [] Da= Dgp
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Problem 499. problems-1/fluids-mc-floating-mass-on-spring-different-rho-soln.tex

A) B)

p/2

A

N N
| F

In the figures above, two identical springs (with spring constant k) are attached to the
bottoms of two identical containers filled with two different fluids with densities (A) p and
(B) p/2 respectively. Identical wooden blocks (that would ordinarily float in both fluids) are
attached to these springs, which stretch out to total lengths D4 and Dp and suspend the blocks
so that they are fully immersed as shown. Near-Earth gravity (g) is also the same for both
scenarios.

Identify the true statement:

X Da > Dp [] Da < Dp [] Da= Dgp

Solution: Use Force balance, including the buoyant force acting on each block. Note that
we don’t need to know x4 g, how much each spring stretches in absolute terms, we only need
to know which one must exert the stronger downward force to keep the block immersed in
equilibrium as it must stretch more. Note that the volume, weight, and so on of the blocks are
all the same.

_ Vg
mgk

_ _ Ay
mg+ krp — (p/2)Vg=0 = xB—W<3:A =

In words: “The buoyant force in A is clearly greater, so the spring has to pull down harder to
keep it submerged, so its stretch must be larger.” No real need for the algebraic argument if
you think clearly.

mg+kxa—pVg=0 = x4
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Problem 500. problems-1/fluids-mc-floating-mass-on-spring-elevator.tex

X X

eq

In the figures above, two identical springs (with spring constant k) are attached to the bottoms
of two identical containers filled with water (density p). At the other end, the springs are
attached to identical wooden blocks that would ordinarily float on the water so that they are
completely submerged.

The container on the left (A) is located at rest on the ground, and Az 4 is the total distance
that its spring is stretched from its equilibrium length when the block is stationary relative to
container A. The container on the right (B) is located on the floor of an elevator accelerating
upwards with an acceleration a, and Axp is the total length that its spring is stretched from its
equilibrium length when the block is stationary relative to container B (accelerating upwards
with the elevator).

Circle the true statement:
Axps > Axp Axps < Axyp Axps = Axp
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Problem 501. problems-1/fluids-mc-floating-mass-on-spring-moon.tex

A) B)

g | |

k D k D

e

| |

In the figures above, two identical springs (with spring constant k) are attached to the bottoms
of two identical containers filled with water (density p). At the other end, the springs are
attached to identical wooden blocks that would ordinarily float on the water so that they are
completely submerged.

The apparatus on the left (A) is located on the Earth’s surface, where the acceleration due to
gravity is g. The apparatus on the right (B) is located on the moon, where the acceleration due
to gravity is g/6. D, is the total length of the stretched spring on the Earth, D,, is the total
length of the stretched spring on the moon.

Circle the true statement:
De>Dm De<Dm De:Dm
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Problem 502. problems-1/fluids-mc-flow-constricted-pipe-reverse.tex

| (S

Water flows at speed v in a pipe with radius /2 and passes into a pipe with radius r through a
smooth constriction as shown. Neglect viscosity. Select the statements that correctly describes
V9, the speed in the wider section of pipe, and the relative pressure in the narrower and wider
segments of pipe

[] vo=4u [] vo=2u [] vo=n [] vo=1du [] vo=1u

DP1>P2 ‘:’Plng DP1<P2

D We cannot tell from Bernoulli’s equation without knowing the fluid’s density p.




562 CHAPTER 10. FLUIDS

Problem 503. problems-1/fluids-mc-flow-constricted-pipe-reverse-soln.tex

| (S

Water flows at speed v in a pipe with radius /2 and passes into a pipe with radius r through a
smooth constriction as shown. Neglect viscosity. Select the statements that correctly describes
V9, the speed in the wider section of pipe, and the relative pressure in the narrower and wider
segments of pipe

D'U2:4'U1 ‘:"U2:2'U1 ‘:’UQZ’Ul ‘:"UQZ%'UI &UQ:%’UI

DP1>P2 ‘:’Plng &P1<P2

D We cannot tell from Bernoulli’s equation without knowing the fluid’s density p.

Solution: Use:
A1U1 = A2U2

with Ay = 7(r/2)? = mr%/4 = A3 /4 to conclude that .

Bernoulli (at constant height) also tells us that:

1 1
P+ ipv% =P+ ipvg

Since v1 > va, . The pressure increases as the fluid slows down!
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Problem 504. problems-1/fluids-mc-flow-constricted-pipe.tex

dil | ——=y, | ~v, [l

Water flows at speed v; in a pipe with diameter d and passes into a pipe with diameter d/2
through a smooth constriction as shown. Select the statement that correctly describes vo, the
speed in the narrower pipe.

[] vo=3u [] vo=13u [] va=2v [] va=4u0 (] va=w
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Problem 505. problems-1/fluids-mc-flow-constricted-pipe-soln.tex

PV S [ | p—

md/z A, = AJ4

Water flows at speed v; in a pipe with diameter d and passes into a pipe with diameter d/2
through a smooth constriction as shown. Select the statement that correctly describes vo, the
speed in the narrower pipe.

[] vo=3u [] vo=13u [] va=2v X v2 =40 (] va=w

Solution: First note that (as indicated on the figure above) Ay = A;/4. Conservation of
Flow then yields:

Ajvy = Agua = Ajug/4  and (rearranging) =
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10.1.2 Short Answer Problems

Problem 506. problems-1/fluids-sa-aneurism-pressure-flow.tex

R
AN

Normal

A Va d

B V"Mg;
O

bstruction

L

C %

Aneurism

Consider the models above of a normal blood vessel (A), an obstructed blood vessel (B) and
an aneurism (C). In case (A) blood is flowing from left to right at a “normal” fluid velocity
vy, and pressure P,. Assume that the blood pressure right before and after the obstruction or
aneurism is also P,. Neglect viscosity while answering the following questions:

a) Is the blood pressure in the obstructed region P, in (B) higher or lower than P,?

b) Is the blood pressure in the aneurism P, in (C) higher or lower than P,?
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Problem 507. problems-1/fluids-sa-aneurism-pressure-flow-soln.tex

Pressure in a confined, flowing fluid increases where the fluid speed decreases and de-
creases where the fluid speed increases.

Hence P, < P, and P, > P,.
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Problem 508. problems-1/fluids-sa-balloon-in-car.tex
A small boy is riding in a minivan with the windows closed, holding a helium balloon. The van

goes around a corner to the left. Does the balloon swing to the left, still pull straight up, or
swing to the right as the van swings around the corner?
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Problem 509. problems-1/fluids-sa-breathing-underwater-through-a-tube.tex

In adventure movies, the hero is often being chased by the bad guys and escapes by hiding deep
underwater and breathing through a tube of some sort. Assuming that you can barely manage
to breathe if a 500 Newton person is standing directly on your chest while you are lying on the
floor, estimate the maximum depth (of your chest) where one is likely to have the muscular
strength to be able to breathe through a rigid tube extending to the surface. Your estimate
should be quantitative and you should support it with both a very short piece of algebra and
a picture clearly showing the forces you must work against to breathe underwater.
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Problem 510. problems-1/fluids-sa-four-utubes-1.tex
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Two different incompressible fluids separated by a thin (massless, frictionless) piston so that
they cannot mix are open to the atmosphere and are in static equilibrium in each of the four
U-tubes pictured above.

a) One of the four U-tubes makes no sense (cannot be in equilibrium). Circle it and label
it ”impossible”.

b) Underneath each u-tube that does make sense indicate whether the fluid at the top of the
left-hand side of the “U” is denser than, less dense than, or the same density
as the fluid at the top of the right-hand side.
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Problem 511. problems-1/fluids-sa-four-utubes-1-soln.tex

Two different incompressible fluids separated by a thin (massless, frictionless) piston so that
they cannot mix are open to the atmosphere and are in static equilibrium in each of the four
U-tubes pictured above.

a) One of the four U-tubes makes no sense (cannot be in equilibrium). Circle it and label
it impossible”.

b) Underneath each u-tube that does make sense indicate whether the fluid at the top of the
left-hand side of the “U” is denser than, less dense than, or the same density
as the fluid at the top of the right-hand side.

Solution: The pressure at the meniscus between the fluids must be equal descending from
(equal) air pressure at the top of the fluid in the U-tube. The pressure at the depth equal to
the height of the fluid column above the meniscus is:

Ppn =P, + pl,rngn“

(for the l(eft) or r(ight) columns respectively). Equating the two:

P+ pgHy = Pi + prgH,

and by inspection, the fluid with the greatest height above the meniscus must have the lowest
density, and in d) the columns have equal heights and hence have the same density.

b) is impossible because (at least as far as I know) there are no fluids with a density equal to
that of air! at standard temperature and pressure, and that’s what the figure implies — that
the fluid on the left has the same density as air.
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Problem 512. problems-1/fluids-sa-four-utubes-2.tex
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(6 points) Two different incompressible fluids separated by a thin (massless, frictionless) piston
so that they cannot mix are open to the atmosphere and presumably in static equilibrium in
each of the four u-tubes pictured above. One of the four u-tubes makes no sense (cannot be
in equilibrium). Circle it. Underneath each u-tube that does make sense indicate whether the
fluid at the top of the left-hand side of the “u” is denser than, less dense than, or the same
density as the fluid at the top of the right-hand side. Briefly indicate your reasons.



572 CHAPTER 10. FLUIDS

Problem 513. problems-1/fluids-sa-horizontal-necked-pipe.tex

An incompressible, non-viscous fluid flows from the left to the right through a pipe of varying
radius as shown in the figure. Let us compare the fluid at point A and the fluid at point B.

Answer questions (a) to (c) below by entering the letters “A”, “B”, or if the same magnitude,

W__"”

=" in the provided boxes.

[Showing your work is recommended, but not mandatory.]

a) The speed of the fluid is larger at point |:| ;
b) Volume flow rate (Q) is higher at point ] ;

c) Pressure is higher at point ‘:’ ;

v
d) Write down the ratio of the flow speed at two points: hECR—
VA
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Problem 514. problems-1/fluids-sa-hydraulic-lift-2.tex

A piston of small cross sectional area a is used in a hydraulic press to exert a force f on the
enclosed liquid. A connecting pipe leads to the larger piston of cross sectional area A, so that

A > a. The two pistons are at the same height. The weight w = Mg that can be supported by
the larger piston is

(@) w>f
(b) w<f

() w=f

(d) depends on whether the liquid is compressible or not.
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Problem 515. problems-1/fluids-sa-hydraulic-lift.tex

Am
A Na
T~ Fluid
\‘
= _—J

The pair of coupled piston-and-cylinders shown above are sitting in air and filled with an
incompressible fluid. The entire system is in static equilibrium (so nothing moves). The cross-
sectional area of the large piston is A; the cross-sectional area of the small piston is a. In this
case we know that:

a)Mz%m
b) M = §m
C)M:\/%m
d) M=m

e) We cannot tell what M is relative to m without more information.
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Problem 516. problems-1/fluids-sa-hydraulic-lift-soln.tex

The pressure at the top (just under the pistons) must be the same on both sides as the stationary
fluid is connected and at the same height. This pressure supports the weight on both sides. So
for the left vertical force balance is:

—Floft:PA_Mg:O

and on the right:
Frignt = Pa —mg =0
Equating P and cancelling g, it is then easy to show that:

a)Mzém
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Problem 517. problems-1/fluids-sa-poiseiulles-law-2.tex

L

In the figure above, fluids of the given viscosities flow through circular pipes A-E with the given
dimensions. The resistance to fluid flow of circular pipe A is known to be R4. What are the
resistances of the other four pipes in terms of R47
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Problem 518. problems-1/fluids-sa-poiseiulles-law-2-soln.tex

The (Poiseiulle) formula for resistance of a circular pipe (that is used in e.g. in AP = IR) is:

8yl
rR=2F

mrd

Hence doubling L doubles it, doubling 7 doubles it. Doubling r reduces it by 16 (etc).

Rp _ 1
Ra — 16
Re _
RA_2
Rp _ 1
Ra — 8
R _ 9



578 CHAPTER 10. FLUIDS

Problem 519. problems-1/fluids-sa-poiseiulles-law-3.tex
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In the figure above, fluids of the given viscosities flow through circular pipes A-E with the
given dimensions. In all cases the volumetric flow through the pipes is held constant at Q by
varying the pressure difference AP; = Phigh — Pow across each (i = A, B, C, D, E) pictured pipe
segment.

The pressure difference that maintains flow @) fluid flow of circular pipe A is defined to be APj.
What are the pressure differences across the other four pipes in terms of AP4?

APg
APy

APq
APy

APp
APy

APg
APy




10.1. FLUIDS 579

Problem 520. problems-1/fluids-sa-poiseiulles-law-3-soln.tex

% L i
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In the figure above, fluids of the given viscosities flow through circular pipes A-E with the
given dimensions. In all cases the volumetric flow through the pipes is held constant at Q by
varying the pressure difference AP; = Phigh — Pow across each (i = A, B, C, D, E) pictured pipe
segment.

The pressure difference that maintains flow @) fluid flow of circular pipe A is defined to be APj.
What are the pressure differences across the other four pipes in terms of AP4?

The easy way to do this one (since @ is constant) is to use:

AP = QR

That way all we have to consider is the scaling of the following expression:

8yl
rR="2H

mrd

where most of the variables are the same from picture to picture and cancel. Thus:

APB_ 7”4 _i
APy — (2r)F — 16
APc_%_2
APy, — L —
APD_% 7‘4 _l
AP, — L (@)% — 8
APE_2_/L_2
APy p
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Problem 521. problems-1/fluids-sa-poiseiulles-law.tex
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Use Poiseuille’s Law to answer the following questions:

a) Is AP, = Plegt — Pright greater than, less than, or equal to zero in figure a) above, where
blood flows at a rate I, horizontally through a blood vessel with constant radius r and
some length L against the resistance of that vessel?

b) If the radius r increases (while flow I, and length L remain the same as in a), does the
pressure difference AP, increase, decrease, or remain the same compared to AP,?

c) If the length increases (while flow I, and radius r remains the same as in a), does the
pressure difference AP, increase, decrease, or remain the same compared to AP,?

d) If the viscosity p of the blood increases (where flow I, radius r, and length L are all
unchanged compared to a) do you expect the pressure difference AP, difference across a
blood vessel to increase, decrease, or remain the same compared to AP,?
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Problem 522. problems-1/fluids-sa-siphon.tex

L]

A siphon is a device for lifting water out of one (higher) reservoir and delivering it another
(lower) reservoir as shown above. Estimate the probable maximum height H one can lift the
water above the upper reservoir’s water level before the tube descends into the lower reservoir.
Explain your reasoning — how, and where, will the siphon fail?
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Problem 523. problems-1/fluids-sa-utube-fluid-height.tex

A vertical U-tube open to the air at the top is filled with oil (density p,) on one side and water
(density p,,) on the other, where p, < py.

a) Make your own diagram of the problem and clearly label the oil and the water.

b) Find (derive) an expression for Ay = yr — yg, the difference in the heights of the two
columns in terms of yy,.
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Problem 524. problems-1/fluids-sa-utube-fluid-height-soln.tex

oil -~ water

,,,,,,,,, Al

The static pressure at the interface must be the same accumulated descending from the same
pressure on the top surface on the left or from the top surface on the right. Hence:

Py + prgyr = Po + pr9YR

or

PL _ YR

PR YL

By inspection of this formula, the lower density has to be the higher column, so oil is on the
right. We can also rearrange the formula:

PL
YR = —YL
PR

so that:

PL
Ay=yr—yr=(1-"")yL
PR
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Problem 525. problems-1/fluids-sa-walking-in-a-pool.tex
People with vascular disease or varicose veins (a disorder where the veins in one’s lower ex-

tremeties become swollen and distended with fluid) are often told to walk in water 1-1.5 meters
deep. Explain why.
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10.1.3 Ranking Problems

Problem 526. problems-1/fluids-ra-archimedes-objects-2.tex

Four large identical beakers are filled with water and also contain objects in static equilibrium
with the water and beaker (they are not attached to or supported by anything outside of the
beaker. The objects are, listed in the order of strictly decreasing density:

a) A solid gold coin that has a mass of 100 grams;

b) A cast aluminum frog that has a mass of 100 grams;

¢) An ice cube that has a mass of 100 grams;

)
)
)
)

d

A wooden carved monkey that has a mass of 100 grams.

You remove each object from the water in its beaker and measure the drop in water depth
Ad;, i =a,b,c,d.

Rank the Ad; you expect to observe in this experiment from smallest to largest. As always,
in the case that some of the Ad; are equal to neighbors, indicate that explicitly.
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Problem 527. problems-1/fluids-ra-archimedes-objects-2-soln.tex

Four large identical beakers are filled with water and also contain objects in static equilibrium
with the water and beaker (they are not attached to or supported by anything outside of the
beaker. The objects are, listed in the order of strictly decreasing density:

a) A solid gold coin that has a mass of 100 grams;

b) A cast aluminum frog that has a mass of 100 grams;

¢) An ice cube that has a mass of 100 grams;

)
)
)
d)

A wooden carved monkey that has a mass of 100 grams.

You remove each object from the water in its beaker and measure the drop in water depth
Ad;, i =a,b,c,d.

Rank the Ad; you expect to observe in this experiment from smallest to largest. As always,
in the case that some of the Ad; are equal to neighbors, indicate that explicitly.

Solution: The way to do this is to (mentally) rank the displaced volume of the objects.
Gold is the densest, sinks completely, and therefore displaces the smallest volume. Aluminum
also sinks, is less dense than gold, and will displace the second smallest volume. Both ice and
wood (carved into a monkey or not) are expected to float, although one can probably find a
very few woods that don’t float even when dry and carved into monkeys, so they both displace
their identical weights in water which is also the most water.

The water level will drop the most for the largest displacements, so:

Ad, < Ady < Ad. = Ady
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Problem 528. problems-1/fluids-ra-archimedes-objects.tex

A large beaker is filled to a marked line with water. You have the following objects (in order
of decreasing density):

a) A solid gold coin that has a mass of 100 grams.

¢) An ice cube that has a mass of 100 grams

d

)
b) A cast aluminum frog that has a mass of 100 grams.
)
) A 100 gram chunk of shipping styrofoam.

You drop each item, one at a time, into the beaker in the water and record d;, the change in
water depth, and then remove it.

Rank the expected results for d; for i = a,b,¢,d. Indicate whether d; is positive (so that the
water in the beaker rises) or negative (falls). As always, in the case that some of the d; are
equal to neighbors, indicate that explicitly.
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Problem 529. problems-1/fluids-ra-four-utubes-venturi.tex

In the four u-tubes pictured above, only one of the two cases in each pair (A vs B and C vs D)
make sense. In A vs B, a can of compressed air is blowing air across the top of one of the
tube tops and the tube contains only a single fluid. In C vs D, the density of the immiscible
fluids is indicated by the shading where the darker fluid has the greater density.

Which two u-tubes DO make physical sense? (Circle one of each pair.)

A B C D
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Problem 530. problems-1/fluids-ra-poiseiulles-law-2.tex
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In the figure above, several circular pipes carry fluids with the same viscosity. Rank the pipes
in the order of their resistance to laminar flow, from least to greatest. Equality is a possible
answer. Think carefully about the dependence on r in Poiseuille’s Law! This is why obstructions
in arteries increase the resistance so dramatically!
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Problem 531. problems-1/fluids-ra-poiseiulles-law.tex

Ieft

Ieft
Ieft
Ieft

D

rlght

rlght

CHAPTER 10. FLUIDS

rlght
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2r

Rank the volume flow I from the lowest to highest in the boxes below by filling A, B, C, and D

into the large boxes and putting “<” or

signs into the small boxes in between for the four

circular pipes illustrated in the figure above, assuming that in all cases that the flow, from left
Piignt > 0 and that the same fluid (with the

to right, is maintained by the same AP = Py —

same viscosity u) is flowing through the pipes.

[

[

[
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Problem 532. problems-1/fluids-ra-three-crowns-density.tex

[:::] I (i)

A B C
Three crowns are shown above. Crown A is made of solid lead (specific gravity 11.3) covered
with a thin veneer of gold leaf. Crown B is made of platinum (specific gravity 21.5), also covered
with a thin veneer of gold leaf. Crown C is made of pure gold (specific gravity 19.3). The scale

suspending the three crowns in water all read a weight of 5 newtons. Rank the crowns in
order of their true weight as measured in air from lowest to highest.
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Problem 533. problems-1/fluids-ra-three-crowns-density-soln.tex

Although it isn’t impossible to reason one’s way through to the answer purely verbally, it is a
lot easier to start with an equation that describes this static equilibrium. For any given crown:

Ftot :T+Fb—Mg:O
where the “true weight” of the crown is Mg = pVg for its given density p = s.g. * pwater- 1 1S

what the scale reads and is common to all of the crowns. Hence we can rearrange this to solve
for the true weight:

Ftrue:Mg:T+Fb:T+png

Now it is easy! The crown with the largest true weight is the one with the largest buoyant
force, which in turn is the one with the largest submerged volume! True weight will increase
as density decreases. Hence we just need to sort out the weights by specific gravity, backwards:

Mpg < Mcg < Mag
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Problem 534. problems-1/fluids-ra-three-crowns.tex

[:::3 . (2]

A B C
Three crowns are shown above. Crown A is made of solid lead (specific gravity 11.3) covered
with a thin veneer of gold leaf. Crown B is made of platinum (specific gravity 21.5), also covered
with a thin veneer of gold leaf. Crown C is made of pure gold (specific gravity 19.3). All three

crowns weigh exactly 500 grams in air. Rank the crowns in the order of effective weight
while immersed in the water (what the three scales will read) lowest to highest.
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10.1.4 Regular Problems

Problem 535. problems-1/fluids-pr-bernoulli-beer-keg-horizontal.tex

In the figure above, a CO4 cartridge is used to maintain a pressure P on top of the beer in a
beer keg, which is full up to a height H above the tap at the bottom (which is obviously open
to normal air pressure) a height h above the ground. The keg has a cross-sectional area A at
the top. Somebody has pulled the tube and valve off of the tap (which has a cross sectional
area of a) at the bottom and it is spurting out onto the ground.

a) Find the speed with which the beer emerges from the tap. You may use the approximation
A > a, but please do so only at the end of your algebra, not at the beginning. Assume
laminar flow and no resistance.

b) Find the value of R at which you should place a pitcher (initially) to catch the beer.

c) Evaluate the answers to a) and b) for A = 0.25 m?, P = 2 atmospheres, a = 0.25 cm?,
H =50 cm, h = 1 meter and ppee; = 1000 kg/m? (the same as water).
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Problem 536. problems-1/fluids-pr-bernoulli-constricted-pipe.tex
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Water flows at a pressure P; and a speed v1 in a circular storm culvert pipe of diameter d. The
pipe narrows smoothly to a second pipe section where the diameter is only d/2.

a) Find ve, the speed in the second pipe.
b) Find Ps, the pressure in the second pipe.

c) Write an algebraic expression in terms of the givens for the current (flow) I, the volume
of water per second that passes through the pipe(s).
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Problem 537. problems-1/fluids-pr-bernoulli-constricted-pipe-soln.tex
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Water flows at a pressure P; and a speed v1 in a circular storm culvert pipe of diameter d. The
pipe narrows smoothly to a second pipe section where the diameter is only d/2.

a) The pipe area scales like 72 = d?/4, so Ay = A1 /4. Ajv; = Asvy is constant (conservation

of flow). Hence:

b) Bernoulli’s Equation at constant height is:

1 1
P+ §pU% =P+ §pv§

Hence:

Py=P+ %p (vi—v3) =P+ %p (v — 1607)

or:

15
P2 = P1 — ?p’U%

This answer is “interesting” because P, > 0, meaning that for any given P; there is an
upper bound on vy.

7Td2’l)1
4

I= Alvl = AQ’UQ =
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Problem 538. problems-1/fluids-pr-bernoulli-constricted-pipe-vertical.tex

H W air pressure

VZ
—
—

d/r2

A drain pipe in a house starts out at a diameter of d and narrows smoothly to a second pipe
section where the diameter is only d/2. It is filled with water to a height H above the exit

point of the lower pipe where it empties into a storm sewer. Both ends of the pipe are open
to the air.

a) Find v; and v9, the speed of the flowing fluid in both pipe sections.

b) Write an algebraic expression in terms of the givens for the current (flow) @, the volume
of water per second that passes through the pipe(s). Give the expression in terms of d
and vy and/or vy so that your answer does not depend on your answer to a).

c) How long At will it take for the water level in the top pipe to drop a distance Az < H?
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Problem 539. problems-1/fluids-pr-bernoulli-constricted-pipe-vertical-soln.tex

a) Find v; and ve, the speed of the flowing fluid in both pipe sections.
Note that A; = 7d?/4 and Ay = 7d?/16 = A; /4. Then conservation of flow in a confined,

incompressible fluid is:

_dV_ o _A2 _UQ
[—%—Al’ul—Ag?}g or ’Ul—A—lvg—Z

Next, Bernoulli’s formula/equation for this picture, ignoring viscosity and with both ends
of the pipe open to the air at one atmosphere, is:

1 1
Po+ spvi + pgH = Py + =pv3 + pg(0)

2 2
or
L
5/)02(1—1/16) = pgH or
32
vy = 1—59H and
(%) 2
- 2 _ /2
v 1~ V17

b) Write an algebraic expression in terms of the givens for the current (flow) @, the volume
of water per second that passes through the pipe(s). Give the expression in terms of d
and v and/or vy so that your answer does not depend on your answer to a).

nd® [2gH o [gH
I=Av=—m\=5 ="\ 1

c) How long At will it take for the water level in the top pipe to drop a distance Az < H?

Assume vy is approximately constant over a short drop. Then:

B & 15Ax

v\ 29H

Axr = v At or At
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Problem 540. problems-1/fluids-pr-bernoulli-emptying-iced-tea-time.tex

A big cooler full of iced tea with cross-sectional area A; = 1000
cm? is open to the air on top. The tap on the bottom has
a hole with a cross-sectional area As = 1 cm?, and is opened at
time ¢ = 0 when the surface of the iced tea is (initially) at a height
1o = 50 cm above the tap. Note that the density of the iced tea
is the same as that of water, p,,.

Algebraically:

a) Find the rate at which the height of the iced tea drops —
dy/dt — when the tap is opened, in terms of the givens and
Yy, the current depth of the iced tea in the cooler

b) At what time t; does the iced tea run out (that is, y(ty) =
0)?

Numerically:
c) Evaluate ¢ in seconds.

You may assume that A7 > A, and use any approximations that
may suggest.
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Problem 541. problems-1/fluids-pr-bernoulli-emptying-iced-tea-time-soln.tex

A big cooler full of iced tea with cross-sectional area A; = 1000
cm? is open to the air on top. The tap on the bottom has
a hole with a cross-sectional area As = 1 cm?, and is opened at
time ¢ = 0 when the surface of the iced tea is (initially) at a height
1o = 50 cm above the tap. Note that the density of the iced tea
is the same as that of water, p,,.

Algebraically:

a) Find the rate at which the height of the iced tea drops —

y dy/dt — when the tap is opened, in terms of the givens and

Yy, the current depth of the iced tea in the cooler

b) At what time t; does the iced tea run out (that is, y(ty) =
0)?

Numerically:
c) Evaluate ¢ in seconds.

You may assume that A7 > A, and use any approximations that
may suggest.

Solution: We start with the Bernoulli formula at arbitrary depth y plus conservation of flow
(in the limit that v < vy since Ay > Ay):

1 1
%"‘M""Pwyy:%"‘il)wv%""m

1 2
PwgdY = §pwv2

Hence the speeds at the top (1) and bottom (2) are:

A A
vy = y/2gy (recall Torricelli’s rule) = v = dy 2y = —2,/2gy

Hence:

a4 T A

dy Ay
22/
at -~ A VY

To answer the second part, we have to integrate to find y(ty) = 0. We separate variables and

integrate:

VA

0 dy B
Hy1/2_

Ay

tf V2gA 2A
/ dt = —2HY?= —Ltf = |t;= \/j_1H1/2
0 g

Finally, we can substitute in numbers:

ty

2 1 1000
— i x 1000 X 4/ = ~ —— =~ 316 seconds

V10 27316
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(or, around five and a quarter minutes). Note that this answer doesn’t depend on the density!
Beer, iced tea, any liquid where we can neglect the viscosity — they’ll all take the same amount
of time to empty. Note that I used v/10 = 3.16, although I could equally well have used the
approximation v/10 = 7 (good to less than 1% error) without much change in the answer.
There would be a much larger error due to neglected viscosity and the inaccuracy over that last
centimeter when the water doesn’t cover the hole.
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Problem 542. problems-1/fluids-pr-bernoulli-irrigation-pipe.tex

In the figure above, a pump maintains a pressure of P in the air at the top of a tank of water
with a cross sectional area A. An irrigation pipe at the bottom leads up a slope to a farmer’s
field. The vertical distance between the top surface of water in the tank and the opening of the
pipe is H. The cross-sectional area of the pipe is a. The top pipe is open to air pressure Py = 1
atm. Recall that the density of water is p = 10 kg/m3.

a) What is the velocity of the water coming from the pipe? (Find this algebraically from
the appropriate law(s).)

b) Is the pressure at the bottom of the tank greater inside the main vessel (point 1 on figure
above) or inside the pipe (point 2)? Briefly explain.

c) After finding the answer to a) algebraically and answering b), evaluate v numerically
using: P = 2.5 atm, A = 10 m?>, H = 10 m, and @ = 4 cm?. You shouldn’t need a
calculator for this.



10.1. FLUIDS 603

Problem 543. problems-1/fluids-pr-bernoulli-IV.tex

Although mechanized and precise in modern first-world medicine, IV fluid delivery in the rest
of the world is an imprecise gravity-driven system. A bag or bottle filled with a saline solution,
plasma, blood, or medicine is hung above a patient’s bed and a tube delivers that fluid directly
into a patient’s vein. A physician practicing medicine in many clinics or hospitals around the
world may well need to be able to estimate things like the time of delivery of a bolus of fluid
by a gravity-driven IV line for a given needle size.

Make such an estimate below, assuming that the bag of cross-sectional area A holds a fluid
of density p, is effectively open to air pressure in the room P;, and is suspended a height H
above the level of the patient as shown. Use a as the cross-sectional area of the needle. Ignore
viscosity and the fluid flow resistance of the tubing. Express all your answers algebraically
in terms of A, a, p, P and P, for full credit.

a) What is the minimum height H;, such that flow is from the bag to the patient instead
of from the patient back towards the bag? (We don’t want the patient to inadvertently
donate blood!)

b) Suppose you raise the bag height to H = 2H ;.. With what velocity does the fluid flow
into the patient?

c) If the bag holds a fluid volume V' estimate how long does it will take to deliver all of
the fluid in the bag into the patient at this new height. Assume that H does not change
(much) while the bag empties.

d) If one included viscosity and the drop in fluid height as the bag empties, would it increase
or decrease the time from this rough estimate?

After finding the algebraic answers, you may estimate the numerical values of these quantities
without a calculator for one point of EXTRA credit per answer for a maximum of three extra
points. Assume that the fluid is water, V' = 500 cubic centimeters, P; = 1 atm, P, = 1.1 atm,
A=2x10"3m? and a = v/5 x 1077 m2. (Note that leaving radicals like v/5 in your answers
is OK).
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Problem 544. problems-1/fluids-pr-bernoulli-range-arc.tex

»U

X

R

A sealed tank of water (density p) is shown above. Inside it is pressurized to a pressure P; = 3P,
(where P, is the pressure outside of the tank, one atmosphere). The water escapes through a
small pipe at the bottom where the stream is angled up at an angle # with respect to the
ground as shown. The cross-sectional area of the tank A is much larger than the cross-sectional
area a of the small pipe at the bottom, A > a. (Picture is not necessarily to scale.)

a) What is the (approximate) speed v, with which the water exits the small pipe? Express
your answer (for this part only) in terms of p, g, P;, P, and possibly A and a.

b) What is the horizontal range of the stream of water, R, measured from the tip of the
spout as shown. Express your answer (for this part only) in terms of v,.
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Problem 545. problems-1/fluids-pr-bernoulli-range-horizontal.tex

Myv)

A sealed tank of water (density p,) is shown
above. Inside the tank, the air at the t(op)
is pressurized above the water to a pressure
P, = 2P, (where P, is the air pressure outside
of the tank, one atmosphere). The water spurts
out through a small pipe at the b(ottom)
with speed vy, initially parallel to the ground as
shown. The cross-sectional area of the tank A
is much larger than the cross-sectional area a
of the small pipe at the bottom. Neglect vis-
cosity and flow resistance. Picture is not
necessarily to scale.

a) Find the (approximate) speed v, with
which the water exits the small (bottom)
pipe. You may assume A > a.

Vp =

b) Find the horizontal range R of the
stream of water measured from the tip of
the spout as shown. Express your answer
in terms of vy, so that it needn’t depend
on getting a) correct.

R =
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Problem 546. problems-1/fluids-pr-bernoulli-range-horizontal-soln.tex

A sealed tank of water (density p,) is shown
above. Inside the tank, the air at the t(op)
is pressurized above the water to a pressure
P, = 2P, (where P, is the air pressure outside
of the tank, one atmosphere). The water spurts
out through a small pipe at the b(ottom)
with speed vy, initially parallel to the ground as
shown. The cross-sectional area of the tank A
is much larger than the cross-sectional area a
of the small pipe at the bottom. Neglect vis-
cosity and flow resistance. Picture is not
necessarily to scale.

a) Find the (approximate) speed v, with

Myv)

B T which the water exits the small (bottom)

pipe. You may assume A > a.

Vp =

Solution:

b) Find the horizontal range R of the

R stream of water measured from the tip of
the spout as shown. Express your answer
in terms of vy, so that it needn’t depend
on getting a) correct.

P, 2h
2<——|—gH> R= Upt [ —

a) This is just Bernoulli plus conservation of flow:

and:

or (rearranging):

1 1
(Pt = 2Pa) + png + §pwvt2 = Pa + pwg(o) + §pwvg

a
Avy = avy, = vt:va%0

1 P,
Po+ pugH = spuvy = |vp = 2<—a+gH>
2 Pw

b) This is just a chapter 1 kinematics problem. The time required to fall a distance h with
no initial y-velocity is:

1, 2h
hzigtg:>tg: ?
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The z-distance travelled in this time is the range:

[2h
R:vbtg:vb ?:\/4}1(

Py
)
Pwy

607

(where you only need to find t, and write the first part to get credit, but it is always nice

to get the whole answer).
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Problem 547. problems-1/fluids-pr-bernoulli-sipping-through-straw.tex

A o 10 cm
S
N

40 cm
a3

a

When you drink water through a straw, you create a pressure P, in your mouth that is less
than atmospheric pressure. Suppose P, = 9 x 10* Pa, and that the end of the straw in your
mouth is 10cm above the surface of your 40cm high drink as shown above. You may assume
that the cross-sectional area of the straw a is much less than the cross-sectional area A of the
water at the top of your glass.

a) At what speed will the water in the straw be moving into your mouth? (Use Py = 10° Pa
for the pressure of the air, p = 1000 kg/m3, g = 10 m/s? and compute a number after
showing how you obtained an algebraic expression for the answer.)

b) Find an algebraic expression for how long it will take to sip a small volume AV of
your water through the straw. Assume that the water height in the container makes a
negligible change during this sip, and express your answer in terms of vggraw only (no need
to substitute) to make it independent of your answer to a).
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Problem 548. problems-1/fluids-pr-bernoulli-sipping-through-straw-soln.tex

\

5~

T
A iv? H
T
x<:§§
(negligible)

(irrelevant)

a

When you drink water through a straw, you create a pressure P, in your mouth that is less
than atmospheric pressure. Suppose P, = 9 x 10* Pa, and that the end of the straw in your
mouth is 10cm above the surface of your 40cm high drink as shown above. You may assume
that the cross-sectional area of the straw a is much less than the cross-sectional area A of the
water at the top of your glass.

a) At what speed will the water in the straw be moving into your mouth? (Use Py = 10° Pa
for the pressure of the air, p = 1000 kg/m3, g = 10 m/s? and compute a number after
showing how you obtained an algebraic expression for the answer.)

b) Find an algebraic expression for how long it will take to sip a small volume AV of
your water through the straw. Assume that the water height in the container makes a
negligible change during this sip, and express your answer in terms of vg¢ray only (no need
to substitute) to make it independent of your answer to a).

Solution:  First, ignore the numbers! Use Bernoulli, conservation of flow leading to the
Torricelli approximation neglecting v at the top of the water in the glass, and choose the zero
in height at the top of the water in the glass so only H indicated in the figure above is relevant!
Then: a

Avtop = QUstraw = Utop = —; Ustraw ~ 0

A
and thus:

1 1
P, + 5/)?)201) +pg(0) = P, + §pvs2traw + pgH

Now we just solve for vgiraw:

P,— P,) — pgH
Ustraw = \/2( p) P9

and (only now) plug in numbers (any of the three answers at the end OK):

10% — 103
Ustraw = |/ 2 X BT V18 = 3v/2 ~ 4.2 m/sec
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For b) recall that flow is just:

AV AV
I = E = QUgtraw = At =

QUstraw

You do not need to substitute in either numbers or the algebraic form from a) to get full credit
as the problem explicitly indicates.
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Problem 549. problems-1/fluids-pr-bernoulli-syringe.tex

>0

You are in a room at normal air pressure P, and are given a hypodermic syringe full of medicine
that we will treat as a zero-viscosity fluid with the density of water. The syringe tube has length
L and cross-sectional area A and hence contains a volume AL of fluid. The cross-sectional area
of the needle aperture is a < A. Holding the syringe horizontally as shown, you press on
the (frictionless) plunger to inject the medicine into a patient’s vein where the (given) blood
pressure is P, > P,.

a) What force Fii, (magnitude) do you have to exert on the plunger to hold the fluid in
static equilibrium once the needle is in the patient?

b) Suppose you push with a force F' > Fyi, on the plunger. Find an expression for the speed
v, with which the fluid flows through the needle into the vein. Don’t forget the pressure
of the air in the room!

¢) Find an expression for the time required to empty the syringe in terms of v, (so you
do not have to use the results for b) or get b) correct to get full credit for c)).
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Problem 550. problems-1/fluids-pr-bernoulli-syringe-soln.tex

a)

U

In static equilibrium, the fluid does not flow and hence the pressure in the syringe tube
must equal P,. There are several ways, then, to consider the syringe plunger to get:

Fmin+PaA:PvA

or
Fmin:(Pv_Pa)A

Don’t forget that air pressure on the outside helps push in on the plunger piston too!

Now we need to use all of Bernoulli’s formula, using the pressure just inside the piston
on the left: . . .
(Z+Pa)+§pv§ :Pv+§PUg

If we assume that A > a, we can neglect the vs term (kinetic energy per unit volume in

the syringe) and get:
. \/2F — (P, — P)A
Ap

F — Fuin AF
vv—\/27Ap _\/2Ap

where AF is the extra force applied to the pressure relative to the force required to hold
the syringe in equilibrium. Note that there is no pgy term because whatever y is, it is the
same on both sides.

or

If you don’t use the inequality to simplify, it is still easy to solve for v,. You just have to
move the v, term to the right and (using v;A = v,a) write:

or:
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c) The “flow” (volume per unit time) that moves through the needle is:

AV
E = Uy = 'USA
H :
enee AL AL L
At = = = —
vpa  UVsA g

The first form is “the answer”, but the third form is obviously correct as this is the time
required to move the plunger a distance L at constant speed v,.
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Problem 551. problems-1/fluids-pr-bernoulli-vertical-pipe-fountain.tex

A small fountain used in a zen rock garden is pictured to the left.
d/2 A pump (not shown) maintains a given pressure P; at the base of
a pipe of diameter d that lifts the water (density p) and narrows
TVV to a diameter of d/2 at the top to speed it up. The water exits
2 into air at pressure Py = 1 atm. The overall pipe has height H
between the pump and the exit. Find an algebraic expressions
— in terms of the givens for:
H g a) v; and vy, the speed of the flowing fluid in both the lower
and the upper pipe sections.
b) The current (flow) @, the volume of water per second
that passes through the pipe(s). Give this expression in
Vi terms of v1 and/or vy as needed so that your answer
can be correct even if you get part a) wrong.
d
Y
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Problem 552. problems-1/fluids-pr-bernoulli-vertical-pipe-fountain-soln.tex

Q

( z

G
oU

A small fountain used in a zen rock garden is pictured to the left.
d/2 A pump (not shown) maintains a given pressure P; at the base of
a pipe of diameter d that lifts the water (density p) and narrows
TVV to a diameter of d/2 at the top to speed it up. The water exits
2 into air at pressure Py = 1 atm. The overall pipe has height H
between the pump and the exit. Find an algebraic expressions
— in terms of the givens for:
H g a) v; and vy, the speed of the flowing fluid in both the lower
and the upper pipe sections.
b) The current (flow) @, the volume of water per second
that passes through the pipe(s). Give this expression in
Vi terms of v1 and/or vy as needed so that your answer
can be correct even if you get part a) wrong.
d
Y
— = P

Solution: This is a Bernoulli Equation problem, so we write it out at the bottom and top of
the pipe as follows:

1 1
P1 + pg(0) + 50’”% =P+ pgH + 5/)”%

This is only one equation and we have two unknowns, so we also need to use conservation of

flow:

Q= Av =| —v1 = —v2| = Ay

boxed because it is the answer to part b), or:

Vo = 41)1

Substituting this into the first equation, solving for vy, and backsubstituting to get vo we get::

2 15p 15p

1 15 2{(P, — Py) — pgH 2{(P, — Py) — pgH
(Pi—Py)-pgH = 8pu—pnl = Dot = 7leJr\/ {1 —Py) —pg }72}2:+4\/ {(’ — Ry) — pgH}
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Problem 553. problems-1/fluids-pr-city-water-supply-tank.tex

The figure above represents the water distribution system of a typical city or town. An elevated
tank is filled with water from a purified source. Sealed pipes descend from the tank and extend
through the ground to your house, where your closed water tap holds in the pressure. When
you open the tap, water flows from the tank, through the pipe, and out into your glass.

Suppose that the top of the tank has a cross-sectional area A > a, where a is the cross-sectional
area of your spigot. A pump (not shown) maintains the water height in the tank so that it
remains a height H above your spigot as shown whether the tap is open or closed. The tank is
filled with water of density p, and both the top of the tank and the spigot are open to air at
the same pressure (one atmosphere). Assume laminar flow and zero viscosity.

a) When your tap is closed, what is the pressure of the water just inside the tap?
b) When the tap is opened, with what speed does water flow out of the tap?

¢) How long will it take to fill the cup of volume AV shown with water?
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Problem 554. problems-1/fluids-pr-city-water-supply-tank-soln.tex

a) When your tap is closed, what is the pressure of the water just inside the tap?

From statics/Pascal or Bernoulli (which works fine for statics too!):

Py = P, + pgH

b) When the tap is opened, with what speed does water flow out of the tap?

From Bernoulli:

1 1
Py + pgH + 5pvf = Pu + 5pv;

Note that v; < vy, so we can ignore it, cancel the pressures, and get:
vy =/ 29H

which is Torrecelli’s Rule. We can actually use this to get an excellent approximation to
v = vp(a/A)

c) How long will it take to fill the cup of volume AV shown with water?

The rate of flow is:

dv
o Avy = avy

and doesn’t change appreciably while filling a small cup (as H doesn’t vary by much).
This means that:

AV = avy At = \/2gHaAt

or:

At — AV AV2gH
- V2¢gHa  2gHa
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Problem 555. problems-1/fluids-pr-flow-between-containers.tex

P =
\ A 1 atm B> —
S
RN
é A,
yl a
: Y :y
¢ ¥
y2 y3 y4
X

In the figure above, water (density p) is being pushed through a pipe of cross-sectional area a
from a small (sealed) tank to a larger one open to the air at normal pressure P; = Py, by the
pressure difference when P > P,iy,. The cross-sectional areas of the two containers are given
in terms of the cross-sectional area of the pipe by A; = 400a and Ay = 100a.

The givens are: a, p, Pi, and the various heights y; labeled in the figure that may or may
not be of interest . Neglect viscosity and drag/resistance in the containers or pipe.

a) Find the smallest pressure P, iy that will cause water to flow from the smaller container
to the larger one instead of the other way around.

b) Suppose the pressure P» is larger than this minimum pressure (so water does flow from
the smaller to the larger container). What is the speed v, of the fluid in the pipe as this
happens? Hint: the velocity in both containers is negligible compared to the velocity in
the pipe! What is the (nearly static) force that drives water one way or the other through
the pipe?

c¢) What are the speeds v; with which the water rises in the first container and vy falls in
the second?
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Problem 556. problems-1/fluids-pr-flow-between-containers-soln.tex
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First, this is a hard problem. Full credit will be given for any solution attempt that gets a)
correct and indicates that you know both Bernoulli’s formula and the equation for conservation
of flow. A five point bonus of extra credit will be given if you have the insight that you need
to neglect both tank velocities compared to the velocity in the pipe!

Indeed, this problem can only consistently be solved by applying Bernoulli’s formula across the
pipe. This is because there are three velocities, and vy, vy < vp, so that only the kinetic energy
term in the pipe (also called the “dynamical pressure”) is not negligible compared to that in
either tank. Neglecting the kinetic energy terms in both tanks is equivalent to using the the
static pressure difference at the bottom of the two tanks at the entrance and exit of the pipe
as the source of the “work” that drives the water through the pipe. This makes sense! If you
actually get this point, you will get a bonus of five points on the problem and the exam! If
you don’t, you will encounter serious difficulties (e.g. imaginary numbers) trying to apply the
Bernoulli formula to tanks 1 and 2 while ignoring the pipe.

We start, then, by evaluating the (approximately!) static pressure in the bottoms of both tanks
at the height of the pipe. On the left end of the pipe (tank 1) is:

Py = P+ pg(y1 — y3)

on the right (tank 2) it is:
Py = P2+ pg(ys — y3)

For part a), Fluid will not flow if this static pressure matches across the pipe! This result is
exact, and everybody should be able to get it.

Py =P+ pg(y1 —y3) = Po + pg(ys — y3) = P

or (with P; = Py ):
P2,min = Patm + pg(yl - y5)

and:

P, > Patm+pg(y1 _y5)
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will make the fluid flow uphill into the larger container. This makes complete sense. It also
suggests, if you think about it, that the work (per unit volume) that speeds the water up
effectively from “rest” is:
1
(P2 = Pam) = pg(y1 — y5) = 59,
To answer both b) and c¢) we need to use Bernoulli where the pipe pressure equals the static

pressure at the bottom of tank 1 (the tank the water is flowing into), and where we equate the
formula to the static pressure on the bottom of tank 2:

1
Po1 + pgys + 5pvp = Poo + pgys

Note that even if there is a small contribution from the motion of the fluids in tanks 1 and
2, it is a negligible correction to Py; and P,y respectively compared to the %pvg term! Then
(cancelling the pgys bits):

1
Pyt pgys + 500, = Pa+ pgys

and indeed: 1

(P2 = Pam) = pg(y1 = y5) = 50,

as we guessed above. Solving for v):

o \/2 (P2 — Patm) — pg(y1 — y5))
8 p

As you can see, as long as Py > Pyym + pg(y1 — y5), the pressure at the bottom of tank 2 will be
higher than the pressure at the bottom of tank 1, and the pressure difference will drive water
from tank 2 to tank 1 at speed v, in the pipe. If we go the other way, the role of starting and
ending height reverse (changing sign) and we’ll only get a real answer if Py < P2 ip.

To get the speeds at the top of the tanks is now simple. From flow conservation:
Al’Ul = avp = AQ’UQ

or

p

2((Py — Patm) — -
vleil’UpZO.OO%\/ (P m) — P9(Y1 — s))

and:

2 ((Py — Patm) — —
= oy = 401 = 001 \/ ((Po — Pam) — p9(s1 — 95))
2 p
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Problem 557. problems-1/fluids-pr-compare-barometers.tex

U

The idea of a barometer is a simple one. A tube filled with a suitable liquid is inverted into a
reservoir. The tube empties (maintaining a seal so air bubbles cannot get into the tube) until
the static pressure in the liquid is in balance with the vacuum that forms at the top of the
tube and the ambient pressure of the surrounding air on the fluid surface of the reservoir at the
bottom.

a) Suppose the fluid is water, with p, = 1000 kg/m3. Approximately how high will the
water column be? Note that water is not an ideal fluid to make a barometer with because
of the height of the column necessary and because of its annoying tendency to boil at
room temperature into a vacuum.

b) Suppose the fluid is mercury, with a specific gravity of 13.6. How high will the mercury
column be? Mercury, as you can see, is nearly ideal for fluids-pr-compare-barometers
except for the minor problem with its extreme toxicity and high vapor pressure.

Fortunately, there are many other ways of making good fluids-pr-compare-barometers.
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Problem 558. problems-1/fluids-pr-crane-2.tex

= m

A barge with a crane mounted on it has a cross sectional area A, a total mass M, and straight
sides. It is very slowly winching up a one of Blackbeard’s treasure chests (of total mass m)
from the ocean floor near Beaufort.

a) As the chest comes out of the water, does the boat sink or rise? Justify your answer with
an equation or two and/ or a before and after figure.

b) Just before the crane turns to put the chest on the deck, Blackbeard’s Ghost appears and
cuts the cable of the crane so that the chest plunges back into the briny deep. Find an
expression for the distance d the boat rises up in the water (after it stops bobbing) when
this happens. Use the symbol p, for the density of sea water.
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Problem 559. problems-1/fluids-pr-dangerous-drain.tex
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It is dangerous to build a drain for a pool or tub consisting of a single narrow pipe that drops
down a long ways before encountering air at atmospheric pressure. This was demonstrated
tragically in 1993 in an accident that occurred (no fooling!) within two miles from where you
are sitting. A baby pool was built with just such a drain and one day a little girl sat down on
the drain and was severely injured. In 2008 another young girl in Minneapolis was killed!

In this problem you will analyze why.

Suppose the mouth of a drain is a circle five centimeters in radius, and the pool has been
draining long enough that its drain pipe is filled with water (and no bubbles) to a depth of ten
meters below the top of the drain, where it exits in a sewer line open to atmospheric pressure.
The pool is 50 cm deep. If a thin steel plate is dropped to suddenly cover the drain with a
watertight seal, what is the force one would have to exert to remove it straight up?

Note carefully this force relative to the likely strength of mere flesh and bone (or even thin steel
plates!) Ignorance of physics can be actively dangerous.
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Problem 560. problems-1/fluids-pr-firefighters-pump.tex

fire
Y
hose ‘
uln 10 m
AP t
H -
/I 1
pump truck AN

pond

Firefighters arrive at a fire in the country and have to use water from the farm pond to try to
battle the blaze. Their pump firetruck takes in water from the pond at one atmosphere (FPp)
and increases the pressure at the bottom of the hose to an adjustable pressure Py + AP that
can be set at any value of AP from 0 to 2 atmospheres of pressure. What is the minimum
value AP, one can set the pump to that will lift the water as high as the second floor (ten
meters up above the ground, two meters above the fire)? Show all work and justify your
answer with a physical principle or two!
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Problem 561. problems-1/fluids-pr-floating-freighter.tex

fresh f salt

A rectangular ocean barge with horizontal area A (viewed from the top) floats in fresh water
(pw). It floats downriver and enters the ocean (ps = 1.1py,). As it does so, the ship bobs up
an additional distance d from its earlier (freshwater) waterline. Find the total mass of the ship
in terms of A, py, ps and d. Hint — since you don’t know either the height of the ship or
its displacement in fresh water as given, concentrate on the difference in the forces (and the
displacement) as it sails from fresh to salt.
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Problem 562. problems-1/fluids-pr-helium-balloon.tex

Air

In the figure above, a helium balloon (pge = 0.18 kg/m?) is suspended in air (p, = 1.28 kg/m3)
by a string.

a) Assuming that the volume of the helium balloon is approximately 4000 cubic centimeters
(4 x 1072 m?), find the total ‘lift’ of the balloon (the tension in the string). Neglect the
mass of the balloon itself and the string.

b) In the movies, humans are shown grabbing a few dozen helium balloons and being pulled
up into the sky. Assuming that a reasonable human payload (including the mass of all of
the balloon rubber and strings) is 100 kg, approximately how many balloons would really
be required to lift a person?
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Problem 563. problems-1/fluids-pr-hot-air-balloon.tex

Cool Air

A hot air balloon is drawn in the figure above. Estimate its total ‘lift’, assuming that the density
of cool air is approximately constant at p, = 1.28 kg/m?, the density of hot air in the baloon is
pn = 0.64 kg/m3, and that the balloon proper has a (filled) volume of 1000 m* (corresponding
to a spherical balloon roughly 13 meters in diameter). If the balloon, basket, and rigging have
a mass of 340 kg, what is the maximum payload it can carry?
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Problem 564. problems-1/fluids-pr-hot-air-balloon-soln.tex

Cool Air

Wpayload

Compute separately the buoyant force Fp, the weight of the hot air in the balloon, and the
weight of the given mass of the balloon, basket, and rigging. The difference is the leftover lift
of the balloon that can lift a payload.

Fy = paAVpg ~1.28 x 10 N
Wi, = ppAVyg ~ 0.64 x 10* N
Wy, = 0.34 x 10* N (given)
Woayload <= Fy, — Wi, — W, = 0.30 x 10* = 3000 N

or the balloon can lift a maximum of around 300 kg of mass, call it three adult males. Note
that we used g &~ 10 so this answer is only good to 2-3%.
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Problem 565. problems-1/fluids-pr-hydraulic-lift.tex

am

<

The figure above illustrates the principle of hydraulic lift. A pair of coupled cylinders are filled
with an incompressible, very light fluid (assume that the mass of the fluid is zero compared to
everything else).

a) If the mass M on the left is 1000 kilograms, the cross-sectional area of the left piston is
100 cm?, and the cross sectional area of the right piston is 1 cm?, what mass m should
one place on the right for the two objects to be in balance?

b) Suppose one pushes the right piston down a distance of one meter. How much does the
mass M rise?
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Problem 566. problems-1/fluids-pr-piston-pump-1.tex

A piston and weight has a total mass M and is pressing on water confined in a cylinder of cross
sectional area A. The water is then pushed into a pipe with a cross sectional area of a that is
open to the air at the same height as the piston. Neglect viscosity.

a) What does M have to be to make the water spurt from the pipe with a speed v? You
should use the approximation a < A to develop your algebraic answer.

b) Find the numerical value for M that will produce a speed v = 5 m/sec for the following
data: A =100 cm?, a = 1 cm?. The density of water is p, = 10® kg/meter>.
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Problem 567. problems-1/fluids-pr-piston-pump-1-soln.tex

A piston and weight has a total mass M and is pressing on water confined in a cylinder of cross
sectional area A. The water is then pushed into a pipe with a cross sectional area of a that is
open to the air at the same height as the piston. Neglect viscosity.

a) What does M have to be to make the water spurt from the pipe with a speed v? You
should use the approximation a < A to develop your algebraic answer.

b) Find the numerical value for M that will produce a speed v = 5 m/sec for the following
data: A =100 cm?, a = 1 cm?. The density of water is p,, = 10® kg/meter>.

Solution: Use Bernoulli’s Formula plus conservation of flow, Av, = av (where v, is the speed
of the slowly descending piston). The force pushing the piston down is P, A+ Mg. It is hardly
moving, so the total force on the piston is approximately zero, or the pressure just under the
piston is:

_ P,A+Mg Mg
=g =hty

The two points are at the same height (set equal to 0 for convenience). Thus the Bernoulli
formula is:

Mg 1 1
%+7+§p}}’§:%+§pv2

where we’ve cancelled atmospheric pressure on both sides and neglected the kinetic energy term
for the slowly moving fluid just under the piston. This lets us solve for the answer requested

in a):
v 2M g
=\ i
a 2M ga?
bl

If we care, we also know that:
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and sure, v, < v as long as a < A. For b) we now do a second piece of algebra plus some
‘simple’ arithmetic:

1 pAv? 11000 x 0.01 x 25
3 g "7 10

Note we used SI units throughout and did not use a = 10~* m? except to note that 1 < 100.
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Problem 568. problems-1/fluids-pr-piston-pump-2.tex

A piston is pressed with a force F on a hydraulic cylinder containing water (p = 10% kg/m?).
The cross sectional area of the cylinder is A = 400 cm?. The water therein is forced into a pipe
with a cross sectional area of a = 2 cm? that rises vertically a height H = 40 meters. Both the
end of the pipe (at the top) and the back of the piston (at the bottom) are open to atmospheric
pressure.

What does F' have to be to make the water spurt from the pipe with a speed of 10 meters/sec
at the top? Solve this problem beginning from (stated) physical principles, showing all work.
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Problem 569. problems-1/fluids-pr-pump-water-up-cliff.tex

Pump?

Outflow
Ve

This problem will help you learn required concepts such as:

e Static Pressure

e Barometers

so please review them before you begin.

A pump is a machine that can maintain a pressure differential between its two sides. A particular
pump that can maintain a pressure differential of as much as 10 atmospheres of pressure between
the low pressure side and the high pressure side is being used on a construction site.

a) Your construction boss has just called you into her office to either explain why they aren’t
getting any water out of the pump on top of the H = 25 meter high cliff shown above. Examine
the schematic above and show (algebraically) why it cannot possibly deliver water that high.
Your explanation should include an invocation of the appropriate physical law(s) and an explicit
calculation of the highest distance the a pump could lift water in this arrangement. Why is the
notion that the pump “sucks water up” misleading? What really moves the water up?

b) If you answered a), you get to keep your job. If you answer b), you might even get a raise
(or at least, get full credit on this problem)! Tell your boss where this single pump should be
located to move water up to the top and show (draw a picture of) how it should be hooked up.
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Problem 570. problems-1/fluids-pr-romeo-and-juliet.tex

Romeo and Juliet are out in their boat again when Juliet’s Salvatore Ferragamo heels poke a
circular hole of radius r in the bottom of the boat. The boat has a draft of D (this is the
distance the boat’s bottom lies underwater as shown).

a) Romeo tries to cover the hole with his hand. What is the minimum force he must apply
to keep it covered?

b) Juliet convinces Romeo that a little water fountain would be romantic, so he moves his
hand. How fast does the water move through the hole?

¢) To what height H does Juliet’s fountain spout up from the bottom of the boat? (The
height drawn is to illustrate the quantity H only and may not be at all correct.)
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Problem 571. problems-1/fluids-pr-siphon-two-tank.tex

In the figure about two tanks are partly filled with fluid to the heights indicated. A siphon tube
of a certain height H at its heighest point is started between them. The fluid is assumed to
have a density p (which could well be “water”, for example) and viscosity and fluid resistance
are to be ignored. You may also assume that the surface area at the top of either tank is large
compared to the cross-sectional area of the tube.

a) Find the velocity v of the fluid in the siphon tube at the instant shown.
b) Find the pressure Py at the heighest point of the siphon tube.

¢) Find the maximum height obstacle Hy,,x that a siphon tube can go over (relative to the
geometry shown) and still function.
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Problem 572. problems-1/fluids-pr-siphon-two-tank-soln.tex

(2)

N

Z
(1) R
\ T V
Z, 4)
Z,
I | B 3
,,,,,,,,,,,,,, dizf()zszo

In the figure about two tanks are partly filled with fluid to the heights indicated. A siphon tube
of a certain height H at its heighest point is started between them. The fluid is assumed to
have a density p (which could well be “water”, for example) and viscosity and fluid resistance
are to be ignored. You may also assume that the surface area at the top of either tank is large
compared to the cross-sectional area of the tube.

a) Find the velocity v of the fluid in the siphon tube at the instant shown.
b) Find the pressure Py at the heighest point of the siphon tube.

¢) Find the maximum height obstacle Hy,,x that a siphon tube can go over (relative to the
geometry shown) and still function.

Solution

It is useful to consider points 1 through 4 in the figure above. If we write Bernoulli’s formula
for points 1, 2 and 3, all three formulas must be equal for the fluid moving through the “pipe”
represented by the two tanks and intermediary tube. Note that P, = Py = Py, atmospheric
pressure at the top of both tanks. Thus

1 1
Po + pgz1 + 501}% (1) = Po+pgz+ 5pl)2 (2)

1
= P3+pg(0) + 50’02 (3)

where v is the desired velocity in the tube. We will assume that v < v and v, < v and throw
them both out relative to v.

In our previous tank problems like this, P5 is the pressure in the fluid at the point where the
system exits the fluid. The reason the fluid flows in the tube at all is that the pressure at this
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height is different on the dashed line in the two vessels. Within the two tanks (not in the tube)
the fluid is nearly static, so the pressure P3 = Py+ pgz4. This is the key to solving the problem,
because if you naively write Bernoulli’s formula for points 1 and 4 and equate them, you get a
contradiction. For all values of z less than the top of the fluid, the pressure in the second tank
is less than the pressure in the first at the same height.

We can now do some algebra between points 1 and 3:

1 1
Potpgzi +5pvi (1) = P+ pgaa+ 5pv°
1
5Pv° = gl = 2)
v o= 2g(z1 — 29)

We get an answer that looks “like” Torricelli’s Law even though the tube exit per se is no longer
the relevant height and even though the fluid at the tank tops is moving slowly compared to
this in both tanks! The force that pushes the fluid from the first to the second tank is evidently
the pressure in the first tank at the depth of the surface of the second tank, Az = z1 — z4.

Now let’s equate the Bernoulli formulas for points 1 and 2 and solve for Ps:

1 1
Py + pgz1 + §pU% = P+ pgz + gpv2
1
Py, = Py+pg(z1 — 2z2) — 5,01)2

= Po+pg(z1 — z2) — pg(z1 — 24)
= Py—pg(z2 — 24) = Py — pghmax

where we have substituted our answer for v in. This answer leads us to some ”issues”. If
we start at the outflow pressure (inside the tube) and go uphill, the pressure must decrease.
The pressure at point 2 must be lower than Py by pghmax, the decrease in static pressure with
height, because the speed of the fluid in the tube does not change.

If, however, we keep lowering the second tank (increasing Az between the surfaces of the two
tanks) and thereby making v larger, we also make P, smaller until eventually it becomes zero!
If we lower it any further, the pressure in the tube cannot be negative, as before it ever reaches
0 (a vacuum) nearly any real fluid will ”come apart” at the molecular level in a process called
cavitation. But what if we consider just the first line of 1 = 2:

1
Py + pgz1 = Py + pgze + 5101)2

and suppose we set P, = 0, the point where cavitation occurs. This equation then becomes:

1
Py + pgz1 = pgze + 5101)2

and we can solve for v this way as well:

v =/2(Py — pg(z2 — 21)) /p

This equation seems to imply that as we increase z9 holding z; constant, we decrease the
maximum speed of flow in the tube until it is zero and the pressure is zero, but be careful. This
is increasing zy holding Py = 0, which is to say, maintaining 2o — z4 = Py/(pg)!
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We must therefore carefully think about the conditions for cavitation. Will the fluid cavitate at
zero pressure while in uniform motion in the tube with v £ 07 Or does the fluid both have to be
stationary in the tube to cavitate? If we reach zero pressure at the top with zo — z; too small
to make v zero, then if we increase hy.x we lower the point on the right hand side of the tube
where zero pressure exists and we have a serious problem. There is no longer any downward
directed pressure gradient above that point because the pressure cannot go below zero. Gravity
is pulling down fluid elements in the tube. If there were no pressure gradient to oppose gravity,
those elements would speed up. But they cannot speed up and maintain a uniform flow (just as
a uniformly falling stream of water splits up into droplets).

So when does the siphon “break” and e.g. water stop flowing? I think that the answer is best
understood by considering that uniformly falling stream. If z9 — z4 > 10 meters, there is a
stretch at the top where the velocity entering the vicinity of P, from a solution to Bernoulli’s
equation on the left hand side only (1 = 2 above) is smaller than v for the collective tube (1 =
3 above). There is a false continuity implied by 1 = 3 through pressures that are implicitly less
than zero, but this is impossible. The fluid in the tube cavitates continually, basically breaking
up into drops that accelerate as they fall freely under gravity from right where the top of the
tube bends down on the right until they match the flow velocity implied on the lower part of
the tube continuously matched to the pressure at the bottom of the right hand side. Fluid
flows, but it is no longer the case that it is flowing uniformly or that the tube itself remains
continuously full.

As zy — 21 is separately increased to 10 meters, v (now dominated by z2 — 21 at zero pressure
at point 2 and Py at z1) decreases to zero and the fluid on both sides of the tube stops flowing
forming two “water barometers” on either side. Not so obvious!
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Problem 573. problems-1/fluids-pr-siphon.tex

- —

Water is being drained from a large container by means of a siphon as shown. The highest
point in the siphon is distance d above the level of water in the container, and the total height
of the long arm of the siphon is h. The distance h can be varied. The mass density of water is
Pw, and air pressure is Py. Express all answers in terms of d, h, py, Po, and g.

a) What is the maximum possible value of h for which the siphon will work? (Hint: The
pressure cannot be negative anywhere in the siphon, in particular, in the long arm of the
siphon.)

b) For that maximum value of h, what is the speed of the water coming out of the siphon?
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Problem 574. problems-1/fluids-pr-static-crane.tex

The crane above has a nearly massless boom. It is being used to salvage some of Blackbeard’s
treasure — a chest of mass m filled with very dense gold.

a)

Find the maximum weight that the crane can lift, assuming that all of the weight of
the crane itself acts downward at its center of mass to counterbalance it at the position
shown, a horizontal distance d to the left of the bottom right corner of the crane. The
crane’s boom is fixed so that its moment arm (shown) is always D. Your answer should
be expressed in M, g and the given lengths d and D.

Suppose that Blackbeard’s treasure is so massive that the crane is almost tipping over as
it very slowly lifts it up through the water. What will happen when the crane tries to
lift the mass out of the water, and why? “Why” should involve certain forces and a good
before and after picture.
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Problem 575. problems-1/fluids-pr-static-hole-in-a-boat.tex

2m

Fresh water

patch (10 cm )

Air

screws, bracing

Boat

CHAPTER 10.

FLUIDS

Your yacht has a hole in it! Oh, no! The hole is 2 meters below the waterline, and has a
cross-sectional area of 10 cm? (that’s ten square centimeters, not ten centimeter’s squared!).
You patch it, and need to brace the patch with screws that can each hold at most a force of 5
Newtons. How many screws (at least) should you use to be sure of being able to withstand the

force of the ocean pressing in against your patch?
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Problem 576. problems-1/fluids-pr-tension-suspends-immersed-mass.tex

A floating block of density p and volume V is suspended, fully immersed, by a thin thread
attached to the bottom in a jar of oil (density p, > p) that is resting on a scale as shown. The
total mass of the oil and jar (alone) is M.

a) What is the buoyant force exerted by the oil on the block?

b) What is the tension 7" in the thread?

c¢) What does the scale read?



644 CHAPTER 10. FLUIDS

Problem 577. problems-1/fluids-pr-time-to-empty-open-vat.tex

P
— /[

This problem will help you learn required concepts such as:

e Bernoulli’s Equation

e Torricelli’s Law

so please review them before you begin.

In the figure above, a large drum of water is open at the top and filled up to a height H above a
tap at the bottom (which is also open to normal air pressure). The drum has a cross-sectional
area A at the top and the tap has a cross sectional area of a at the bottom.

a) Find the speed with which the water emerges from the tap. Assume laminar flow without
resistance. Compare your answer to the speed a mass has after falling a height H in a
uniform gravitational field (after using A > a to simplify your final answer, Torricelli’s
Law).

b) How long does it take for all of the water to flow out of the tap? (Hint: Start by guessing
a reasonable answer using dimensional analysis and insight gained from a). That is, think
about how you expect the time to vary with each quantity and form a simple expression
with the relevant parameters that has the right units. Next, find an expression for the
velocity of the top. Integrate to find the time it takes for the top to reach the bottom.)
Compare your answer(s) to each other and the time it takes a mass to fall a height H
in a uniform gravitational field. Does the correct answer make dimensional and physical
sense?

¢) Evaluate the answers to a) and b) for A = 0.50 m?, a = 0.5 cm?, H = 100 cm.
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Problem 578. problems-1/fluids-pr-weight-of-immersed-mass.tex

T?

_-_
g

A block of density p and volume V is suspended by a thin thread and is immersed completely
in a jar of oil (density p, < p) that is resting on a scale as shown. The total mass of the oil and
jar (alone) is M.

a) What is the buoyant force exerted by the oil on the block?

b) What is the tension 7" in the thread?

¢) What does the scale read?
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Problem 579. problems-1/fluids-pr-weight-of-immersed-mass-soln.tex

a) What is the buoyant force exerted by the oil on the block?

Fy = pov.g

b) What is the tension 7" in the thread?
T+ pVg—mg=20
or (since mg = pVyg):
T=(p—po)Vyg

c¢) What does the scale read?
T+W =mg+ Mg

so combining the previous two equations or alternatively directly from Newton’s Third
Law:
W = Mg+ p,Vg
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11.1 Oscillations

11.1.1 Multiple Choice Problems

Problem 580. problems-1/oscillation-mc-change-resonance-3.tex

~ Aw

W, W

In the figure above, the curve shows the (average) power P,ys(w) delivered to a damped, driven
oscillator with equation of motion:

d*x dz
My + bE + kx = Fy cos(wt)

Recall that the “width” of the curve Aw is the full width at half maximum power. Suppose
the damping constant b is doubled while k of the spring, m, and the driving force magnitude
Fy are kept unchanged. What happens to the curve?

a) The curve becomes narrower (smaller Aw) at the same frequency;

b

The curve becomes narrower at a higher frequency;

)
)
c¢) The curve becomes broader (larger Aw) at the same frequency
d) The curve becomes broader at a different frequency;
)
)

e) The curve does not change;

f) There is not enough information to determine the changes of the curve.
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Problem 581. problems-1/oscillation-mc-increase-k-m-resonance-curve.tex

The curve in the figure shows the (average)
power Pyyg(w) delivered to a damped, driven
oscillator. Recall that the “width” of the curve
Aw is the full width at half maximum

- Aw power as shown. If both k£ of the spring and
the mass m are doubled while the damping
constant b and driving force magnitude Fj are
kept unchanged, what happens to the curve?

W, ®

The curve does not change;

The curve becomes broader (larger Aw) at the same frequency
The curve becomes broader at a different frequency;

The curve becomes narrower (smaller Aw) at the same frequency;

The curve becomes narrower at a higher frequency;

Ooddod

There is not enough information to determine the changes of the curve.
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Problem 582. problems-1/oscillation-mc-increase-k-m-resonance-curve-soln.tex

The curve in the figure shows the (average)
power Pyyg(w) delivered to a damped, driven
oscillator. Recall that the “width” of the curve
Aw is the full width at half maximum

- Aw power as shown. If both k£ of the spring and
the mass m are doubled while the damping
constant b and driving force magnitude Fj are
kept unchanged, what happens to the curve?

W, w

The curve does not change;

The curve becomes broader (larger Aw) at the same frequency
The curve becomes broader at a different frequency;

The curve becomes narrower (smaller Aw) at the same frequency;

The curve becomes narrower at a higher frequency;

OOXOOO

There is not enough information to determine the changes of the curve.

Solution:

does not change. But:

°=AeT 8 b
and
~ 2mwo  Vakmo _wo _ Aw
QHGW - b - b - 2Q - Awnew : A(")HeW - 2

independent of Fy. Since ) doubles when k and m double together, Aw goes down by a
factor of % so the curve becomes narrower (smaller Aw) at the same frequency;
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Problem 583. problems-1/oscillation-mc-stride-resonance.tex

You have to take a long hike on level ground, and are in a hurry to finish it. On the other hand,
you don’t want to waste energy and arrive more tired than you have to be.

Your stride is the length of your steps. Your pace is the frequency of your steps, basically the
number of steps you take per minute. Your average speed is the product of your pace and your
stride: the distance travelled per minute is the number of steps you take per minute times the
distance you cover per step.

Your best strategy to cover the distance faster but with minimum additional energy consumed
is to:

a) Increase your stride but keep your pace about the same.

b) Increase your pace, but keep your stride about the same.

d) Increase your stride but decrease your pace.

Increase your pace but decrease your stride.

)
)
c¢) Increase your pace and your stride.
)
e)

(in all cases so that your average speed increases).

Note well that this is a physics problem, so be sure to justify your answer with a physical
argument. You might want to think about why one answer will probably accomplish your goal
within the constraints and the others will not.
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Problem 584. problems-1/oscillation-mc-two-damped-oscillators.tex

Two tdentical springs support two masses of the same size and shape in the same damp-
ing fluid. However, mp = 2m 4.

Both systems are pulled to an initial displacement from equilibrium of X, and released, and
the exponential decay times 74 and 75 required for the initial amplitude of oscillation of each
mass to decay to Xpe~! is measured. We expect that:

a

b

d) 474 =73

)
)
c) TA=
) 4
)

e) We cannot predict the relative decay times without more information.



11.1. OSCILLATIONS 653

11.1.2 Short Answer Problems

Problem 585. problems-1/oscillation-sa-damped-oscillation.tex

Two springs with different spring constants (k and 2k, respectively) support two blocks of the
same size and shape, but different masses, mp = 2m . The blocks are fully submerged in
the same damping fluid, therefore, they have the same coefficient of damping.

Both systems are pulled to an initial displacement from equilibrium and released to undergo
damped oscillations with the blocks remaining fully submerged in the fluid at all times. The
natural frequencies of two systems are wy and wp, respectively. The measured exponential
decay times of the oscillation amplitude are 74 and 7p, respectively.

w
a) Write down the ratio for natural frequencies: “B =
WA

-
b) Write down the ratio for damping times: Bo=
TA

¢) Which oscillator will damp out its initial energy faster/sooner (A or B): []
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Problem 586. problems-1/oscillation-sa-damped-oscillation-soln.tex

Two springs with different spring constants (k and 2k, respectively) support two blocks of the
same size and shape, but different masses, mp = 2m4. The blocks are fully submerged in
the same damping fluid, therefore, they have the same coefficient of damping.

Both systems are pulled to an initial displacement from equilibrium and released to undergo
damped oscillations with the blocks remaining fully submerged in the fluid at all times. The
natural frequencies of two systems are wa and wp, respectively. The measured exponential
decay times of the oscillation amplitude are 74 and 7p, respectively.

. . LW
a) Write down the ratio for natural frequencies: B = 1
wA

-
b) Write down the ratio for damping times: 2= 2
TA

¢) Which oscillator will damp out its initial energy faster/sooner (A or B):

Solution: “Natural frequencies” here refers to the undamped frequencies w = /k/m, so:

~ V/2k/2m 1

wB

WA VEk/m

The damping time 7 = 2m/b for each of them, so:

TB . 4m/b .

T4 2m/b

We can use @ or T either one to answer this. Let’s use Q@ = mw/b, since w and b are the same.
Then Qp/Q4 = 2, and the one with higher @ loses energy more slowly, so A decays faster.
That’s also obvious from the comparison of 75 = 274, larger (amplitude) 7 decays more slowly.



11.1. OSCILLATIONS 655

Problem 587. problems-1/oscillation-sa-damping-variation.tex

The damped oscillator above is set in motion at time t = 0. Fill in the following table with
x’s in the provided boxes. 7 is the exponential damping time of the amplitude, and wq is the
natural frequency.:

If b increases: 7 increases decreases remains unchanged. wy increases decreases remains un-
changed

If m increases: 7 increases decreases remains unchanged. wg increases decreases remains un-
changed

If k increases: 7 increases decreases remains unchanged. wy increases decreases remains un-
changed
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Problem 588. problems-1/oscillation-sa-damping-variation-soln.tex

The damped oscillator above is set in motion at time ¢ = 0. Fill in the following table with
x’s in the provided boxes. 7 is the exponential damping time of the amplitude, and wq is the
natural frequency.:

In case you don’t understand the question, recall that a general exponential process is:

() = foe 7
where 7 is the time required for f to decay to 1/e of its value at any time, e.g. f(t+7) = f(t)/e.)

Note well that: y
z(t)Ae™ 2m cos(wW't + 0)
so that the exponential damping time is 7 = 2m/b and scales linearly with m and inversely

with b. On the other hand, the natural angular frequency wy = y/k/m is independent of b.

So increasing b decreases 7 (which damps it faster, as expected) but doesn’t change wy. In-
creasing m increases 7 and decreases wy. Increasing k£ doesn’t change 7 but increases wy.
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Problem 589. problems-1/oscillation-sa-estimate-Q-resonance-curve.tex

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

omega

In the figure above, three resonance curves showing the amplitude of steady-state driven oscil-
lation A(w) as functions of w. In all three cases the resonance frequency wy is the same. Put
down an estimate of the ()-value of each oscillator by looking at the graph. It may help for you
to put down the definition of ) most relevant to the process of estimation on the page.
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Problem 590. problems-1/oscillation-sa-estimate-Q-resonance-curve-soln.tex

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

omega

a) Qq ~ 15— 16 (larger than 10, smaller than 20).
b) Qb ~ 10.

¢) Qc~ 3 —4 (larger than 2, smaller than 5).
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Problem 591. problems-1/oscillation-sa-match-the-solution.tex

You are presented with three identical simple harmonic oscillators, A,B,C, which oscillate with
a known harmonic frequency w. They differ only in their initial conditions. At time t = 0,
the attached masses have an initial position and velocity (z;,v;) given by:

A (za =m0, va=0)

B (xB:O, ’UB:’UQ)

C (z¢ =m0, vo=2zp*w)

where xg and vy are positive numbers not equal to zero in the appropriate units.

Match each set of initial conditions to the corresponding solution from the list of possible
solution forms below. Note that you do not have to identify the specific amplitude A that
corresponds to the initial conditions; you are basically only identifying the correct phase.

Put A, B or C into the correct box, where “No solution present” is a possible answer for one
or more of them:

x(t) = Acos(wt)

x(t) = Acos(wt — m/4)

z(t) = Asin(wt)

x(t) = Acos(wt + 7/4)

No solution with the correct phase present.
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Problem 592. problems-1/oscillation-sa-match-the-solution-soln.tex

You are presented with three identical simple harmonic oscillators, A,B,C, which oscillate with
a known harmonic frequency w. They differ only in their initial conditions. At time t = 0,
the attached masses have an initial position and velocity (z;,v;) given by:

A (za =m0, va=0)

B (xB:O, ’UB:’UQ)

C (z¢ =m0, vo=2zp*w)

where xg and vy are positive numbers not equal to zero in the appropriate units.

Match each set of initial conditions to the corresponding solution from the list of possible
solution forms below. Note that you do not have to identify the specific amplitude A that
corresponds to the initial conditions; you are basically only identifying the correct phase.

Put A, B or C into the correct box, where “No solution present” is a possible answer for one
or more of them:

First is simply z(t) = (A = z¢) cos(wt).
Second is equally simply z(t) = (A = 72) sin(wt).

The third is tricky. We need (at ¢t = 0) cos(¢) = —sin(¢) = @ or ¢ = —7/4=—45° so
2(t) = (A = V2x0) cos(wt — w/4), v(t) = —2zowsin(wt — 7/4).

x(t) = Acos(wt)

(Ca(t) = Acos(wt — 7 /4)

z(t) = Asin(wt)

x(t) = Acos(wt + 7/4)

No solution with the correct phase present.




11.1. OSCILLATIONS 661

Problem 593. problems-1/oscillation-sa-roman-soldiers-bridge-resonance.tex

Roman soldiers (like soldiers the world over even today) marched in step at a constant frequency
— except when crossing wooden bridges, when they broke their march and walked over with
random pacing. Why? What might have happened (and originally did sometimes happen) if
they marched across with a collective periodic step?
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Problem 594. problems-1/oscillation-sa-series-parallel-frequency.tex

k
k k
3m 2m
C

A
k
3k
m m/2
k
S D
B

Find the ratio of the angular frequencies of each spring-mass combination above to wy = \/k/m.

WA _ wp _ we wp _

wo wo wo wo
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Problem 595. problems-1/oscillation-sa-series-parallel-frequency-soln.tex

k
S

B

3m

2m

k
C
3k
m/2

D

Find the ratio of the angular frequencies of each spring-mass combination above to wy = \/k/m.

“A
wo

wo

Solution:
kot = Nk. Hence:

k;/2
3m

we = 2m

“YB _—

V3/3

V6
6

—:wo

wp

Yo
wo

V6

— Yp _
_ o

The idea is simple. For N springs in series, keg = k/N. For N springs in parallel,

k/3 /3
wp =\—— = —5Wo
m 3
k
= 3—:\/6(,00

m/2
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Problem 596. problems-1/oscillation-sa-sho-true-facts.tex
The one-dimensional motion of a mass m is described by x(t) = Asin(wt). Identify the true and

false statements among the following by placing a T in the provided box for true statements
and an F in the provided box for false statements:

a) If A and w are constant (i.e. — independent of time t) the motion is simple
harmonic motion.

b) The mass m starts at ¢t = 0 with zero velocity.
c) If the motion of mass m is simple harmonic oscillation, the potential energy of
1, 2 2

the mass can be written U(z) = 5mwz?.

d) If the motion of the mass m is simple harmonic oscillation, the total force acting

on the mass can be written F, = —mw?z.
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Problem 597. problems-1/oscillation-sa-sho-true-facts-soln.tex

The one-dimensional motion of a mass m is described by x(t) = Asin(wt). Identify the true and
false statements among the following by placing a T in the provided box for true statements
and an F in the provided box for false statements:

a) If A and w are constant (i.e. — independent of time t) the motion is simple harmonic
motion. True
b) The mass m starts at ¢ = 0 with zero velocity. False

c¢) If the motion of mass m is simple harmonic oscillation, the potential energy of the mass
can be written U(z) = £mw?2?. True

d) If the motion of the mass m is simple harmonic oscillation, the total force acting on the
mass can be written F, = —mw?z. True
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Problem 598. problems-1/oscillation-sa-sketch-damped-oscillation.tex

x() 4

(@) | ‘ | ‘ | .

©

(b) | : | | ; .

©

(©) | | | | | - (inset)

A mass m is attached to a spring with spring constant £ and immersed in a damping fluid with
linear damping coeflicient b as shown in the inset figure above. Equilibrium is at z = 0 meters.
At time t = 0 seconds the mass is pulled to (0) = 1 meters and released from rest. The period
of the oscillator in the absence of damping is T' = 2 seconds. On the provided axes with integer
tick-marks above, sketch the following:

a) x(t) in the absence of damping,.
b) x(t) if b/2m = 1/3 (underdamped, assume that w’ ~ wy).
¢) z(t) in the case where b/2m = 7 (critically damped).
The second two curves only need to be qualitatively correct (you don’t have to plot them

exactly), but they should also not be crazily out of scale. You may use e = 2.72 = 3 to make
drawing the curves easier without needing a calculator.
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Problem 599. problems-1/oscillation-sa-sketch-damped-oscillation-soln.tex

X(t) »

RINANYANY

X(t) ]
X(t) 1
(© L \ t

Note the dots to help draw the exponential(s).

a) z(t) in the absence of damping.
b) x(t) if b/2m = 1/3 (underdamped, assume that w’ ~ wy).

c¢) x(t) in the case where b/2m = 7 (critically damped).
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Problem 600. problems-1/oscillation-sa-sketch-oscillation-plus-damping.tex

t(sec)

x(m)

® by

A mass m is attached to a spring with spring constant k& as shown in the inset figure above.

On the provided axes above, sketch x(t), v(t) and a(t), given that at time ¢ = 0 the mass is
pulled to z(0) = Xy = 1 meter (relative to equilibrium) and released from rest, assuming no
damping. The period is T = 1 second, and you should use the tic-marks on the ¢ axis as
seconds. Your graphs should have the correct sign, phase, period, and you should label the
peak positive value in terms of the givens on the ordinate axes.

Suppose that the block is then placed in a damping fluid. On the axes labelled d) below, sketch
the position as a function of time for an oscillator with period T" = 1 seconds and damping time
T = 4 seconds, again assuming that z(0) = Xp = 1 meter.
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N e I I N A e R A O

t(sec)
Problem 601. problems-1/oscillation-sa-sketch-oscillation.tex
@ T seo)
x(mi
b R S — e
(b) et
gt
(inset)
(c) 1 1 1 | | :
gt

A mass m is attached to a spring with spring constant k as shown in the inset figure above.
There ts no damping.

On the provided axes above, sketch z(t), v(t) and a(t), given that at time ¢ = 0 the mass is
pulled to z(0) = Xy = 1 (relative to equilibrium) and released from rest. The period is T' = 2
seconds, and you should use the tic-marks on the ¢ axis as seconds. Your graphs should have
the correct sign, phase, period, and you should label the peak positive value in terms of the
givens on the ordinate axes.
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Problem 602. problems-1/oscillation-sa-sketch-oscillation-soln.tex

and

x(t) = Acos(wt)

v(t) = —Awsin(wt)
a(t) = —Aw? cos(wt)

2
w= % = 7rrad/sec
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11.1.3 Ranking Problems
Problem 603. problems-1/oscillation-ra-compressed-rods-youngs-modulus-scaling.tex

U 2 2

Ak

2 | *

—
< -

A B C D

Rank the magnitude of the compression AL of the rods (made of the same material) above
when a force with magnitude F' is exerted between the ends as shown in case A. Equality is a
possibility. Your answer should look something like C =D > A > B.

] L] L]




672 CHAPTER 11. OSCILLATIONS

Problem 604. problems-1/oscillation-ra-compressed-rods-youngs-modulus-scaling-soln.tex

T 2 or

O ‘ 1$ ‘ Ly
B B

2 | *

|

< >

A B C D

Fast and Easy: The compression AL scales like:

FL

where F' is the same and (since they are all the same material) Y (Young’s Modulus) is the
same. Hence

DiCjA;B
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Problem 605. problems-1/oscillation-ra-compression-three-rods-1.tex

A
LU

2L
2r

r
L
L2
a

b c

In the figure above three rods made out of copper are shown with the dimensions given. In (a),
a mass m is placed on top of the rod (which rests on a rigid table) and the rod is observed to
be compressed and shrinks by a length AL. By what length AL; do you expect rods (b) and
(c) to be compressed by if the same mass m is placed on top of them? (Express your answer
as a pure number times AL,.)

ALy = AL. =
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Problem 606. problems-1/oscillation-ra-compression-three-rods-1-soln.tex

The rule is “stress equals (minus) Young’s modulus times strain” so:

O A
sress—A— I = Stress

or (rearranging, noting same materials have same Y, for case a) where A = 7r?):

FL
ALl = -~
ALl = 3~

Inb) Ay =4A, Ly = L/2,s0 AL, = AL/8. Inc) A, = A/4, L. = 2L, so AL. = 8AL.
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Problem 607. problems-1/oscillation-ra-mass-spring-double-displacement.tex

Two identical masses are attached to two identical springs. The first mass is pulled to a distance
2o from equilibrium. The second one is pulled to a distance 2xg from equilibrium. At time
t = 0 they are released. The first mass reaches its equilibrium point at time ¢, the second one
at time %o.

What is the ratio to/t17
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Problem 608. problems-1/oscillation-ra-mass-spring-double-displacement-soln.tex

Two identical masses are attached to two identical springs. The first mass is pulled to a distance
2o from equilibrium. The second one is pulled to a distance 2xg from equilibrium. At time
t = 0 they are released. The first mass reaches its equilibrium point at time ¢, the second one
at time %o.

What is the ratio to/t17

t
2 1
3]

Solution: This is a very simple problem. The answer is obviously 1, because the period of
an tdeal oscillator does not depend on the amplitude of oscillation!

The algebra to “prove” this answer — which is not required, and should not really be needed to
find it — is that for both masses, the equation of motion is:

]{71:]{72:]{7 mi1 =mg = 1M

d2x k 2w k m
dt2+mx 0 = w T ”m = w,/k

for both masses. The time required to return to equilibrium for either mass is:

SO:

™ m

to=T/4=
12 =T/ oV &

(a quarter of the period) independent of the magnitude of the initial position so:

t
2 _1
ty




11.1. OSCILLATIONS 677

Problem 609. problems-1/oscillation-ra-mass-swing-double-displacement.tex

Two kids are sitting on swings of equal length. One of them has about twice the mass of the
other (but they are about the same height). The lighter one is pulled back to an initial (small)
angle 0. The heavier one is pulled back to a (still small!) angle 26y. At ¢ = 0 they are both
released. It takes the lighter one a time t; to reach the lowest point of his trajectory, and the
heavier one a time ty,.

What is the ratio t5/t;?
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Problem 610. problems-1/oscillation-ra-physical-pendula-periods.tex

A B Cc D

In the figures above, four physical pendulums are drawn. All consist of a light (massless) rod
of length L to the center of mass of different shaped masses connected to the end. All of the
shapes have the same mass M and the same primary length scale R. Rank the periods of
the physical pendulums from lowest (highest frequency!) to the highest (lowest frequency!).
Equality is a possibility.

The moments of inertia of the round objects (about their centers of mass) are:
A) I = SMR? (disk)
B) I = MR? (hoop)
C) I = 2MR? (hollow ball)
)

D) I = 2MR? (solid ball)
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Problem 611. problems-1/oscillation-ra-physical-pendulums-1.tex

In the figure above, three pendulums are suspended from frictionless pivots. The first is a rod
of mass M and length L. The second is a “point” mass M with negligible radius. The third is
a disk of mass M and radius L/2. In all three cases, the center of mass of the pendulum is a
distance L/2 from the pivot and the mass is constrained to rotate around the pivot (physical
pendulum). Rank the angular frequencies (where equality is allowed) so that an answer might
be (but probably isn’t) w, > wp = we.
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Problem 612. problems-1/oscillation-ra-physical-pendulums-2.tex

a b c

In the figure above, three pendulums are suspended from frictionless pivots. The first is a thick
rod of mass M and length L. The second is a “point” mass M with negligible radius on a thin
(massless) rod of length L. The third is a disk of mass M and radius L/4 on the end of a thin
(massless) rod of so that its center of mass is a distance L away from the pivot. In all three
cases, the mass is constrained to rotate around the pivot as a physical pendulum.

Rank the angular frequencies in increasing order (where equality is allowed) so that an
answer might be (but probably isn’t) w, > wp = we.
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Problem 613. problems-1/oscillation-ra-rank-the-damped-frequency.tex

A B
(vacuum) (air) (water)

In the figure above identical masses are connected to identical springs and located in three
different labelled containers. All three masses are pulled to the same distance from equilibrium
and are released from rest. The container A contains a vacuum, container B is filled with
ordinary room-temperature air at 1 atmosphere of pressure, and container C contains water.

Rank the frequencies of the oscillation of the three masses by their container letter, where
(precise) equality is a possibility. That is, a possible answer might be f4 = fo < fp (but
probably isn’t). (It is wise to explain your answer with a few words or an equation.)

[ [
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Problem 614. problems-1/oscillation-ra-rank-the-damped-periods.tex

PR

A B C
(vacuum) (air) (water)

In the figure above identical masses are connected to identical springs and located in three
different labelled containers. All three masses are pulled to the same distance from equilibrium
and are released from rest. The container A contains a vacuum, container B is filled with
ordinary room-temperature air at 1 atmosphere of pressure, and container C contains water.

Rank the period of the oscillation of the three masses by their container number, where (precise)
equality is a possibility. That is, a possible answer might be T, = T, < T}, (but probably isn’t).
Explain your answer with a few words or an equation.
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Problem 615. problems-1/oscillation-ra-rank-the-periods.tex

m m
A B
X k
m g
2m
C

D

In the figure above, rank the periods of each pair of oscillators shown (where equality is
allowed). That is, fill in the boxes in the two expressions below with a <, >, = sign as appro-
priate.

Ta T Tc Tp
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Problem 616. problems-1/oscillation-ra-rank-the-periods-soln.tex

| m m
A B
: k
m g
2m
C

D
The period is inversely proportional to the (angular) frequency {/ —, so:
m

Th <Tg To <Tp
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Problem 617. problems-1/oscillation-ra-series-parallel-frequency-easy.tex

[

k  k  k N

A R~ LM~ LI~ m Cl k | m
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N
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k

N

Rank the oscillation frequencies of the identical masses m connected to the springs in the
figure above from lowest to highest with equality a possibility. The springs have spring
constant k, and you should neglect damping. A possible answer is (as always) D < A= B < C
or the like.
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Problem 618. problems-1/oscillation-ra-series-parallel-frequency-easy-soln.tex

Kk
k  k  k N
A R~ LM~ LI~ m Cl k | m
Ny
k
N
Kk Kk k
BN~  m D R MM~~~ m
k
N

Recall parallel and series addition rules:

ko= Y, =k

iparallel

1 1
ktot: Z :k_z

iseries

Start by evaluating the total effective spring constant for each configuration:

A ks = Ek/3
B kg = 3k
C ka = 2k
D ka = k/2
(11.1)
The angular frequency w; = % = 27 f;, so the frequencies (linear or angular) scale with /k;

as the masses are all equal. Hence:

fa<fp<fe<fa
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Problem 619. problems-1/oscillation-ra-series-parallel-frequency.tex

k k k k
3m
A 2m
C
k
k k
! m m/2
S D
B

Rank the frequencies of the masses on the spring arrangements in the figure above, from lowest
to highest with equality a possibility. Neglect damping. A possible answer is (as always)
D < A= B < C or the like.
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Problem 620. problems-1/oscillation-ra-series-parallel-period.tex

k k k k
3m
A 2m
C
k
k k
! m m/2
S D
B

Rank the period of oscillation of the masses on the spring arrangements in the figure above,
from lowest to highest with equality a possibility. Neglect damping. A possible answer could
be (as always) D < A = B < C but probably isn’t.
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Problem 621. problems-1/oscillation-ra-shear-three-rods-1.tex

w w/2
pmmm— hi2
h—Z=g L/2
] 2L
F F F
. b C

In the figure above, three light wooden boards and their relative dimensions are shown. The
boards are each fixed in a vise (not shown) on the left hand side so that the left end of each board
cannot move. A downward force F is applied at the right hand end of each board. The first
board is bent by this force so that its right hand end is displaced downward by a distance Ay.
By how much are the right hand ends of the other two boards displaced downward? (Express
your answers as multiples of Ay.)

Ay, = x Ay Ay = x Ay
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Problem 622. problems-1/oscillation-ra-shear-three-rods-1-soln.tex

w w/2
w
gy hi2
h—Z L/2
L 7 2L
F - F
b c
a

Solution: Use the formula for shear stress and shear strain:

F Ay
N Ve 4
A L
For the first one (a):
L
Ay=MF—
Y A

defines the scaling. M and F don’t change, but for the second one (b) L — 2L, A — 2A, so
Ayp is unchanged!

For the third one (¢), L — L/2, A — A/4, so Ay — 2Ay.
That is:

Ay, =[1]x Ay Aye =[2]x Ay
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11.1.4 Regular Problems

Problem 623. problems-1/oscillation-pr-bar-and-spring-1.tex

In the figure above a rigid rod of mass M and length L is pivoted in the center with a frictionless
bearing. Its lower end is attached to a spring with spring constant k as shown that is unstretched
(at equilibrium) when the rod is vertical and 6 = 0.

For small displacements s < L (where one can use the small angle approximation), the spring
will exert a restoring force Fy = —ks ~ —k(L/2)60 along the arc of motion of the end of the rod.
It is pulled to an initial small displacement angle 8y and released at time ¢t = 0.

a) What is the period of this oscillator for small oscillations?

b) What is the angular velocity Q) of the rod when it reaches its equilibrium position at

6 = 07 (Note well: Do not confuse wy, the angular frequency of oscillation, and = %,

the angular velocity of the rod! Don’t forget direction!)
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Problem 624. problems-1/oscillation-pr-bar-and-spring-2.tex

In the figure above a rigid rod of mass m and length L is pivoted at the end with a frictionless
bearing. Its lower end is attached to a spring with spring constant k£ as shown that is unstretched
(at equilibrium) when the rod is vertical and 6 = 0.

For small displacements s < L (where one can use the small angle approximation), the spring
will exert a restoring force Fy; = —ks along the arc of motion of the end of the rod. It is pulled
to an initial small displacement angle 8y and released at time ¢ = 0, at which point it will begin
to oscillate with angular frequency wy.

a) Neglecting damping, find the period Tj of this oscillator for small oscillations and
sketch a qualitatively correct graph of 6(t) for the rod. (Note well: both the spring
and gravity contribute to the motion of the rod!)

b) What is the angular velocity of the rod w = % when it reaches its equilibrium position
at # = 07 Do not confuse the angular velocity of the rod with its angular frequency.

¢) Suppose one compares the predicted motion #(t) to the motion one would actually observe
in the real world, where the system surely would be at least weakly damped. Sketch a
graph that is qualitatively correct illustrating what 6(¢) might really look like when
weak damping is taken into account.

(Hint: The moment of inertia of a rod pivoted about one end is %M L?)
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Problem 625. problems-1/oscillation-pr-block-on-vertically-oscillating-plate.tex

A block of mass m is sitting on a plate of mass M. It is supported by a vertical ideal massless
spring with spring constant k. Gravity points down.

a) When the system is at rest, how much is the spring compressed from its completely
uncompressed length?

b) The spring is pushed down an extra distance A and released. Assuming that the mass
m remains on the plate, what is its frequency of vertical oscillation?

¢) What is the maximum value of A such that the small mass m will not leave the plate at
any point in the motion?

Express all answers in terms of m, M, k, g.
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Problem 626. problems-1/oscillation-pr-block-on-vertically-oscillating-plate-soln.tex

A block of mass m is sitting on a plate of mass M. It is supported by a vertical ideal massless
spring with spring constant k. Gravity points down.

a) When the system is at rest, how much is the spring compressed from its completely
uncompressed length?

b) The spring is pushed down an extra distance A and released. Assuming that the mass
m remains on the plate, what is its frequency of vertical oscillation?

c¢) What is the maximum value of A such that the small mass m will not leave the plate at
any point in the motion?

Express all answers in terms of m, M, k, g.

Solution: a) is a static equilibrium question:

(m+ M)g

Fy=—kye—(m+M)g=0 = |ye=—"—"7p

where the negative sign isn’t required in the answer but is useful for part b).

For b) we use N2:

d%y

and change variables to y = y' + ye, cancelling the (constant) term with y, to form the SHOE:

d2y/ dzy/ dzy’
—ky'— kye = =1 )g = —ky' = a2 a2 y' =
ky —k (m+M) proalin ky = (m+M) o T + ) =0

The circled part is w? where w = 27 f so:

w 1 k

I= =V my

It probably isn’t worth taking a point off if students omit the 1/27 piece and give the angular
frequency instead of the frequency, but technically the probably DOES as for the frequency,
not the angular frequency.
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The solution to part c) requires quite a lot of deep insight. First, since:
N — mg = may,

is the equation of motion for the block, and since N > 0 (in the positive direction only) it is
clear that the maximum acceleration of the upper mass will occur when N — 0 and a,,, = —g.
Under no circumstances can the upper block accelerate downward faster than g.

When will its downward acceleration (and that of the underlying plate) equal g7 The answer —
after a bit of meditation — is at the original unstretched/compressed equilibrium of the
spring. In words, when y = 0 the spring exerts no force at all on the plate. If the plate and
block are released together at rest from y = 0, they will both freely fall with an acceleration of
g downward and no normal force between them.

But y = 0 is the same as y, .« = Amax = Ye from part a), or:

Amax = (m +kM)g

so this must be our answer. There are several other ways to get the answer algebraically, but
this one allows us to see why y = 0 must be the maximum height where the spring would not
pull the plate “out from under” the (at best) freely falling block by giving it an acceleration
greater than g downward.
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Problem 627. problems-1/oscillation-pr-box-of-springs.tex

L1111
k k

You are given a mass m, a box full of identical springs each with spring constant k, and a bunch
of stiff wire you can bend and use to fasten the springs together to the wall and the mass in
any combination of series and parallel you like.

I’'ve drawn one such arrangement for you, one that will cause the mass m to oscillate har-
monically on a smooth surface at angular frequency w. Your job is to design an arrangement

of springs that will make the mass oscillate at an angular frequency of \/%, using only the

(uncut) springs in the box.

a) Find the angular frequency of the four-spring oscillator I've drawn.

b) Draw a new arrangement on the bar underneath (or elsewhere on your paper) that will

3k

have an angular frequency of 4/ 3 T’Z . Note well that there is more than one way to get the

right answer, but some ways need (a lot) more springs than others. Try to get an answer
with no more than six springs

c) Prove/show that your answer is correct.
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Problem 628. problems-1/oscillation-pr-car-on-springs-resonance.tex
A car with a mass of M = 1000 kg rests on shock absorber springs with a collective spring

constant of k£ = 10° N/m. It is driving down a road which has raised expansion joints every 5
meters that bounce the car. At what speed would you expect the ride to be roughest?



698

CHAPTER 11. OSCILLATIONS

Problem 629. problems-1/oscillation-pr-damped-oscillation.tex

A mass m is attached to a spring with spring constant k and immersed in a medium with
damping coefficient b. (Gravity, if present at all, is irrelevant as shown in class). The net force
on the mass when displaced by x from equilibrium and moving with velocity v, is thus:

F, =ma; = —kx — bu,

(in one dimension).

a)

Convert this equation (Newton’s second law for the mass/spring/damping fluid arrange-
ment) into the equation of motion for the system, a “second order linear homogeneous
differential equation” as done in class.

Optionally solve this equation, finding in particular the exponential damping rate of the
solution (the real part of the exponential time constant) and the shifted frequency w’,
assuming that the motion is underdamped. You can put down any form you like for
the answer; the easiest is probably a sum of exponential forms. However, you may also
simply put down the solution derived in class if you plan to just memorize this solution
instead of learn to derive and understand it.

Using your answer for w’ from part b), write down the criteria for damped, underdamped,
and critically damped oscillation.

Draw three qualitatively correct graphs of x(t) if the oscillator is pulled to a position xg
and released at rest at time t = 0, one for each damping. Note that you should be able to
do this part even if you cannot derive the curves that you draw or w’. Clearly label each
curve.
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Problem 630. problems-1/oscillation-pr-disk-with-rim-weight.tex

A uniform disk of radius R and mass 2m can freely
y rotate about a fixed frictionless horizontal axis pass-
ing through its fixed center P as shown. The disk
has a point mass m fixed on its rim so that in equi-
=) z(out) X librium, this mass is at the lowest point (6 = 0).
e
R :6}‘,\ At time t = 0, the disk is gently rotated by the
\\\m g small, positive angle 0y (“out” or +2) as shown
and released from rest. Answer the following ques-
tions:

a) Just after it is released, what is the net torque vector 7 about P acting on the disk (mag-
nitude and direction) as a function of 6 and the givens? Use the provided coordinate
frame for direction.

b) After the disk is released, it oscillates. What is the angular frequency w of the oscillation?

¢) What is ﬁ(t), the angular velocity of the point mass as a function of time? Again, give
direction too!
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Problem 631. problems-1/oscillation-pr-disk-with-rim-weight-soln.tex

A uniform disk of radius R and mass 2m can freely rotate about a fixed frictionless horizontal
axis passing through its fixed center P as shown. It has a point mass m fixed on its rim, so that
in equilibrium, the disk is oriented such that & = 0. At time ¢ = 0, the disk is gently rotated
by the small, positive angle 0y (out or 2) as shown and released from rest.

a) Just after it is released, what is the net torque wector 7 about P acting on the disk
(magnitude and direction as a function of 6 and the givens, using provided coordinate
frame for directions)?

b) After the disk is released, it oscillates. What is the angular frequency w of the oscillation?
c¢) Find 6(t), i.e., the angular position of the point mass as a function of time.
Solution: a) Using the right hand rule and expression for the magnitude of the cross-product
(easiest, not only):
7 =7 x F = —mgRsin(f) (out of the page or ) — 2

It only asks for the magnitude though, so to be safe we should probably eliminate both the sign
and the indication of direction and write:

7 = mgRsin(6p)

For b), following the usual recipe for oscillator problems, we write Newton’s Second Law for
the (rotational) motion:
1 d*0 d?0
T =—mgRsin(f) = la = <§(2m)R2 + mR2> ol 2mR2W
We use the small angle approximation sin(f) ~ 6, rearrange this into a (standard form) equation
of motion and circle/identify w?:

d®w  mgR d?>w 9 g
T+ ompn® = g + (= 55) =0
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w=,/L
2R

Finally, c¢) is now easy. It starts at its maximum angle, at rest, and oscillates like:

01(t) = B cos Q/%)

SO
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Problem 632. problems-1/oscillation-pr-inelastic-collision-mass-on-spring.tex

collision

A bullet of mass m, travelling at speed v, hits a block of mass M — m with a pre-drilled hole
resting connected at the equilibrium position to a connected spring with constant k& and sticks
in the hole. The block is sitting on a frictionless table (i.e. — ignore damping). Assume that
the collision occurs at ¢ = 0. All answers below should be given in terms of m, M, k, v.

a) What is the maximum displacement X of the block?
b) What is the angular frequency w of oscillation of the combined bullet-block system?

c) Write down x(t), the position of the block as a function of time.
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Problem 633. problems-1/oscillation-pr-inelastic-collision-mass-on-spring-soln.tex

a) What is the maximum displacement X of the block?

First, momentum conservation in the inelastic collision:
p=pi=mv=Mvy=py
Second, energy conservation after the collision:
P 1

Ei=Kj=-—=

=517 Zngsz:Ef

b) What is the angular frequency w of oscillation of the combined bullet-block system?

It’s just the usual angular frequency for the combined bullet+block mass M:

k
w=14/—

M

c) Write down z(t), the position of the block as a function of time

This is a simple harmonic oscillator. It starts at the origin at time ¢ = 0, so:

x(t) = Xgsin(wt)
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Problem 634. problems-1/oscillation-pr-mass-on-spring-damped.tex

A mass m is attached to a spring with spring constant k and immersed in a medium with
damping coefficient b. The net force on the mass when displaced by x from its equilibrium
position is thus:

F, =ma,; = —kx — bu,

Convert this equation (Newton’s second law for the mass/spring/damping fluid arrangement)
into a second order linear homogeneous differential equation and solve it, finding the damping
rate and the shifted frequency w’. You may leave the final answer in exponential form or convert
it to cosine as you wish.

Also Draw a qualitatively correct graph of x(t) if the oscillator is pulled to a position xg and
released at rest at time ¢ = 0. Note that you should be able to do this part even if you cannot
derive the curves that you draw or w’'.
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Problem 635. problems-1/oscillation-pr-minimize-period-of-disk.tex

A uniform disk of mass M and radius R has a hole drilled in it a distance 0 < z < R from its
center. It is then hung on a (frictionless) pivot, pulled to the side through a small angle 6,
and released from rest to oscillate harmonically.

a) What is the moment of inertia of the disk about this pivot?

b) Write 7 = T« for this disk, make the small angle approximation, and turn it into the
differential equation of motion.

c) Write an expression for 7', the period of oscillation of the disk, as a function of d.

d) 5 point extra credit bonus question! What value of d minimizes this period? That is,
if we wanted to make a disk oscillate with the shortest possible period, how far from the
end would we drill a pivot hole?
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Problem 636. problems-1/oscillation-pr-minimize-period-of-rod.tex

A rod of mass M and length L is pivoted a distance x from the center as shown above. Gravity
acts on the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

b) Write 7 = I« for this rod, make the small angle approximation, and turn it into the
differential equation of motion. Use this to write an expression for T', the period of
oscillation of the rod, as a function of x.

c) What value of  minimizes this period? That is, if we wanted to make a rod oscillate
with the shortest possible period, how far from the end would we drill a pivot hole?



11.1. OSCILLATIONS 707

Problem 637. problems-1/oscillation-pr-minimize-period-of-rod-soln.tex

A rod of mass M and length L is pivoted a distance x from the center as shown above. Gravity
acts on the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

1
I = EJWL2 + Ma?  (parallel axis theorem)

b) Write 7 = I« for this rod, make the small angle approximation, and turn it into the
differential equation of motion. Use this to write an expression for T, the period of
oscillation of the rod, as a function of x.

d?0

pri

1
T=—-Mgzrsinf = <EML2 —|—Mx2>

or (linearizing and rearranging):

d’6 Mgzx
AR (R CR— O
@zt <1—12ML2+Ma;2>

1/2
u)_2_71_ Mgz
T LML? 4+ Ma?

112 g 1/2
T=2n—"+Z%
7T<12g:c +g>

so that:

and:

c) What value of x minimizes this period? That is, if we wanted to make a rod oscillate
with the shortest possible period, how far from the end would we drill a pivot hole?

Easiest, we can ignore the square root and just set the derivative of the contents of the
square root to zero and solve for x:



708 CHAPTER 11. OSCILLATIONS

d 1L2+3: _ 1L2+1_0
de \12gx  g¢g)  12g22 g

or:
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Problem 638. problems-1/oscillation-pr-pendulum-with-spring.tex

In the figure above a mass m on the end of a massless string of length L forms a pendulum. A
light (massless) spring of spring constant k is attached to the mass so that for small oscillations
s < L (where one can use the small angle approximation), Fs = —ks where s is the distance
along the arc of motion from the equilibrium position in the center. When released, both
gravity and the spring contribute to its motion, with the force exerted by the spring remaining
approximately tangent to the trajectory throughout.

a) Find the period of this oscillator for small oscillations.

b) If it is started at an angle 6y and released, how fast is the mass m moving as it crosses
equilibrium at 6 = 07



710 CHAPTER 11. OSCILLATIONS

Problem 639. problems-1/oscillation-pr-pendulum-with-spring-soln.tex

mg sirb

a) Find the period of this oscillator for small oscillations.

Start with Newton’s Second Law, using the force diagram above and (for small angles)
treating the spring force as if it acts along the curved tangent to the circle:

. . d?s d*0
—ks —mgsin(0) = —kLf — mgsin(0) = Mg = mLW
. 0k d*0 k
g g
GO B Iy YT (L9 g
" m +L9 dt2+<m+L> 0
~ Ar? k kL
2_STC _ K 9 _RLtmg
e TRt LT L
and
mL
T=2
m kL + mg

b) If it is started at an angle 6y and released, how fast is the mass m moving as it crosses
equilibrium at 6 = 07
Umax = wlLBg
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Problem 640. problems-1/oscillation-pr-physical-pendulum-ball-on-stick.tex

A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform
ball of mass M and radius R. The rod has length L from the pivot point to the center of the
ball. At time ¢ = 0 the ball is released from rest when the rod is at an initial small angle 6y
with respect to its vertical equilibrium position.

Answer all the questions below in terms of M, R, L,g,0,. You may make the small angle
approximation where appropriate.

a) Determine the equation of motion for the system, solving for oo = %.

b) Determine the angular frequency of oscillation w and write down 6(t) for the ball.

¢) Find the maximum speed v of the ball. Is this larger or smaller than it would have been
if the ball had been a point mass M at the end of the rod? Why?
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Problem 641. problems-1/oscillation-pr-physical-pendulum-disk-on-stick-1.tex

A physical pendulum is constructed from a thin rod of negligible mass rigidly inserted into a
uniform disk of mass M and radius R. The rod has length L from the pivot point at the top
of the rod to the center of the disk. At time ¢t = 0 the disk is released from rest when the rod
is at an initial small angle 6y with respect to its vertical equilibrium position.

Answer all the questions below in terms of M, R, L,g,0y. You may make the small angle
approximation where appropriate.
a) Find the vector torque T about the pivot point at the instant the ball is released, as-
suming 6y > 0 (positive) as drawn.

b) Determine the period T of the resulting oscillation.

c¢) Find the maximum speed v of the center of mass of the disk as it oscillates.



11.1. OSCILLATIONS 713

Problem 642. problems-1/oscillation-pr-physical-pendulum-disk-on-stick.tex

A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform
disk of mass M and radius R. The rod has length L from the pivot point to the center of the
disk. At time t = 0 the disk is released from rest when the rod is at an initial small angle 6,
with respect to its vertical equilibrium position. You may make the small angle approximation
where appropriate.

a) Determine the equation of motion for the system, solving for o = %.

b) Determine the angular frequency of oscillation and write down the harmonic motion
solution 6(t) for the disk.

c¢) Find the maximum speed v of the disk.

d) Is this larger or smaller than it would have been if the disk had been a point mass M at
the end of the rod? Why?
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Problem 643. problems-1/oscillation-pr-physical-pendulum-disk-on-stick-v0-only.tex

A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform
disk of mass M and radius R. The rod has length L from the pivot point to the center of the
disk. At time ¢ = 0 the disk is sitting in its equilibrium position 8 = 0 and is given as sharp
blow so that it has an initial speed of vg to the right. The resulting oscillation is “small”:
you may make the small angle approximation where appropriate.

a) Draw the situation at a time that the pendulum has swung through an arbitrary angle 6.

Determine the equation of motion for the system, solving for a = %.

b) Determine the angular frequency of oscillation and write down the harmonic motion
solution 0(t) for the disk. (Hint: What is the maximum angular velocity of the pendu-
lum?)

¢) Find the maximum angle 6, that the disk reaches.

d) Is angle fax larger or smaller than it would have been if the ball had been a point mass
M at the end of the rod started with the same initial velocity? Why?
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Problem 644. problems-1/oscillation-pr-physical-pendulum-disk.tex

A disk of mass M and radius R is pivoted at the rim
and hung from a wall as shown above. Gravity acts on
the disk, pulling its center of mass down (as usual).

a) What is the moment of inertia of the disk about
this pivot?

b) Assuming that it is at the small angle +60 drawn
to the left, find the differential equation of motion
for this system.

c¢) Identify the angular frequency and use it to write
an expression for T, the period of oscillation of the
disk.

d) Write down 6(t) for the disk, assuming that it
starts at time t = 0 with angular position
0(0) = 0 and angular velocity 22(0) = Q.

I= T = 0(t) =
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Problem 645. problems-1/oscillation-pr-physical-pendulum-disk-soln.tex

OSCILLATIONS

A disk of mass M and radius R is pivoted at the rim
and hung from a wall as shown above. Gravity acts on
the disk, pulling its center of mass down (as usual).

this pivot?

for this system.

disk.

a) What is the moment of inertia of the disk about

b) Assuming that it is at the small angle +60 drawn
to the left, find the differential equation of motion

c¢) Identify the angular frequency and use it to write
an expression for T, the period of oscillation of the

d) Write down 6(t) for the disk, assuming that it
starts at time t = 0 with angular position
0(0) = 0 and angular velocity 22(0) = Q.

I= §MR? T = 1/@w
2 g

Solution: Use the parallel axis theorem to find:

Next, use N2 for torque about the pivot:

d*0
T=—MgRsinf = gMRZW =Ia

Make the small angle approximation and rearrange/cancel to get:

220
av 9—0
az "

where the circled term is w?. From this:

472 2g 6R
2
YT T2 T 3R 1

o(t)

Finally, Note Well that these are one of our “special” initial conditions. For these 1.C.s:

0(t) = % sin(wt)
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so that:
Q(t) = Qg cos(wt)

Substituting in w, this is thus:
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Problem 646. problems-1/oscillation-pr-physical-pendulum-disk-with-hole.tex

A uniform disk of mass M and radius R has a hole drilled in it a distance 0 < z < R from its
center. It is then hung on a (frictionless) pivot, pulled to the side through a small angle 6,
and released from rest to oscillate harmonically.

a) What is the moment of inertia of the disk around this pivot?

b) Write down the differential equation of motion for this physical pendulum. Circle w?.
c¢) Find the period of the physical pendulum as a function of (possibly) z, M, R, and g.
)

d) Write down the solution to the equation of motion, 6(t).
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Problem 647. problems-1/oscillation-pr-physical-pendulum-grandfather-clock.tex

A Grandfather clock’s pendulum is constructed from a thin rod of negligible mass inserted into
a uniform disk of mass M = 1.0 kg and radius R = 5.0 cm. The rod has a length L from the
pivot point to the center of the disk that can be adjusted from 0.20 m to 0.30 m in length so
that the clock keeps the correct time. When the clock runs, its pendulum oscillates through a
maximum angle of §y = 0.05 radians, which is a “small angle”. Use g = 10 m/sec? and neglect
drag.

a) Algebraically determine the (differential) equation of motion for the system, making the
small angle approximation to put it in the form of a simple harmonic oscillator equation.

b) Write down the algebraic function that describes (t), the angle that the pendulum makes
as a function of time, assuming it starts from rest at 6(0) = 0y at t = 0.

c) The clock keeps correct time when the period of its pendulum is 7" = 1 second. What
should L be (to 2 significant digits) so that this is true. (Use the algebraic form for w?
from your answer to part a to solve for L.)

d) Suppose one replaces the disk at the end with an identical mass concentrated in a very
small (point-like) sphere. Will the clock run fast or slow?
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Problem 648. problems-1/oscillation-pr-physical-pendulum-rod.tex

A rod of mass M and length L is pivoted at one end, a distance L/2 from the center as shown
above. Gravity acts on the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

b) Find the differential equation of motion for this system.

¢) Write an expression for T, the period of oscillation of the rod.

)
)
)
d) Write down 6(t) for the rod, assuming that it starts at time ¢ = 0 with angular position
f(t = 0) = 0 and angular velocity Z—f = Q(t = 0) = Qp. (Assume that the resulting

oscillation is through a “small angle”.)
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Problem 649. problems-1/oscillation-pr-physical-pendulum-rod-soln.tex

W,
&

) (in +)

Mg

A rod of mass M and length L is pivoted at one end, a distance L/2 from the center as shown
above. Gravity acts on the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

1
I=-ML?
3

b) Find the differential equation of motion for this system.

MgL 1 ,d%0
T=-— 81n(0):Ia:§ML §rel
or 20
39 .
72 + 3 sin(f) =0
and finally, the small angle approximation gives you:
d?0 3
Sl
dt?2 2L

c) Write an expression for 7', the period of oscillation of the rod.

o _ 4m* 39
T2 2L
SO
T =27 %
39

d) Write down 6(t) for the rod, assuming that it starts at time ¢ = 0 with angular position
df

f(t = 0) = 0 and angular velocity o= Q(t = 0) = Qp. (Assume that the resulting
oscillation is through a “small angle”.)

0(t) == % sin(wt)
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Problem 650. problems-1/oscillation-pr-rolling-wheel-and-spring.tex

(eq)

A spring with spring constant k is attached to a wall and to the axle of a wheel of radius R,
mass M, and moment of inertia I = SMR? that is sitting on a rough floor. The wheel is
stretched a distance A from its equilibrium position and is released at rest at time ¢ = 0. The
rough floor provides enough static friction that, for this value of A, the wheel rolls without
slipping.

a) When the displacement of the wheel from its equilibrium position is x and the speed of
center of mass of the wheel is v, what is its total mechanical energy?
b) What is the maximum velocity vyax of the wheel?

¢) What is the angular frequency w of the oscillation, of the center of mass of the wheel as
it rolls back and forth? (Note that this is not the angular velocity €2 of the rolling wheel!)

d) Challenge! Find the largest amplitude A,y that the wheel can have before it starts to
slip.
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Problem 651. problems-1/oscillation-pr-three-block-inelastic-collision.tex

L/2 L/2
k

sl

+X

Two blocks of mass m and 2m are resting on a frictionless table, connected by an ideal (massless)
spring with spring constant k at its equilibrium length L. A third block of mass m is moving to
the right with speed vy as shown. It collides with and sticks to the block of mass m connected
to the spring (forming a new “block” of mass 2m on the left hand end of the spring).

We wish to find the position of both the left and the right hand blocks as functions of time.
This is a challenging problem and will require several steps of work. Hints: Think about what
is conserved both during the collision and during the subsequent motion of the blocks. Try
to visualize this motion. Finally, the motion of the blocks is simplest in the center of mass
frame.

The following questions will guide you through the work:

a)

Let the origin of the laboratory frame be the location of the center of mass of the system
at the instant of collision. Write an expression for x.y(t), the position of the center of
mass as a function of time.

What is the total kinetic energy of the system immediately after the collision?

What is the kinetic energy of the system at the instant (some time later) that the blocks
are travelling with the same speed? (This is the kinetic energy of the center of mass
motion alone.)

At this instant, the total compression of the spring is maximum with some magnitude
Tmax- Find Tmax.

Write expressions for z;(t) and x.(t), the position of the left hand and right hand blocks
relative to the center of mass of the system.

Add these functions to x.y(t) to find x;(t) and z,(t), the position of the two blocks as a
function of time.

Differentiate these solutions to find v;(t) and v,(¢), and verify that your answer obeys
the initial condition v;(0) = wvo/2, v,(0) = 0. Your overall solution should describe an
“inchworm” crawl of the spring as first one mass momentarily moves at speed vy/2 with
the other momentarily at rest, then vice versa.
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Problem 652. problems-1/oscillation-pr-torsional-oscillator-collision.tex

4

The torsional oscillator above consists of a disk of mass M and radius R connected to a stiff
supporting rod. The rod acts like a torsional spring, exerting a restoring torque:

T, = —K0O

if it is twisted through an angle 6 counterclockwise around the z axis (see inset above). k is the
positive torsional spring constant. This torque will make any object with a moment of inertia
that is symmetrically attached to the rod rotationally oscillate around the z axis of the rod
as shown.

A second identical disk also of mass M and radius R, rotating around their mutual axis at an
angular speed (g, is dropped gently onto the stationary first disk from above and sticks to it
(so that they rotate together after the collision). At the instant of this angular collision, the
disks have zero angular displacement (i.e. are at the equilibrium angle, 6y = 0)!.

a) Find the final angular speed {2y of the two disks moving together immediately after the
collision (and before the disks have time to rotate).

b) Find the energy that was lost in this (inelastic) rotational collision.

¢) From the torque equation given above, find the differential equation of motion for 6(t)
for the two disks moving together after the collision. Identify w? (the angular frequency
of the oscillator after the collision) in this equation, and write down the solution 6(t)
in terms of Qf, x, M and R. You do not have to substitute your answer to a) for Q.

!Note that I'm using a capital omega Q = df/dt to help you keep track of the angular speed 2 of the disks
and angular frequency w of the oscillator separately below. If you cannot remember the moment of inertia of
a disk in terms of M and R, use the symbol I; for the moment of inertia of a single disk where appropriate in
your answers (and lose 2 points).
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Problem 653. problems-1/oscillation-pr-torsional-oscillator-spring-hard.tex

Frictionless table and axle looking down

Q, (out)

fixed bar

In the figure above, a disk of radius R and mass M is mounted on a nearly frictionless axle.
A massless spring with spring constant k is attached to a point on its circumference so that it
is in equilibrium as shown. The disk is then lightly struck at time ¢ = 0 so that it is given a
small instantaneous counterclockwise angular velocity of wy while it is still at the equilibrium
position, and it subsequently oscillates approximately harmonically through a small maximum
angle fy. Note: Iy = %M R? about its center of mass.

a) Find the angular frequency wy of its oscillation, assuming that the axle is frictionless and
exerts no torque on the disk. (Note well that this is not the same thing as the initial
angular velocity of the disk!)

b) Find the angle 6y through which it will rotate before (first) coming momentarily to rest
in this frictionless case.

c) Suppose that the axle exerts a weak “drag” torque on the disk when the disk rotates. Do
you expect the frequency of oscillation to be larger, smaller, or the same as wy once drag
is taken into account? (Note that you do not have to derive an answer, but you should
justify it on intuitive grounds.)

d) Draw a qualitatively correct graph of 0(t), the angle the disk has rotated through (relative
to equilibrium) as a function of time when drag/friction is included as in c).

(Continued workspace on next page)
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(Continuation of oscillator problem)
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Problem 654. problems-1/oscillation-pr-torsional-oscillator-spring-init-omega0.tex

A disk of radius R and mass M is mounted on a

frictionless axle. A massless spring with spring

constant k is attached to a point on its circum-

ference so that it is in equilibrium as shown.
Frictionless table and axle looking down The disk is then lightly struck at time ¢ = 0 so
that it is given a small instantaneous counter-
clockwise angular velocity of g while it is still
at the equilibrium position, and it subsequently
oscillates approximately harmonically through
a small maximum angle 6.

a) Find the angular frequency w of its oscil-
lation. You may want to obtain the dif-
ferential equation of motion first.

I Yy I YN
x
@
Q0

b) Find the angle 6y through which it will
rotate before (first) coming momentarily
to rest.

fixed bar

c) Write down (or find) 6(t), the angle the
disk rotates through (relative to equilib-
rium) as a function of time.
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Problem 655. problems-1/oscillation-pr-torsional-oscillator-spring-init-omega0-soln.tex

A disk of radius R and mass M is mounted on a

frictionless axle. A massless spring with spring

constant k is attached to a point on its circum-

ference so that it is in equilibrium as shown.
Frictionless table and axle looking down The disk is then lightly struck at time ¢ = 0 so
that it is given a small instantaneous counter-
clockwise angular velocity of g while it is still
at the equilibrium position, and it subsequently
oscillates approximately harmonically through
a small maximum angle 6.

a) Find the angular frequency w of its oscil-
lation. You may want to obtain the dif-
Xeq ferential equation of motion first.

b) Find the angle 6y through which it will
rotate before (first) coming momentarily
to rest.

fixed bar

c) Write down (or find) 6(t), the angle the
disk rotates through (relative to equilib-
rium) as a function of time.

Solution: For a), start with N2 for rotation, using the spring force as being approximately
perpendicular to R throughout in the torque. At an arbitrary time, when the angle of rotational
displacement is 6 (out, positive) as shown:

d’0

1 2
r=—RF =R xk(Rb) =Ila= MR~

(where we've used s = Rf and F = ks as the magnitude of the spring force at the angle #). We
simplify and put it in standard SHOE form:

ﬁ—k%e—o = |lw=+ %
a2~ M~ a M

For b), we note that this is one of our special cases so that:

0(t) = Opsin(wt) = Q(t) = wbpcos(wt) = Qycos(wt) = Oy= %

| M
90 — %QO

or

This instantly gives us c):
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If you differentiate this with respect to time, it obviously gives you precisely that:

Q(t) = Qg cos (\/%15)

as expected /required.
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Problem 656. problems-1/oscillation-pr-torsional-oscillator-spring-init-theta0.tex

Frictionless table and axle looking down
O (out +)

_R)

fixed bar

In the figure above, a disk of radius R and mass M is mounted on a vertical frictionless axle.
A massless spring with spring constant k is attached to a point on its circumference so that it
is in equilibrium as shown. The disk is then rotated through a small angle 8y and is released,
from rest, at time ¢ = 0. It subsequently oscillates approximately harmonically. (Use out of
the page for positive 6.)

a) Find the angular frequency w of its oscillation. You may want to obtain the differential
equation of motion first.

b) Write down (or find) 6(t), the angle the disk rotates through (relative to equilibrium) as
a function of time.

c¢) Find the maximum rotational angular velocity g of the disk as it rotates.
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Problem 657. problems-1/oscillation-pr-torsional-oscillator-spring-init-theta0-soln.tex

fixed bar

a) The magnitude of the spring force acting on the disk is (for small angles ) is:
F =kAxz=EkR0
(pulling/pushing back to equilibrium for direction). This exerts a torque:

d?0

1 1
T =—kR*0 2MRa 2MR 2

This can be rearranged into SHOE:

d?0 2k
az Tar? =0
where:
w P %
VM
b) Then:
[ 2k
0(t) = 6y cos( Mt)
c) And:

Qt) = —whp sin(wt) = Qy =wby = %90
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Problem 658. problems-1/oscillation-pr-vertical-bar-and-spring-2.tex

A uniform vertical bar of mass M and length L is pivoted at the bottom. A spring with spring
constant k is attached a height L/3 over the pivot. This spring is strong enough that the
bar will oscillate harmonically about the vertical if it is tipped over to a small angle 6 and
released.

Find:

a) The total torque (magnitude and direction, where 6 is positive into the page as shown)
due to both gravity and the spring as a function of 6.

b) What is the angular frequency w of the bar as it oscillates? Recall that the moment of
inertia of a uniform bar is %M L?.

¢) What is the smallest value that k can have such that the bar is in stable equilibrium in the
vertical position? [If the spring constant is larger than this smallest value of k, the spring
can sustain oscillations of the bar and does not fall over if perturbed from equilibrium.]
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Problem 659. problems-1/oscillation-pr-vertical-bar-and-spring.tex

A uniform vertical bar of mass M and length L is pivoted at the bottom. A spring with spring
constant k is attached a height L/2 over the pivot. This spring is strong enough that the bar
will oscillate harmonically about the vertical if it is tipped over to a small angle 6 and released.

Find:

a) The total torque (magnitude and direction, where into the page is positive 6 as shown)
due to both gravity and the spring as a function of 6.

b) What is the angular frequency w of the bar as it oscillates? Recall that the moment of

inertia of a uniform bar is %M L2,

¢) What is the smallest value that k can have such that the bar is in stable equilibrium in the
vertical position? [If the spring constant is larger than this smallest value of k, the spring
can sustain oscillations of the bar and does not fall over if perturbed from equilibrium.]
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Problem 660. problems-1/oscillation-pr-youngs-modulus.tex

A cylindrical bar of material with cross-sectional area A, unstressed length L, and a Young’s
Modulus Y is subjected to a force F' that stretches the bar as shown. The bar behaves like an
elastic “spring”, pulling back with a force F' = —kAL.

a) Show that the “spring constant” of the bar is k = AY/L.

b) Show that the energy stored in the bar when it is stretched by length AL is U = %FAL.
This will be easiest if you assume that the bar is a “spring” with the spring constant &
determined in part a).
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12.1 Waves on a String

12.1.1 Multiple Choice Problems

Problem 661. problems-1/waves-mc-fixed-and-free-fundamental-review.tex

Consider a vibrating string of length L = 2 m. It is found that there are successive standing
wave resonances at 50 Hz and 70 Hz. Then the standing wave with the lowest possible frequency
(i.e. the first mode or fundamental mode) has frequency:

and the string has (check one):

\:‘ Either both ends fixed or both ends free

\:l One end (either end) fixed and the other free
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Problem 662. problems-1/waves-mc-fixed-and-free-fundamental-review-soln.tex

Let’s do this one with verbal/conceptual reasoning and not get lost in algebra. The difference
between two successive frequencies is clearly 20 Hz. The frequencies themselves are not integer
multiples of 20 Hz. Therefore this must be the odd harmonic series corresponding to a string
fixed at one end (either end!) and free at the other. We count backwards in our heads by 20’s:
70, 50, 30, 10 — and conclude that the fundamental frequency must be 10 Hz. Note that the
length of the string is irrelevant, although it might be important in some other problem. You
will often have more information than you need in any given problem! Make sure that you
know how to pick out what is important!

Hence:

a) 10 Hz
and

|X’ One end (either end) fixed and the other free
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Problem 663. problems-1/waves-mc-unknown-fixed-and-free-bcs-fundamental.tex

You are given the following information resulting from measurements of the resonant modes
of a string of length L with unknown boundary conditions. You are told that two successive
resonant frequencies are f; = 125 Hz and f;41 = 175 Hz where mode index i counts the
frequencies from the bottom. Select the true statement from the following list:

a) The fundamental frequency is 25 Hz, the string is definitely fixed at both ends, and 125
Hz is the m = 5 fifth harmonic (fifth multiple of the fundamental frequency).

b) The fundamental frequency is 25 Hz, the string is definitely free at both ends, and 125
Hz is the m = 5 fifth harmonic.

¢) The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at
the other, and 125 Hz is the m = 3 third harmonic.

d) The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at
the other, and 125 Hz is the m = 5 fifth harmonic.

e) None of the above are correct. We cannot tell whether the string is fixed at both ends or
free at both ends and/or what harmonic 125 Hz is from this data.
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Problem 664. problems-1/waves-mc-unknown-fixed-and-free-bcs-fundamental-soln.tex

The term “harmonic” refers to integer multiples of the fundamental frequency only!
That is, strings fixed or free at both ends allow all integer multiples of the fundamental
(lowest) frequency — “all harmonics”. Strings that are fixed at one end and free at the other
support only odd integer multiples of the fundamental frequency — “odd harmonics”.

The interval between successive frequencies is 50 Hz. If we count backwards subtracting 50 Hz
from 175 Hz we get the series 175, 125, 75, 25. This tells us that the fundamental frequency is
f1 = 25 Hz. We observe:

25 =1x f;
75=3x fi
125 = 5% fy
175 = 7+ f1

Only odd multiples of f; occur, so we know the string is fixed at one end and free at the
other. 125 is then the fifth multiple of fi, which according to our definition above is the fifth
harmonic.

a) The fundamental frequency is 25 Hz, the string is definitely fixed at both ends, and 125
Hz is the m = 5 fifth harmonic (fifth multiple of the fundamental frequency).

b) The fundamental frequency is 25 Hz, the string is definitely free at both ends, and 125
Hz is the m =5 fifth harmonic.

c) The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at
the other, and 125 Hz is the m = 3 third harmonic.

The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at
the other, and 125 Hz is the m = 5 fifth harmonic.

e). None of the above are correct. We cannot tell whether the string is fixed at both ends or
free at both ends and/or what harmonic 125 Hz is from this data.
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Problem 665. problems-1/waves-mc-unknown-fixed-bes-fundamental-1.tex

You are given the following information resulting from measurements of the resonant frequencies
of a string of length L with unknown boundary conditions. You are told that two successive
frequencies are f; = 200 Hz and f;+1 = 250 Hz for some index 7 that just counts the frequencies
observed from the lowest one (principle harmonic) and is not necessarily a harmonic index.
Select the true statement from the following list:

D The fundamental frequency is 50 Hz, the string is definitely free at both ends, and i = 4.

|:| The fundamental frequency is 100 Hz, the string might be fixed at both ends or free at
both ends, and 7 + 1 = 2.5.

‘:’ The fundamental frequency is 25 Hz, the string might be fixed at both ends or free at
both ends, and 7 = 8.

‘:’ The fundamental frequency is 50 Hz, the string might be fixed at both ends or free at
both ends and ¢ = 4.

D The fundamental frequency is 50 Hz, the string is definitely fixed at one end and free at
the other, and i +1 = 5.
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Problem 666. problems-1/waves-mc-unknown-fixed-bcs-fundamental-1-soln.tex

You are given the following information resulting from measurements of the resonant frequencies
of a string of length L with unknown boundary conditions. You are told that two successive
frequencies are f; = 200 Hz and f;+1 = 250 Hz for some index 7 that just counts the frequencies
observed from the lowest one (principle harmonic) and is not necessarily a harmonic index.
Select the true statement from the following list:

D The fundamental frequency is 50 Hz, the string is definitely free at both ends, and i = 4.

|:| The fundamental frequency is 100 Hz, the string might be fixed at both ends or free at
both ends, and 7 + 1 = 2.5.

|:| The fundamental frequency is 25 Hz, the string might be fixed at both ends or free at
both ends, and 7 = 8.

|X| The fundamental frequency is 50 Hz, the string might be fixed at both ends or free at
both ends and ¢ = 4.

D The fundamental frequency is 50 Hz, the string is definitely fixed at one end and free
at the other, and 7 + 1 = 5.

Solution:  The two frequencies are both integer multiples of fi = 50 Hz. In particular
i =4= fy =4 x50 =4f;. An integer series implies that the string is either fixed or free at
both ends, but not fixed at one end and free at the other.
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Problem 667. problems-1/waves-mc-unknown-fixed-bcs-fundamental.tex

You are given the following information resulting from measurements of the resonant modes
of a string of length L with unknown boundary conditions. You are told that two successive
resonant modes have frequencies of f,;, = 350 Hz and f,,+1 = 400 Hz for some mode index m.
Select the true statement from the following list:

a) The fundamental frequency is 50 Hz, the string is definitely fixed at both ends, and m = 7.
b) The fundamental frequency is 50 Hz, the string is definitely free at both ends, and m = 7.

¢) The fundamental frequency is 50 Hz, the string is definitely fixed at one end and free at
the other, and m = 4.

d) The fundamental frequency is 50 Hz, the string might be fixed or free at both ends, and
m="1.

e) The fundamental frequency is 100 Hz, the string might be fixed or free at both ends, and
m = 3.
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12.1.2 Short Answer Problems

Problem 668. problems-1/waves-sa-breaking-guitar-string.tex

A certain guitar string is tuned to vibrate at the (principle harmonic) frequency f when its
tension is adjusted to T'. The string will break at a tension 37'.

a) Can you double the frequency of the string by increasing the tension (only) without
breaking the string?

b) What is the maximum frequency that you can make the string have, in terms of f, without
(quite) breaking the string?
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Problem 669. problems-1/waves-sa-breaking-guitar-string-soln.tex

A certain guitar string is tuned to vibrate at the (principle harmonic) frequency f when its
tension is adjusted to T'. The string will break at a tension 37'.

a) For a string fixed at both ends:

v T 1
=50 = 4ML:<\/4M—L>\/T

so to double f; we have to multiply T" by a factor of 4. This would break the string.

b)
fmax = \/gfl
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Problem 670. problems-1/waves-sa-heavy-to-light.tex

ularger / \ v usmaller

One end of a heavy rope is tied to a lighter rope as shown in the figure. An upright wave pulse
is incident from then left and travels to the right reaching the junction between the ropes at
time ¢ = 0, so that, for time ¢ > 0, there are two pulses - a transmitted pulse in the light rope
and a reflected pulse in the heavy rope.

Compare the transmitted and reflected pulses to the incident pulse by filling in the table
below (each answer is “relative to the same property of the incident pulse”):

‘ ‘ Transmitted ‘ Reflected ‘

speed (greater, lesser, equal)

orientation (upright, inverted)

energy (greater, lesser, equal)
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Problem 671. problems-1/waves-sa-heavy-to-light-soln.tex

ularger / \ v usmaller

One end of a heavy rope is tied to a lighter rope as shown in the figure. An upright wave pulse
is incident from then left and travels to the right reaching the junction between the ropes at
time ¢ = 0, so that, for time ¢ > 0, there are two pulses - a transmitted pulse in the light rope
and a reflected pulse in the heavy rope.

Compare the transmitted and reflected pulses to the incident pulse by filling in the table
below (each answer is “relative to the same property of the incident pulse”):

‘ ‘ Transmitted ‘ Reflected ‘

speed (greater, lesser, equal) greater same
orientation (upright, inverted) upright upright
energy (greater, lesser, equal) lesser lesser
Solution: Use:
T
v=4/—
7

For the first answer plus the rules that transmitted waves are always erect, reflected waves
invert only when going from light to heavy, and that incident energy has to be split between
the reflected and transmitted pulses.
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Problem 672. problems-1/waves-sa-reflected-wave-energy.tex

A string of some mass density p is smoothly joined to a string of greater mass density and the
combined string is stretched to a uniform tension T, (the same in both wires). The speed of
a wave pulse on the thinner wire is twice the speed of a pulse on the thicker wire. A wave
pulse reflected from the thin-to-thick junction has half the amplitude of the original pulse.
Assuming no loss of energy in the wire:

a) What fraction of the incident energy is reflected at the junction?

b) Is the reflected pulse upside down or right side up?
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Problem 673. problems-1/waves-sa-reflection-transmission-at-junction.tex

Two combinations of two strings with different mass densities are drawn above that are con-
nected in the middle. In both cases the string with the greatest mass density is drawn darker
and thicker than the lighter one, and the strings have the same tension T in both a and b.
A wave pulse is generated on the string pairs that is travelling from left to right as shown.
The wave pulse will arrive at the junction between the strings at time ¢, (for a) and ¢, (for
b). Sketch reasonable estimates for the transmitted and reflected wave pulses onto the a and
b figures at time 2t, and 2t; respectively. Your sketch should correctly represent things like
the relative speed of the reflected and transmitted wave and any changes you might reasonably
expect for the amplitude and appearance of the pulses.
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Problem 674. problems-1/waves-sa-string-fixed-both-ends.tex

<
A
=

[

0 L

A string of mass density p is stretched to a tension T and fixed at z = 0 and x = L. The
transverse string displacement is measured in the y direction. All answers should be given in
terms of these quantities or new quantities (such as v) you define in terms of these
quantities.

Write down k;,, wn, fn, An for the first three modes supported by the string. Sketch them in
on the axes below, labelling nodes and antinodes. You do not have to derive them, although
of course you may want to justify your answers to some extent for partial credit in case your
answer is carelessly wrong.
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Problem 675. problems-1/waves-sa-two-string-densities-frequency.tex

Two identical strings of length L, fixed at both ends, have an identical tension 7', but have
different mass densities. One string has a mass density of u, the other a mass density of 164

When plucked, the first string produces a (principle harmonic) tone at frequency f;. What is
the frequency of the tone produced by the second string?

a) fo=4f1
b) fa=2f
c) fa=fi
d) fo=3h
e) fo=1h
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Problem 676. problems-1/waves-sa-wave-energies.tex

A wave on a string with mass density p travels to the right (+z) according to the formula:
y(z,t) = Asin(kx — wt)

Suppose this wave has an average energy per unit length Fy. Identify all of the changes one
can make to this wave that will produce a wave with a average energy per unit length of 4Fj.
In all cases the changes indicated are the only changes in the string or wave formula.

Change A — 2A and change p — 2pu.

Change A — 2A.

Change p — 2u.

Change p — 2 and w — 2w.

)
)
)
d) Change p — 2u and k — 2k.
)
) Change w — 2w.
)

Change k — 2k.
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Problem 677. problems-1/waves-sa-wave-facts.tex

Answer the five short questions below:

a)

Suppose you are given string A with mass density p that is stretched until it has tension
T4. You are given a second string B with the same mass density stretched to twice the
tension, Tgp = 2T4.

What is the speed of a wave vp on string B relative to v4, the speed on string A?

vB = X vA

Suppose you are given string A with mass density u4 that is stretched until it has tension
T. You are given a second string B with four times the mass density of A up = 4ux
but at the same tension.

What is the speed of a wave vp on string B relative to v4, the speed on string A?

VB = X VA

Suppose you are given string A with mass density p that is stretched until it has tension
T4. You are given a second (identical) string B with mass density p that is stretched to
twice the tension, Tp = 2T 4. Both strings are carrying a travelling harmonic wave
at the same frequency.

What is the wave number kp on string B in terms of the wave number k4 on string A?

k‘B: X]{?A

Suppose you are given string A with mass density u4 that is stretched until it has tension
T4. You are given a second string B with four times the mass density of A up = 4ua but
at the same tension. Both strings are carrying waves with the same wavelength A.

What is the (regular) frequency fp on string B in terms of the frequency fa on string A?

fB= X fa

Suppose you are given string A with mass density u4 that is stretched until it has tension
T4. You are given a second string B with four times the mass density of A up = 4ua
and a tension four times the tension of A T = 4T4. Both strings carry a wave with the

same frequency f.

What is the wavelength Ap in terms of the wavelength A 47?7

)\B: X)\A
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Problem 678. problems-1/waves-sa-wave-speed-vary-mu.tex

21

4T 3u 47

an

In the figure above, the neck of a stringed instrument is schmatized. Four strings of different
thickness and the same length are stretched in such a way that the tension in each is about the
same (7T) for a total of 4T between the end bridges — if this were not so, the neck of the guitar
or ukelele or violin would tend to bow towards the side with the greater tension. If the velocity
of a wave on the first (lightest) string is vy, what is the speed of a wave of the other three in
terms of v1?
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Problem 679. problems-1/waves-sa-wave-speed-vary-T.tex

Three strings of length L (not shown) with the same mass per unit length p are suspended
vertically and blocks of mass m, 4m and 9m are hung from them. The total mass of each string
uL < m (the strings are much lighter than the masses hanging from them). If the speed of a
wave pulse on the first string (a) is vg, what is the speed of the same wave pulse on the second
(b) and third (c) strings?
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12.1.3 Regular Problems

Problem 680. problems-1/waves-pr-accelerating-wave-pulse.tex

v Tt =T,e™
{1

A wave pulse is started on a string with mass density p with an applied tension that increases
like Tye2t.

a) Find the initial velocity of the wave pulse at time ¢ = 0.

b) Find the acceleration of the wave pulse as a function of time.
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Problem 681. problems-1/waves-pr-accelerating-wave-pulse-soln.tex

a) Find the initial velocity of the wave pulse at time t = 0.

Start with:
Y v
where:
T
vt =0)=vy =] —
I

b) Find the acceleration of the wave pulse as a function of time.

dv ‘

(0%
a=— = auge
dt
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Problem 682. problems-1/waves-pr-construct-transverse-travelling-wave-1.tex

A very long string aligned with the z-axis is being shaken at the ends in such a way that there
is a travelling harmonic wave on it. y is the vertical direction perpendicular to the string
in the direction of the string’s displacement. Given the following data (note units):

Amplitude A =1 cm
Wavelength A = 0.5 m
Period T = 0.001 sec

a) Write down the formula for a transverse wave travelling in the —x direction (that is,
to the left) corresponding to these numerical parameters. You may use 7 in your answer
as a symbol as needed.

y(ac,t) =

It might help you to fill in the following boxes before writing down the answer:

b) What is the speed of the wave on the string in terms of the givens?

¢) Suppose one wished to double the power transmitted by the string by changing only
one of A, T, A and nothing else. Enter X in the provided boxes if the stated relative
change to one of the parameters of the wave would accomplish this assuming no other
change to the other wave parameters is made. Be carefull Some changes might
affect more than one component of the formula for transmitted power! There can be zero
or more than one box checked in the correct answer(s).

|:| Change the amplitude to A’ = @ A D Change the amplitude to A’ =2 A
[ ] Change the period to 7' = @ T [ ] Change the period to T = 0.5 T
|:| Change the wavelength to A’ = 0.5\ \:‘ Change the wavelength to \' = 2.0 A
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Problem 683. problems-1/waves-pr-construct-transverse-travelling-wave-1-soln.tex

A very long string aligned with the z-axis is being shaken at the ends in such a way that there
is a travelling harmonic wave on it. y is the vertical direction perpendicular to the string
in the direction of the string’s displacement. Given the following data (note units):

Amplitude A =1 cm
Wavelength A = 0.5 m
Period T = 0.001 sec

a) Write down the formula for a transverse wave travelling in the —x direction (that is,
to the left) corresponding to these numerical parameters. You may use 7 in your answer
as a symbol as needed.

y(x,t) = Asin(4mz + 20007t)

It might help you to fill in the following boxes before writing down the answer:

k= 2T g w = 2

05 0.001 - 2000m

b) What is the speed of the wave on the string in terms of the givens?

A
v = T = 2000 m/sec

c¢) Suppose one wished to double the power transmitted by the string by changing only
one of A, T, A and nothing else. Enter X in the provided boxes if the stated relative
change to one of the parameters of the wave would accomplish this assuming no other
change to the other wave parameters is made. Be carefull Some changes might
affect more than one component of the formula for transmitted power! There can be zero
or more than one box checked in the correct answer(s).

D Change the amplitude to A’ = g A D Change the amplitude to A’ =2 A
D Change the period to T" = @ T \:‘ Change the period to 7" = 0.5 T
|:| Change the wavelength to A’ = 0.5\ |Z| Change the wavelength to \' = 2.0 A

Solution: Most of this is just remembering definitions: k = 27/\, w = 27 /T, v = A\/T, plus:
y(z,t) = Asin(kx + wt) (+ for wave to the left, —x direction)

1 1 4r? X
P = §,uw2A2 sin?(kx + wt)v = §,u% TAz sin?(kx + wt)
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The only ”tricky” part is to note that P scales like one over T' cubed because T occurs in both
w and v (as students were warned might happen in the problem text). The A’ answers are
both obviously wrong. The first 7" answer would work if it scaled like 1/7"2, but it doesn’t. A,
however, only occurs once on top so doubling it doubles the power as desired.
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Problem 684. problems-1/waves-pr-fixed-both-ends.tex

A string with mass density p and under tension 7" vibrates in the y-direction. The string is
fized at both ends at x = 0 and x = L. Answer all questions in terms of these givens.

a) What are the two lowest frequencies f1 and fs that a standing wave can have for this
string?

b) Write down an equation for y(z,t), the y-displacement of the string as a function of
position z along the string and time ¢ for the standing wave corresponding to the

second lowest frequency fa (the second mode) that you just computed. Assume that
the standing wave has a maximum vertical displacement of y = A.

¢) On the graph below, plot the y-displacement for the second mode versus horizontal po-
sition x at an instant when the the string achieves its maximum displacement. Indicate
the positions on the z-axis of any nodes or antinodes.

y
AL
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Problem 685. problems-1/waves-pr-fixed-both-ends-soln.tex

A string with mass density p and under tension 7" vibrates in the y-direction. The string is
fized at both ends at x = 0 and x = L. Answer all questions in terms of these givens.

a) What are the two lowest frequencies f1 and fs that a standing wave can have for this
string?

One or two complete “sausages” in L so:

M=2L, M=1L

T
v=4|—=fi\i
,u

b) Write down an equation for y(z,t), the y-displacement of the string as a function of
position z along the string and time ¢ for the standing wave corresponding to the
second lowest frequency fa (the second mode) that you just computed. Assume that
the standing wave has a maximum vertical displacement of y = A.

plus use

It is fixed at the left (z = 0) so we need to use sin(kz) instead of cos(kz) or a phase.
We know ko = 27/A9 with Ay = L from above. We make wy = kv out of k. Putting it
together:

27 27 |T
x,t) = Asin(kox) cos(wat) = Asin | —x | cos | —4 [ —t
Vlat) = Asin(lye) cos(eant) = Asin (o ) (L M)
¢) On the graph below, plot the y-displacement for the second mode versus horizontal po-
sition x at an instant when the the string achieves its maximum displacement. Indicate
the positions on the z-axis of any nodes or antinodes.

y
AL
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Problem 686. problems-1/waves-pr-fixed-one-end.tex

A string with mass density p and under tension 7" vibrates in the y-direction. The string is
fized at x =0 and free at x = L. Answer all questions in terms of these givens.

a) What are the two lowest frequencies f1 and f> that a standing wave can have for this
string?

b) Write down an equation for y(z,t), the y-displacement of the string as a function of
position z along the string and time ¢ for the standing wave corresponding to the

second lowest frequency fa (the second mode) that you just computed. Assume that
the standing wave has a maximum vertical displacement of y = A.

¢) On the graph below, plot the y-displacement for the second mode versus horizontal po-
sition x at an instant when the the string achieves its maximum displacement. Indicate
the positions on the z-axis of any nodes or antinodes.

y
AL
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Problem 687. problems-1/waves-pr-fixed-one-end-soln.tex

A string with mass density p and under tension 7" vibrates in the y-direction. The string is
fized at x =0 and free at x = L. Answer all questions in terms of these givens.

a)

What are the two lowest frequencies fi and f> that a standing wave can have for this
string?

Half or one and a half “sausages” in L so:

AN =4L, X =4L/3

T
v=4|—=fi\i
,u

Write down an equation for y(x,t), the y-displacement of the string as a function of
position z along the string and time ¢ for the standing wave corresponding to the
second lowest frequency fa (the second mode) that you just computed. Assume that
the standing wave has a maximum vertical displacement of y = A.

plus use

It is fixed on the left at = 0, therefore we need to use sin(kx) instead of cos(kz) or
a phase. We find ko = 27/)2 using the result above, or ky = 37/2L. Finally, we form
wo = kov using v in terms of the givens, to get:

. . (3 3r |T
y(z,t) = Asin(kex) cos(wat) = Asin <£JE> Cos <£ \/;t>

On the graph below, plot the y-displacement for the second mode versus horizontal po-
sition x at an instant when the the string achieves its maximum displacement. Indicate
the positions on the z-axis of any nodes or antinodes.

y
AL
n a n a
0 L X
Al
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Problem 688. problems-1/waves-pr-speed-on-hanging-string.tex

4

A string of total length L with a mass density p is shown hanging from the ceiling above.

a) Find the tension in the string as a function of y, the distance up from its bottom end. Note
that the string is not massless, so each small bit of string must be in static equilibrium.

b) Find the velocity v(y) of a small wave pulse cast into the string at the bottom that is
travelling upward.

¢) Find the amount of time it will take this pulse to reach the top of the string, reflect, and

return to the bottom. Neglect the size (width in y) of the pulse relative to the length of
the string.
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Problem 689. problems-1/waves-pr-standing-wave-mode-energy.tex

A string of total mass M and total length L is fixed at both ends, stretched so that the speed
of waves on the string is v. It is plucked so that it harmonically vibrates in its n = 4 mode:

y(x,t) = Agsin(ksx)cos(wat).

Find (derive) the instantaneous total kinetic energy in the string in terms of M, L, n = 4, v
and Ay (although it will simplify matters to use k4 and w4 once you define them).

Remember (FYI):

/ sin?(u)du :/ cos®(u)du = nr
0 0 2
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Problem 690. problems-1/waves-pr-string-and-hanging-mass.tex

b e

In the figure above, a string of length L and mass density u is run over a pulley and maintained
at some tension by a stationary hanging mass m. The string is driven with tiny oscillations at
a tunable frequency w by a speaker attached to one end as shown (assume a node at this end).
You may neglect the weight of the string compared to the weight of the mass m.

a) For a given mass m, write an expression for the velocity of waves on the string.
b) Find the frequency of the third harmonic of the string (expressed in terms of the givens).

c) What is the wavelength of the sound wave produced by the string vibrating at this (third
harmonic) frequency? You may express your answer algebraically in terms of v, (the
speed of sound in air).
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Problem 691. problems-1/waves-pr-string-and-hanging-mass-soln.tex

b O

—

mg

In the figure above, a string of length L and mass density w is run over a pulley and maintained
at some tension by a stationary hanging mass m. The string is driven with tiny oscillations at
a tunable frequency w by a speaker attached to one end as shown (assume a node at this end).
You may neglect the weight of the string compared to the weight of the mass m.

Solutions:

a) For a given mass m, write an expression for the velocity of waves on the string.

T mg
v=y[—=,/—
M K

b) Find the frequency of the third harmonic of the string (expressed in terms of the givens).

M= v=fada | fa= o= oy [

c) What is the wavelength of the sound wave produced by the string vibrating at this (third
harmonic) frequency? You may express your answer algebraically in terms of v, (the
speed of sound in air).

Ua:f3)\3,a:> )\3a:_:_ — X Uq
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Problem 692. problems-1/waves-pr-travelling-wave-analysis.tex

A travelling wave on a string of mass p = 0.01 kg/meter is given by the expression:

y(x,t) = 2.0sin(0.027x + 27t) (meters)

Answer the following questions about this wave. All of the arithmetic should be doable without
a calculator, but if you have any doubt feel free to leave arithmetical expressions of the algebra
unevaluated.

a) What is the amplitude of this wave?

b) What is its wavelength?

c) What is its period?

d) What is the velocity of this wave (include direction!)?

e) Write an algebraic expression for the kinetic energy per unit length in the string as a
function of time.
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Problem 693. problems-1/waves-pr-travelling-wave-analysis-soln.tex

A travelling wave on a string of mass p = 0.01 kg/meter is given by the expression:

y(x,t) = 2.0sin(0.027x + 27t) (meters)

Don’t forget units! Also, don’t give answers with absurd numbers of digits — all of these
quantities are give with no MORE than 2 significant digits (A) and both w and k have only
one.

a) A = 2.0 meters

b) A = 27/(0.027) = 100 meters

c) T =2n/(2w) = 1 second

d) vy = —w/k = A\/T = 100 meters/second (to the left, see + sign).
e)

AKpe 1 Ry
A8 = AT =05 0.0 4n” -4 =4 x 10~*n” joules/meter
X
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13.1 Sound

13.1.1 Multiple Choice Problems

Problem 694. problems-1/sound-mc-car-horn-decibels.tex

You are stuck in freeway traffic and need to get home. So does the driver next to you — she
starts blowing the horn of her car, which you hear as a sound with a sound level of 90 dB. Not
to be outdone, the driver behind you, in front of you, and to the other side of you all lean on
their horn as well, so that now you are hearing all four horns (which reach your ears with equal
intensities) at once. The sound level you now hear is:

a) 93 db

b) 96 dB

d

)
)

¢) 180 dB
) 360 dB
)

e) Unchanged.
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Problem 695. problems-1/sound-mc-car-horn-decibels-soln.tex

Rule of thumb: Each doubling of intensity is a change of +3 dB. This is because log;,(2) ~ 0.3.
Two doublings is +6 dB, hence:

a) 93 db
()96 dB
c). 180 dB
d). 360 dB

e). Unchanged.
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Problem 696. problems-1/sound-mc-exam-noise-in-dB.tex

200 students are taking an examination in a room, and the sounds of pens scratching on paper,
sighs, groans, and muttered imprecations has created a more or less continuous sound level of
this noise of 60 dB. Assuming each student contributes equally to this noise and nothing else
changes or adds to it, what will the sound level in the room be when only 50 students are left?
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Problem 697. problems-1/sound-mc-exam-noise-in-dB-soln.tex

200 students are taking an examination in a room, and the sounds of pens scratching on paper,
sighs, groans, and muttered imprecations has created a more or less continuous sound level of
this noise of 60 dB. Assuming each student contributes equally to this noise and nothing else
changes or adds to it, what will the sound level in the room be when only 50 students are left?

Rule of thumb (for fast problem solving, conceptual reasoning): Doubling/halving intensity is
the same as £3 dB. If we assume that 1/4 as many students make 1/4 as much total noise
(intensity), which is two halvings, we should subtract 2x3 = 6 dB to get:

a) 50 dB
b) 15 dB
c) 66 dB

54 dB

e). 57 dB
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Problem 698. problems-1/sound-mc-measuring-speed-of-sound.tex

tuning

fork L S
=

resonating tube
il

=

microphone

water reservoir

test gas&—

_.-hose

A simple method for measuring the speed of sound in a reservoir filled with gas is to hold a
tuning fork at a fixed, known frequency above a tube connected with a flexible hose to a reservoir
such that the height of the water in the open at the top tube can easily be varied. The sound
one detects with a microphone is then the loudest when the tuning fork is in resonance with
standing wave modes in the tube.

If you hold a 2000 Hz tuning fork above the tube when it is completely full and then lower
the reservoir slowly to drop the water level in the tube, you hear the fork resonate most loudly
when the water is L = 2.5, 7.5, and 12.5 ¢m beneath the end of the tube. The speed of sound
in the gas is therefore:

[[] 50 m/sec [] 100 m/sec [] 200 m/sec [[] 500 m/sec []

750 m/sec
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Problem 699. problems-1/sound-mc-measuring-speed-of-sound-soln.tex

The difference in fluid height between any two neighboring resonances is AL = /2 for the
wavelength corresponding to f of the tuning fork. Hence:

v=f\=2fAL

with AL =5 cm = 0.05 m. v =2 %2000 * 0.05 or
¢) 200 m/sec
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Problem 700. problems-1/sound-mc-shooting-a-gun-dB.tex

A 30-06 rifle makes a bang that peaks at 170 decibels 1 meter away from the muzzle. If you
are standing 100 meters away (approximately) what sound level do you hear in decibels?

[] 120dB [] 130dB [] 140 dB [] 150 dB [] 160
dB
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Problem 701. problems-1/sound-mc-shooting-a-gun-dB-soln.tex

A 30-06 rifle makes a bang that peaks at 170 decibels 1 meter away from the muzzle. If you
are standing 100 meters away (approximately) what sound level do you hear in decibels?

1\2
The intensity is lower by a factor of (ﬁ) = 10"* so the sound level drops by 10 logy 1074 =
40 dB, and 170 — 40 = 130 so:

[] 120dB X] 130 dB [] 140dB [] 150 dB [] 160
dB
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Problem 702. problems-1/sound-mc-siren-in-dB.tex

A siren radiates sound energy uniformly in all directions. When you stand a distance 100 m
away from the siren you hear a sound level of 90 dB. If you move to a distance of 10 m from
the siren, the sound level is:

a) 90 dB, no change.

b) 100 dB.

)

)

c) 110 dB.

d) 120 dB.
)

e) 130 dB.
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Problem 703. problems-1/sound-mc-siren-in-dB-soln.tex

Intensity scales like 1/r2. Reducing r by a factor of 10 should increase instensity by a factor of
100.

To compute the change in decibel level, we use the following math. Suppose the original
intensity is I; such that:

I
81 =90 dB = 10log <—1>
Iy

where Iy is the usual threshold of hearing (1072 Watts/m?). We need to find the sound level
corresponding to I = 100/;. Thus:

1001
,82 = 10 IOglo <I—1>
0

I
= 10log,((100) + 10log, <1—1>
0
— 20+ 8, =20+90 =110 dB (13.1)

so:
c) 110 dB
Note well: we used the important property of logs:
log(a * b) = log(a) + log(b)

(true for any log base). Make sure that you know this! With a tiny bit of practice, you can
do these computations in your head and answer questions like this quickly and with confidence.
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Problem 704. problems-1/sound-mc-sound-level-to-pressure-1.tex

You measure the intensity level of a single frequency sound wave produced by a loudspeaker
with a calibrated microphone to be 80 dB. At that intensity, the peak pressure in the sound
wave at the microphone is Py + P,, where P, is the baseline atmospheric pressure and F is the
pressure over that associated with the wave. The loudspeaker’s amplitude is turned up until
the measured intensity level is 120 dB. What is the peak pressure of the sound wave now?
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Problem 705. problems-1/sound-mc-sound-level-to-pressure-2.tex

You measure the sound level of a single frequency sound wave produced by a loudspeaker with
a calibrated microphone to be 80 dB. At that intensity, the peak pressure in the sound wave
at the microphone is Py + P,, where P, is the baseline atmospheric pressure and F; is the
pressure over that associated with the wave. The loudspeaker’s amplitude is turned up until
the measured sound level is 100 dB. What is the peak pressure of the sound wave now?
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Problem 706. problems-1/sound-mc-sound-level-to-pressure-2-soln.tex

An increase in sound level of 20 dB is equivalent to multiplying the intensity by a factor
102/10 = 100. The intensity, in turn is proportional to pressure according to:

I x P}

where P, is the overpressure compared to the baseline atmospheric pressure P,, for example
in an expression like:

P(z,t) = P, + Pysin(kz — wt)

We therefore need the overpressure (only) to be multiplied by a factor of 10 to produce an
increase in intensity by a factor of 100, and:

b) 10Py + P,
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13.1.2 Short Answer Problems

Problem 707. problems-1/sound-sa-alarm-clocks.tex

Wal Mart had a special on alarm clocks, and you bought ten of them just to make sure that
you will wake up in time for your physics final exam. Each alarm clock produces an incoherent
sound level in your ears of 90 dB when you place the clock on the nightstand one meter from
your head. Ignore reflection of sound energy from walls, etc and treat the clocks like point
sound sources.

a) If you put 4 clocks on the nightstand one meter from your head, you will hear a sound

level of (approximately to the nearest integer): dB

b) If you put 8 clocks on the dresser 2 meters from your head, you will hear a sound level

of: dB

c¢) If you put all 10 clocks in the far corner of the room 4 meters from your head, you will

hear a sound level of: dB




786 CHAPTER 13. SOUND

Problem 708. problems-1/sound-sa-beats.tex

Two identical strings of length L have mass p and are fixed at both ends. One string has
tension 1. The other has tension 1.217. When plucked, the first string produces a tone at
frequency fi. What is the beat frequency produced if the second string is plucked at the same
time, producing a tone f»?7 Are the beats likely to be audible if f is 500 Hz?
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Problem 709. problems-1/sound-sa-decibels-sun-human-body.tex

Sunlight reaches the surface of the earth with roughly 1000 Watts/meter? of intensity. What is
the “intensity level” of a sound wave that carries as much energy per square meter, in decibels?
In table 15-1 in Tipler and Mosca, what kind of sound sources produce this sort of intensity?
Bear in mind that the Sun is 150 million kilometers away where sound sources capable of
reaching the same intensity are typically only a few meters away. Hmmm, seems as though
the Sun produces a lot of (electromagnetic) energy compared to terrestrial sources of (sound)
energy.

While you are at it, the human body produces energy at the rate of roughly 100 Watts. Estimate
the fraction of this energy that goes into my lecture when I am speaking in a loud voice in front
of the class (loud enough to be heard as loudly as normal conversation ten meters away).
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Problem 710. problems-1/sound-sa-principle-harmonic-series.tex

Two pipes used in different musical instruments have the same length L, but the funda-
mental frequency (frequency of the principal harmonic, m = 1) of one is twice that of the
other. Explain how this could be, illustrating your answer with a drawing of two pipes and
the principle modes such that this is true. Make sure you indicate which pipe has the higher
frequency and which pipe has the lower one, and whether your diagram is illustrating pressure
or displacement standing waves!
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Problem 711. problems-1/sound-sa-principle-harmonic-series-soln.tex

Two pipes used in different musical instruments have the same length L, but the funda-
mental frequency (frequency of the principal harmonic, m = 1) of one is twice that of the
other. Explain how this could be, illustrating your answer with a drawing of two pipes and
the principle modes such that this is true. Make sure you indicate which pipe has the higher
frequency and which pipe has the lower one, and whether your diagram is illustrating pressure
or displacement standing waves!

Solution: This simply means that one pipe is (say) closed at both ends, and the other is closed
at one end and open at the other.

- L ~
_ _ = \/4L

Blue: Pressure

Red: Displacement

The diagram says it all. Really.

|
|

—h
O
I

\, /2L
= 2f.
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Problem 712. problems-1/sound-sa-scaling-thunder-dB.tex
Lightning strikes one kilometer away, and the resulting thunderclap has an intensity of 5 x 1073

Watts/meter?. What is the intensity level in decibels? If one is instead 10 kilometers away,
approximately how many decibels lower would the intenstity level be?
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Problem 713. problems-1/sound-sa-scaling-time-thunder-dB.tex

You see the flash of lightning and three seconds later you hear a thunderclap with a peak sound
level of 120 dB. A few minutes later you see a second flash of lightning and twelve seconds
later you hear the thunderclap.

a) Approximately what peak sound level do you hear in the second (presumably “identically
produced”) thunderclap?

Second thunderclap is: dB

b) Roughly — to the nearest kilometer — how far away are the two lightning flashes?

First (three seconds): km

Second (twelve seconds): km




792 CHAPTER 13. SOUND

Problem 714. problems-1/sound-sa-scaling-time-thunder-dB-soln.tex

You see the flash of lightning and three seconds later you hear a thunderclap with a peak sound
level of 120 dB. A few minutes later you see a second flash of lightning and twelve seconds
later you hear the thunderclap.

We use two simple/conceptual rules here. First, our simple estimator for time-to-distance for
sound waves is that every three seconds in the delay between seeing and hearing is 1 km, every
five seconds is 1 miles. Second, sound intensity drops off like 1/72. Third, every halving of
intensity subtracts 3 dB from the initial sound level.

Note well that in this problem, you have to answer part b) first in order to answer part a).
This was mean of me (although inadvertent) but it does emphasize an important point: You
need to READ THE WHOLE PROBLEM and THINK FOR A FEW SECONDS

before starting your answer. The problem might not have had part b) in it at all!

a) Approximately what peak sound level do you hear in the second (presumably “identically
produced”) thunderclap?

12 km?
Pia? /16

so we expect it to have 1/16th of the intensity of the first one. That is four halvings, each
subtracts 3 dB, and 120 - 12 = 108 dB:

Second thunderclap is: 108 dB

b) Roughly — to the nearest kilometer — how far away are the two lightning flashes?
First (three seconds): 1 km

Second (twelve seconds): 4 km
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Problem 715. problems-1/sound-sa-sound-speed-decibels.tex

(12 points) Some short questions about sound:

a)

b)

Show that doubling the intensity of a sound wave corresponds to an increase in its intensity
level or loundness by about 3 dB.

I sometimes work as a timer at my son’s swim meets. We are told to start our watches
when we see a light flash on the starter’s console, not when we hear the starting horn.
If I am timing a lane on the far side of the pool some 17 meters away from the starter
and start when the sound of the horn reaches me, how much will the times I measure (on
average) change? Will the swimmer have an advantage or a disadvantage relative to a
swimmer timed by someone that starts on the flash of light?

Suppose I turn the knob on my surround-sound amplifier and decrease the loudness where
I'm listening by 6 dB. By roughly what fraction has the amplitude of oscillation of the
speakers changed?
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Problem 716. problems-1/sound-sa-tube-open-both-ends-1.tex

+S

A

—

Y

A
—

Y

+X
A, = A, =

A tube open at both ends used as a “panpipe” musical instrument. It has length L = 34
centimeters.
a) Sketch the first two displacement modes (or harmonics) in the provided tubes.

b) Label the nodes and antinodes, and underneath each tube indicate the wavelength of the
mode/harmonic.

c) What is the frequency of the second harmonic of the tube (an actual number, please,
in Hertz or cycles per second).
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Problem 717. problems-1/sound-sa-tube-open-both-ends-2.tex

A, = A, =

A tube open at both ends used as a “panpipe” musical instrument. It has length L = 34

centimeters.

a) Sketch the first two displacement modes (or harmonics) in the provided tubes.

b) Label the nodes and antinodes, and underneath each tube indicate the wavelength of the
mode/harmonic.

c) What is the frequency of the principle harmonic of the tube (an actual number,
please, in Hertz or cycles per second).
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Problem 718. problems-1/sound-sa-two-wave-speeds-frequency.tex

Two identical pipes, both closed at both ends, are filled with two different gases. In the first

gas, the speed of sound is v1 = 1/ B1/p1, in the second the speed of sound is vy = /By /ps = 2v7.
Both pipes are driven by speakers in resonance with their fundamental harmonic frequency,
f1 and fy respectively.

If f1 is the fundamental frequency in the first pipe, what is the fundamental frequency fo in
the second pipe?

[] f2=4h [] f2=2AH [] fo=h [] fo=3iA [] fo=1AH
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Problem 719. problems-1/sound-sa-two-wave-speeds-frequency-soln.tex

Two identical pipes, both closed at both ends, are filled with two different gases. In the first

gas, the speed of sound is v1 = 1/ B1/p1, in the second the speed of sound is vy = /By /ps = 2v7.
Both pipes are driven by speakers in resonance with their fundamental harmonic frequency,
f1 and fy respectively.

If f1 is the fundamental frequency in the first pipe, what is the fundamental frequency fo in
the second pipe?

[] f2=4h X f2=2A [] fo=h [] fo=3iA [] fo=1AH

Solution: The two pipes are identical, and hence have the same length (say) L. Since they
are closed at both ends, Ay = Ay = 2L. But we also know that:

vy = fidi and vy = fado

so that:

vg = 2v1 = 2f1A1 = fada = foA1 =

This is a simple scaling argument — v scales with f and A, A is the same, so f scales identically
to v.
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13.1.3 Ranking Problems

Problem 720. problems-1/sound-ra-sound-resonances-pressure.tex

L L/2

a) Rank the fundamental harmonic resonant frequencies (n = 1) of the four open/closed
pipes drawn above, where equality is a possible answer. An answer might be (but probably

iSIl’t) fa < fb = fc < fd'

] ] L]

b) Draw into each pipe a representation of a the pressure wave associated with each
resonance.

c) Label the nodes (in your representation of the waves) with an N and antinodes with an
A.
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Problem 721. problems-1/sound-ra-sound-resonances-pressure-soln.tex

L L/2

n n

Another problem where you are better off doing b) and c) before a). Read the whole problem
first before starting to solve it!

a) Clearly the fundamental wavelengths are: A\, = 2L, \p = 4L, A, = 2L, and Ay = 2L. The
frequencies are all given by:

where v, is the (constant) speed of sound in air. Hence larger wavelengths are lower
frequencies and we get:

fb < fa = fc = fd
b) See above.

c) See above.
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Problem 722. problems-1/sound-ra-sound-resonances.tex

L L/2

a) Rank the fundamental harmonic resonant frequencies (n = 1) of the four open/closed
pipes drawn above, where equality is a possible answer. An answer might be (but probably

isn't) fo < fo = fe < fa
b) Draw into each pipe a representation of a the displacement wave associated with each

resonamnce.

c) Label the nodes (in your representation of the waves) with an N and antinodes with an
A.
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13.1.4 Regular Problems

Problem 723. problems-1/sound-pr-bill-and-ted-double-doppler-1.tex

@p@ aaaaaaaaaa gf

Bill and Ted are falling at a constant speed (terminal
velocity) into hell, and are screaming at a frequency fj.
They hear their own voices reflecting back to them from
the puddle of molten rock that lies below at a frequency
of 2fy. How fast are they falling in meters per second?
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Problem 724. problems-1/sound-pr-bill-and-ted-double-doppler-1-soln.tex

@p@ aaaaaaaaaa g f

Bill and Ted are falling at a constant speed (terminal
velocity) into hell, and are screaming at a frequency fj.
They hear their own voices reflecting back to them from
the puddle of molten rock that lies below at a frequency
of 2fy. How fast are they falling in meters per second?

Solution:  Their emitted scream is doubly Doppler shifted. They are falling towards the
molten lava as a moving source. The sound reflects there (no further frequency change in
the already-Doppler-shifted reflected scream) and they then fall into the reflected sound as a
moving receiver. Hence:

I _op _ 1t

Va

Then it is just algebra. Canceling out the (irrelevant) fy, and substituting the symbol o = v /v,
for simplicity:

1
g1t 2-2%=1+a = 1=3a
l—«
or:
1 1
a:%:§ = v:§va%114m/sec

Note that since the question asks for an actual speed in meters per second, one must know that
v = 343 m/sec to complete the problem. Since estimation is encouraged, any answer from
(say) 111 to 115 m/sec is acceptable, as long as the student shows their numerical estimate for
v, and divide it by 3.
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Problem 725. problems-1/sound-pr-bill-and-ted-double-doppler-2.tex

@y@ aaaaaaaaaa g f

. ' Lava

Bill and Ted are falling at a constant speed (terminal velocity) into hell, and are screaming at
a frequency fo. They hear their own voices reflecting back to them from the puddle of molten
rock that lies below at a frequency of 1.5fy. How fast are they falling relative to the speed of
sound?
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Problem 726. problems-1/sound-pr-bill-and-ted-double-doppler-2-soln.tex

@yﬁ aaaaaaaaaa g f

. . Lava

Bill and Ted are falling at a constant speed (terminal velocity) into hell, and are screaming at
a frequency fo. They hear their own voices reflecting back to them from the puddle of molten
rock that lies below at a frequency of 1.5fy. How fast are they falling relative to the speed of
sound?

Let’s define r = v/v, to be the ratio of their speed to the speed of sound. Then:

1
L5fo = 1+Tfo =15(1—r)=14r=15-15r
-
Rearranging:
0.5
(15-1)=015+)r=r= 95 =0.2

So they are travelling at:
r = 0.2 times the speed of sound
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Problem 727. problems-1/sound-pr-doppler-electrocardiograph.tex

carotid subclavia.n
brachiocephalic \ \ < emitter/beat detector
N

ultrasound beam pulse

= __beam reflection

~blood

/Descending Thoracic Aorta

During a cardiac cycle, blood is ejected by the heart into the aorta with a typical peak speed
around 0.5 m/sec for a healthy adult. However, in a patient with an obstruction, the peak
speed can be much higher. The peak blood speed can be detected noninvasively using a pulsed
ultrasound beam.

Let us model this process as a simple highly directional ultrasound beam of frequency fy that
is being directed through a patient’s descending thoracic aorta parallel to the artery as shown.
We will assume that the ultrasound beam is reflected off of just one small (shaded) section of
the flowing blood fluid that is travelling at a speed v in the direction shown the same way it
would be reflected off of a moving object. Use v, for the speed of ultrasonic sound in blood or
living tissue.

patient

a) Write an expression for the the frequency f we expect the detector to detect in terms of
fo, vus, and v. Is f higher than or lower than the beam frequency fy?

b) The detector measures f, but we wish to know v. Solve for v/vys in terms of fy, and f.

The next two questions involve actual numbers. Suppose fo = 2 x 106 Hz and vy =
1.5 x 103 m/sec.
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c) What is the wavelength of the incident beam? \ =

d) Extra Credit (2 points): If a beat detector detects a beat frequency of Af = 8 x 103
Hz between the incident and reflected ultrasound beams, find the blood speed and then
determine whether the patient is likely to have an obstructed descending thoracic aorta
based upon information provided above. (The speed of the blood is expected to be much
smaller than that of the ultrasound so that beats can be detected comparing the outgoing
to the incoming doppler shifted wave.)
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Problem 728. problems-1/sound-pr-doppler-moving-receiver-derive.tex

receiver

\

0 {

A microphone mounted on a cart is moved directly toward a harmonic source at a speed of
v, = 34 m/sec. The harmonic source is emitting sound waves at a frequency of fo = 1000 Hz.

source

a) Derive an expression for the frequency of the waves picked up by the moving microphone.

b) What is that frequency?
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Problem 729. problems-1/sound-pr-doppler-moving-receiver-derive-soln.tex

The key to this derivation is to realize that the receiver and wavefronts are moving towards one
another so that after the receiver receives a wavefront, it meets the next one in less time.
Let’s let ¢ = 0 be the time a wavefront hits the receiver. The next wavefront is at that instant
Ao = v, Ty away, where fo = 1/Tj relates the frequency of the source to its period.

A time t later, the wavefront has moved a distance v,t to the right. The receiver, in the
meantime, has moved a distance v,t to the left. Suppose that at the time ¢t = T”, the receiver
meets the next wavefront. Then:

Ao = v 1o = v, T + v, T’
This can easily be rearranged (omitted) into:

1

= T = (1+Ur/vl)i = (1+Ur/vl)f0

/
f T

Numerically, (and using the fact that v, ~ 340 m/sec, something you should know!) this is
f'=010+40.1)fy =1.1fy ~ 1100 Hz.



13.1. SOUND 809

Problem 730. problems-1/sound-pr-doppler-moving-source-derive.tex

source receivel

V.,
o oma 7
A speaker mounted on a cart is moved directly toward a stationary microphone at a speed

vs = 34 m/sec. It is emitting harmonic sound waves at a source frequency of fy = 1000 Hz.
vg = 340 m/sec is the speed of sound in air.

a) Derive an algebraic expression for the frequency f’ of the waves picked up by the sta-
tionary microphone, beginning with a suitable picture of the wave fronts. Limited partial
credit will be awarded for just correctly remembering it if you cannot derive it.

b) What is the frequency f’ in Hz? You should be able to do the arithmetic without a
calculator.
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Problem 731. problems-1/sound-pr-doppler-moving-source-derive-soln.tex

The heart of the derivation is that the cart moves into the waves as they are emitted, shortening
the wavelength. In a single period of the wave source Ty, the unshifted wavelength is A\g = v,Tj.
The cart moves forward a distance v;Ty in that much time. The resulting wavelength is:

)\/ = )\0 — USTO = UaT() — USTO = (Ua — US)T()

The shifted frequency picked up by the receiver is then just (skipping a bit of algebra that you

should be able to do):

[

N o1- vs/vafo

Numerically, f' = (1/(1 —0.1)) fo = (1/0.9) fo =~ 1.111fy ~ 1100 Hz, near enough.
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Problem 732. problems-1/sound-pr-doppler-moving-source.tex

source receivel

\ /
vs :

A speaker mounted on a cart is moved directly toward a stationary microphone at a speed
vs = 34.00 m/sec. It is emitting harmonic sound waves at a source frequency of fo = 1000 Hz.
vg = 340.0 m/sec is the speed of sound in air.

a) What is the frequency f’ of the waves picked up by the microphone in Hz? You should
be able to do the arithmetic without a calculator.

b) Suppose a second source with the same frequency fy was located an identical distance to
the right of the microphone receiver that is also moving towards the receiver at this same
speed. What would be the frequency of the beats recorded by the microphone?

c¢) Suppose the source on the right was receding from the microphone at this same speed. In
that case, what would the beat frequency observed by the microphone be?
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Problem 733. problems-1/sound-pr-doppler-moving-source-soln.tex

source receivel

\ /
vs :

A speaker mounted on a cart is moved directly toward a stationary microphone at a speed
vs = 34.00 m/sec. It is emitting harmonic sound waves at a source frequency of fo = 1000 Hz.
vg = 340.0 m/sec is the speed of sound in air.

a) What is the frequency f’ of the waves picked up by the microphone in Hz? You should
be able to do the arithmetic without a calculator.

b) Suppose a second source with the same frequency fy was located an identical distance to
the right of the microphone receiver that is also moving towards the receiver at this same
speed. What would be the frequency of the beats recorded by the microphone?

c¢) Suppose the source on the right was receding from the microphone at this same speed. In
that case, what would the beat frequency observed by the microphone be?

Solution: For a) using the “approaching moving source doppler shift” formula:

1
1—

fr=——xfo=

Va

1
~1.111
1—Olh fo

or

f ~ 1111 Hz

For part b), as the source on the right is also approaching the receiver, its doppler shift is the
same. The difference in frequencies is then zero and:

‘fb:‘fl_fr‘zllll—llllzo‘

The main point is that there is no “vectorocity” to the doppler shift so the answer f;, = 2222 Hz
is just wrong — the two waves (if sufficiently coherent) might produce a standing wave pattern
and the receiver might get more or less energy depending on where it was in the pattern, but
the pattern would not be time dependent.

For part c):
1 1

:1+g—;f°: 1+0.1

Ir fo ~ 9091 f,

(to three places, the most we can use as significant digits) or

f' ~ 909 Hz

Hence:

fo=|fi — fr] = 1111 — 909 = 202 Hz
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Problem 734. problems-1/sound-pr-lithotripsy-decibels.tex

kidney stone 100 MPa

\

A=1cm?

Modern lithotripsy machines create a focused acoustical shock wave (SW) pulse with an
overpressures that range from Py = 4 x 107 to over 10% Pascals’. A harmonic wave in water
with this amplitude would have an intensity I ~ PO2 x 10* when P, is expressed in atmospheres
of pressure and [ is the usual watts per square meter. Although this expression will not be
exact for a non-harmonic shock wave pulse, it should give the right order of magnitude for the
average intensity in the initial peak.

a) Estimate I for an acoustical pulse with a peak amplitude of 10% Pascals. Algebra first!
Careful with the units!

b) Express this intensity in decibels. Use the usual reference intensity for sound waves (the
threshold of hearing).

c) Estimate the “instantaneous” peak force (rise time on the order of nanoseconds) exerted
by the shock wave overpressure on the front face of a cylindrical kidney stone with an
area of 1 square centimeter.

d) Assuming that this primary pulse lasts for At = 10 nanoseconds (or 1078 seconds), what
is the total impulse imparted to the front face of the kidney stone by this force?

IThis dynamic pressure is comparable to the static pressure in the deep ocean trenches ten kilometers beneath
the surface, where even “incompressible” water compresses by around 4 or 5%.
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Problem 735. problems-1/sound-pr-standing-waves-organ-pipe.tex

Resonant Sound Waves

N\

Tube closed at one end

An organ pipe is made from a brass tube closed at one end as shown. The pipe is 3.4 meters
long. When driven it produces a sound that is a mixture of the first and fifth harmonic.
a) What are the frequencies of these harmonics?

b) Sketch the displacement wave amplitudes for the fifth harmonic mode (only) in on the
figure, indicating the nodes and antinodes.
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Problem 736. problems-1/sound-pr-train-double-doppler-shift-2.tex

A train approaches a tunnel in a sheer cliff at speed viain. The train blows a whistle of frequency
1000 Hz. A listener on the train hears a beat frequency of 10 Hz between the original whistle
and the reflected sound.

a) What is the frequency of the reflected wave as heard by the passengers on the train?
b) Find the speed of the train relative to the speed of sound in air:

Utrain
Vair
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Problem 737. problems-1/sound-pr-train-double-doppler-shift.tex

A train approaches a tunnel in a sheer cliff. The train is moving at 34 m/s, and it blows a horn
of frequency 900 Hz. The speed of sounds is 340 m/s.

a) What frequency would a listener at the base of the cliff hear?

b) What frequency do the train passengers hear from the echo (the reflection from the cliff
face)?
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Problem 738. problems-1/sound-pr-train-double-doppler-shift-soln.tex

Bear in mind, I usually will not give you v, = 340 m/sec! Be sure you know this number.

a) The train approaches the listener, so:

1

fi = —=fo
-

= 1 900
- 1-0.1
900

oo = L000Hz (13.2)

b) Now the passengers are a moving receiver approaching the reflected “source”, so:

v
fo = (1+5h
= 1.1%1000
= 1100Hz (13.3)

c) The beat frequency is just the difference in the frequency received by the moving train

and the frequency it emits:
o = |f2 — fo| = 200Hz
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14.1 Newtonian Gravitation

14.1.1 Multiple Choice Problems

Problem 739. problems-1/gravitation-mc-drag-changes-orbit.tex

A satellite in a low-Earth (circular) orbit will slowly lose energy to frictional drag forces while

remaining in an approximately circular orbit. What happens to its orbit radius and
speed?

a) Its orbit radius increases and its speed increases;

b) Its orbit radius increases and its speed decreases;

d

)
)

c) Its orbit radius decreases and its speed increases;
) Its orbit radius decreases and its speed decreases;
)

e) There is no enough information to determine the change to its orbit radius and speed.

Briefly explain or justify your answer.
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Problem 740. problems-1/gravitation-mc-drag-changes-orbit-soln.tex

Frictional drag can only remove mechanical energy from the system, converting it into
heat under these circumstances. This means that the mechanical energy of the still-circular
orbit has to decrease.

For circular orbits (recall or prove as necessary):

U:_GMm

T
1 5 GMm
K—imv ==,
GMm

Etot:_ 2

r

For Ei.t to decrease — become more negative — r has to become smaller, and its kinetic energy
has to increase as r decreases. Hence:

a) Its orbit radius increases and its speed increases;

b) Its orbit radius increases and its speed decreases;

@Its orbit radius decreases and its speed increases;

d). Its orbit radius decreases and its speed decreases;

e). There is no enough information to determine the change to its orbit radius and speed.
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Problem 741. problems-1/gravitation-mc-kepler-and-scaling.tex

True or False:

a) Kepler’s law of equal areas implies that gravity varies inversely with the square of the
distance. T F

b) The planet closest to the sun on average (smallest semimajor axis) has the shortest period
of revolution about the sun. T F

c) The acceleration of an apple near the surface of the earth, compared to the acceleration
of the moon as it orbits the earth, is in the ratio of R,,/R., where R,, is the radius of the
moon’s orbit and R, is the radius of the earth. T F
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Problem 742. problems-1/gravitation-mc-kepler-and-scaling-soln.tex

a) F Any radial force law will do it.
b) T Kepler’s 3rd law says so.

c) F Ratio should be squared.
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Problem 743. problems-1/gravitation-mc-period-of-missing-planet.tex

The Kepler project is surveying the night sky for stars with planets (and so far over 5000
“exoplanets” have been discovered, with more being found every day). Suppose the Kepler
telescope discovers that a gas giant similar to Jupiter (the easiest kind of planet to detect) is
orbiting a particular star at a distance of 4 astronomical units (AU — the radius of the Earth’s
orbit around the Sun). The period of the planet’s orbit is determined to be 16 Earth years.
What would the period of a possible Earth-like planet that was orbiting that star at 1 AU be?

All answers below are in Earth years:

I I B e N B P N N



14.1. NEWTONIAN GRAVITATION 825

Problem 744. problems-1/gravitation-me-period-of-missing-planet-soln.tex

The Kepler project is surveying the night sky for stars with planets (and so far over 5000
“exoplanets” have been discovered, with more being found every day). Suppose the Kepler
telescope discovers that a gas giant similar to Jupiter (the easiest kind of planet to detect) is
orbiting a particular star at a distance of 4 astronomical units (AU — the radius of the Earth’s
orbit around the Sun). The period of the planet’s orbit is determined to be 16 Earth years.
What would the period of a possible Earth-like planet that was orbiting that star at 1 AU be?

All answers below are in Earth years:

[] 1/2 []1 X 2 [] v2/2 [] 3
Solution: Kepler’s third law tells us
R} =0CT1?
We need to determine C for this star. From the data:
C = 43/16% = 64/256 = 1/4

in units of AU? /year?. Hence the earth-like planet at 1 AU would have to have a period of:

210 = dyeert
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Problem 745. problems-1/gravitation-mc-scaling-moon-orbit.tex

Planet Bongo has a moon, Mongo, that orbits it in a circular orbit much like the Moon orbits
the Earth. You are told that

MBongo = 3AJEarth RBongo = 2REaurth T"Mongo = 2TEarth

where M is each planet’s mass, R is its planetary radius, and 7 is the orbital radius of the
respective moon about the center of its planet.

a) Compared to the speed of the Moon, the moon Mongo’s speed is:

A) larger;
B) the same;
C)

D) unknown, as there is not enough information to decide;

smaller;

b) Find the ratio of the period of the circular motion between the two:

TMongo
TMoon
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Problem 746. problems-1/gravitation-me-scaling-moon-orbit-soln.tex

Planet Bongo has a moon, Mongo, that orbits it in a circular orbit much like the Moon orbits
the Earth. You are told that

MBongo = 3AJEarth RBongo = 2REaurth T"Mongo = 2TEarth

where M is each planet’s mass, R is its planetary radius, and 7 is the orbital radius of the
respective moon about the center of its planet.

For starters, the R radii of the planets themselves is irrelevant, as long as r > R.

All of the answers below come from Newton’s Second Law, Newton’s Law of Gravitation, and
the usual formulae for centripetal acceleration in a circular orbit and the relationship between
period and angular speed:

GMm  mv? 9 4m
=— 3 =, = mwr=mogr
We will use these in ratios that emphasize the scaling and let us cancel out as much of the
irrelevant pieces as possible. We'll use v, as the speed of the moon about Earth, and vj; as the
speed of Bongo’s moon, Mongo:

Fe

a) Compared to the speed of the Moon, the moon Mongo’s speed is:

M.
2=
Te
’U2 _ GMB _ G3Me _ §’U2
M M 2re 2 ¢
A) larger;
B) the same;
C) smaller;

D) unknown, as there is not enough information to decide;

b) Find the ratio of the period of the circular motion between the two:

472
T2 3
c T GM,'©
472 472 8 4x2
T2 — 3 _ 9 )P = 2 3
M= GMg M G3Me( re) 3GM, ' ©

Take the ratio and lots of stuff cancels! In fact, everything cancels but some pure dimen-
sionless numbers:
Ty 8
T2 3
Ty /8
7. V3

TMongo 8
TMoon 3
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Problem 747. problems-1/gravitation-mc-surface-gravity-scaling.tex

- 3
P 2
@ (b) ©

In the figure above, a small mass m is sitting on the surface of three planets. The density and
radius of the planets are as shown:

a) p,R
b) p,2R
c) 2p,R

If the force on m due to gravity for the first planet is F,, find and express Fj and F, in terms
of F,.
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Problem 748. problems-1/gravitation-me-surface-gravity-scaling-soln.tex

M = 4mpR3/3, so:

GMm  4rGpR
R 3

F,=
This means that the force scales linearly with R and linearly with p. Hence:

by, =2F,

F. =2F,
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14.1.2 Short Answer Problems

Problem 749. problems-1/gravitation-sa-escape-condition.tex

Answer the following short questions about escaping from a planet’s gravitational field at its
surface to “infinity”. The answer to each is best given as an equation or short derivation or
by a single sentence that correct captures the concept involved and explains or answers the
question.

a) What is the condition for an object sitting on a planetary surface to escape to infinity?

b) Use the condition from part a) to derive (in a couple of lines of algebra) the escape speed
from a planet of mass M and radius R. This is the smallest speed the object be moving
with to escape to infinity.

c¢) Does it matter what direction the object leaves the surface (that is, does it have to leave
travelling straight up or can it leave at an angle) as long as its path doesn’t intersect the
surface itself?

d) Assume that the planet is Earth, with mass M, and radius R.. Show that the escape
speed from Earth can be written v, = /2gR,. where g is the usual gravitational field
(acceleration) near the surface of the Earth.



14.1. NEWTONIAN GRAVITATION 831

Problem 750. problems-1/gravitation-sa-escape-condition-soln.tex

a) The escape condition is fundamentally Ei.s = U + K = 0, so that the object can reach
r — oo and arrive there at rest. This (Ei ~ 0) is also a good assumption to make for
any object that falls to an attractor from far far away, for example for a falling asteroid
or comet, for the purposes of estimation.

Hence:

. _ [26M
" V'R

is both the (minimum) escape speed and a good estimate for the speed of e.g. a falling
asteroid as it enters the Earth’s atmosphere.

¢) No. This is an energy condition, and does not depend on direction, as long as one doesn’t
run into something (like the planet itself) along the way!

GM,
d) Use g = —— as follows:

RZ
_ [2GM. R, _ |, (GM.
TV "R TR T R

e

) R. = v/2gR.
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Problem 751. problems-1/gravitation-sa-circular-orbit-vs-escape.tex

It is very costly (in energy) to lift a payload from the surface of the earth into a circular orbit,
but once you are there, it only costs you that same amount of energy again to get from that
circular orbit to anywhere you like — if you are willing to wait a long time to get there. Science
Fiction author Robert A. Heinlein succinctly stated this as: “By the time you are in orbit,
you're halfway to anywhere.”

Prove this by comparing the total energy of a mass:

a) On the ground. Neglect its kinetic energy due to the rotation of the Earth.

b) In a (very low) circular orbit with at radius R ~ Rp — assume that it is still more or less
the same distance from the center of the Earth as it was when it was on the ground.

¢) The orbit with minimal escape energy (that will arrive, at rest, “at infinity” after an
infinite amount of time).
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Problem 752. problems-1/gravitation-sa-force-and-torque.tex

y

(z out of page)
0 X
M

In the figure above, a mass M is located at the origin, and a mass m is located at (0, R) as
drawn. The z-axis in the figure comes out of the page. All vector answers below may be
indicated in any of the permissible ways.

a) Find the gravitional force acting on mass little m.
b) Find the torque around the origin O.

c¢) Find the torque on mass m relative to the pivot P. Draw and label an arrow symbol onto
the figure above to explicitly indicate its direction
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Problem 753. problems-1/gravitation-sa-force-and-torque-soln.tex
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Problem 754. problems-1/gravitation-sa-identify-four-orbits.tex

The effective radial potential of a planetary object of mass m in an orbit around a star of mass
M is:
L* GMm

 2mr2 r

Uett (T)

The total energies Fy, E1, Fo, F3 of four orbits are drawn as dashed lines on the figure above
for G =1, M =100, m = 1 and L = 5 (in some system of units). Name the kind of orbit
(circular, elliptical, parabolic, hyperbolic) each energy represents and mark its turning point(s)
in on the graph.

Ey
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Es

E3
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Problem 755. problems-1/gravitation-sa-identify-four-orbits-soln.tex

s
l-Jeff

Turning points

Ey [circular]
e
Py [pwsbole]

hyperbolic

&
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Problem 756. problems-1/gravitation-sa-kepler-3-circular-orbits.tex

In your homework, you studied several different cases of a mass m in a circular orbit around
(or inside) another mass M, with different radial force laws. Suppose you are given a radial
force law of the form:

A

F=-"1#
7477/
Prove that (for circular orbits in particular):
r = OT?

where T is the period of the orbit and r is the radius of the circle, and find the constant C.
(A = GMm, n = 2 then leads to Kepler’s third law, and A = GMm/R3, n = —1 leads to the
relation you derived for the mass in the tunnel through the death star).
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Problem 757. problems-1/gravitation-sa-kepler-3-circular-orbits-soln.tex
In your homework, you studied several different cases of a mass m in a circular orbit around

(or inside) another mass M, with different radial force laws. Suppose you are given a radial
force law of the form:

= A
F=——v
7477/
Prove that (for circular orbits in particular):
r = OT?

where T is the period of the orbit and r is the radius of the zcircle, and find the constant C.
(A = GMm, n = 2 then leads to Kepler’s third law, and A = GMm/R3, n = —1 leads to the
relation you derived for the mass in the tunnel through the death star).

Newton’s Second Law (for this new force law) becomes:

A m? 42
F=" =" =muw?’r=m—r
rn r T2
or (simply rearranging):
n+l _ A 2
4m2m

(where we cannot overtly cancel m, but it is probably part of the given “A” as indicated above).

Hence:

M
(and as a check, if A=GMm, C = i? as usual).
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Problem 758. problems-1/gravitation-sa-period-of-saturn.tex

The earth’s orbit is “one astronomical unit” (AU) in radius (this turns out to be about 150
million kilometers). The period of its orbit is one year. The mean radius of Saturn’s orbit is
(roughly) 10 AU. What is its “year” (period of revolution around the sun) in years? (You may
express your answer as a power of a rational fraction without a calculator.)
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Problem 759. problems-1/gravitation-sa-period-of-saturn-soln.tex

The earth’s orbit is “one astronomical unit” (AU) in radius (this turns out to be about 150
million kilometers). The period of its orbit is one year. The mean radius of Saturn’s orbit is
(roughly) 10 AU. What is its “year” (period of revolution around the sun) in years? (You may
express your answer as a power of a rational fraction without a calculator.)

Solution: Use Kepler’s Third Law:

T} R
¢ R}
in years and AU respectively:
103
T3 = 55 x 17 = 1000

SO

Ts = v1000 ~ 31.5 years
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Problem 760. problems-1/gravitation-sa-speed-of-jupiter.tex

The Earth’s approximately circular orbit about the Sun is “one astronomical unit” (AU) in
radius (this turns out to be about 150 million kilometers). The mean radius of Jupiter’s
approximately circular orbit is (roughly) 5 AU. What is the average speed of Jupiter vjypiter in
terms of the average speed of the Earth ve.., as it moves around the Sun?

Vjupiter =
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Problem 761. problems-1/gravitation-sa-two-orbits-scaling.tex

Two satellites are in circular orbits around the earth, one at radius R and the other at 2R.

a) Circle the satellite that is moving faster.

b) How much faster is it moving? (Express the faster satellite’s speed in terms of the speed
of the slower satellite.)
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14.1.3 Ranking Problems

Problem 762. problems-1/gravitation-ra-four-planets.tex

M,3R/2
(hollow)

(6 points) Four planets of mass M are drawn to scale above, each exerting a gravitational force
of magnitude F; (for ¢ = a,b,c,d) on the small mass m at the position 3R from the center of
each planet as shown. Rank the F; from least to greatest including possible equalities. Indicate
why you are answering the way that you answer in words or an equation or two.
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14.1.4 Regular Problems

Problem 763. problems-1/gravitation-pr-cavendish-torsional-oscillator.tex

restoring torque

_- equilibriurr
orientation

\

torsional thread

In the Cavendish experiment, the gravitational force is measured between two big masses M
(not shown) acting on two small masses m on a rod of length L (assumed to be of negligible
mass in this problem, although it isn’t really) attached to a thin thread such that it makes
a torsional pendulum (as drawn above). The twisting thread exerts a restoring torque of
magnitude 7 = —k# on the rod connecting the small masses, where theta is measured from the
equilibrium angle of the rod as shown.

In the experiment the two large masses are placed symmetrically so that they exert a torque
on the small mass arrangement aligned with the torsional thread. The two small masses twist
the thread toward the big masses until the gravitational torque is balanced by the torque of
the thread. If k is known, a measurement of the angle of deviation 6y suffices to determine the
gravitional torque, hence the gravitational force, hence the gravitational constant G.

There’s only one catch — one needs k, and most spools of thread don’t come labeled with their
torsional response properties.

Show and tell how you can do a simple experiment to measure x with nothing but an accurate
stop watch, a measurement of the mass(es) m, and a measurement of the length L of the
connecting rod. (Describe the experiment and derive the relation between the quantity you
choose to measure and the desired result, k).
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Problem 764. problems-1/gravitation-pr-dangerous-tides.tex

center of mass m(feet) = 2 kg

30
Neutron Star M = 10 kg

Tides can be dangerous. You are a scientist in orbit around a neutron star with a mass M = 103"
kg and a radius of 8 km. Your center of mass moves in a perfect circle 10 km around the center
of the star. You have just enough angular momentum that your feet always point “down”
toward the center of the star and your head points away. Your feet are therefore also in a
circular trajectory around the center of the star, but they cannot also be in orbit (free fall).

Assuming that your feet have a mass of approximately 2 kg and are located approximately 1
meter closer to the star than your center of mass, how much force do your legs have to provide
to keep your feet from falling off 7 Do they fall off?

Hints: Proceed by finding the centripetal acceleration/force of your center of mass in terms of
the gravitational field /force of the star at that location. Repeat this for your feet separately,
assuming that they have the same angular frequency of circular motion as your center of mass
but are in a (much!) stronger gravitational field. The difference in the force required to keep
the feet in a circular orbit (the total centripetal force) and the actual gravitational force must
be provided by your legs. Also, the binomial expansion might well be useful here...
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Problem 765. problems-1/gravitation-pr-dinosaur-killer-asteroid.tex

Asteroid

Earth

Estimate the total energy released when a spherical “Dinosaur Killer” asteroid with a density
p = 10 kg/m? and radius R = 1000 meters falls onto the surface of the earth from “outer space”
(far away). Obviously your answer should be justified by a good physical argument.

Note that this is a lot of energy — more than enough to wipe out all life within perhaps 1000
km of the point of impact (or more) and to change the climate of the planet.
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Problem 766. problems-1/gravitation-pr-equatorial-weight.tex

Q
Y

In the figure above, a planet with uniform mass density p and radius r rotates at a constant
angular velocity € around its N-S axis. A small block of mass m is located on the planet’s
equator and at the instant shown is at rest relative to the surface (meaning that it too is rotating

around the axis with constant angular velocity €2). Express all answers in terms of G, p, m
and 2 as needed or appropriate.

a) Draw the forces acting on the block into the picture, assuming that the planet’s rotation
is slow enough for the block to remain on the surface.

b) Derive an expression for the apparent weight of the block as a function of € (the magnitude
of the angular velocity).

c) If the planet’s rotational speed is very slowly increased, at some point the normal force
will go to zero. Find Tj, the period of the planet’s rotation when this occurs.
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Problem 767. problems-1/gravitation-pr-equatorial-weight-soln.tex

In the figure above, a planet with uniform mass density p and radius r rotates at a constant
angular velocity € around its N-S axis. A small block of mass m is located on the planet’s
equator and at the instant shown is at rest relative to the surface (meaning that it too is rotating
around the axis with constant angular velocity ﬁ) Express all answers in terms of G, p, m
and 2 as needed or appropriate.

a) Draw the forces acting on the block into the picture, assuming that the planet’s rotation
is slow enough for the block to remain on the surface.

b) Derive an expression for the apparent weight of the block as a function of 2 (the magnitude
of the angular velocity).

c) If the planet’s rotational speed is very slowly increased, at some point the normal force

will go to zero. Find Tj, the period of the planet’s rotation when this occurs.

Solution: There are only two forces: gravity and the normal force, drawn above.

The magnitude of the force of gravity acting on m is (from NLG):

4T R3
G ( "3 ”) M 4xGpRm
e
N2 for the mass m in the centripetal direction is:

F, — N = ma, = mQR

The apparent weight of the block is the normal force:

4rGpRm

3 —mO?R =

N =F; —ma, =

<47erR
m

3 QQR> =mg’
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where the quantity in parentheses identified as ¢’ is “g” in the accelerated /rotating frame.

The apparent weight will go to zero when ¢’ goes to zero:

4rGpR 9 AdrGp 2w 3
— —Q°R=0 Q= = — To =+ =
3 = V73 1 T VG

independent of the radius of the planet!
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Problem 768. problems-1/gravitation-pr-escape-velocity-linear-accelerator.tex

L

100 km

One way to reduce the cost of lifting mass into orbit is to use a linear accelerator to drive a
payload up to escape velocity (or thereabouts) and then let it go. This way one doesn’t have to
lift the fuel used to lift the fuel used to lift the ... (almost all the fuel used in a rocket is used
to lift fuel, not payload).

Assume that fusion energy has been developed and electricity is cheap, and that high tempera-
ture superconductors have made such a mass driver feasible. Your job is to do a first estimate
of the design parameters.

A proposed plan for the mass driver is shown above. The track is 100 kilometers long and
slopes gently upwards. The payload capsule has a mass of 2 x 10® kg (two metric tons). The
head of the track is high in the Andes, R = 6375 kilometers from the center of the earth.

a) Neglecting air resistance, find the escape velocity for the capsule. Although bound orbits
will not require quite as much energy, air resistance will dissipate some energy. Either
way, this is a reasonable estimate of the velocity the driver must be able to produce.

b) Assuming that the capsule is started from rest and that a constant tangential force ac-
celerates it, find the tangential force necessary to achieve escape velocity at the end of
the track. Note: Ignore the normal force that the track must exert to divert it so that it
departs at an upward angle.) From this find the acceleration of the capsule, in multiples
of g. Is this acceleration likely to be tolerable to humans?
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Problem 769. problems-1/gravitation-pr-escape-velocity-neutron-star.tex

Neutron Star

-—0
comet

Cool stuff about gravity. A neutron star has a mass M = 10%0 kg and a radius R of 8 km.
Answer the following problems algebraically using the variables M, m, G, R first, then (if
you have a calculator handy or can do the arithmetic by hand) do the arithmetic and put down
numbers. You can get full credit from the algebra alone, but the number answers are pretty
interesting.

a) What is the escape velocity from the surface of the neutron star? (If you do the arithmetic,
express the result as a fraction of ¢, the speed of light: ¢ = 3 x 10® m/sec).

b) A comet with a mass m = 10'* kg falls from infinity into the neutron star. What is the
energy liberated as it (inelastically) hits?

c¢) Compare this energy to the total (rest) mass energy of the comet, mc?.
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Problem 770. problems-1/gravitation-pr-escape-velocity-of-baseball.tex

=

Suppose that planetary rock has an average density p,. Assuming that you can throw a fastball
in baseball at v find an expression (in terms of G, p, v. and known constants) for he radius R
of the largest spherical planet where you can stand on the surface and throw a baseball away
to “infinity” (so that it never comes back)?

If you want to have fun or “check” your algebra, try evaluating this expression for vy = 40
m/sec (nearly 90 mph) and p, = 10* kg/m3. T get around 17 km, making the planet just about
10 miles in radius. The same expression could be used to find the largest planet you could jump
off of (assuming you have a vertical leap of 1 meter on Earth).
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Problem 771. problems-1/gravitation-pr-escape-velocity-of-baseball-soln.tex

Escape energy is Eior = 0, hence:

The mass of the planet is M = 47pR3/3, so:
1 5, 4nGpmR?
— /Ue — f

Solving for R:

2
2 3Ue

- 8tGp

or numerically, given v, = 40 m/sec and p = 10* kg/m?,

Rumax = /3 %1600/ (8 % 3.14 % 6.67 x 10~ % 10%) ~ 17 km

Not so very large.

For fun, suppose that you have a vertical leap of 1 meter on the surface of the Earth (enough
to slam dunk a basketball). At this point, you should be able to determine how fast you must
be moving as your feet leave the ground (v/2gH ~ 2v/5 = 4.5 m/sec). Use that to determine
the maximum size planet you could jump off of. I get just about exactly 2% km!
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Problem 772. problems-1/gravitation-pr-geosync-orbit.tex

The Duke Communications company wants to put a satellite into a circular geosynchronous
orbit over the equator (this is a satellite whose period is exactly one day, so that it stays over
the same point of the rotating Earth).

Ignoring perturbations like the Moon and the Sun, find the radius R, of such an orbit as a
multiple of the radius of the Earth R.. Although as always you should solve for the result
algebraically first you may wish to know some of the following data: The radius of the Moon’s
orbit is R,,, = 384,000 kilometers, or R,, = 60R.. The period of the Moon is T;, = 27.3 days
compared to Ty, = 1 day. R, = 6400 kilometers. M, = 6 x 10%* kilograms. One day contains
86400 seconds.
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Problem 773. problems-1/gravitation-pr-half-tunnel-escape.tex

In the figure above a spherical planet of uniform density p and total radius R is shown. A small
tunnel is drilled from the surface to the center.

a) Find the magnitude of the gravitational field g(r) in the tunnel as a function of r.

b) How much work is required to lift a mass m at a constant speed from the center of this
planet to the surface?

c¢) Suppose the mass m has reached the surface of the planet and is at rest. What upward-
directed speed must you give the mass m at the surface so that the mass escapes from
the planet altogether?
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Problem 774. problems-1/gravitation-pr-half-tunnel-escape-soln.tex

From the shell theorem, there is no gravitational field or force acting on m from the
mass outside of the radius r. The field comes only from the mass inside the sphere of
radius 7 (shaded above):

Hence:

GM(r) Gampr
g’f‘ - — 2 - - 3

’
(radially “in” towards the center of the planet, no other components).

b) We push against the downward force in the direction of lift, so the work is positive. The
force acting on m is just F' = mg so:

R R 2
W= ﬁ-de:/ Fodr = G‘”pm/ pdy = G2
0 0

3 3
c) As alway, the escape condition is Ei = 0. Hence:

GM 1
= + —mvg =0

FEiot = —
tot R 2

or

2GM
Ve =\ ——

R

but we have to express this in terms of the given p!

B A7 R3

M= M(R) = =

p



858 CHAPTER 14. NEWTONIAN GRAVITATION

so the correct answer in terms of the givens is:

2
v, = [|G8TR?p
3
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Problem 775. problems-1/gravitation-pr-planet-with-spherical-hole.tex

Above is pictured a spherical mass with radius R and mass density (mass per unit volume) p.
It has a spherical hole cut out of it of radius R/2 as shown. Find the gravitational field in the
hole in terms of G, R, and p, proving that it is uniform and points to the left.
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Problem 776. problems-1/gravitation-pr-spherical-cow.tex

There is an old physics joke involving cows, and you will need to use its punchline to solve this
problem.

A cow is standing in the middle of an open, flat field. A plumb bob with a mass of 1 kg
is suspended via an unstretchable string 10 meters long so that it is hanging down roughly 2
meters away from the center of mass of the cow. Making any reasonable assumptions you like or
need to, estimate the angle of deflection of the plumb bob from vertical due to the gravitational
field of the cow.
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Problem 777. problems-1/gravitation-pr-thick-shell-force.tex

r

A “thick” shell of mass with uniform mass density p,
inner radius a, and outer radius b is shown. A small
(frictionless) hole has been drilled at the top along the
z axis, and a mass m is at a distance r from the center
of the shell along the z axis so that it can be moved
vertically up or down from outside of the shell to the
inside by means of the tunnel.

Find an expression for the magnitude of the radial force
F,. acting on m when the mass is:

a) Outside of the shell of mass entirely, at some r > b.
b) In the tunnel, where a < r < b.

c¢) Inside the shell, at some point r < a.
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Problem 778. problems-1/gravitation-pr-thick-shell-force-soln.tex

A “thick” shell of mass with uniform mass density p,
inner radius a, and outer radius b is shown. A small
(frictionless) hole has been drilled at the top along the
z axis, and a mass m is at a distance r from the center
of the shell along the z axis so that it can be moved
vertically up or down from outside of the shell to the
inside by means of the tunnel.

Find an expression for the magnitude of the radial force
F,. acting on m when the mass is:

a) Outside of the shell of mass entirely, at some r > b.

b) In the tunnel, where a < r < b.

c¢) Inside the shell, at some point r < a.

Solution: We use the “shell theorem” that states that for a spherically symmetric mass
distribution, we only get a contribution to the gravitational field from the mass inside a given
radius, while outside of that radius it behaves like the field of a point mass, and inside of that
radius its field is zero. (Alternatively, there is no field inside a spherically symmetric shell of
mass.)

Fither way, the field inside the thick shell is zero, so:

‘Frzo for(r<a)‘

Inside the shell itself, the mass inside radius r is (from the dark shaded portion only):

_Amp

M(r) ==

(* — a*)

SO

F
s T‘Q

3
= G]Wr(;)m = 47TC;pm <r - a_) for (a <r <)

Finally, outside of the shell, all of the mass behaves like a point mass at the origin):

_ GM(b)m  4xGpm b — a?

Er r2 3 r2

for (r > b)
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Problem 779. problems-1/gravitation-pr-tides-moe-and-joe.tex

black hole

Moe and Joe, who have identical masses m, are in a circular orbit around a black hole about
the size of a marble, which contains roughly the same mass M as the earth, in the orientation
shown above. The radius of the orbit of their center of mass is R (which we’ll assume is much
larger than the BH). Moe and Joe and tied with a very strong rope 2d meters long (with d < R)
that keeps them moving around the Black Hole at the same angular speed as their center of
mass. Alas, this means that neither Joe nor Moe are actually in orbit (free fall) so the rope has
to exert a force to keep them moving with their center of mass. Find:

a) The speed v, of their center of mass in the circular orbit, as well as its angular speed w,
as a function of G, M, and R. This is just an ordinary circular orbit problem, don’t make
it overcomplicated.

b) If Joe (closer to the BH) is moving in a circular trajectory with radius R —d and the same
angular velocity that you obtained in a) as the orbital angular velocity correct for radius
R, what is the net force that must be exerted on Joe by the BH and the rope together?

c) What is the force exerted on Joe by the BH alone at this radius?
d) Therefore, what must the tension 7" be in the rope (still as a function of G, M, m, R and
d)?

This “force” (opposed by the tension T') is the tide.
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Problem 780. problems-1/gravitation-pr-tunnel-through-death-star-orbit.tex

A straight, smooth (frictionless) transit tunnel is dug through a spherical asteroid of radius
R and mass M that has been converted into Darth Vader’s death star. The tunnel is in the
equatorial plane and passes through the center of the death star. The death star moves about
in a hard vacuum, of course, and the tunnel is open so there are no drag forces acting on masses
moving through it.

a) Find the force acting on a car of mass m a distance r < R from the center of the death
star.

b) You are commanded to find the precise rotational frequency of the death star w such that
objects in the tunnel will orbit at that frequency and hence will appear to remain at rest
relative to the tunnel at any point along it. That way Darth can Use the Dark Side to
move himself along it almost without straining his midichlorians. In the meantime, he is
reaching his crooked fingers towards you and you feel a choking sensation, so better start
to work.

¢) Which of Kepler’s laws does your orbit satisfy, and why?
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Problem 781. problems-1/gravitation-pr-tunnel-through-planet-oscillator.tex

North Pole

A straight, smooth (frictionless) transit tunnel is dug through a planet of radius R whose mass
density pg is constant. The tunnel passes through the center of the planet and is lined up with
its axis of rotation (so that the planet’s rotation is irrelevant to this problem). All the air is
evacuated from the tunnel to eliminate drag forces.

a) Find the force acting on a car of mass m a distance r < R from the center of the planet.

b) Write Newton’s second law for the car, and extract the differential equation of motion. From
this find 7(¢) for the car, assuming that it starts at 7o = R on the North Pole at time ¢ = 0.

¢) How long does it take the car to get to the center of the planet starting from rest at the
North Pole? How long does it take if one starts half way down to the center? Comment.

All answers should be given in terms of G, pg, R and m (or in terms of quantities you've already
defined in terms of these quantities, such as w).
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Problem 782. problems-1/gravitation-pr-two-densities-difficult.tex

In the figure above a spherical planet of total radius R is shown that has a spherical iron core
with radius R/2 and density 2p surrounded by a (liquid) rock mantle with density p.
a) Find the gravitational field §(r) as a function of the distance from the center.

b) Suppose a small, well-insulated tunnel were drilled all the way to the center. How much
work is required to lift a mass m from the center to the surface?
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Problem 783. problems-1/gravitation-pr-two-spherical-shells.tex

A hollow spherical mass shell of mass M; and radius R is inside another hollow spherical mass
shell of mass My and radius 2R. The shells are concentric and of negligible thickness.

a)

b)

A small mass m is placed on the outer surface of the bigger shell Ms. Calculate its
acceleration due to gravity ge in terms of the shell masses M; and Ms, G and R.

The mass m is placed on the outer surface of the smaller shell M. Its acceleration due
to gravity g; is measured and found to be the same as the value of g from part (a). Use
this equality of g; and g9 to express Ms in terms of M7, G and R.

With the relationship you have just derived between M7 and M, compute the gravita-
tional potential energy P; of a mass m on the outer surface of the bigger shell. Express
Py in terms of G, m, M; and R, using the convention that the gravitation potential is
defined as zero at infinite radius.

Compute the change in gravitational potential energy AP as the mass m moves from its
position on the outer surface of M to a position on the outer surface of of M; (being
lowered through the small hole in the outer shell). Is the potential energy larger (more
positive) at R or 2R?

If an object is dropped from rest through the hole in the bigger shell, what is its speed
when it hits the smaller shell? You may give this answer in terms of AP so that you can
get it right even if you get (d) wrong.



868 CHAPTER 14. NEWTONIAN GRAVITATION

Problem 784. problems-1/gravitation-pr-vector-field-two-masses.tex

y
M = 80m d
S8 D = 5d m X

The large mass above is the Earth, the smaller mass the Moon. Find an expression for the
vector gravitational field acting on the spaceship on its way from Earth to Mars (swinging
past the Moon at the instant drawn) in the picture above, in terms of M, m and d. Remember,
magnitude and direction!
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