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Preface

This introductory text on thermodynamics, relativity theory, and quantum mechan-
ics is intended to be used in the third semester of a three-semester series of
courses teaching introductory physics at the college level. This course is most
often taken only by physics majors, math majors, and/or engineers. The text is in-
tended to support teaching the material at a rapid, but advanced level — it was
developed to support teaching introductory calculus-based physics to potential
physics majors, engineers, and other natural science majors at Duke University
over a period of more than twenty-five years.

Students who hope to succeed in learning physics from this text will need, as
a minimum prerequisite, a solid grasp of mathematics. It is strongly recommended
that all students have mastered mathematics at least through multivariable differ-
ential and integral calculus by the time they take this third semester course and
hence are familiar with e.g. the concept of the partial derivative and have some
knowledge of simple first and second order differential equations.

To help students who are, perhaps, a bit shaky in their math preparation, A
separate supplementary text intended specifically to help students of introductory
physics quickly and efficiently review the required math is being prepared as a
companion volume to all semesters of introductory physics. Indeed, it should really
be quite useful for any course being taught with any textbook series and not just
this one.

This book is located here:

http://www.phy.duke.edu/~rgb/Class/math_for_intro_physics.php

and | strongly suggest that all students who are reading these words preparing to
begin studying introductory physics pause for a moment, visit this site, and either
download the pdf or bookmark the site.

It is also strongly suggested that (new) students using this volume in the series
as their first visit and look over Part 1 of Introductory Physics I, the first volume
of this series. It is devoted not to physics or math but to how to learn physics
effectively and rapidly, in particular how to work towards mastery of the material
instead of just “getting through it” a single time. Mastery is important, whether your
ultimate goal is to stop after this class or proceed on with a major, minor, or other


http://www.phy.duke.edu/~rgb/Class/math_for_intro_physics.php
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physics-intensive study in another discipline.

Textbook Layout and Design

This textbook has a design that is just about perfectly backwards compared to most
textbooks that currently cover the subject. Here are its primary design features:

« All mathematics required by the student is reviewed in a standalone, cross-
referenced (free) work at the beginning of the book rather than in an appendix
that many students never find.

» There are only twelve chapters. The book is organized so that it can be
sanely taught in a single college semester with at most a chapter a week.

* It begins each chapter with an “abstract” and chapter summary. Detail, espe-
cially lecture-note style mathematical detail, follows the summary rather than
the other way around.

» This text does not spend page after page trying to explain in English how
physics works (prose which to my experience nobody reads anyway). In-
stead, a terse “lecture note” style presentation outlines the main points and
presents considerable mathematical detail to support solving problems.

+ Verbal and conceptual understanding /s, of course, very important. It is ex-
pected to come from verbal instruction and discussion in the classroom and
recitation and lab. This textbook relies on having a committed and competent
instructor and a sensible learning process.

» Each chapter ends with a short (by modern standards) selection of challeng-
ing homework problems. A good student might well get through all of the
problems in the book, rather than at most 10% of them as is the general rule
for other texts.

» The problems are weakly sorted out by level, as this text is intended to sup-
port non-physics science and pre-health profession students, engineers, and
physics majors all three. The material covered is of course the same for all
three, but the level of detail and difficulty of the math used and required is a
bit different.

» The textbook is entirely algebraic in its presentation and problem solving re-
quirements — with very few exceptions no calculators should be required to
solve problems. The author assumes that any student taking physics is ca-
pable of punching numbers into a calculator, but it is algebra that ultimately
determines the formula that they should be computing. Numbers are used
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in problems only to illustrate what “reasonable” numbers might be for a given
real-world physical situation or where the problems cannot reasonably be
solved algebraically (e.g. resistance networks).

This layout provides considerable benefits to both instructor and student. This
textbook supports a top-down style of learning, where one learns each distinct
chapter topic by quickly getting the main points onboard via the summary, then
derives them or explores them in detail, then applies them to example problems.
Finally one uses what one has started to learn working in groups and with direct
mentoring and support from the instructors, to solve highly challenging problems
that cannot be solved without acquiring the deeper level of understanding that is,
or should be, the goal one is striving for.

It's without doubt a lot of work. Nobody said learning physics would be easy,
and this book certainly doesn’t claim to make it so. However, this approach will (for
most students) work.

The reward, in the end, is the ability to see the entire world around you through
new eyes, understanding much of the “magic” of the causal chain of physical forces
that makes all things unfold in time. Natural Law is a strange, beautiful sort of
magic; one that is utterly impersonal and mechanical and yet filled with structure
and mathematics and light. It makes sense, both in and of itself and of the physical
world you observe.

Enjoy.
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Let us begin our actual week by week, day by day progress through the course
material. For maximal ease of use for you the student and (one hopes) your in-
structor whether or not that instructor is me, the course is designed to cover one
chapter per week-equivalent, whether or not the chapter is broken up into a day
and a half of lecture (summer school), an hour a day (MWF), or an hour and a half
a day (TTh) in a semester based scheme. To emphasize this preferred rhythm,
each chapter will be referred to by the week it would normally be covered in my
own semester-long course.

A week’s work in all cases covers just about exactly one “topic” in the course.
A very few are spread out over two weeks; one or two compress two related topics
into one week, but in all cases the homework is assigned on a weekly rhythm to
give you ample opportunity to use the method of three passes described in the first
part of the book, culminating in an expected 2-3 hour recitation where you should
go over the assigned homework in a group of three to six students, with a mentor
handy to help you where you get stuck, with a goal of getting all of the homework
perfectly correct by the end of recitation.

That is, at the end of a week plus its recitation, you should be able to do all
of the week’s homework, perfectly, and without looking or outside help. You will
usually need all three passes, the last one working in a group, plus the mentored
recitation to achieve this degree of competence! But without it, surely the entire
process is a waste of time. Just finishing the homework is not enough, the whole
point of the homework is to help you learn the material and it is the latter that is the
real goal of the activity not the mere completion of a task.

However, if you do this — attempt to really master the material — you are almost
certain to do well on a quiz that terminates the recitation period, and you will be
very likely to retain the material and not have to “cram” it in again for the hour
exams and/or final exam later in the course. Once you achieve understanding and
reinforce it with a fair bit of repetition and practice, most students will naturally
transform this experience into remarkably deep and permanent learning.

Note well that each week is organized for maximal ease of learning with the
week/chapter review first. Try to always look at this review before lecture even
if you skip reading the chapter itself until later, when you start your homework.
Skimming the whole week/chapter guided by this summary before lecture is, of
course, better still. It is a “first pass” that can often make lecture much easier to
follow and help free you from the tyranny of note-taking as you only need to note
differences in the presentation from this text and perhaps the answers to questions
that helped you understand something during the discussion. Then read or skim it
again right before each homework pass.
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Week 1: The 0th Law of
Thermodynamics

Oth Law of Thermodynamics Summary

« Thermal Equilibrium

A system with many microscopic components (for example, a gas, a liquid, a
solid with many molecules) that is isolated from all forms of energy exchange
and left alone for a “long time” moves toward a state of thermal equilibrium.
A system in thermal equilibrium is characterized by a set of macroscopic
quantities that depend on the system in question and characterize its “state”
(such as pressure, volume, density) that do not change in time.

Two systems are said to be in (mutual) thermal equilibrium if, when they are
placed in “thermal contact” (basically, contact that permits the exchange of
energy between them), their state variables do not change.

» Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system C, and system B is in ther-
mal equilibrium with system C, then system A is in thermal equilibrium with
system B.

» Temperature and Thermometers

The point of the Zeroth Law is that it is the basis of the thermometer. A
thermometer is a portable device whose thermal state is related linearly to
some simple property, for example its density or pressure. Once a suitable
temperature scale is defined for the device, one can use it to measure the
temperature of a variety of disparate systems in thermal equilibrium. Tem-
perature thus characterizes thermal equilibrium.

» Temperature Scales

a) Fahrenheit: This is one of the oldest scales, and is based on the coldest
temperature that could be achieved with a mix of ice and alcohol. In it
the freezing point of water is at 32° F, the boiling point of water is at 212°
F.
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b) Celsius or Centigrade: This is a very sane system, where the freezing
point of water is at 0° C and the boiling point is at 100° C. The degree
size is thus 9/5 as big as the Fahrenheit degree.

c) Kelvin or Absolute: 0° K is the lowest possible temperature, where the
internal energy of a system is at its absolute minimum. The degree size
is the same as that of the Centigrade or Celsius scale. This makes the
freezing point of water at atmospheric pressure 273.16° K, the boiling
point at 373.16° K.

» Thermal Expansion
AL = aLAT (1.1)

where « is the coefficient of linear expansion. If one applies this in three
dimensions:
AV = VAT (1.2)

where § = 3a.

 Ideal Gas Law
PV =nRT = NkT (1.3)

where R = 8.315 J/mol-K, and k = R/N4 = 1.38x107% J/K.
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Week 2: The First Law of
Thermodynamics

First Law of Thermodynamics Summary

* Internal Energy

Internal energy is all the mechanical energy in all the components of a sys-
tem. For example, in a monoatomic gas it might be the sum of the kinetic
energies of all the gas atoms. In a solid it might be the sum of the kinetic and
potential energies of all the particles that make up the solid.

* Heat

Heat is a bit more complicated. It is internal energy as well, but it is internal
energy that is transferred into or out of a given system. Furthermore, it is
in some fundamental sense “disorganized” internal energy — energy with no
particular organization, random energy. Heat flows into or out of a system in
response to a temperature difference, always flowing from hotter temperature
regions (cooling them) to cooler ones (warming them).

Common units of heat include the ever-popular Joule and the calorie (the
heat required to raise the temperature of 1 gram of water at 14.5° C to 15.5°
C. Note that 1 cal = 4.186 J. Less common and more esoteric ones like the
British Thermal Unit (BTU) and erg will be mostly ignored in this course; BTUs
raise the temperature of one pound of water by one degree Fahrenheit, for
example. Ugly.

» Heat Capacity

If one adds heat to an object, its temperature usually increases (exceptions
include at a state boundary, for example when a liquid boils). In many cases
the temperature change is linearin the amount of heat added. We define the
heat capacity C' of an object from the relation:

AQ = CAT (2.1)

where AQ is the heat that flows into a system to increase its temperature
by AT. Many substances have a known heat capacity per unit mass. This

9
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permits us to also write:
AQ = mcAT (2.2)

where c is the specific heat of a substance. The specific heat of liquid water
is approximately:
Cwater = lcalorie/gram —° C (2.3)

(as one might guess from the definition of the calorie above).

Latent Heat As noted above, there are particular times when one can add
heat to a system and not change its temperature. One such time is when the
system is changing state from/to solid to/from liquid, or from/to liquid to/from
gas. At those times, one adds (or removes) heat when the system is at fixed
temperature until the state change is complete. The specific heat may well
change across phase boundaries. There are two trivial equations to learn:

where L; is the latent heat of fusion and L, is the latent heat of vaporiza-
tion. Two important numbers to keep in mind are L;(H,0) = 333 kJ/kg, and
L,(H,0) = 2260 kJ/kg. Note the high value of the latter — the reason that
“steam burns worse than water”.

Work Done by a Gas
Vi
W = / PdV (2.6)
Vi

This is the area under the P(V') curve, suggesting that we draw lots of state
diagrams on a P and V' coordinate system. Both heat transfer and word
depend on the path a gas takes P(V') moving from one pressure and volume
to another.

The First Law of Thermodynamics
AFEy = AQ — W (2.7)

In words, this is that the change in total mechanical energy of a system is
equal to heat put into the system plus the work done on the system (which is
minus the work done by the system, hence the minus above).

This is just, at long last, the fully generalized law of conservation of energy. All
the cases where mechanical energy was not conserved in previous chapters
because of nonconservative forces, the missing energy appeared as heat,
energy that naturally flows from hotter systems to cooler ones.

Cyclic Processes Most of what we study in these final sections will lead us
to an understanding of simple heat engines based on gas expanding in a
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cylinder and doing work against a piston. In order to build a true engine, the
engine has to go around in a repetitive cycle. This cycle typically is repre-
sented by a closed loop on a state e.g. P(V') curve. A direct consequence of
the 1st law is that the net work done by the system per cycle is the area
inside the loop of the P(1) diagram. Since the internal energy is the same
at the beginning and the end of the cycle, it also tells us that:

ACgcycle = chcle (28)

the heat that flows into the system per cycle must exactly equal the work
done by the system per cycle.

» Adiabatic Processes are processes (PV curves) such that no heat enters
or leaves an (insulated) system.

 Isothermal Processes are processes where the temperature 7' of the sys-
tem remains constant.

* Isobaric Processes are processes that occur at constant pressure.
+ Isovolumetric Processses are processes that occur at constant volume.

» Work done by an Ideal Gas: Recall,
PV = NkT (2.9)

where N is the number of gas atoms or molecules. Isothermal work at (fixed)
temperature Ty is thus:

Vo
W :/ NFTo (2.10)
w o V
= Nlen(E) (2.11)
Vi

Isobaric work is trivial. P = P, is a constant, so

Va
W= [ PV =Py(Vo— Vi) (2.12)

1%

Adiabatic work is a bit tricky and depends on some of the internal properties
of the gas (for example, whether it is mono- or diatomic). We'll examine this
in the next section.
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Week 3: The Second Law of
Thermodynamics

Second Law of Thermodynamics Summary

* Heat Engines

A heat engine is a cyclic device that takes heat Qg in from a hot reservoir,
converts some of it to work W, and rejects the rest of it ¢ to a cold reservoir
so that at the end of a cycle it is in the same state (and has the same internal
energy) with which it began. The net work done per cycle is (recall) the area
inside the PV curve.

The efficiency of a heat engine is defined to be

W _Qu-Qc . Qo
o Qn ' Qa (31)

» Kelvin-Planck statement of the Second Law of Thermodynamics

€

It is impossible to construct a cyclic heat engine that produces no other effect
but the absorption of energy from a hot reservoir and the production of an
equal amount of work.

* Refrigerators (and Heat Pumps)

A refrigerator is basically a cyclic heat engine run backwards. In a cycle it
takes heat Q)¢ in from a cold reservoir, does work W on it, and rejects a heat
Q@ to a hot reservoir. Its net effect is thus to make the cold reservoir colder
(refrigeration) by removing heat from inside it to the warmer warm reservoir
(warming it still further, e.g. as a heat pump). Both of these functions have
practical applications — cooling our homes in summer, heating our homes in
winter.

The coefficient of performance of a refrigerator is defined to be

COP = % (3.2)

It is not uncommon for heat pumps to have a COP of 3-5 (depending on the
temperature differential) giving them a significant economic advantage over

13
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resistive heating. The bad side is that they don’t work terribly well when the
temperature difference is large in degrees K.

Clausius Statement of the Second Law of Thermodynamics

It is impossible to construct a cyclic refrigerator whose sole effect is the trans-
fer of energy from a cold reservoir to a warm reservoir without the input of
energy by work.

bf Reversible Processes Reversible processes are ones where no friction
or turbulence or dissipative forces are present that represent an additional
source of energy loss or gain for a given system. For the purposes of this
book, both adiabatic and isothermal processes are reversible. Irreversible
processes include the transfer of heat energy from a hot to a cold reservoir
in general — heat engines and refrigerators can be constructed whose steps
in a cycle are all reversible, but the overall effect of transferring heat one way
or the other is irreversible.

Carnot Engine

The Carnot Cycle is the archetypical reversible cycle, and a Carnot Cycle-
based heat engine is one that does not dissipate any energy internally and
uses only reversible steps. Carnot’'s Theorem states that no real heat engine
operating between a hot reservoir at temperature Ty and a cold reservoir
at temperature T can be more efficient than a Carnot engine operating be-
tween those two reservoirs.

The Carnot efficiency is easy to compute (see text and lecture example). A
Carnot Cycle consists of four steps:

a) Isothermal expansion (in contact with the heat reservoir)

)
b) Adiabatic expansion (after the heat reservoir is removed)
c) Isothermal compression (in contact with the cold reservoir)
)

d) Adiabatic compression (after the cold reservoir is removed)

The efficiency of a Carnot Engine is:

€Carnot — 1—— (33)

Entropy

Entropy S is a measure of disorder. The change in entropy of a system can
be evaluated by integrating:
_dQ

as T

(3.4)
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between successive infinitesimally separated equilibrium states (the weasel
language is necessary because temperature should be constant in equilib-
rium, but systems in equilibrium have constant entropy). Thus:

d
AS = /T Tf?Q (3.5)

has limited utility except for particularly simple processes (like the cooling of
a hot piece of metal in a body of cold water.

We extend our definition of reversible processes. A reversible process is one
where the entropy of the system does not change. An irreversible process
increases the entropy of the system and its surroundings.

- Entropy Statement of the Second Law of Thermodynamics

The entropy of the Universe never decreases. It either increases (for irre-
versible processes) or remains the same (for reversible processes).
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Heat Transport Summary

Conduction: Fourier’s Law

Gg=—rkVT

where ¢'is the local vector heat flux in watts per meter squared, « is the ma-
terial’'s conductivity, in Yat* "and T is the local temperature field (temperature

m2Ko?

as a function of position in the material) in °K.

The Heat Equation

Convection

Radiation

17
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Week 5: The Lorentz Transformation

Here are two very simple derivations of the theory of special relativity in one di-
mension, also known as the Lorentz transformation in one dimension. The first is
given in many places, for example by Einstein in his 1920 book on relativity (as
Appendix 1). Let’s consider the usual Galilean coordinate frame transformation:

Yy
i \

——

X,X

7
flash of light 27

Figure 1: Two coordinate frames, S = (z,y,2,t) and S’ = (2/,¢/, 2/, t') that have
coincident origins att =t' = 0.

In figure 1, two “inertial reference frame” (IRF) coordinate systems are shown,
with the system S’ in uniform (constant velocity) motion at speed v in the +z di-
rection. As is well known and easy to show, the Galilean (non-relativistic) trans-
formation between the frames that results in their origins coinciding at¢t = ¢ = 0
is:

~

= x—t
Yy
z

=t

~

~

S U S
\
AW N

where the universal assumption is that time itself is invariant in all frames, t =
t’. This coordinate transformation has the virtue of preserving Newton’s Laws of
Motion as long as all of the forces that appear in it are one member of Newton’s
Third Law pairs — no “pseudoforces” lacking a third law partner and resulting from
the acceleration of the frame are needed to solve the second law equations of
motion consistently, and all of the third-law-consistent force laws are presumed to
themselves be invariant under conversion from S to .S’ coorindates.

However, this last assumption is violated by Maxwell’s equations and the laws
of electrodynamics. As formulated in one IRF, they lead unambiguously to an elec-

21



22 Week 5: The Lorentz Transformation

tromagnetic wave equation. If one changes reference frames according to the
Galilean prescription, they do not. One is then faced with a conundrum: No matter
what, Newton’s Laws are not going to be invariant under Galilean inertial refer-
ence frame changes, because the force laws associated with the best understood
force of nature are themselves not invariant. Either we give on the invariance of
the forces of nature under Galilean IRF transformations or give up Galilean frame
transformations and search for a new IRF transformation that preserves the in-
variance of the laws of electrodynamics (and hopefully, all the other force laws as
well).

One key implication of Maxwell’s equations is that the speed of light in a vacuum
is:
1 k
== 5.5
€oho Em, (53)

CcC =

If this speed is empirically observed to be different when measured in different
IRFs, then we should select the first choice, however painful. If not, we should
select the second and search for a new IRF transformation that preserves the form
of Maxwell's equations (and all of the consequences of preserving that form) as
invariant laws of nature, among them the very simple consequence that the speed
of light in a vacuum itself is invariant under all IRF transformations.

Einstein (according to self-reported legend, if not third-party history) had in-
tuitively figured this out by thinking about whether or not simple electromagnetic
experiments performed on a moving light wave could depend on whether or not
these experiments were conducted in a frame, like that of a moving train, moving
in the direction of the beam. He concluded (in agreement with the general argu-
ment above) that the invariance of the speed of light and of Maxwell's equations
were tied together all the way back in what amounts to “high school”.

This led to him introducing what is recorded as two postulates, but is really only
one (plus the pre-existing postulate that Maxwell's equations are laws of nature):

a) The laws of nature are invariant with respect to transformations be-
tween inertial reference frames. Note that this postulate is hardly original
to Einstein and was the original motivation for the existing Galilean transfor-
mation from the time of Newton on.

b) Maxwell’s equations and the general equations of electrodynamics are laws
of nature, and hence must be invariant with respect to IRF transformations.
To keep it simple, he reduced this to the single “postulate” that the speed of
light is invariant under all inertial reference frame transformations.

When assigning credit for all this, it is important to realize that all of this had al-
ready been worked out and applied to Maxwell’s equations by a number of “the
giants” of physics of the day years before Einstein published his 1905 paper, which



Week 5: The Lorentz Transformation 23

is one reason among many that Einstein did not win a Nobel prize for relativity! He
actually was not even close to being the first person to derive the theory of rela-
tivity. The one flaw in the previous treatments and derivations of relativity from the
assumption that Maxwell’s equations would be invariant was they often made the
additional assumption of the existence of some sort of medium for the propaga-
tion of electromagnetic waves — the “luminiferous aether” which was presumed to
carry light waves the same way air carries sound waves — which led to consistency
issues and which was contradicted by the Michelson-Morley experiment in 1897.

By 1905 (the year Einstein published his theory of special relativity), Henri
Poincaré had even realized that the set of well-known coordinate transformations
that leave Maxwell’s equations invariant form a group, which he named the Lorentz
transformation, and was hot on the trail of the rest of the kinematical consequences,
but he failed to appreciate two things that Einstein’s derivation made clear. Ein-
stein’s paper, in addition to resulting in a remarkably simple statement of and
derivation of the result (the Lorentz transformation), worked out most of the impor-
tant kinematic and dynamic consequences for simple motions and frame changes,
and from the beginning established the symmetry of frame transformations and
the consequent necessary abandonment of the concept of simultaneity and uni-
versal time, which Poincaré at that time still preserved. Finally, Einstein’s paper
eliminated any need for the concept of the aether as unnecessary, which meant
that it was in agreement with Michelson-Morley from the beginning.

These contributions sufficed to make the resulting derivation of the Lorentz
transformation “Einstein’s” for the rest of all time in the same way that the addition
of Maxwell’s Displacement Current to Ampere’s Law made the set of electrody-
namic equations (worked out by Franklin, Gauss, Coulomb, Ampere, and Faraday
into “Maxwell’s equations” (no doubt to the dismay of Michael Faraday, who had
made at least an equal contribution in the form of Faraday’s Law).

Let’s apply Einstein’s second postulate to both of the frame transformations
implicit in the figure above. Suppose (as shown) a single flash of light is emitted
at their coincident origins at time ¢ = ¢/ = 0. Then in both frames, light must
spread out in a sphere centered on each frame’s origin. That is, if we let = be the
location(s) of the wavefront emitted at ¢ = 0 on the +&-axis of the S frame and
2’ be the location(s) of the wavefront emitted at t = 0 on the £#'-axis (note that
the wave spreads out in a sphere in both frames, so there is an obvious symmetry
between the distance it has moved in +& and —&, etc) we get:

' —ct' =x —ct =0 (along the + & direction) (5.6)

and:
¥ +ct' =x+ct =0 (along the — & direction) (5.7)
These waves are illustrated in figure 2.

Note that the wave that is spreading out symmetrically in S is completely offset
relative to the (moving in S) origin of S’, so that the wave does not appear to be
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Sframe

Figure 2: Spherical wavefronts of light emitted at the mutual space-time origin from
figure 1, as seen by observers in frame S and S’. Note that these observers com-
pletely disagree about what the observers in the other frame see in this (necesarily)
Galilean depiction of the frames.

spherically symmetric in S’. But the observer in S’ thinks that it is the wavefront
in S’ that is spreading out in a sphere around the S” origin and this wavefront is
obviousl not symmetric around the (moving in S’) origin of S! It is this picture that is
particularly difficult for a student to initially grasp and visualize, because we live in
a low-velocity v <« ¢ world where the two pictures are practically indistinguishable
in either direction.

If you feel like your brain is exploding as you try to imagine both pictures to
simultaneously be true and correct depending on which frame you are sitting
in, that is perfectly normal. Relativity is famous, after all, for inducing a paradigm
shift in our view of reality, which basically means that it (like quantum mechanics)
makes everybody’s brain explode when they first encounter it. Our job now is to
put the pieces of your brain back together in such a way that you can see that the
result, however difficult to visualize, is consistent and ultimately is in agreement
with experiment (the only things that really matter in the long run). Over time
and with some hard work and luck, you'll build up a new and improved brain that
accepts this as just the way things (seem to) work and even learns to visualize
what’s going on, using tricks I'll illustrate as best | can below.

For the moment, let's completely ignore any better way to visualize this and get
on with the algebra inherent in the picture and equations above to deduce the sim-
plest form of the IRF transformation that makes it true. It is completely harmless
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to multiply one side of the first of the equations above with a dimensionless con-
stant A\, and to multiply the same side of the second with a second dimensionless
constant u.. That is:

¥—c = MNr—ct)=Ax0=0 (5.8)
P+t = plz—ct)=pux0=0 (5.9)

Distribute (and lose the zeros, we don’t need them any more):

¥ —ct' = Iy — At (5.10)
¥+t = px— pct (5.11)

Add them to eliminate ct/, subtract them to eliminate z’:

20" = (A4 p)z—(\—p)ct (5.12)
—2ct’ = AN—p)x— XN+ p)ct (5.13)

Divide, and rename the resulting combinations of A and x to simplify:

x, Atp  A-p

A — A
poo ATk AR, B (5.15)
2c 2 c

where we replace (permanently) the arbitrary A and i with the equally arbitrary (but
now consistently implemented):

v = 28 (5.16)

g = 2 F# (5.17)

Consider the origin of the S’ frame, 2’ = 0. At that point we must always have:

x’zvx—ﬁctzv(x—éct> =0 (5.18)
Y
But z = vt is the location of the S’ origin in S! Hence, allowing for nontrivial v # 0:
vt—éctzo:v:@ (5.19)
g Y

This let’s us rewrite our transformation equations in a simpler form:

/

¥ = y(x—ot) (5.20)

= v <t— EéE)
2
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Now we implement the “startling” result that the exact same relationship has to
work in the other direction, that is, going from 2, ¢ back to x,t we simply replace
v — —v as S is moving in the —&' direction:

r = (' +ot) (5.22)
v
t o= o <t’ n ;x) (5.23)
Note that we have to require both of these conditions simultaneously to solve for -,
essentially insisting that if we transform from S to S’ and then transform back from

S’ to S using the same transformation, we get back to where we started! This is
essentially a consistency condition. Substituting:

x = {7 (x — vt) + vy (t - %x) } (5.24)
t = v {7 (t — C%x) + CU—QV (x — Ut)} (5.25)
Hence: ) )
xzyQ{(m—vt)—l—(vt—v—Qx)}:vQ (1—U—2)x (5.26)
c c
or: )
72<1—Z—2)=1:> 7:+—1v2 (5.27)

We have ignored propagation in y and z because just requiring y = 3’ and z = 2/
suffices to ensure that both waves are spheres in S and S’ respectively. One can
do a more careful job of this (and not assume anything about the direction of ¥,
for example) but there is no point in doing so using this simple framework in an
introductory work — later, in a “real electrodynamics” course you will in all probability
derive the special Lorentz group properly and such concerns will vanish once and
for all, but this is actually sufficient and one can always choose coordinates initially
so that = and 2’ line up with the direction of 4.

We conclude that to go from S to S’ coordinates we use:

¥ = v(z—ut) (5.28)
¢ = ’y<t—%m> (5.29)
r =y (5.30)
"= 2 (5.31)

and to go back from S’ to S we use the exact same transformation except that (of
course) now ¥ — —4 describes the position of the S origin in S’, so we change the
sign of v in the transformation:
r = (2" +ot) (
v
" <t’ n ga:) (5.33
(
(

~
I

Y

SIS
|
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where:
V= (5.36)

There are two very important observations that | omitted in the derivation above
but that you should be aware of. First, since we managed quite well with the good
old Galilean transformation for well over a century (if not longer, as it was intuitive
from experience long before it was quantified) it is worth pointing out that when
v < ¢, v — 1 and the Lorentz transformation asymptotically approaches the
Galilean transformation.

The second is that | cheated just a bit when | wrote the “+” sign in the defini-
tion of v without explaining that | was choosing it so that this would be the case!
After all, there is nothing in the math above that prohibits the minus sign solution
from working! That’s an important example of the difference between pure math
and physics. We are not just finding the set of all transformations (at this time,
anyway) that leave the speed of light invariant in all frames, because they include
things like simply inverting the coordinate axes, inverting the time coordinate, and
for that matter rotations of the coordinates. Right now we want only the subset of
all such transformations that reduce in the low velocity limit to only the Galilean
transformation, the usual transformation that lets you relate what you see throwing
a ball up and down in a moving car to what an observer on the ground sees. It
would be odd indeed’ if the ground observer saw a mirror image of the motion of
the motion they do in fact see, but from the point of view of not violating the laws of
physics per se both alternatives are possible and correspond to a simple redefini-
tion of the coordinates. Again, all of this will eventually be treated “correctly” in one
or more advanced courses, or if you are in a hurry you can visit e.g. Wikipedia:
http://www.wikipedia.org/wiki/Lorentz_group and follow links, or look in a good book
on Electrodynamics.

'That's a complex pun, by the way, based on the fact that picking up a minus sign under coordi-
nate inversion is the definition of odd functions...


http://www.wikipedia.org/wiki/Lorentz_group
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