Zen and the Art of Beowulf Clusters

Robert G. Brown
Duke University Physics Department
rgb@phy.duke.edu

November 8, 2006

Principles of Zen
e Zen is a blend of Taoism and Buddhism with an em-
phasis on meditation (sitting zazen).

e The purpose of pursuing a zen path is to seek En-
lightenment.

e Enlightenment comes from quieting the mind to live
in the now.

e With a quiet mind focussed on the present, one can
obtain great insight.

Principles of Beowulf Clusters

e A Beowulf Cluster is a blend of Commodity Off The
Shelf (COTS) computer hardware and a high quality
network.

e The purpose of building a Beowulf Cluster is to per-
form parallel computations.

e Parallel computations can complete work in much
less time than serial computations.

e With the rapid results obtained from parallel com-
putations, the quiet mind can obtain great insight.

(an obvious connection, right...?7 :-)

How to build a Parallel Cluster

e Get a pile of PC’s.
e Install Linux
— Fedora Core via PXE from a server (VERY effi-
cient, see fedora.redhat.com).
— Warewulf (www.warewulf.org).
— Debian (www.debian.org).
— Scyld (www.scyld.com)
— It is possible and sometimes advantageous to run

linux diskless in a small cluster.

e Install parallel computation support as needed — net-
work, PVM, MPI, libraries.

e Program and run parallel programs.
There are a few details, of course. To design an optimal

cluster for any given task one has to understand parallel
computations and how to match them to cluster design.

e

« | Ts| 1 2 3 4 5 6 7 8 9 10 | 11
10

A | Ts 1 4 7
DN

B Tsj 2/4 5 1 8 | 11
AN

c |Ts| 3 6 9
Overhead

Figure 1: Parallelization of a Task

So what ARE Parallel Computations?

e “Tasks” typically have both serial and parallel com-
ponents.

e Parallel subtask completion time under ideal circum-
stances scales like 1/N where N is the number of par-
allel tasks undertaken (on e.g. different processors)
at the same time. “Many hands make light work”.

e Parallel subtasks often (but not always) require in-
terprocessors communications (IPCs) between the
subtasks. This communication time adds to to the

total and can take more or less time than the work
itself.

e All this is made formal in Amdahl’s Law and quanti-
tatively corrected in books on parallel computation.

Amdahl’s Law

The speedup S experienced running a task on P proces-
sors is less than or equal to:

(TS + Tp)
55 T 1,7 v

where 7 is the time program spends doing ‘“serial work”
and 7, is the time spend doing ‘“parallelizable work”
split up on P processors.

Limiting result, not horribly useful quantitatively ex-
cept to tell you when there is no point in parallelizing
something. Can do much better.

For example, we can account for the time spent com-
municating between processors, the time spent setting
things up, and changes in the times to perform various
tasks with different algorithms. Defining things like:

Ts The original single-processor serial time.

T;s The (average) additional serial time spent doing
things like IPC’s, setup, and so forth, per processor,
in all parallelized tasks.

T, The original single-processor parallizable time.

T;, The (average) additional time spent by each pro-
cessor doing just the setup and work that it does
in parallel. This may well include idle time, which
is often important enough to be accounted for sepa-
rately.

we can obtain improved estimates of the speedup:
Tiot(P) =T+ PxTis+T,/P+T,. (2)

or
T, +1T,

S =~ :
Ts+PxT+T,/P+T,

(3)

All You Need to Know
About Code Granularity

® If ¢ omputation > tcommunications (lots of work, little commu-
nication) coarse grained. P completely independent
jobs are “embarrassingly parallel” (EP). (e.g. Monte
Carlo, data field explorations.)

® If ¢ omputation > tcommunication (Put not tremendously so)
medium grained. (e.g. problems on a lattice (where
the lattice is partitioned among nodes with short
range communications), lattice gauge theory.)

® If ¢.omputation = tcommunication O less fine grained. (e.g. —
Cosmology, molecular dynamics with long range in-
teractions, hydrodynamics, computational fluid dy-
namics.)

Granularity typically is somewhat controllable. Net-
work speed and latency, scaling of computation to com-
munication as a function of problem size, CPU/memory
speed, program organization all control variables.

Fine grained tasks are “bad” for scaling to many nodes
N. Coarse grained tasks are “good”.

Beware nonlinearities! CPU/cache/memory/disk bot-

tlenecks can create “superlinear speedup” and violate
Amdahl’s Law!

50 [~

R(P)/R(1) (speedup)
R(P)/R(1) (speedup)

\\\\\\\\\\\\\\\\\\\\\\\\
2

50 [~

R(P)/R(1) (speedup)
R(P)/R(1) (speedup)

Huh? Whaddideesay?

In all the figures below, 7, = 10 (which sets our basic
scale, if you like) and 7, = 10,100, 1000, 10000, 100000. In
the first three figures we just vary 7;; = 0,1, 10 for 7;, = 1
(fixed). Finally, the last figure is T;; = 1, but this time
with a quadratic dependence P? x T,.

Designs: NOW /COW /Beowulf

Goal is optimizing overall performance per dollar. The
following are appropriate for increasing fineness of pro-
gram granularity:

e GRID (Network of clusters, supercluster). SGE or
shell-level tools. EP tasks, primarily.

e NOW (Network of Workstations) + e.g. Mosix, mas-
ter /slave PVM, MPI, shell-level tools or perl scripts
permit double usage of all CPUs.

e COW (Cluster of Workstations) same as NOW but
protects the network a bit and isolates the compute
resource from interactive humans and GUIs. Most
common Duke design?

e Beowulf (dedicated, single headed COW) +
Scyld/clustermatic and PVM/MPI. A totally iso-
lated COW with (usually) a private network, custom
OS, and a single head.

These are suitable for increasingly fine granularity, at
increasing cost and decreasing general purpose utility.

Schematics for the general designs follow, first a “true
beowulf” and then a workstation cluster.

Beowulf "body"

A

,,,,,,,,,,,,,,,,,,,,,

Network Backbone

A True Beowulf

Workstation Workstation| [Workstation
Workstation Workstation| +— Workstation
Workstation Workstation| [Workstation
'Workstation—— Workstation [Workstation
Workstation Workstation| +— Workstation
Workstation Workstation| [Workstation
Workstation Workstation [Workstation
Workstation Workstation| [Workstation

SNitcr! Network Backbongé

Server | | Server | \Workstation (head)

"Cluster" Supercomputer Workstation (head)

A Workstation Cluster

Node Design and Cost

The following are some possible node configurations and
prices:

e Dimension C521 AMD Athlon 64 X2 Dual-Core
50004+ (2GB) with 10/100 ethernet and 3 year onsite
service = $900

e PowerEdge SC1435 Dual Dual Core AMD Opteron
2210; 1.8GHz,2X1MB Cache,1Ghz HyperTransport,
4 GB, (1U form factor), dual Gigabit ethernet, 3
year Standard Support = $2900

e High end network interconnects range in price from
$800 to $1500 per PC, plus switch hardware (where
gigabit ethernet is not a high end interconnect and
for small clusters is actually cheap).

e In addition, a cluster is likely to need: Shelving or a
rack, network switch, cabling, a KVM arrangement,
a system configured as a “server”. A pro-grade clus-
ter is likely to cost around $1000/CPU (and up).

The cheapest barebones clusters for learning and
experimentation can cost surprisingly little. On
www.clustermonkey.net, for example, you can find an
article on a “value cluster” — an 8 node cluster that cost
$2500 total in 2005. This is easily within the reach of
individuals, clubs, or small schools.

Turnkey Clusters

Turnkey clusters can make sense if you are building a
very specialized cluster and need help designing and in-
stalling it. A turnkey integrator will typically resell the
hardware components to you pretty much at standard
retail marked up to cover their “integration fee” for
designing the cluster, installing the clusterware on it,
and so forth. This ends up being anywhere from a 20%
markup of OTC prices on up.

Cluster Networks

e Switched 100BT (old standard, nearly obsolete).

e Switched 1000BT (emerging standard). Good band-
width. Relatively poor latency. Cheap.

e Infiniband. Excellent bandwidth and latency. Ex-
pensive

e 10 GB Ethernet. Excellent bandwidth and latency.
Expensive.

e Dolphinics. Excellent bandwidth and latency. Ex-
pensive.

e Etc. (You get the idea — bandwidth and latency
beyond ethernet are expensive).

Parallel Program Support

e MPI (Message Passing Interface). API + library for
writing portable parallel programs with a message

passing interface for IPC’s. Several versions avail-
able, LAM in Red Hat and on repository.

e PVM (Parallel Virtual Machine). API + library for
writing portable parallel programs that run across
networks. My personal favorite API (written as
open source effort from beginning, not by a con-
sortium of massively parallel supercomputer vendors
under governmental threat).

e Raw Sockets (yeah!)
e Mosix
e Remote Shells (e.g. rsh, ssh)

e Miscellaneous: = Monitors, batch/queue systems,
GUTI’s, scripts, bproc, scyld, cod, more...

Simple Example: xep (PVM Mandelbrot Set)

e Mandelbrot set is iterated map that either “escapes”
or doesn’t.

e Colors mapped to steps until escape makes pretty
pictures.

e Self-referential, fractal, infinitely fine structure as we
rubber-band down into set.

e Easily parallelizeable (coarse grained parallel).

On a good day, this will work as a demo...

Physical Infrastructure Requirements

e Space: Shelfmount > 1 ft?/node, Rackmount =~ 0.5
ft? /node, blades “different”. 1-2 CPUs/node, maybe
UPS. Heavy! Strong floors!

e Power: Guestimate 100W/CPU, better to mea-
sure. Special wiring requirements for switching
power supplies! Overwire!

o A / C: All power IN turns to heat and must come
OUT. 1 Ton of A/C removes ~ 3500 W. Again, need
surplus to keep room COOL, plus specific deliv-
ery/circulation/return design. Thermal kill?

e Network: Cable trays, patch panels, backbone
ports on copper or fiber. BOTH local net-

work(s) for cluster AND connection to departmental
LAN/WAN.

e Etc: Decent lighting. Work bench and tools! Chairs
and carts. Monitor, keyboard. KVM switch? Jack-
ets and ear protectors or noise-reduction headphones
plus music. Phone. X10/temp/humidity/intrusion
monitoring?

Physical Infrastructure Costs

e Anywhere from $400 to $5000 per node straight com-
pute hardware cost. Typically $1000/CPU “reason-
able” memory non-bleeding edge clock config.

e Anywhere from $30 to $1000 (or more?) per node
for network. In some designs network will cost more

than CPU!

e Amortized renovation costs. For example, $100,000
for space to hold 100 nodes, over 10 years, is ballpark
$150/node/year (including cost of money).

e Recurring costs. $1 W/year for power/cooling,
maybe rent or physical space maintenance. 100

nodes at 100 W each cost at least $10,000 year to
run 24x7 for the year!

Note well that recurring costs for operating a node can
compete with the cost of the node! This favors getting
relatively expensive nodes and dumping nodes quickly
when obsolete!

Administrative Infrastructure

e Installation: Min: 15 min TOTAL /node (unpack-
ing it and racking it plus e.g. kickstart. Max: Any
nightmarish thing you can imagine (prototype)!

e Operational maintenance: Min: 1 hour per
node per year (OS upgrades, fixing “rare” hardware
failures, new software). Presumes automation of
nearly everything (yum) and preexisting LAN (with
accounts, fileservers, etc.). Max: Any nightmarish
thing you can imagine.

e LARGE Monitoring: Min: 20-30 minutes/day per
cluster Presumes syslog-ng, monitoring tools like
ganglia or xmlsysd/wulfstat, alert users. Max: A
couple hours a day.

e LARGE User support: Min: 0 minutes a day if you
have smart users and a sucker rod handy to school
the lazy. Max: Arrrrrggghh! (*whack!* *whack!*)

In summary, Min: ~ 1 hour a day, on average, for a
“good” 1004 node cluster; Max: full time job and then
some for a “bad” cluster (depending on luck, hardware
reliability, your general admin skills, your cluster admin
skills, user support requirements, and the availability of
cluster expertise in a distributed support environment).

Conclusions
Total Cost of Ownership (TCO) can range from:

e $1000 (node) + $300 (power and A/C) + $100 (3
hours sysadmin time) = $1400 per node for a three
year expected lifetime; to

e $3000 (node) + $600 (power and A/C) + $450
(amortized share of expensive renovation) 4+ $800
(24 hours sysadmin time) $150 (amortized share of
four post smoked glass rack, UPS, = $5000 for the
same three year lifetime.

Wide range, provokes TCO fistfights in bars.

Still, beowulfish clusters often yield staggering produc-
tivity efficiency. Generally 3-10x more cost /benefit than
comparable power “big iron”. SO, literally everybody
is buying or building them.

References and Resources

e http://www.beowulf.org

e http://www.clustermonkey.net

http://www.phy.duke.edu/~rgb/Beowulf/beowulf.php

(see especially my book on cluster engineering).

http:/ /www.phy.duke.edu/~rgb/Beowulf/zen_of_cluster

(this talk).

e http://www.phy.duke.edu/brahma/ (lots of re-
sources)

e “How To Build a Beowulf”, by Sterling, Becker, et.
al.

e Online book on designing par-
allel programs by Ian Foster at Argonne National
Labs, http://www-unix.mcs.anl.gov/dbpp/

e “Highly Parallel Computing”, by Amalsi and Got-
tlieb.

http://www.beowulf.org
http://www.clustermonkey.net
http://www.phy.duke.edu/~rgb/Beowulf/beowulf.php
http://www.phy.duke.edu/~rgb/Beowulf/zen_of_clusters.php
http://www.phy.duke.edu/brahma/
http://www-unix.mcs.anl.gov/dbpp/

Conclusion and Example

e Cluster computing is easy to understand.

e Cluster computers are cheap (compared to nearly all
HPC alternatives).

e Cluster computers allow one to perform supercom-
puting at home, at your college, anywhere.

e In the best tradition of a Zen master, I offer you the
following Koan to mediate upon that can lead you
to enlightment...

Koan: Zen Wulf

Computers are linked
Fleeting packets join their power
Data Satori!

