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1 Basic definitions

We see non-luminous objects because photons from a light source reach the ob-
ject, are scattered there and subsequently reach our eye. If there is no scattering
between the object and the eye, the distance we can see is almost unlimited (we
easily see objects in space thousands of lightyears distant). What limites the
view range are scatterings of light propagating between the seen object and the
eye.

Assume that the mean distance for a photon to travel without scattering is
λ. This is sometimes also called optical depth or optical thickness. We call a
medium optically thin if the distance d between object and observer is smaller
than λ (i.e. most photons reach us without scattering) and optically thick if
d ≫ λ.

Note that any scene to render is almost never purely optically thick or thin —
even in dense fog, objects can be sufficiently close so that they are seen clearly.
Optically thick and thin are just useful approximations to make.

In an optically thick medium, photons have typically been scattered a number of
times before they reach the eye. As a consequence, properties of any individual
scattering are largely lost. In the optically thin single scattering approximation,
directional (Mie) scattering is a major effect which appears much stronger at
small angles with the sun than at large angles. This is not so in optically thick
media — consider a rainy sky: It’s almost impossible to tell where the sun is
above the clouds, because all directional information is lost.

2 Light attenuation

Neglecting any dependence on wavelength, photons propagating directly from
an object to the eye are attenuated as

dN(x)/dx = −N(x)σρ(x) (1)

where N(d) is the number of photons left after covering distance d, σ is the
scattering cross section and ρ(d) is the density of scatterers at position d. For
a constant density, this equation is solved by an exponential function with an
initial photon number (i.e. light intensity)

N(d) = N0 exp(−σρd) ≡ N0 exp(−d/λ) (2)
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where the last expression utilizes the definition of the mean free path σρλ = 1.
Thus, if we’re two optical depths away from an object, we only see exp(−2) ≈
13% of the originally emitted light, the rest is scattered out. If this were all
that happens, objects in fog would be much darker. However, in actual reality
we see in-scatterd light instead.

3 Light diffusion

What does the rest of the light in the scene do? Assume a scene as depicted in
Fig. 1:
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Figure 1: The basic scene of a ground haze layer

Light reaches from the sun to the top of the layer. Since the layer is optically
thick, it scatters multiple times in the layer, at which point each photon essen-
tially undergoes a random walk. The mean intensity of light is then described
by a diffusion equation

dN(r, r)

∂t
= ∇ (D(N, r),∇N(r, t)) (3)

where N(r, t) is the number of photons at spatial position r and time t and
D is a diffusion coefficient which can be computed from the properties of an
individual scattering and the local medium density. Assuming that D is not
position dependent inside the haze layer but vanishingly small outside and some
number inside, we can simplify the equation by pulling the constant D out.
Furthermore, we are not interested in time dependence — photons still move
with the speed of light, so the intensity distribution of light in the layer will
adjust practically instantaneously to any changes, thus we’re only interested in
the static equilibrium limit and can drop the time derivative on the left hand
side, hence we get the much simpler

D∇
2N(r) = 0 (4)

2



For an infinite layer symmetry reasons argue that the only gradient can be
perpendicular to the interface to clear air, i.e. along the z direction in the
figure, i.e. the equation collapses to a 1-dim

D∇
2N(z) = 0 (5)

This is again solved by an exponential

N(z) = N0 exp(−δ · ∆z) (6)

with D = δ2 and ∆z measured from the upper layer edge downwards. For
simplicitly, we may assume that ∆ ∼ 1/λ as both quantities are related to the
same scattering process (but in reality, δ knows about directional scattering).
Thus, we know the intensity of light at any point inside the layer, and by
definition of the optically thick condition they do not have a preferred direction,
i.e. light radiates from this point with given intensity into all directions equally.

4 Bringing it together

Thus, what do we see? The basic problem is depicted in Fig. 2:
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Figure 2: Viewing an object inside the haze

We see the light directly transmitted from an object across the distance d in
addition to all light that is scattered into the path and hasn’t been scattered
out. Thus, a fraction T = exp(−d/λ) is direct light from the object, the rest is
background light.

Consider one particular point d0 on the line between eye and observed object.
Using the labelling in the figure, the ∆z at this point is (h − alt) + d0 sin(φ)
(if φ is taken to be positive looking up and negative looking down) and the
corresponding light intensity is exp [−((h − alt) + d0 sin(φ))/λ] with the fraction
of this light actually reaching the eye being exp(−d0/λ). The total amount of
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stray light being inscattered and seen by the eye (i.e. not outscattered again)
is then the integral along the path

Nstray =

∫ d

0

dd′ exp

[

−
(h − alt) + d′ sin(φ)

λ

]

exp

[

−
d′

λ

]

. (7)

This looks complicated, but has a very easy approximate solution which is
appropriate for most cases relevant in practice. This solution is: Take the
stray light at the value of one optical thickness λ along the path (or the layer
edge or the terrain, whatever comes first) as the solution to the integral. Thus,
the part of light that is not transmitted should be taken with the intensity

Nstray = N0 exp

[

−
(h − alt) + λ sin φ)

λ

]

(8)

and the light reacing the eye is then T · direct light + (1 − T ) · Nstray.

In the general case, the path must be divided. The following situations can
occur and must be dealt with separately:

• eye inside haze, object inside haze: this has been discussed above

• eye inside haze, object (or skydome) above haze: in this case, only a
portion dhaze of the total path contributes to attenuation

• eye outside haze, object below haze: in this case, only a portion dhaze of
the total path contributes to attenuation

• eye outside hze, object outside haze: there is no stray light from the opti-
cally thick limit and the whole computation must be done in the optically
thin limit

In general, attenuation is multiplicative, i.e. the total transmission through two
layers A and B is TA ·TB, i.e. as long as at least one layer is optically thick, the
results will be determined by that layer.

5 Intensity perception

Using an exponential attenuation of intensity gives the result of a photon flux
measurement correctly, but doesn’t reproduce the perception of the human eye.
Here the Weber-Fechner law states that the sensitivity to differences in intensity
of a stimulus is approximately proportional to the magnitude of the stimulus.
Thus, if light at the top of the haze layer has the (rgb)light values of the primary
light source, the color of a pixel in the layer should not be (rgb)light ·Nstray but
instead

(rgb)haze = (rgb)light(1 + a ln(Nstray/N0)) (9)

where a is a parameter to be tuned by comparison with real situations. The net
result of taking a logarithm here is a cancellation of the exponential, i.e.
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(rgb)haze = (rgb)light · (1 − a · ∆z/λ) (10)

For a more detailed modelling, it is of course also possible to compute the
attenuation explicitly for each color channel with slightly different attenuation
constants.

6 Some Flightgear specifics

Cloud layers do attenuate light, but they are not done using volumetric haze, so
the information must be inserted manually. Currently we do this via /render-
ing/scene/scattering which is supposed to stand for a Weber-Fechner corrected
reduction of the light intensity below a cloud layer.

In principle, /rendering/scene/saturation does the same thing, but that’s a more
dangerous beast as it directly modifies the intensity of the primary light source
- it will in essence dim the sun itself, and that is only a good idea if the visibility
is generally poor and the sky can’t be seen at all.

5


