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Hexagonal 
Parquet Tilings
k-Isohedral Monotiles 
with Arbitrarily Large k
JOSHUA E. S. SOCOLAR

T he interplay between local constraints and global struc-
ture of mathematical and physical systems is both sub-
tle and important. The macroscopic physical proper-

ties of a system depend heavily on its global symmetries,
but these are often difficult to predict given only informa-
tion about local interactions between the components. A
rich history of work on tilings of the Euclidean plane and
higher dimensional or non-Euclidean spaces has brought to
light numerous examples of finite sets of tiles with rules
governing local configurations that lead to surprising global
structures. Perhaps the most famous now is the set of two
tiles discovered by Penrose that can be used to cover the
plane with no overlap but only in a pattern whose sym-
metries are incompatible with any crystallographic space
group. [1, 2] The Penrose tiles “improved” on previous ex-
amples due to Berger [3] and others (reviewed by Grün-
baum and Shephard [4]) showing that larger sets of square
tiles with colored edges (or several types of bumps and
complementary nicks) could force the construction of a non-
periodic pattern.

The discovery of a set of only two tiles that could fill
space but only in a non-periodic way raised a host of in-
teresting questions. The Penrose tilings have elegant geo-
metric and algebraic properties [1, 5, 6]. One successful line
of research has been the discovery of tile sets that have the
Penrose properties but different point group symmetries in
two [7, 8, 9] and three dimensions [7, 10] or in hyperbolic
space [11]. In all of these cases, the rules one must follow
to construct a tiling are strictly local. Any configuration in

which adjacent tiles fit together to leave no holes is al-
lowed. There is no explicit constraint on the relative posi-
tions of tiles that do not touch each other.

Another question, which has proven more difficult, is
the quest for a single tile (rather than a set of two) that
forces a non-periodic, space-filling tiling of the plane. It
may be fruitful to view this as a limiting case of the fol-
lowing more general problem. Any tiling can be classified
according to its isohedral number k, defined as the size of
the largest set of tiles for which no two can be brought
into coincidence by a global symmetry (any reflection, ro-
tation, translation, or any combination of these) that leaves
the entire tiling invariant. A set of tiles for which the small-
est isohedral number of an allowed tiling is k is called a
k-isohedral set. If the set consists of a single tile, the tile is
called a k-isohedral “monotile.” The challenge is to find a
k-isohedral monotile for arbitrarily large k.

To gain some intuition about the isohedral number, con-
sider the two tilings shown in Fig. 1. The tiling on the left
has k � 1; any tile can be mapped to any other by a trans-
lation that leaves the entire tiling invariant. The red tile can
be mapped into the yellow one by a 180° rotation about
the midpoint of their common edge; into the blue one by
a counterclockwise 90° rotation about the lower left cor-
ner of the red tile; and into the gray one by a clockwise
90° rotation about the upper left corner of the red tile.
Combining these rotations with the square lattice of trans-
lations generated by the vectors shown allows any tile 
to be mapped into any other. The tiling on the right has



k � 2. It has the same symmetries as the one on the left,
but there is no symmetry that maps the green tile into the
orange one; there are two “inequivalent types” of tiles in
this tiling.

The answer to this question “Is there a k-isohedral
monotile?” for arbitrarily large k depends crucially on how
the question is posed. As we will see below, there are many
subtly different versions of this and similar questions, and
versions that may at first glance appear equivalent turn out
not to be. Forcing nontrivial global structure of a certain
precisely defined type can be accomplished in a variety of
ways depending on what types of local matching rules are
deemed permissible. We will assume that the rules are ap-
plicable only to tiles that share (some portion of ) an edge.
But shall we require that the monotile be completely de-
fined by its shape alone? Or shall we allow coloring of the
edges and specification of which colors are allowed to co-
incide? Shall we insist that the monotile be a simply con-
nected shape? Shall we insist that the tiling cover the en-
tire plane, or just that it have the highest possible density?

Recent exhaustive searches of polyomino monotiles con-
sisting of square, triangular, or hexagonal units have pro-
duced k-isohedral examples with k as large as 10 (so far!)
[12], but there appears to be no systematic way construct
such examples analytically. In these examples, the match-
ing rules are enforced by shape alone and the entire space
must be covered.

Below we present several variations of a class of
monotiles and matching rules that can force tilings with ar-
bitrarily large k. The tilings formed all have the basic struc-
ture of the hexagonal parquet shown in Fig. 2. Each rhom-
bus in the figure is composed of L � 5 monotiles.
Generalization to arbitrarily large L is clearly possible. (Ex-
ercise: Find the isohedral number of the hexagonal parquet
in terms of L. Answer below.)

In each of the following four sections, we present a
monotile and matching rule that forces a tiling with the
symmetry of the hexagonal parquet. The difference between
the tilings lies in the way in which the rule is expressed.
Defining a tile to be the closed set of points bounded by
the tile edges (and faces in higher dimensions), we have
the following four cases. In all cases, we allow tiles to over-
lap only along edges.
1. The edges of the monotile are colored, there are rules

constraining which colors can coincide, and the tiles
cover the entire space.

2. The edges are not colored. The rule is that the tiles must
cover the entire space, but the tile is not a simply con-
nected shape.

3. The monotile is simply connected and the rule is that
the tiling must maximize the density of tiles without nec-
essarily covering the entire space.

4. The (3D) monotile is a simply connected shape and the
only rule is that the tiles must fill the space (or just an
infinite slab thick enough to accommodate the height of
one tile).

In this work we allow only rotations and translations of the
monotile, not reflections. All of the results can be easily ex-
tended to the case where reflections are allowed by re-
placing the disks, bumps, and nicks with chiral shapes.

Perhaps just as important as the discovery of monotiles
that force any desired isohedral number, these examples
show that subtle differences in the rules of the game 
may generate dramatically different results. Note that we
have not exhibited a simply connected, uncolored, two-
dimensional monotile that forces the hexagonal parquet
structure. In fact, we show below that this is impossible. If
you want to restrict the problem to these terms, the record
in two dimensions is still Myers’ polyomino consisting of a
simply connected cluster of 16 hexagons. [12]
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Figure 1. A 1-isohedral tilings and a 2-isohedral tiling.
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A 2D Monotile with Color Matching Rules
The tile shown in Fig 3a is endowed with a matching rule
requiring that no two red edges may touch. As the aspect
ratio of the tile is increased in integer steps, the minimal
isohedral number of a space-filling tiling formed with this
tile increases without bound.

THEOREM 1 Let T be a parallelogram tile with angles of 60°
and 120° and side lengths 1 and L � 1, where L is an inte-
ger. (See Fig. 3a.) Color the short edges of T red (not includ-
ing the vertices) and the long edges (and vertices) black. The
minimal isohedral number of a tiling in which no points are
covered twice with red is (L � 1)/2 .

Proof. Consider the tile T1 shown in Fig. 3b. The matching
rule and requirement of space filling immediately imply that
T2 must be present. The only way to continue the tiling is
then to place T3 and T4 as shown with dashed outlines. The
process of adding forced tiles stops only when the ends of T2

are reached through further additions of tiles along its bottom
edge. At this point, T5 in Fig. 3c is forced and the process re-
peats until the hexagon of Fig. 3c is formed.

The existence of this hexagon in the tiling ensures that
the isohedral number of the tiling is at least (L � 1)/2 .
Each tile can be characterized by the distance of its center
from the center of the rhombus containing it, with tiles on
opposite sides of the center possibly related by rotation of
180° about the center.

By inspection it is clear that the hexagons can tile the
plane while respecting the matching rules, forming a stan-
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dard honeycomb lattice in which the isohedral number is
exactly (L � 1)/2 . �

THEOREM 2 For L � 2, the color matching rule for the
monotile T cannot be enforced by alterations of the tile shape
alone; i.e., by placing bumps and nicks on the tile edges.

Proof. Let the shape of one red edge be designated R1 and
the shape of the other red edge be R2. Further, let R �1 and R �2
be the complementary shapes that fit onto R1 and R2, re-
spectively. The color matching rule implies that neither R1 nor
R2 is congruent to R �1 or R �2. We will now show that the num-
ber of instances of Rx on the tile must be greater than the
number of instances of R �x , which immediately implies that T
cannot tile the plane.

Consider any tile in the interior of a rhombus, which has
both black edges matching black edges of its neighbors.
Let the shapes of the two black edges be B1 and B2. There
are two possibilities: (1) B1 � B�2, which implies B2 � B�1;
or (2) rB1 � B �1 and rB2 � B�2, where rX indicates rotation
of X by �. In either case, any instance of R�x found on B1

must be matched by an instance of Rx either on B2 or on
rB1. Thus the number of instances of R�x on black edges
cannot exceed the number of instances of Rx. This means
that the single Rx on the red edge makes the number of
Rx’s larger. The conclusion is that in order to tile the plane,
the red edge matching rule has to be relaxed, but this in
turn permits simple periodic tilings with isohedral numbers
or one or two. �
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Figure 2. The L � 5 hexagonal parquet tiling of the plane.
Each “board” is a copy of the same tile.

Figure 3. The L � 5 hexagonal parquet monotile: (a) the tile;
(b) forced tiles; (c) the forced hexagon.

Figure 4. An L � 5 multiple connected monotile (gray) that forces the hexago-
nal parquet tiling. Colors are guides to the eye to help identify individual tiles.



Forcing the Hexagonal Parquet with a Multiply
Connected Monotile
The color matching rule for the hexagonal parquet monotile
can be enforced by shape alone if one does not insist on
T being simply connected. The proof is by construction, as
displayed in Fig. 4. The seven black regions at the left of
the figure form the monotile. By inspection, it is clear that
there is no way to have two short edges of the basic par-
allelogram coincide. (The nearby disks or protruding rods
get in the way.) Thus the rules for how the parallelograms
can be placed are at least as restrictive as the color match-
ing rules discussed above. The figure clearly shows, how-
ever, that the hexagonal parquet tiling can still be formed.

Forcing the Hexagonal Parquet with a Simply
Connected 3D Monotile
The color matching rule required for the hexagonal par-
quet tile can also be implemented with a simply connected
monotile in three dimensions. The simplest way to do it is

to promote the multiply connected 2D monotile on the right
in Fig. 4 to a 3D parallelepiped with shallow protruding
rods and grooves as shown in Fig. 5. The complete tiling
is a stacking of identical hexagonal parquet layers. The low-
est permitted isohedral number for the space-filling 3D tiling
is the one in which the layers are in perfect registry. This
can be forced, if desired, by placing bumps on the rods at
the positions corresponding to the disk centers in the
monotile of the left panel of Fig. 4 and corresponding dents
in the bottom of the parallelepiped. Note that the pattern
of disks in Fig. 4 is not a triangular lattice, so the registry
is indeed forced.

The multiply connected tiling on the left in Fig. 4 sug-
gests a different strategy for constructing a 3D monotile.
The tiling now consists of stacks of double layers, each
double layer being a hexagonal parquet with flat top and
bottom surfaces. The enforcement of the matching rule for
the top of the double layer is provided by the pieces of
tile on the bottom of the double layer. The protrusions and
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Figure 5. A simply connected monotile that forces hexagonal parquet
layers that can be stacked to fill space. Top, bottom, and tiling views.

Figure 6. A monotile that forces a double-layered hexagonal parquet and
a unit cell of space-filling tiling. Top and bottom views.

Figure 7. A simply connected monotile that forces a double-layered
hexagonal parquet.



indentations on the top surface of the bottom-layer pieces
do not fit properly into those in the top-layer piece when
one attempts to match the top pieces end to end. Thus one
is forced to form a hexagonal parquet in a manner quite
similar to the multiply connected 2D tiling above, with the
bottom-layer pieces playing exactly the same role as the
isolated disks in the 2D monotile.

One realization of this 3D monotile and one unit cell of
the double layer are shown in Fig. 6, each being shown
from viewpoints above and below the plane of the double
layer.

The monotile of Fig. 6 would not be simply connected
if we took the tile to be the open set not containing edges.
The construction can be modified, however, so as to make
even this open set simply connected. The L � 4 version of
the modified tile is shown in Fig. 7. The protruding “legs”
from the top-layer piece will fit into the grooves in the 
bottom-layer piece, with two legs (one from each of two
neighboring tiles) filling each hole formed by neighboring
tiles on the bottom layer. The legs protruding from the end
of the top-layer piece and fitting into half of the groove on
the end of each bottom-layer piece form a connection that
makes the whole tile simply connected.

Forcing the Hexagonal Parquet with a Maximum
Density Rule
The hexagonal parquet can be enforced by a simply con-
nected shape in 2D if one replaces the space-filling con-
straint with the demand that the tiling have the maximum
possible tile density. The shape in Fig. 8 can form a hexag-
onal parquet tiling as shown. The color matching rule is
enforced by the bumps on the ends of the tile. The par-
quet tiling is then the maximum density tiling that can be
achieved with this tile. Because the smallest excluded area
around a tile occurs when its ends are fitted into notches,
every tile in the parquet tiling excludes the smallest area
possible.

Conclusions
We have exhibited several types of monotiles with match-
ing rules that force the construction of a hexagonal par-
quet. The isohedral number of the resulting tiling can be
made as large as desired by increasing the aspect ratio of
the monotile. Aside from illustrating some elegant pecu-
liarities of the hexagonal parquet tiling, the constructions
demonstrate three points:

1. Monotiles with arbitrarily large isohedral number do 
exist;

2. The additional topological possibilities afforded in 3D al-
low construction of a simply connected monotile with a
rule enforced by shape only, which is impossible for the
hexagonal parquet in 2D;

3. The precise statement of the tiling problem matters—
whether color matching rules are allowed; whether
multiply connected shapes are allowed; whether space-
filling is required as opposed to just maximum 
density.
So what about the quest for the k � � monotile? Schmitt,

Danzer and Conway have exhibited a 3D monotile that
forces a non-periodic tiling. [13, 14, 15] The tiling is a stack-
ing of identical layers and each layer is a periodic packing
of the monotile. The nonperiodicity arises because the pla-
nar lattice directions in successive layers are rotated by an
angle incommensurate with 2�. This tiling has an unusual
feature: the number of local configurations around a
monotile is infinite. That is, no two tiles in a given layer are
covered in exactly the same way by the tiles in the layers
above and below it. In fact, the layers can slide over each
other to form an infinite number of tilings that are not re-
lated by any global symmetry. For rotation angles with a ra-
tional tangent, bumps and nicks can be placed on the tiles
such that the number of nearest neighbor environments is
finite, but the isohedral number of the full 3D tiling is still
infinite due to the different sequences of local environments
intersected by different lines normal to the layers.

Another example of a k � � monotile is the decagonal
tile together with matching rules allowing certain types of
overlap first presented by Gummelt. [16] Jeong and Stein-
hardt proved that the overlap rules and the requirement
that the tile density be maximized force a structure with
the same symmetries as the Penrose tiling. [17]

At present there is no general theory distinguishing pat-
terns that can be enforced by color matching rules from
those that can be enforced by shape alone or by maximum
density constraints. The maximum density criterion is of
particular interest in physics—and is particularly vexing be-
cause of the difficulty of linking this global criterion to lo-
cal constraints that can be exhaustively checked. In some
cases, such as the hexagonal parquet case above, it can be
proven that satisfying certain local constraints will guaran-
tee maximum density. The recent proof that the FCC pack-
ing of spheres in three dimensions has maximum density
is another example. [18] On the other hand, there is some
evidence that the maximum density sphere packing in many
dimensions is actually a random packing [19], which would
have an infinite isohedral number and an infinite number
of local configurations around a single sphere (monotile).

As the examples described above suggest, there may be
surprisingly simple links between local rules and global
structure, and the collection of interesting specimens has
yet to be placed within a well-defined theoretical frame-
work. Tiling enthusiasts around the world are looking for
new ideas and examples that will lead to deeper under-
standing, enjoying the recreational nature of the puzzles
that crop up, and appreciating the visual and logical struc-
tures that emerge along the way.
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Figure 8. An L � 5 monotile (top) for which the hexagonal
parquet is the maximum density tiling.
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