Part I: The SuperNova Early Warning System

Part II: Next tutorial: Making a MC Tuning Sample

I will email you with projects within a week or so

The SuperNova Early Warning System

Supernovae

Supernova: An energetic outburst resulting in the disruption of a star

For a while, as luminous as a galaxy!

Supernova Mechanisms Type la no H lines

Identified by

- spectra
- light curves

<u>Model</u>: white dwarf accretes matter from companion → thermonuclear explosion when critical mass reached

Type IIH lines present

Model: gravitational collapse of a massive star at the end of its life

How Often Does a Galacti	ic Core Collap	se Occur?	
Estimates vary	Mean interval (yr)		
	<u>Core collapse</u>	All SNae	
Visible SNae in history		30-60	
Extragalactic SNae	35-60	30-50	
Radio remnants		<18-42	
γ-ray remnants		16-25	
Pulsars	4-120		
Iron abundance	>19	>16	
Stellar death rates	20-125		
Overall, can expect	3±1 per ce	ntury	

Neutrinos from Supernovae

>99% of the energy from the supernova is in the form of neutrinos!

< 1% of the energy is in the form of photons and kinetic energy

> Most neutrinos are emitted over about 10 seconds, promptly after core collapse

NEUTRINO TRAPPING

CORE INFALL

PRE-SUPERNOVA

"onion-skin"

NEUTRINO "BREAKOUT" Within milliseconds of collapse

EXPLOSION star disrupted (or fizzles...)

COOLING

energy shed via neutrinos, over tens of seconds

Visible aftermath after ~hours or days

Need HUGE detectors (at least kilotons of material)

For a supernova 10 kiloparsecs away, expect ~100 neutrino interactions per kiloton

Need QUIET location (underground, away from cosmic radiation)

There are various kinds of neutrino detectors...

snow laver

Eiffel Tower as comparison (true scaling)

Depth surface 50 m

> AMANDA-B10 (bottom) optical module (OM)

Summary of Supernova Neutrino Detectors

Detector	Туре	Mass (kton)	Location	No. of events at 8.5 kpc	Status
Super-K	Water Cherenkov	32	Japan	7000	Running again for SN by Nov 2002
SNO	Heavy water	1.4 (D ₂ O),	Canada	300	running
		1 (H₂O)		450	
LVD	Scintillator	1	Italy	200	running
KamLAND	Scintillator	1	Japan	300	running
Borexino	Scintillator	0.3	Italy	100	2003
Baksan	Scintillator	0.33	Russia	50	running
Mini-BooNE	Scintillator	0.7	USA	200	running
AMANDA	Long string	M _{eff} ~0.4/PMT	South Pole	N/A	running
Icarus	Liquid argon	2.4	Italy	200	2002
OMNIS	Pb	2-3	USA?	>1000	proposed
LANNDD	Liquid argon	70	USA?	6000	proposed
UNO	Water	600	USA?	>100,000	proposed
	Cherenkov				
Hyper-K	Water	1000	Japan	>100,000	proposed
	Cherenkov				2009

Galactic sensitivity

Extra Galactic

Type II in the Large Magellanic Cloud (~55 kpc)

A total of 19 neutrinos detected in two underground detectors!

Confirmed baseline model... but still many questions What Can We Learn from Supernova Neutrinos?

NEUTRINO PHYSICS Mass and other properties CORE COLLAPSE PHYSICS Explosion mechanism, neutron star, black hole formation

ASTRONOMY FROM EARLY ALERT

An **EARLY ALERT** for astronomers

The neutrinos emerge *promptly* after core

collapse, but the photons can take hours or even days, dependent on the nature of the stellar envelope

⇒ ~hours of warning

(1987A: -2.5 hours, but no alert)

Observations of light curve turn-on very rare for extragalactic SNae

Especially valuable for learning about the progenitor, its environment

Plus: possible unknown early effects!

Possibly 1/6 will stand out obviously... Historical Supernovae: (Sky

(Sky&Telescope)

Note: fireworks may be intrinsically dim (unknown)

Any information saved, in any channel, may be valuable

- all photon wavelengths
- neutrinos (low and high energy)
- gravitational waves
-

Implementation of the Early Alert

SNEWS: SuperNova Early Warning System

Computer(s) receive "blind" alert messages from neutrino experiments; automated alert if *coincidence* between 2 or more

(individual experiments are too noisy!)

<u>Goals</u>

 alert for astronomers
 optimize global sensitivity to physics from SN v burst

downtime coordinationtiming verification

Implementation of the Early Alert SNEWS: SuperNova Early Warning System

What do Astronomers Want from an Early Warning?

"The 3 P's "

PROMPT < hours, if possible
 (racing the shock)</pre>

POINTING where to look?

POSITIVE no false alarms!

Neutrino experimenters must address these as well as possible...

How well can we address the 3 P's?

"PROMPT"

Generally, ~10 minutes or less is easily achievable for an automated alert; limited by individual experiments

Currently, Super-K, SNO and LVD can achieve this

Alerts should be as automated as possible, to save time

POINTING

This is harder, but some pointing with neutrinos is possible

Few percent of interactions: electron gets kicked in roughly neutrino direction V in •••••• splat •••• electron

⇒ Super-K can point back to the SN within ~4°, SNO ~15° for SN at 10 kpc

Require individual experiment rates such that "accidental" coincidence between 2 or more is

less than 1 per century

GOLD: automated to community SILVER: to experimenters only

The Sky & Telescope AstroAlert mailing list

						My Profile			
SVV	My location Greenwich, change) Mar. 02, 20	UK 03, 3:37 pm (UT)	ALMANAC more >	rise: 6:44 am set: 5:41 pm	phase rise: 7:00	Sam Evening JUPITER pm planets SATURN			
& TELESCOPE		Search	Entire Sit	te 🗖 for [GO			
	Home > Obsetving > Pto√	Am Collaboration > #	Astro Alert						
NEWS OBSERVING Sky at a Glance	Nearby-	Superno	ova	Printer-frie	ndly version	Magazine SUBSCRIBE TO SKY & TELESCOPE			
Observing Highlights Sky Chart Almanac Celestial Objects	AstroAle	ert Repo	ort Fo	r m		Journapy as failteen			
Pro-Am Collaboration Image Gallery How To RESOURCES	Use this form to re nearby-supernova you are responding Please fill in as ma	Subscribe of Renew Change Address							
SKY & TELESCOPE MAGAZINE ARCHIVE	Your Name:	Ĭ				Back Issues Index & Archive			
SHOP AT SKY	E-mail Address:	Ĭ				Shop at Sky			
	Observing Site:	Latitude, longitud	le; or city, state	, country.)		 Accessories & Games Atlases, Maps & Globes Books Calendars & Almanacs Posters, Prints, Slides & 			
	Time Zone:	Pick one 🗆 (Your <u>standard</u> tin	i ne zone. Forex	ample, EST in the U.S	. is UT - 5 h.)	Videos Sky & Telescope Logo Items Sky & Telescope Magazine Softwate			
	DST in Effect:	Yes 🛇 No 🛇) (Is daylight-s	aving time in effect?)					
	We'd like to know how you first received the AstroAlert (that is, via what type of device), and how long it took for the message to reach you. For the first two "when" questions, refer to the alert's extended e-mail header. (If you're not sure how to find this information, just leave it blank.)			Laminated Messier Card					
	How Received:	(Work computer?	Home compute	ar? Handheld? Cellph	one?)	DEEP SAY COMPANIONS			

SUMMARY

A Galactic supernova will be a terrific opportunity for physics & astrophysics...

The neutrinos beat the photons by ~hours; neutrino detectors around the world will provide an *early warning* Part II: Making an MC Tuning Sample

Detector simulations include many parameters that can be modified in software to change the simulation output

Some are well known...

e.g. size of PMTs, water density

Some might not be...

e.g. water transparency, reflectivity of detector materials

> ⇒ 'tune' them by selecting values to try to make data and MC match

Typically, take a sample of matched data and MC events, make relevant plots for both, and tweak MC parameters until they match as well as possible:

Data: black; MC: red

Old tune

New tune

better agreement after parameters tweaked

For this last tutorial/exercise, you will make a matched sample that could be used for MC tuning

- Take a file of stopping muons (data)
- Fit (reconstruct) them using the muboy fitter
- Create a kinematics file using fit direction and entry point
- Simulate these events with skdetsim
- Make distributions of nqisk (no. of ID hits) for data and MC, and plot them superimposed