Duke University Department of Physics

Physics 271

Spring Term 2017

WUN2K FOR LECTURE 3

These are notes summarizing the main concepts you need to understand and be able to apply.

- Equivalent Circuits: Thevenin's theorem states the behavior of any 2-terminal network containing voltage sources, current sources and resistors can be reproduced by an ideal voltage source supplying voltage $V_{\rm Th}$ in series with a *Thevenin equivalent resistance*, $R_{\rm Th}$. The *Norton equivalent* circuit is an ideal current source supplying current I_N in parallel with a Norton equivalent resistance R_N . It can be shown that $R_N = R_{\rm Th}$ for the same network.
- How to find Thevenin and Norton equivalents for a given network:
 - The Thevenin equivalent voltage is $V_{Th} = V_{AB}$ (open), the opencircuit voltage across the terminals A and B.
 - The Norton equivalent current is $I_N = I_{AB}(\text{short})$, the shortcircuit current across terminals A and B.
 - $-R_{\rm Th} = V_{\rm Th}/I_N$. However, the faster, almost-always-more-convenient method of finding $R_{\rm Th}$ is to short all the EMFs in the network and open all the current sources, and just find the equivalent resistance.
- Measurement devices such as voltmeters and oscilloscopes can be treated as Thevenin equivalent devices with very large ($\sim 10^6 \Omega$ or greater) $R_{\rm Th}$.
- Error propagation reminder: if you derive quantity w = f(x, y, z, ...)from measured quantities x, y, z, ... known with uncertainties $\Delta x, \Delta y, \Delta z, ...$ respectively, assuming uncorrelated uncertainties, the uncertainty on wis given by $\Delta w = ((\frac{\partial f}{\partial x})^2 (\Delta x)^2 + (\frac{\partial f}{\partial y})^2 (\Delta y)^2 + (\frac{\partial f}{\partial z})^2 (\Delta z)^2 + ...)^{1/2}$.