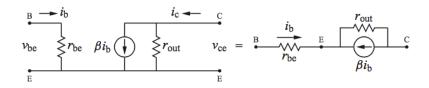
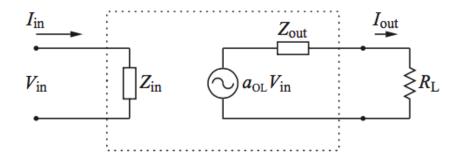
Duke University Department of Physics

Physics 271

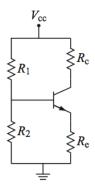
Spring Term 2017


WUN2K FOR LECTURE 15

These are notes summarizing the main concepts you need to understand and be able to apply.

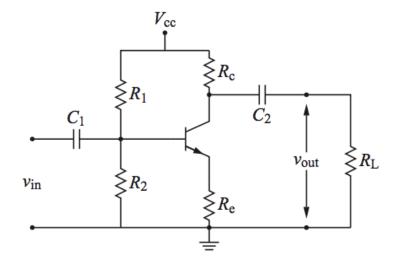

• Equivalent names and notations for the hybrid parameters are:

Eggleston	Eggleston	Alternate	Alternate	Typical
Name	Symbol	Names	Symbols	Values
Input resistance	r_{be}	Input impedance	h_{ie}	few $k\Omega$
Output resistance	$r_{ m out}$	Output admittance	$1/h_{oe}$	$2 \times 10^{-5} \ \Omega^{-1}$
Current gain	β	Forward current ratio,	h_{fe}	10^{2}
		forward transfer ratio		
Voltage feedback ratio	not used	Reverse voltage ratio	h_{re}	10^{-4}


• A common and useful simplification of the "h-parameter" small-signal AC transistor model is:

- A four-terminal amplifier (and more generally many four-terminal circuits) can be modeled as
 - The gain is $a = \frac{V_{\text{out}}}{V_{\text{in}}}$. The "open loop" gain (open circuit at output) is $a_{OL} = \frac{V_{\text{out}}(R_L = \infty)}{V_{\text{in}}}$.

- The current gain is $g = I_{\text{out}}/I_{\text{in}}$.
- The input impedance is $Z_{\rm in} = V_{\rm in}/I_{\rm in}$.
- The output impedance is $Z_{\text{out}} = \frac{V_{\text{out}}(R_L = \infty)}{I_{\text{out}}(R_L = 0)}$.
- Transistor amplifiers need to be "DC biased" in order to ensure the transistor is always in its linear active region. A "universal DC bias circuit" looks like:


This can be analyzed using Kirchoff's rules, Ohm's Law, and $I_c = \beta I_b$ in order to choose appropriate resistors.

• Transistor amplifiers can be analyzed for AC signals (as "AC equivalents") by the following steps (which can be used in other cases too):

- 1. Treat coupling capacitors as shorts (assuming they are large enough).
- 2. Short the supply to ground.
- 3. Insert the AC transistor model.
- 4. Simplify the circuit where possible.
- 5. Draw the following quantities on the circuit: $v_{\rm in}$, $v_{\rm out}$, $i_{\rm in}$, $i_{\rm out}$, i_b .
- 6. Draw B, E, C at the locations of the base, emitter and collector.
- 7. Compute a, g, Z_{in} and Z_{out} by writing $v_{in}, v_{out}, i_{in}, i_{out}$ in terms of i_b .

You will then have a full characterization of the amplifier behavior.

• A basic transistor circuit is the *common emitter amplifier*, which can be analyzed using the method above.

