How To Analyze FET Amplifiers with AC Equivalent Circuits

This is very similar to the bipolar transistor how-to.

- 1. Treat coupling capacitors as shorts (assuming they are large enough).
- 2. Short the supply to ground.
- 3. Insert the AC FET model,

To do this, snip out the transistor and attach the idealized transistor circuit in the diagram, matching up gate, drain and source.

- 4. Simplify the circuit where possible (look for Thevenin-type equivalents). Often r_{out} can be considered infinite and removed from the approximate diagram.
- 5. Draw the following quantities on the circuit: $v_{\rm in}$, $v_{\rm out}$, $i_{\rm in}$, $i_{\rm out}$, v_{gs} .
- 6. Draw G, D, S at the locations of the gate, drain and source.
- 7. Compute a, g, Z_{in} and Z_{out} by writing $v_{in}, v_{out}, i_{in}, i_{out}$ in terms of v_{gs} .
 - The gain is $a = \frac{v_{\text{out}}}{v_{\text{in}}}$. The "open loop" gain (open circuit at output) is $a_{OL} = \frac{v_{\text{out}}(R_L = \infty)}{v_{\text{in}}}$.
 - The current gain is $g = i_{\text{out}}/i_{\text{in}}$.
 - The input impedance is $Z_{\rm in} = v_{\rm in}/i_{\rm in}$.
 - The output impedance is $Z_{\text{out}} = \frac{v_{\text{out}}(R_L = \infty)}{i_{\text{out}}(R_L = 0)}$.

You will then have a full characterization of the amplifier behavior.