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Content Questions

Why do low and high-pass filters differ so much when they have
the same components?

The simplest low- and high-pass filters both have a capacitor and a resistor in
series in a four-terminal network. However in the low-pass case, the output
voltage is across the capacitor, and in the high-pass case, the output voltage
is across the resistor. Here’s a qualitative description of what’s going on in
each filter case:

• In the low-pass case, you measure voltage across the capacitor, and
current comes through the resistor. For low frequencies (slow signals
compared to the charging time), the capacitor gets charged up or dis-
charged, reaching the input voltage, or a significant fraction of the input
voltage, across it within an oscillation cycle; so the output follows the
input signal. For high frequencies, in contrast, the capacitor never gets
a chance to fully charge and develop the full input voltage across it:
just as it gets started charging, the voltage sign and current direction
wiggle back the other way and discharge it. So you never see the input
voltage across the capacitor at high frequency.

• In the high-pass filter case, you measure voltage across the resistor, and
current has to come through the capacitor. You get more voltage drop
for more current going through the capacitor and on through the resis-
tor. If frequency is high (rapidly thrashing voltage on the capacitor),
the capacitor transmits current easily (always in the early charging or
discharging part of its cycle) and current flows through the resistor. So
the output voltage can be a large fraction of the input voltage at high
frequency. In contrast, at low frequency, the signal is slow, and the
capacitor will discharge or charge up on the timescale of an oscillation
cycle. Charged or discharged capacitors don’t pass current (capacitors
“block DC currents”) so there won’t be much current through the re-
sistor and not much voltage drop across it. So not much signal gets
through to the output in the low frequency case.



What exactly is an “integrator” or a “differentiator”? Why are
they called that?

An “integrator” is a circuit which will give you output proportional to the
integral of V̂in(t), i.e., V̂out(t) =

∫
V̂in(t)dt. A low-pass filter at high frequency

integrates to some approximation, although also attenuates the signal (we’ll
actually be seeing later different ways to make integrators using active com-
ponents, so that you don’t lose voltage). Similarly, a “differentiator” gives

you the derivative of the input, V̂out = dV̂in

dt
, and a high-pass filter at low

frequency does this job. (Why would you want to do this, you may ask? See
below.)

What are real integrators and differentiators? What do we want
them for?

These are useful in circuits in various applications. For example if you
want to make certain waveform shapes, it can be convenient to integrate
or differentiate– if you want a sawtooth, say, you could integrate a square
wave; if you want a square wave from a sawtooth, you would differentiate.

Integration is useful if you have a circuit in which voltage is proportional
to some quantity of interest, and you want to sum that quantity. An applica-
tion from my own research: I detect photons using sensors for which voltage
is proportional to amount of light detected; to measure the total amount of
light, I want to integrate the signal.

Similarly, differentiating is useful if you want to determine the rate of
change of voltage.

What does ĤD mean?

This is the transfer function of a differentiator, ĤD(jω) = jω. You can see
it takes the derivative of a complex sinusoidal input voltage, as follows: if
V̂in = V̂ ejωt, then the derivative is d

dt
V̂ ejωt = jωV̂ ejωt = jωV̂in. So taking the

derivative is the same as multiplying by jω.

Why does the low-pass filter act as an integrator?

The low-pass filter acts as an integrator at high frequencies, such that ω >>
ωc = 1/(RC). You can look at this in two ways:



• First, mathematically: the transfer function of the low-pass filter is
Ĥ(jω) = 1

1+jωRC
, and in the ω >> ωc limit this looks like Ĥ(jω) ∼

1
jωRC

. Multiplying by 1
jωRC

does exactly the same thing as integration

(times a constant) for a sinusoidally-varying signal (or a superposition
of sinusoidally-varying signals, which every periodic signal is by Fourier
analysis): if V̂in = V̂ ejωt, then the integral is

∫
V̂ ejωt = 1

jω
V̂ ejωt =

1
jω

V̂in.

• Second, thinking physically: the output is voltage across the capacitor,
which is proportional to charge stored in the capacitor. At high fre-
quency, with driving voltage rapidly flipping back and forth, you are
always in mode where you have “just started” charging or discharging
the capacitor, i.e., in a mode “right after flipping the switch”. In this
situation, at each instant, charge added to the capacitor in a given time
interval is proportional to V̂in at that time, and so total charge stored
will be the sum of charge and proportional to integral of the voltage.

Since high-pass filters correspond to differentiators, and low-pass
filters correspond to integrators, does this imply that a band-pass
has no associated function?

No. Remember that the integration/differentiation functions are frequency-
dependent. A low-pass filter integrates at high ω (where it also attenuates)
only; a high-pass filter differentiates at low ω (where it also attenuates). A
band-pass filter will act like an integrator at high frequency and differentiator
at low frequency.

At what points do Ĥhigh and Ĥlow start to deviate from the ideal
cases? Are there relatively simple models for these situations?
(i.e., when does ω0 << ωc become ω0 < ωc?) Or when do the phases
come into play?

Well, the question “when do you deviate from the ideal case?” is one that
doesn’t have a single answer; the answer is really “it depends on how good
you need the answer to be”. The exact filter response is usually possible
to calculate, and you often can figure out the difference between the simple
approximation and the more complete calculation. For example, if you eye-
ball the plots in the handouts, you can see the actual filter response with



a smoothly curved transition between the ω << ωc and ω >> ωc regimes.
For some applications, treating the frequency response with straight lines
might be perfectly good enough, even in the corner region. However, if you
need to know with precision what your output waveforms will look like at
frequencies near ωc, then you might want to do an analysis using the actual
filter response with the curved line and the full Ĥ(jω) transfer function. (Of
course, even the “actual filter response” with the curved line is itself an ide-
alization, since it assumes resistors and capacitors are ideal circuit elements–
but in real life all abstractions are leaky!)

Whether the phase shift matters or not depends on your application also.
Relative phase shifts matter when combining signals.

Why does the Vout of a high-pass filter have a discontinuous jump
given a square wave input?

For a high-pass filter responding in the low frequency regime, the transfer
function is approximately |H| ∼ jωRC, which is equivalent to a (scaled)
derivative function. Looking at it mathematically, the output signal will
look like the derivative (the slope) of the input square wave. So for the rising
edge, the output will be a sharp positive peak. The output will be zero where
the square wave is flat, and it will be a sharp negative peak for the square
wave’s falling edge.

Looking at it physically: in the low frequency regime, the capacitor
charges all the way up early in the cycle, and then passes no more cur-
rent. When the voltage swings down, it discharges fully and charges up in
the opposite direction, then stops passing current again. So you’ll get only
spikes of current (and corresponding spikes of voltage across the resistor) at
the square wave rising and falling edges.

Are the rolloffs in filters always (log) linear? Are there cases where
it nees a steeper growth/decay?

Very commonly, filters will show power-law frequency response (∝ ωn) over
particular frequency regimes. This looks like a straight line on a log-log plot.

These are approximations—they are not usually exact power laws. In
particular, the transitions between the regimes tends to be smooth rather
than abrupt “knees”. We’ll see a bunch of examples.



In general frequency response can be anything, though, and not neces-
sarily a power law.


