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Content Questions

The textbook uses Ω as the unit for impedance Ẑ. Is it legitimate
to use it?

Yes, this is correct. Although impedance has imaginary parts, the physical
part is real, and has the same units as resistance. Taking the real part of a
complex quantity doesn’t change the units.

Is the phase shift just the angle of the impedance vector?

“Phase shift” can actually refer to different things in different contexts. For
AC Ohm’s law, there is a phase shift between current Î and voltage V̂ , and in
this case, indeed, the phase shift is the phase angle of the impedance vector
Ẑ.

However “phase shift” can also refer to the relative phase of input and
output voltages, in which case it’s the phase angle of the transfer function
Ĥ(jω).

Where does the definition of θ in an RLC circuit come from. Why
is θ = tan−1

(
1/(ωC)−ωL

R

)
?

This θ represents the phase shift between input and output voltages of the
four-terminal network. According to v̂ab(jω) = Ĥ(jω)v̂in(jω), the relative
phase between v̂ab and v̂in is the phase of the transfer function Ĥ. So to
find this phase we write Ĥ(jω) in polar form, Ĥ(jω) = |Ĥ|ejθ. The phase
θ of a complex number Ĉ = A + jB written as |Ĉ|ejθ is θ = tan−1(B/A):
it’s inverse tangent of the imaginary part over the real part. For the RLC
network, Ĥ(jω) = R
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)
. This can be rewritten (multiply top and

bottom by R − j(ωL − 1
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)) as Ĥ(jω) =
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. Hence, the phase

shift for the network is θ = tan−1
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.

We’ll see lots of examples like this, so work through the algebra if you are
uncomfortable with it.



Can the phase shift be less than −π/2 or greater than π/2 at t = 0?

For (passive) reactive elements such as the inductors and capactors we’ve seen
so far, the phase shift between voltage and current is always−π/2 ≤ θ ≤ π/2.
(We will see later that with active circuit elements, i.e., components that add
energy to the circuit, this need not be true.)

We should be able to treat DC as an AC case with ω = 0. But then
ẐC is arbitrarily large, and in an RC circuit we should have zero
voltage across the resistor. But in an RC circuit the voltage across
the resistor is nonzero for some time. Why is there a disagreement?

The key to resolving this is to realize that for a DC circuit, in steady state,
there is no current across a capacitor (note: zero current, not zero voltage).
The capacitor basically acts like an open circuit. For the case of DC battery,
capacitor, and resistor in series, at infinite time, there is no current and no
voltage drop across the resistor (i.e., both sides of the resistor are at the same
potential), so the voltage drop across the capacitor is the same as the drop
across the battery. This is consistent with the ω → 0 limit of AC Ohm’s
Law: ẐC is infinite, and therefore Î = V̂ /ẐC is zero.

Now, there are transient solutions to the DE’s set up using the Loop
Rule, as we saw a few lectures ago: for the short period of time while the
capacitor is charging up, or discharging, there is a varying current (and volt-
age) across the capacitor. However the AC limit corresponds to the steady
state situation, after transients have died away; for an RC circuit, potential
across the capacitor is constant and current is zero after the transients have
gone away.

What does H(jω) mean physically?

This is the “transfer function” for a 4-terminal network. It’s a complex
function that describes how the input signal gets transformed (by whatever
stuff is inside the box separating the two input terminals from the two output
terminals) into an output signal, according to V̂ab = Ĥ(jω)V̂ , where V̂ is the
sinusoidal power supply voltage at the input and V̂ab is what you see at the
output. It’s a function that describes the frequency response of the network:
what you get out depends on the driving frequency ω.



Where did the Q approximation for RLC come from?

I didn’t do this explicitly in class– it’s a bit lengthy. But the derivation
is given in, e.g. Fortney, pp. 64-65. The idea is to write down a damped
oscillatory solution to the RLC circuit differential equation for V (t); since
energy dissipated is proportional to the square of V , you can then plug this in
to the definition of Q (ratio of total energy to energy loss per cycle). Using
some Taylor series approximations, the expression Q = ωL

R
follows. Near

resonance, we replace ω with ωr.

If Q = ωL
R

, why does the term − j
ωC

become − j
ωr
ω?

The expression H(jω) = 1
1+jQ(ω/ωr)[1−(ωr/ω)2]

results from several algebraic

steps following H(jω) = R
R+j(ωL−1/ωC)

. First, pull R out from numerator and

denominator. For Q ∼ ωrL
R

, we can write wL
R

= Qω
ωr

. Substitute in and do a
bit of manipulation to get the desired form.

How do we determine Q for other circuits?

I think you can use the same approach as for the RLC series circuit (see
above question) to find the energy dissipated per cycle. However I don’t
think we’ll be computing this for many other circuits in this class. For this
course, the qualitative concept is WUN2K.

How does a 4-terminal network work?

So, “4-terminal network” is a generic thing representing a bunch of circuit
elements in some network (it could be pretty much any configuration) with
two “input” terminals and two “output” terminals. Often one plugs in a
power supply to the input, and the output is the “business end”, where one is
interested in the voltage. However you could arrange more than one network
together, or reverse input and output. We looked at one specific example
today and we’ll see lots more examples. We’ll usually be considering these
in an AC context, i.e., assuming some sinusoidal steady-state driving, rather
than with transients.



What is so powerful in the 4-terminal circuit concept compared to
other types of circuits we’ve discussed?

It’s very useful to characterize networks as “boxes” with input and output—
you can describe the response of some quite complicated arrangement of
circuit elements with a single transfer function.

Are there cases when you can’t use a transfer function?

Yes, there are non-linear systems for which transfer functions cannot be prop-
erly defined. An example is a relaxation oscillator. However they can be
defined for most of the circuits we will be considering.

How do you intuitively see how the Ẑ1 and Ẑ2 construction is a
voltage divider?

You can apply the voltage divider equation anywhere you are looking at a
voltage in between two circuit elements, if you know the overall voltage drop
across the whole network. It doesn’t matter if there are additional wires or
terminals sticking out at the places you’re looking at the voltage (if they
are just open circuit). Sometimes it takes a bit of practice to acquire the
intuition about where one can apply the voltage divider equation, but it will
soon seem more obvious.

https://en.wikipedia.org/wiki/Relaxation_oscillator

