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Content Questions

How are phasors useful?

Phasors are a useful visualization of what’s going on in an AC circuit (and in
fact for many situations involving sinusoidal waves). Although in this class
we won’t see too many examples, they are quite useful for looking at sums
and differences of waves (interference) since you can make vector sums and
differences out of the rotating phasors. As we’ll see shortly, they are also
useful when thinking about phase shifts between sinusoidal quantities.

If the real component of ejθ corresponds to voltage or current, what
does the imaginary component correspond to? Do we ever use the
imaginary parts of these complex quantities?

The oscillatory V (t) and I(t) quantities we deal with are typically solutions
to linear differential equations. The physically real quantities are the (math-
ematically) real parts of the solutions, but general complex solutions to the
equations have imaginary parts too; as we discussed, if C0 cos(ωt + θ) is a
solution, then so is jC0 sin(ωt + θ) and so is the sum. You can think of the
imaginary part of the complex ejθ quantity as an orthogonal solution to the
DE. Keeping the general solution intact is very helpful for doing calculations;
it works for manipulations involving addition and subtraction. You keep the
imaginary part around during intermediate steps (and for visualizations, like
the phasor spinning) but then convert to physical solutions at the end of the
calculation.

In some situations the imaginary part will correspond to something phys-
ical, but I think for our case we’ll mostly be using real parts for voltages and
currents.

Is the same imaginary mathematical method used if the signal is a
sawtooth, step or some other non-sinusoidal function?

Aha, yes, as it turns out! This is where Fourier analysis comes in: every
periodic waveform can be written as a sum of sinusoids, so that we can use



the same complex number methods on the waveform. This is an extremely
powerful idea. We’ll see more on this soon.

How did you go from ωRC + j to tan−1
(

1
ωRC

)
?

You can write any complex number ẑ = A + jB as a vector in the complex
plane, where A is the real axis component and B is the imaginary axis com-
ponent (here, in electronics world, j =

√
−1). The angle the vector makes

with the real axis, by trigonometry, is θ = tan−1(B/A). Here, ẑ = ωRC + j,
and A, the real part is ωRC; the imaginary part is B = 1. Hence, θ, the
phase angle, is θ = tan−1

(
1

ωRC

)
.

Why does high capacitance correspond to low impedance and vice
versa? Physically, why do capacitors increase in impedance when
you lower frequency, and vice versa?

Capacitive impedance is ẐC = 1
jωC

, which means that, for a given AC fre-

quency ω, a large capacitance means a smaller impedance (i.e., more current
for a given voltage according to the AC Ohm’s Law, Î(ω) = V̂ (ω)/Ẑ(ω)).
Here’s the qualitative explanation: if you have a very large capacitance, that
means a lot of charge can be stored for a given potential difference, and the
capacitor takes a long time to charge up. In an AC circuit, current only
passes through a capacitor during the time a capacitor is either charging
or discharging. If a capacitor is fully charged or discharged, it acts like an
open circuit and does not pass current— its impedance is infinite. A large
capacitance means that (for a given ω of AC driving voltage) the capacitor
will spend more of its time in a charging or discharging mode. A small ca-
pacitance means that the capacitor will charge up quickly and spend most
of the cycle behaving like an open circuit and so not passing current.

Similarly, for a given C, a fast driving wiggle will mean that the capacitor
is constantly charging-discharging-charging-..., and so passes more current on
average (so has low impedance). In contrast, a small ω will mean that the
capacitor has a chance to charge all the way up or discharge all the way
down, and so will be open-circuit-esque during much of the cycle, and hence
won’t pass much current (so has high impedance).

Both the size of C and ω matter; impedance is related to the product of
them.



Can you clarify reactance? What is it exactly?

Reactance is just the imaginary part of the impedance. A circuit’s equivalent
impedance Ẑ can have contributions from resistive, inductive and capacitive
components (which combine according to the resistor rules). Since in general
Ẑ has a real and imaginary part, it can be written Ẑ = R + jX. The real
part R is the “resistance”, and X is called the “reactance”, since it results
from having imaginary impedances from inductors and capacitors as part of
the circuit. Inductors and capacitors are not like stodgy resistors in that
they “react” to time-dependent sources.

Can you add impedances from different circuit elements, i.e. in-
ductors and capacitors?

Yes. AC impedances act like resistors for the purpose of adding them in
series and parallel, and determining Thevenin equivalents.

In an RLC circuit, will the voltages at different points between the
different elements have different phases? Shouldn’t the voltages
across the resistor have the same phase? Should the phase change
around the loop be a multiple of 2π?

Note that the phase shift we’re talking about in “AC Ohm’s Law” is a relative
phase shift between the voltage across a circuit element and the current
through a circuit element— it’s not a phase shift between voltages at different
points in a circuit. Although at any given point in time, by Kirchoff’s Loop
Rule, the sum of the voltages around a loop must be zero, the phase shift
need not sum to a multiple of 2π around the loop.


