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Content Questions

What are the values of κ and ε0 in the capacitance equation?

This was the expression giving the capacitance of a parallel plate capacitor,
C = κε0A/d. A is the cross-sectional area, d is the distance between the
plates, ε0 is the permittivity of free space (ε0 = 8.854×10=12F/m, a constant
of nature), and κ is the dielectric constant of the material between the plates.
The value of κ is 1 for vacuum, and > 1 for media (so capacitance increases
when there’s a dielectric between the plates).

For a current coming into the inductor the magnetic field is cir-
cular, but in the inductor solenoid, the current is circular. So the
induced ~B field is either up or down [along the inductor]). So how
exactly can the inductor resist the change?

Right, you get a circular magnetic field around a straight current-carrying
wire and a magnetic field along the axis of an ideal solenoid, in both cases
described by the right hand rule (in the former case, the fingers curl in the
direction of the field; in the second case, the fingers curl in the direction of the
current.) This is an idealization; in real life, the solutions to Maxwell’s equa-
tions describing the field induced by a current will have continuous transition
regions going from one geometry to another.

As for resistance to change: what matters is change in current and mag-
netic field, not the current and magnetic fields themselves. The back-emf
results from the change in current, and opposes that change. In either case,
if there’s a dI/dt, there will be a potential V = LdI/dt which resists the
change, e.g., if the current is increasing, the inductance will be responsible
for a back-emf that opposes that increase (works to decrease the current).
If the current is decreasing, the inductance will be responsible for a back-
emf that works to increase the current. This happens for either a wire or
a solenoid (or anything), but we treat the idealized wire as having zero in-
ductance. We consider only the solenoid, which will develop a back-emf to
decrease an increasing current, and increase a decreasing current.



How do inductors store and discharge energy?

In an inductor, the energy is stored in the magnetic field when there is current
through the coil. A current creates an induced magnetic field along the axis of
a coil, and you may remember from E&M that energy is stored in a magnetic
field according to U = 1

2µ0

∫ ~B2dV , where the integral is over space. When
the current is maximum, the stored energy in the coil is maximum. Energy
is released from the inductor as the current through it decreases. Where
exactly the energy goes depends on the rest of the circuit. The energy might
be dissipated in a resistor, or stored in the electric field of a capacitor. (Even
if the inductor is not a coil— remember, everything has self-inductance—
energy is stored in the magnetic field induced by the current through the
inductor.)

I remember that capacitors in series combine similarly to resistors
in parallel, but how do inductors combine?

Inductances combine in the same way that resistors do, i.e., they add in
series. In parallel, the reciprocals add. See if you can show this!

How does energy get transferred from the inductor to capacitor in
the LC circuit?

Just as energy is stored in the magnetic field induced by a current through an
inductor (see question above, U = 1

2µ0

∫ ~B2dV ), energy is stored in the electric

field between a capacitor’s plates, U = 1
2
ε

∫ ~E2dV . The energy stored in the
magnetic field induced by the current through the inductor gets transformed
into energy stored in the electric field of the capactor, as the capacitor charges
up and the current decreases (capacitor electric field increases as inductor
magnetic field decreases, and vice versa).

If energy sloshes back and forth between the capacitor and induc-
tor, does this mean that current never goes past the inductor?

Yes, current flows past the inductor, and through the whole circuit. However
the faster the rate of change of current through the inductor, the larger the
back-emf, which opposes the change in current. Here’s what happens in the
LC circuit:



• We start with all the energy stored in the capacitor. The capacitor
starts to discharge, creating a current. This sets up a magnetic field
in the inductor, so energy gets transferred to the inductor. Since the
current is changing (initially increasing very fast) the magnetic field
is changing and there’s a back-emf in the inductor which attempts to
decrease the current. Just as the capacitor starts to discharge, the
rate of change of current is largest. [Mechanical analogy: this is like
the point at which a mass on an extended spring is released. Position
(x↔ q) is maximum; velocity (v ↔ i) is zero; acceleration is maximum
(a↔ di/dt).]

• The current increases, but not beyond a maximum value, due to the
opposing back-emf. The maximum current is when the capactor is
completely discharged; current is flowing all the way through the circuit
at this point in time, including the inductor. At this point, all the
energy is in the inductor, stored in the magnetic field. [Mechanical
analogy: this is like the point at which the mass is zooming through
equilibrium. Position is zero; velocity is maximum; acceleration is zero.]

• Eventually the capacitor is fully charged up with opposite charge sign
with respect to the initial condition, and current is zero. [Mechani-
cal analogy: this is like the point at which the mass on the spring is
at maximum compression. Position is maximum with opposite sign;
velocity is zero; acceleration is maximum.]

• The cycle continues. Charge, current, and stored energy slosh back and
forth (forever, if no energy is dissipated).

This animation visualizes the oscillation. See if you can draw the sinusoids
for q(t) and i(t) corresponding to this circuit.

Are there other factors besides resistance that would stop an LC
circuit from being ideal? (How do they lose energy?)

In a real circuit, generally ohmic energy loss, i.e., from an iR voltage drop
(for which mechanical analog is a force proportional to velocity, like drag),
is actually a pretty good model, and is associated with energy loss via heat
(usually the dominant form), light, sound, etc.. In a real circuit, the capac-
itor and inductor might not be ideal— there can be stray capacitances and

https://en.wikipedia.org/wiki/File:Tuned_circuit_animation_3.gif


inductances, effectively in parallel as well as in series, which can change the
circuit behavior... or there can current leakages in or out of the system, en-
vironmental electromagnetic noise, vibrations changing the properties of the
system, and all kinds of other time-dependent environmental effects... the
real world is a messy place!

For the LRC loop rule, why is the −Ldi
dt

term negative?

The signs can be a bit confusing in these loops, as currents can flow in either
direction and the quantities can be increasing or decreasing, so the derivatives
of charges and currents can be positive or negative. The important thing is
that the relation between the signs in the resulting differential equation is
right — the solution should then give you the right actual signs of currents
and voltages. I wrote down−Ldi

dt
−iR+q/C = 0, and then Ld2q

dt2
+Rdq

dt
+ q
C

= 0,
as follows:

Imagine the capacitor is has just been charged up (say, +q on the top
plate, −q on the bottom) and take the moment at which the current has
just started flowing counter clockwise (the loop rule will still be true at any
moment). We’ll take q to be the charge on the top plate. Step around the
loop in the direction of the current. The voltage change across the capacitor
is +q/C, and the voltage change across the resistor in the direction of the
current is −iR. The inductor will be developing an EMF proportional to
Ldi
dt

. If i is CCW as the discharge starts, the inductor (by Lenz’s Law) is
creating a back-emf to counteract the increase in current, so an emf that is
negative, −Ldi

dt
. So we have −Ldi

dt
− iR + q/C = 0. But then, since q is the

charge on the top plate, and it’s decreasing, we should write i = −dq
dt

and so

Ld2q
dt2

+Rdq
dt

+ q
C

= 0.

Similarly, for the LC circuit we write −Ldi
dt

+ q
C

= 0, then take i = −dq
dt

to get Ld2q
dt2

+ q
C

= 0.

You mentioned there is a mechanical analogy to resonance– does
that mean that inductors have a resonant frequency that is a prop-
erty of the material?

Yes, with the spring mechanical analogy to the RLC circuit, an applied
sinusoidal force is analogous to an oscillating power supply, and you will get
a resonance for certain frequencies. However the resonant frequency is a



property of the whole circuit, rather than just the inductor. We will discuss
this further soon.


