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Content Questions

If we have poles, shouldn’t they manifest themselves on Bode plots
as large valued Ĥ?

Sometimes you do get large |Ĥ| associated with poles, but both poles and
zeroes matter for the frequency response.

The poles manifest themselves as very large (in fact infinite) |Ĥ(ŝ)| on the
complex ŝ plane. However, the Bode plots we’ve been drawing show the value
of |Ĥ(ω)| only as a function of ω, the (positive) imaginary part of the complex
frequency, i.e., the value as you go up the imaginary ω axis on the ŝ plane.
This regime is relevant for sinusoidal frequencies (going off this imaginary
axis corresponds to transients, which matters for some applications, but we
won’t be treating it much).

The |Ĥ(ω)| vs. ω Bode plot corresponds to the product of distances to
zeroes from a point on the positive ω axis, divided by the product of the
distances to poles from this point. So there might be a big denominator at
some ω, but this could be canceled by an also-large numerator.

Examples: the single-pole low-pass filter does have its largest value at
ω = 0, which is the closest you can get to the pole (which lives on the
negative real axis). The single-pole high-pass filter has one pole and one
zero, and these both get larger (and their ratio approaches 1) as you slide up
to very high ω on the imaginary axis.

Why do we know that ω1 and ω2 are corner frequencies (for the
RLC filter examples)? Why do we switch to ω1 and ω2 instead of
ωRC and such?

When you write the denominator of all the RLC examples as (1 − ω2
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, you can see that ω1 and ω2 divide different regimes by eyeballing the
expression for different values of ω.

We assumed ω2 >> ω1. Then the ω2

ω1ω2
term will be guaranteed to be

very large, and |Ĥ| ∝ ω−2, for ω >> ω2. (Since ω1 is smaller than ω2, then
if ω >> ω2, then ω2 >> ω1ω2). When does that ∝ ω2 behavior in the



denominator take over? When ω2

ω1ω2
∼ ω

ω1
, so at ω = ω2. So that’s one corner

frequency.
Now what if ω is very small? Then the ω2 term can be ignored. Then

it looks like a single-pole filter. The behavior transition in the denominator
from 1 to ∝ ω is when 1 = ω

ω1
, so when ω = ω1.

What if ω2 = ω1? Then both breakpoints are in the same place.
But what if ω1 >> ω2? Then it gets a bit less obvious, and only extreme

behaviors are clear.
As for the second question: the formulation in terms of ω1 and ω2 is just a

convenient one for understanding the behavior in different frequency regimes,
as these quantities correspond to corner frequencies.

What is the physical (conceptual) importance of corner frequen-
cies?

They are the transition frequencies, with values depending on the components
of the network, between different regimes of frequency response. I’m not sure
there’s anything deeper than that, in general, although for specific networks
you can think of them physically. For example, for the low-pass filter, the
corner frequency is ωc = 1/(RC), which is 1 over the time constant of the
network; for frequencies larger than that, capacitor never fully charges up so
you never develop the full voltage on the output (so the sinusoidal signal is
attenuated); for frequencies smaller than that, you charge and discharge the
capacitor up and down all the way in each cycle and output follows input
(see also some of the answers in FAQs 8 and 9).

How are buffer and op-amp circuits used in real life?

Op-amps (and buffers made with op-amps) are actually pretty ubiquitous
in real-life circuits. We will be seeing more about them and applications of
them towards the end of the course. An op-amp is a kind of basic amplifier
(and a buffer is a unity-gain amplifier). There are many reasons you might
want to increase the voltage amplitude in a circuit. A canonical example is a
sound-amplifying circuit: when you turn up the volume on a music-playing
device, you are increasing the gain of an amplifier. An example from my own
field of physics research is an amplifier that turns tiny signals from particles
into more robust signals which are easy to digitize. In practice, amplifier



frequency response matters quite a bit, as you often want to suppress noise
or shape a signal in a particular way.

Buffers are commonly used to avoid loss of amplitude when connecting
one device to another (as we saw in the example of sequential filters).

Real life op-amps have a lot of imperfections, and actual circuits will
usually use op-amps together with other circuit elements in clever ways to
achieve specific performances.

Why does the amplifier act like a low-pass filter?

In real life, any device has capacitance and resistance. Typical real-life am-
plifier devices have an equivalent circuit looking approximately like that of
a low-pass filter (e.g. capacitance at the output, and equivalent resistance).
Not every amplifier need have this response though; specific circuits can be
devised that have different frequency responses.

Do amplifiers have any inherent impedance Ẑ?

Yes, they do. We will often idealize them as having infinite input impedance
(i.e., they draw no current) and zero output impedance (i.e., they can supply
infinite current). However real amplifiers have non-infinite input and non-
zero output impedance. We’ll be seeing more of this later.

How exactly does the feedback stabilize the amplifier?

One way to see it is from the math: from Ĥ(ŝ) = Â
1+Â(ŝ)F̂ (ŝ)

, for |ÂF̂ | >> 1,

|Ĥ| ∼ 1
|F̂ | , which is independent of |Â|, so quite insensitive to any variation

of the value of |Â|.
But here’s a qualitative way of thinking about it: an op-amp gives an

output voltage proportional to the difference between its inputs, by a large
amplification factor. What the feedback network does is to send back a frac-
tion of the output to the input. The amplifier then sees a smaller difference
between the inputs... so it adjusts the output to be smaller. A fraction of this
smaller output then gets sent back to the inputs again, and once again the
output adjusts... this process keeps happening until the fractional voltage
fed back from the output gives a difference between the inputs that no longer
results in a change in the output. If the fed-back voltage at the input, is, say,
F = 0.1 of the output, then the actual voltage at the output is Vout = 1 V



for an input difference of Vin = 0.1 V, so the gain is G = 1/F = 10. For a
real op-amp this all happens very fast and it all comes to equilibrium very
quickly.

How does the idea of “feedback” get reflected in F̂? Is there anal-
ogy of the function of F̂ to the thermal control example?

Well, the most general concept of feedback is as follows: you take information
from the output of a system and feed it back into the input to adjust the
output. If it’s “negative feedback”, an output value is used in the input
to adjust the output negatively (reduce an increase, increase a reduction).
If it’s “positive feedback”, the output value is used to adjust the output
positively (make something positive more positive, or something negative
more negative).

In the thermostat example, you might measure the temperature at the
output; if it’s higher than the target, you send a signal to the input of
your thermal control unit to reduce the temperature; if the temperature
is lower than the target, then you send a signal to the input to increase
the temperature. The “feedback box” implementing F̂ is then a somewhat
complicated thing (maybe a thermistor, some logic to send a control voltage
to the input or something), rather than just the simple voltage divider that
we had in our example. But it’s still performing an F̂ function of converting
an output into some control value for the input.

Is there a ceiling on gain with feedback, even with freedom to
choose F̂?

In an idealized system you can get any gain you want by choosing F̂ for
gain∼ 1

F
, so long as |ÂF̂ | >> 1. You can’t get a gain larger than |Â| by this

method (but typically |Â| is quite large, like 106).

Are amplifiers with smaller gain more stable than amplifiers with
larger gain? If they are, do you still need negative feedback?

Hmm, I’m not sure that amplifiers with smaller gain are necessarily more
stable, but I think it’s often true that large-gain amplifiers will be somewhat
unstable... a large gain means that you get a big change at the output for
a small change at the input, which means that small effects at the input



could make things change a lot. (The specific properties of amplifiers we’ll
see depend on solid state physics; we’ll cover this later in a bit more detail.)

In our practical applications though, negative feedback for amplifiers is
ubiquitous. We’ll pretty much always be using devices that either have neg-
ative feedback built in to a package (so it’s invisible to you, the user), or else
if you are making an amplifier from “scratch” (i.e., from op-amps) you will
nearly always use some kind of feedback circuit.

Can you explain the voltage divider in the feedback network?

In the amplifier network shown in the handout, a simple voltage divider
with resistors fills the feedback box shown in the generic negative-feedback
diagram. If you imagine a power supply V̂1 connected to the + and − inputs
of the amplifier, V̂4 in the generic diagram corresponds to V̂B in the amplifier
picture (V̂B is at the point between Rf and RG). V̂4 = F̂ V̂3 then corresponds

to V̂B = RG/(Rf + RG)V̂out, so F = RG/(Rf + RG). You can then choose
resistors to make F = 0.1 (or some other value < 1); the reciprocal of it will
be your closed-loop gain.

Are there any real world applications of amplifiers with negative
feedback?

Yes, practically every real-world amplifier uses some kind of negative feedback
(although this might be invisible to the user, if the amplifier comes in some
package).


