

Fist Observation of Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Yuri Efremenko, ORNL/UTK August 20, 217

Current Eleatic Neutrino Nucleus Scattering CEvNS

$$\frac{d\sigma}{dT_A} = \frac{G_F^2}{4\pi} m_A \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 \Big[1 - m_A \frac{T_A}{2E_v^2} \Big] F^2(Q^2)$$

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 F^2(Q^2)$$

$$m_A - nucleus mass$$

$$T_A - kinetic energy of recoil nucleus$$

$$E_v - neutrino energy$$

$$Z - nucleus charge$$

$$N - number of neutrons in the nucleus$$

$$F \text{ is nucleus form factor}$$

$$A. Drukte$$

$$E_v < 50 MeV$$

D.Z. Freedman PRD 9 (1974) A. Drukier & L. Stodolsky, PRD 30, 2295 (1984<mark>)</mark> Horowitz et al. astro-ph/0302071

Predicted 43 years ago!!!)

CEvNS cross section is Large

Cross section for CEvNS is predicted exactly, so any deviations will tell us about new physics outside of the SM

For experimentalists it is very attractive to see something new, which never been detected before

Why CEvNS are interesting? Weinberg (Electro week) angle

$$\left(egin{array}{c} \gamma \ Z^0 \end{array}
ight) = \left(egin{array}{c} \cos heta_W & \sin heta_W \ -\sin heta_W & \cos heta_W \end{array}
ight) \left(egin{array}{c} B^0 \ W^0 \end{array}
ight)$$

$$\sigma_{tot} = \frac{G_F^2 E_v^2}{4\pi} \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 F^2 (Q^2)$$

Measurements with targets having different Z/N ratio are required. Sun²θ_w is a free parameter in the Standard Model There is no fundamental theory which explain its value It is "running" constant, its value depends on the momentum transfer.

Correction to g-2 for muon magnetic moment due to a light mediator

If this is correct it can manifest itself in θ_w value at low Q^2

Why CEvNS are interesting? Non-Standard Interactions of Neutrinos

new interaction specific to v's

 $\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} \left[\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta} \right] \times \left(\varepsilon_{\alpha\beta}^{qL} [\bar{q}\gamma_{\mu} (1-\gamma^5)q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q}\gamma_{\mu} (1+\gamma^5)q] \right)$

J. High Energy Phys. 03(2003) 011

TABLE I. Constraints on NSI parameters, from Ref. [35].

NSI parameter limit	Source
$-1 < \varepsilon_{ee}^{uL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$-0.4 < \varepsilon_{ee}^{uR} < 0.7$	
$-0.3 < \varepsilon_{ee}^{dL} < 0.3$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$-0.6 < \varepsilon_{ee}^{dR} < 0.5$	
$ \varepsilon_{\mu\mu}^{uL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering
$-0.008 < \varepsilon_{\mu\mu}^{uR} < 0.003$	
$ \varepsilon_{\mu\mu}^{dL} < 0.003$	NuTeV νN , $\bar{\nu}N$ scattering
$-0.008 < \varepsilon_{\mu\mu}^{dR} < 0.015$	
$ \varepsilon_{e\mu}^{uP} < 7.7 \times 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei
$ arepsilon_{e\mu}^{dP} < 7.7 imes 10^{-4}$	$\mu \rightarrow e$ conversion on nuclei
$ \varepsilon_{e\tau}^{uP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$ \varepsilon_{e au}^{dP} < 0.5$	CHARM $\nu_e N$, $\bar{\nu}_e N$ scattering
$ arepsilon_{\mu au}^{uP} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering
$ arepsilon_{\mu au}^{dP} < 0.05$	NuTeV νN , $\bar{\nu}N$ scattering

Non-Standard v Interactions (Supersummetry, neutrino mass models) can impact the cross-section differently for different nuclei

K. Scholberg, Phys.Rev.D73:033005, 2006

Why CEvNS are interesting? DUNE degeneracy I

If you allow for NSI to exist, degeneracy is appears.

We can not tell the neutrino mass ordering without constrains on NSI

Why CEvNS are interesting? Interest from Neutrino Oscillations

arXiv.org > hep-ph > arXiv:1701.04828

High Energy Physics – Phenomenology

Curtailing the Dark Side in Non-Standard Neutrino Interactions

Pilar Coloma, Peter B. Denton, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz

(Submitted on 17 Jan 2017)

In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

and more in the recent literature...

Search or Ar

Why CEvNS are interesting? Neutrino magnetic moment

Signature is distortion at low recoil energy E

→ requires detector with very low energy threshold

See also Kosmas et al., arXiv:1505.03202

Why CEvNS are interesting? Potential Physics for Future Expansions

The development of a coherent neutrino scattering detection capability provides the <u>most natural</u> way to explore the sterile neutrino sector.

A. Drukier & L. Stodolsky, PRD 30 (84) 2295 A. J. Anderson et al., PRD 86 013004 (2012)

The cross-section is sensitive to the magnitude of the Neutrino Magnetic Moment (Supersymmetry, Large Extra Dimensions, Right Handed Weak Currents).

A. C. Dodd, et al., PLB 266 (91), 434

COHERENT may be the first experiment to observe the Effective Neutrino Charge Radius.

J. Papavassiliou, J.Bernabeu, M. Passera, HEP-EPS 2005, Lisbon, arXiv:hep-ph/0512029

The neutron distribution within the nucleus impacts the recoil energy dependent cross-section (Form Factor) K. Patton, et al., PRC 86, 024216

Why to Study CEvNS?

Large effect on Supernovae dynamics.J.R. Wilson, PRL 32 (74) 849We should measure it to validate the models

Why to Search for CEvNS

It will be irreducible background for Dark Matter experiments

Possible Applications of Coherent Scattering

SN DETECTION (Stodolsky) 10 kpc, 10 ton \rightarrow 100 events

SOLAR NEUTRINOS

~1K events per ton per year.

REACTOR MONITORING

Race for the first CEvNS detection

Experimen t	Neutrino Source	Effective E _v	Distance	Technology	Target	Mass
Ricochet at Chooz	Chooz NPP 2x4.3GW	~4 MeV	355 m	Bolometer	Ge, Zn	5 + 5 kg
Ricochet at MIT	MITR Reactor 5 MW	~4 MeV	4 m	Bolometer	Ge, Zn	5 + 5 kg
MINER	Texas A&M Reactor 1 MW	~4 MeV	2 m	Ionization	Ge, Si	~2-5 kg
CONNIE	Angra NPP 3.8 GW	~4 MeV	30 m	CCD	Si	0.1 kg
RED-100	Kalinin NPP 3.2 GW	~4 MeV	25 m	2 phase	Хе	100 kg
vGeN	Kalinin NPP 3.2 GW	~4 MeV	10 m	Ionization	Ge	~5 kg
CONUS	Brokdorf NPP 3.8 GW	~4 MeV	20 m	Ionization	Ge	~5 kg
COHERENT	SNS (DAR)	~40 MeV	20-30 m	Ionization	Csl, Ar, Ge	14, 30, 10 kg

In red shown experiments which are taking data.

What Source We Can Use to Detect CEvNS

Nuclear Reactors

 $\begin{array}{c} 3 \text{ GW} - 1 \text{ MW} \\ \text{Distance ~10 -20 m} \\ E_{\nu} ~ 4 \text{ MeV} \\ \text{Continues operation} \\ 6*10^{20} \text{ v/sec} \\ \text{One type of neutrino} \end{array}$

Stopped Pion Facilities

1.3 MW Distance ~20 m E_v ~ 40 MeV Pulsed beam $2*10^{15}$ v/sec Three types of neutrinos

SNS-Spallation Neutrino Source

IC (REER

etter tridut

Car

CEL

CONTRACTOR OF THE OWNER

Neutrino Production at the SNS

Collaboration was created to make the first detection of the Neutrino Neutral Current Coherent scattering at the SNS

Fast Neutrons at SNS

There are Multiple Fast Neutron Sources inside the Target building.

Intermediate Neutrons with energy more than 50 keV can produce nuclear recoils. This is major background!!!!

Example of Simulations

Background Measurements at SNS

14

Started in 2013

"In-Beam" events, considerably more neutron events (and 16x less "live time")

Neutrons flux in the target building 100000 times more than we can tolerate Time structure is similar to the ones from neutrinos

Finding Neutrino Alley

Neutrino Alley at the SNS

Basement location is isolated from Neutron beam Lines There are no voids between SSN target and Neutrino Alley There is extra protection from cosmic rays by neutron beam lines shielding However, there is no protection from Neutrinos

In

Neutrino Induced Neutrons (NIN)

Never been measured. There are only theoretical calculations

This reaction on Lead is used by HALO experiment in the SNOlab, to watch for supernovae.

Lead assembly with ³He neutron detectors

Fitting the annual modulation in DAMA with neutrons from muons and neutrinos

Jonathan H. Davis¹

¹Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom j.h.davis@durham.ac.uk

author explains DAMA seasonal modulations by solar neutrino induced interactions in the DAMA shielding

In this article we show that J.Davis is wrong by a ~6 orders of magnitude if to trust nuclear theory

Comment on "Fitting the annual modulation in DAMA with neutrons from muons and neutrinos"

> P.S. Barbeau^a, J.I. Collar^b, Yu. Efremenko^c, and K. Scholberg^{a,*}. ^aDepartment of Physics, Duke University, Durham, NC 27708 USA ^bDepartment of Physics, University of Chicago, Chicago, IL 60637 USA ^cUniversity of Tennessee, Knoxville, TN 37996 USA ^{*}Corresponding author. E-mail: schol@phy.duke.edu

Neutrino Induced Neutrons – NINs Never been detected, theoretical cross sections are differ by 30%

- Liquid scintillator detectors with n/g separation capability
- Two sets with Lead (1 ton) and Iron (700kg) targets.
- Neutron detection Efficiency ~10%

Collaboration started program of measurements with Lead and Iron targets looking for the first detection of NINs and measurement of their production cross section

Three Detector Technology for COHERENT Phase I

Monitoring of Accumulated Statistics

Before looking for CEvNS we studied backgrounds for 2 yeas.

One of the important measurement was to look for NINs in the CsI shielding to be sure that they are not an issue

Csl Is Good as a Detector for CEvNS

Inexpensive - 1\$/g High density 4.51 g/cm³ bright scintillator ~64 ph/keVee can be low radioactive

Figure 1. Scintillation emission spectrum of CsI

Light emission at 420 nm match well PMT sensetivity

 $Cs_{(z=55,A=133)}$ and $I_{(z=53,A=127)}$ both have large and similar number of neutrons

Csl is Bad as a Detector for CEvNS

Quenching (response to nuclear recoils) is not know very well

It is slow – 630 nsec (single Ph.E. for small signals)

It has a large afterglow

The large afterglow, creates problems for a large crystals working on the surface

Quenching Measurement at the TUNL neutron beam

For the first publication we assumed flat quenching of 8.8% +/- 2.2%

NINs Background Concern

Prior to CsI installation LSc detector has been deployed at the same location with the same shielding but without inner poly layer

Taking data from November 2014 till June 2015

No NINs has been seen, and non has been expected for this setup

GOOD !!!

The "neutrino alley" @ SNS

Csl detector Installation (August 2015)

DAQ recorded waveforms in 70 usec window using SNS timer (60 Hz)

Calibration of efficiency with ¹³³Ba source via Compton scattering at Chicago

Detector stable operation

Energy Calibration

No drift in the energy scale

Csl Data Analysis

Quasi blind data analysis was implemented.

Two separate groups did their independent analysis using very different software tools

Event algorithms of waveform analysis were different and not shared

After both groups were happy with their results final experimental plots were generated.

Expected signals were generated based on accumulated statistics (both groups ended up with a slightly different efficiencies and number of POT)

After both groups compare their results and discovered that they are in agreement, results were unveiled during May-17 collaboration meeting

Collaboration was so happy with result so we forgot to take a group photo

DAQ recorded waveforms in 70 usec window using SNS timer (60 Hz)

Analysis procedure:

Apply same "Cherenkov" cut using BG and signal and ROI windows

Apply cut on prior activity using signal and BG pre trace windows Subtract BG ROI events from Signal ROI events

Blind Cut Optimization

Strict cut on pre trace reduce acceptance

Strict Cherenkov cut at ROI reduce BG There is optimal combination of both → significance

Signal Efficiency Based on Ba Calibration Data

and the second second

VER ROLLAR

Csl Accumulated Statistics

~6 GWh were recorded, this is 1.4*10²³ POT or 0.22 grams of protons delivered to the SNS target

CEvNS detected

First Application of CEvNS Constrain on non standard neutrino interruptions

 $\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha\beta=e,\mu,\tau}} \left[\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta} \right] \times \left(\varepsilon_{\alpha\beta}^{qL} [\bar{q}\gamma_{\mu} (1-\gamma^5)q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q}\gamma_{\mu} (1+\gamma^5)q] \right)$

Why CEvNS are interesting? Interest from Neutrino Oscill-FERMILAB PUB IT 308 T, YTTP SB-17-98, IFT UAM/CSIC. IT.073

arXiv.org > hep-ph > arXiv:1701.04828

High Energy Physics – Phenomenology

A COHERENT enlightenment of the neutrino Dark Side Curtailing the Dark Side in Non-Str

Pilar Coloma, Peter B. Denton, M. C. Gonzale-

(Submitted on 17 Jan 2017)

In presence of non-standard r so-called LMA-Dark solu ordering. Non-oscillation experiments with the neutry neutrino interactions take pl. new interactions take place th. to resolve the degeneracy by us using a stopped-pion neutrino su neutrino sector will be established Filer Coloma, I., M. C. Gonzaler, Garcia, 3,3,4,1 Michele Malkoni, 5,1 and Thomas Schweete, 15 Theory Department, Fermi National Accelerator Laboratory, P.O. Box 500, Hatavia, II, 60510, USA Plat Colones, I., M. C. Gomalez Garcia, And Inbana and Indexes Spain Plat Colones, Termi National Accelerators, Institut Barcelona, Spain Plat Colones, Termi National Accelerators, Termina and Eugena Theory Popartument, de Pister Barcelona, Termina and State University, Colones, Termina and Accelerators, Termina and Colones, Termina and Accelerators, Term I compare to the provide the provide to the provide Transman ar runs Trong WAN (Care, Care or Leady) Maine, Gran with the art of the second or the transman of the second of the second or the transman of the second of the second or the transman of the second of the This leads of the contract and finder one of the store of determinantal posterior de la servicio de la contracta en entre de la contracta en de la 1e bat the recent observation of coherent pentriner excludes in combination with global oscillation data, excludes or NSI with up (down) quarter. ...on -standard scattering by the Contraction of the Alle (2160) CU for NSI with up (down) quarter acattering by the Contraction of the Alle (2160) CU for NSI with up (down) quarter the NSI degeneracy at the Alle (2160) CU for NSI with up (down) quarter ins apply only if the we consider the possibility e find that, for an experiment Jence of new interactions in the

ons

Search or Ar

(Help | Advanced

Three Detector Technology for COHERENT Phase I

Liquid Argon Detector

Specs:

- LAr
 - ~30 kg fiducial volume
- 2×Hamamatsu R5912-02-MOD 8"PMTs
 - 8 " borosilicate glass window
 - Standard bialkali photocathode (K₂CsSb)
 - 14 dynodes
 - QE: 18%@400 nm
- WLS Tetraphenyl butadiene (TPB)
- Cryomech cryocooler 90 Wt
 - PT90 single-stage pulse-tube cold head
 - compressor: CP950

LAr Construction

- Acrylic cylinders and discs coated by TPB
 - 3 x cylinder by airbrush
 - 2 x disk by evaporation at ORNL
- The thickness of the TPB is optimal ~ 0.2 mg/cm^2
- Teflon wrap
- Detector was assembled at clean room at the staging area

We conducted major refurbishing of LAr detector during June-July

- First prototype worked from January till May 2017.
- No Lead shielding has been installed
- Cryogenics and vacuum no problems
- It has very low light output 0.3 ph.e. /keV

June – July 2017 Detector has been opened and rebuild

- New PMT, with frosty window and direct TPB coating
- New Teflon cylinder with TPB coating via evaporation

- Started to take data again from the second half of July
- Lead shielding is completed
- Should have 40 events by the end of the year.
- ³⁹Ar is the biggest concern

Array of Germanium Detectors (NC)

Up to 10 kg of Ge detectors using common LN pool

Surrounded by comprehensive shielding

Dewar fabrication nearing completion.

Expected deployment on site Winter 2017.

Nal as a Neutrino Detector

- COHERENT deployed a 185 kg detector ~ 6 months ago
- Upgrade later this month: installation of a muon veto to reduce backgrounds to the I-127 CC interaction
- COHERENT has access to ~ 9T of Nal scintillator detectors initial plans are to deploy 2T that are already in-hand
- Design of 2T DAQ and shield is progressing

List of some ideas for neutrino physics at the SNS

Test of the S.M. via NSI and $Sun^2\theta_w$

Study Neutrino oscillations – Test of the LSND claim

Neutrino Magnetic moment

Measurement of Neutrino Spectra from Muon Decay

CC and NC Cross section Measurements for Supernovae Physics, and Nuclear Theory

Nuclear Form Factors (neutron radius)

SNS is the world most powerful pulsed neutrino source

Neutrino Energy range at the SNS is just right to study CEvNS

There is comprehensive and exciting neutrino program at the SNS

Presently COHERENT collaboration is engage in deployment of the first generation of detectors to see "First Light"

We just detected the "First Light" with Csl detector

There are many ideas what to do next with neutrinos at the SN

We hope to collect even more ideas after that workshop

OAK RIDGE NATIONAL LABORATORY

Neutrino Studies at the Spallation Neutron Source

------SNS

August 2003

Thursday, August 28

8:30-8:50	G.R. Young (ORNL)	Welcome & Workshop Task
8:50-9:30	G.M. Fuller (UCSD)	Neutrino-Nucleus Interactions in Physics and Astrophysics
9:30-10:10	D.J. Dean (ORNL)	Neutrinos and Nuclear Structure
10:10-10:30	Coffee Break	
10:30-10:50	R.L. Burman (LANL)	Previous Measurements with Stopped-pion Neutrinos
10:50-11:30	Y.V. Efremenko (UT)	Possibilities at the SNS
11:30-12:00	F.T. Avignone (USC)	The Status of Neutrino Physics
12:00-1:00	Lunch	
1:00-1:20	R.L. Burman (LANL)	Neutrino Flux Normalization
1:20-1:50	R.L. Talaga (ANL)	Calibration of the OMNIS-LPC Supernova Neutrino Detector
1:50-2:20	A.B. Balantekin (Wisconsin)	Solar Neutrinos, Neutrino Cross Sections, and NUSEL Developments
2:20-2:50	E.E. Kolbe (Basel)	Fundamental Physics with SNS ² and RIA
2:50-3:30	Discussion + Coffee	
3:30-3:45	A.E. Ekkebus (SNS)	Overview of the Spallation Neutron Source
3:45-4:00	G.L. Greene (UT)	Logistics of SNS Projects
4:00-5:00	SNS Tour	
5:00-5:20	A.R. Fazely (Southern U.)	Physics with Pion Decay-in-Flight Neutrinos
5:20-5:40	R.L. Tayloe (Indiana)	The FINeSE Experiment
5:40-6:00	G.J. VanDalen (Embry-Riddle)	Oscillations at the SNS Neutrino Source
7:30-	Dinner	Riverside Tavern (Get map) (Get directions)

8:30-9:00	P. Vogel (Cal-tech)	Neutrino-Nucleus Cross Sections: Measurements Confront Calculations
9:00-9:30	<u>W.R. Hix</u> (UT)	Neutrino-Nucleus Interactions and the Core Collapse Supernova Mechanism
9:30-10:00	B.S. Meyer (Clemson)	Neutrinos and Supernovae Nucleosynthesis: Importance for Astronomy and Cosmochemistry
10:00-10:20	Coffee Break	
10:20-10:50	G. Mills (LANL)	Previous Neutrino Measurements and Limitations
10:50-11:20	W.C. Louis (LANL)	Future Experiments at the SNS
11:20-12:00	Open Discussion	
12:00-12:40	Lunch	
12:40-2:30	Mezzacappa (chair)	Theory Breakout Session
12:40-2:30		Experiment Breakout Session
	I. Stancu (Alabama)	Homogeneous Detectors: Technology and Performance
	K.A. Lan (U. Houston)	Thin wall straw tube gas detector
	Efremenko/Burman	Shielding Issues
2:30-3:30	Wrap-Up	