Duke University
Department of Physics

Physics 391
Fall Term 2010

WUN2K FOR LECTURE 4

These are notes summarizing the main concepts you need to understand and be able to apply.

- The dimensionless "correlation coefficient" for variables u and v is defined as $\rho \equiv \frac{\sigma_{u v}^{2}}{\sigma_{u} \sigma_{v}}$. It can take values $-1 \leq \rho \leq 1$; if the variables are completely uncorrelated, $\rho=0 ; \rho= \pm 1$ corresponds to complete (linear) correlation (or anti-correlation).
- The "error matrix" is a compact way of specifying uncertainties and correlations for multiple variables $\left(u_{1}, u_{2}, \ldots\right)$; the elements of the error matrix are $M_{i j} \equiv\left\langle\left(u_{i}-\bar{u}_{i}\right)\left(u_{j}-\bar{u}_{j}\right)\right\rangle$. We have for $(u, v, w, \ldots), M=$ $\left[\begin{array}{cccc}\sigma_{u}^{2} & \sigma_{u v}^{2} & \sigma_{u w}^{2} & \cdots \\ \sigma_{u v}^{2} & \sigma_{v}^{2} & \sigma_{v w}^{2} & \cdots \\ \sigma_{u w}^{2} & \sigma_{v w}^{2} & \sigma_{w}^{2} & \cdots \\ \vdots & \vdots & \vdots & \vdots\end{array}\right]$.
The error matrix is symmetric, and for uncorrelated variables, it's diagonal.
- A "binormal" joint probability for two random variables u, v (with zero
 More generally for k variables with non-zero means, this can be written $P\left(u_{1}, u_{2}, \ldots\right)=\frac{1}{(2 \pi)^{k / 2}} \frac{1}{|M|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{u}-\mu)^{T} \mathbf{M}^{-1}(\mathbf{u}-\mu)}$, where \mathbf{M} is the error matrix, \mathbf{u} is a column vector of variables, and μ is a column vector of their means.
- The "error ellipse" corresponding to two random variables u and v with binormal joint probability $P(u, v)$ is a contour in $u-v$ space for which the joint probability $P(u, v)$ is $1 / \sqrt{e}$ of its maximum. This ellipse will be tilted for non-zero ρ.
- Uses of error matrices (which in general make calculations by computer easy):
- For usual error propagation, to find the uncertainty on a function of some variables $x=f(u, v, \ldots)$, we can write $\sigma_{x}^{2}=\mathbf{D}^{T} \mathbf{M D}$, where \mathbf{D}^{T} is a row vector of derivatives, $\mathbf{D}^{T}=\left[\frac{\partial x}{\partial u}, \frac{\partial x}{\partial v}, \ldots\right]$, and \mathbf{M} is the error matrix.
- For a change of variables, $u^{\prime}=f_{1}(u, v, .),. v^{\prime}=f_{2}(u, v, .$.$) , the error$ matrix for the transformed variables is given by
$\mathbf{M}^{\prime}=\mathbf{A}^{\mathbf{T}} \mathbf{M} \mathbf{A}$, where $A=\left[\begin{array}{ccc}\frac{\partial u^{\prime}}{\partial u} & \frac{\partial v^{\prime}}{\partial u} & \ldots \\ \frac{\partial u^{\prime}}{\partial v} & \frac{\partial v^{\prime}}{\partial v} & \cdots \\ \vdots & \vdots & \vdots\end{array}\right]$.
- For a function of changed variables, $z=g\left(u^{\prime}, v^{\prime}, \ldots\right)$, we can find the uncertainty on z according to $\sigma_{z}^{2}=\mathbf{D}^{T} \mathbf{A}^{T} \mathbf{M A D}$, where in this case $\mathbf{D}=\left(\begin{array}{c}\frac{\partial z}{\partial u^{\prime}} \\ \frac{\partial z}{\partial v^{\prime}} \\ \vdots\end{array}\right)$.

