Duke University
Department of Physics

Physics 391
Fall Term 2010

WUN2K FOR LECTURE 2

These are notes summarizing the main concepts you need to understand and be able to apply.

- For a situation in which one assumes some underlying "truth" description, but for which specific results can vary, the probability of a particular result is the ratio of the number of times that result occurs to the total number of occurrences. A probability is a number in the range 0 to 1 , and the distribution of probabilities must be normalized, i.e. $\sum_{\text {possible results i }} P(i)=1$ for discrete results, and $\int_{-\infty}^{\infty} P(x) d x$ for continuous results.
- Rules of probability:
- The probability of A OR B occurring, $P(A+B)$, must satisfy $P(A+B) \leq P(A)+P(B)$, where the equality holds if A and B are independent.
- The probability of A AND B occurring, $P(A B)$, is given by $P(A B)=$ $P(A \mid B) P(B)=P(B \mid A) P(A)$, where the notation $P(A \mid B)$ means "the probability of A, given B ". This relation is also known as "Bayes' Law".
- The binomial distribution is $B(x ; n, p)=\binom{n}{x} p^{x} q^{n-x}$: this is the probability of x "successes" in n trials, where the probability of success is p, and $q=1-p$. (Here $\binom{n}{x}=\frac{n!}{x!(n-x)!}$.) The mean of a binomial is $\mu=n p$ and the variance is $\sigma^{2}=n p(1-p)$.
- The Poisson distribution is the limit of the binomial for the case $\mu \ll n$ and $p \ll 1: \mathcal{P}(x ; \mu)=\frac{\mu^{x}}{x!} e^{-\mu}$. Its mean is μ and its variance is also
$\sigma^{2}=\mu$; it's described by the single parameter μ. The Poisson is often useful for counting statistics.
- The Gaussian distribution is the limit of the binomial for $n p \gg$ 1 , and also the limit of the Poisson for $\mu \gg 1$: it's $G(x ; \mu, \sigma)=$ $\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$, with mean μ and variance σ^{2}. Some useful properties: $G(\mu \pm \sigma ; \mu, \sigma)=G(\mu ; \mu, \sigma) / e$.
The "full width half max (FWHM)", for which $G\left(\mu \pm \frac{\Gamma}{2} ; \mu, \sigma\right)=$ $\frac{G(\mu ; \mu, \sigma)}{2}$ is $\Gamma=2.354 \sigma$.
The area between $\mu-\sigma$ and $\mu+\sigma$ is 68.3% of the total area; between $\mu-2 \sigma$ and $\mu+2 \sigma$ is 95.5%; and between $\mu-3 \sigma$ and $\mu+3 \sigma$ is 99.7%. Beware of "non-Gaussian tails" when going out many sigmas, though!

