Introduction to the
BEOWULF
Design

Robert G. Brown
Duke University Physics Department

Parallel Computation

e “Tasks” typically have both serial and parallel com-
ponents.

e Parallel components are subtasks that can be ac-
complished at the same time with or without active
communication. Serial components have to complete
one at a time before work can proceed further.

e Serial subtask completion time is (usually) “irre-
ducible” (although it can expand!).

e Parallel subtask completion time under ideal circum-
stances scales like 1/N where N is the number of
parallel tasks undertaken at the same time. “Many
hands make light work”.

e Parallel subtasks typically requires communication
between the subtasks. This communication time
adds to to the total and can take more or less time
than the work itself

e All this is made formal in Amdahl’s Law and quanti-
tatively corrected in books on parallel computation.

The “rate” at which a computer does a given piece of
“work” is: W

R=— 1

- (1)

Putting in the time required for serial and parallelizable

work explicitly:
W

= 2

T 2)
where the “1” indicates the number of CPUs. Splitting
up the parallel work P ways the rate becomes as much
as:

R(1)

W
R(P) = 3
and the speedup is thus:
(Ts + Tp)

MR =, 5 @,/p) W
which is Amdahl’s Law. This strictly limits the speedup
of a parallelized program. It is, however, usually not
pessimistic enough.

For example, we have to account for the time spent com-
municating between processors, the time spent setting
things up, and changes in the times to perform various
tasks with different algorithms. Defining things like:

Ts The original single-processor serial time.

T;s The (average) additional serial time spent doing
things like IPC’s, setup, and so forth, per proces-
sor, in all parallelized tasks.

T, The original single-processor parallizable time.

Tip, The (average) additional time spent by each pro-
cessor doing just the setup and work that it does
in parallel. This may well include idle time, which
is often important enough to be accounted for sepa-
rately.

we can obtain improved estimates of the speedup:
Tiot(P) =T, + P*xTis+ T,/ P + Tj,. (5)

or
R(P) T, +T,

R(1) T,+PxTy+T,/P+T,

(6)

Code Granularity

® If tcomputation > tcommunications cOarse grained. P com-
pletely independent jobs are “embarrassingly coarse
grained” or “embarrassingly parallel”.

® If tcomputation > tcommunication (but not tremendously so)
medium grained.

o If tcomputation — tcommunication or less fine gl‘alned-

Granularity typically is controllable. Faster networks,
scaling of computation to communication as a function
of problem size, CPU speed, program organization all
control variables.

Fine grained tasks are “bad” for scaling to many nodes
N. Coarse grained tasks are “good”.

In all the figures below, 7y = 10 (which sets our basic
scale, if you like) and 7, = 10,100, 1000, 10000, 100000. In
the first three figures we just vary 7;;, = 0,1,10 for 7;, = 1
(fixed). Finally, the last figure is 7;; = 1, but this time
with a quadratic dependence P? x T},.

p
100 [~ J -

50 ~ 7

R(P)/R(1) (speedup)
R(P)/R(1) (speedup)

g g
100 [~ g N 100 [~ e B
. .

.
50 e 4
.

R(P)/R(1) (speedup)
R(P)/R(1) (speedup)

Examples

e Embarrassingly coarse grained: Monte Carlo, data
field explorations. Multiple independent jobs with
only result collection/summation.

e Coarse to medium grained: Monte Carlo, prob-
lems on a lattice (where the lattice is partitioned
among nodes with short range communications), lat-
tice gauge theory.

e Medium to fine grained: Cosmology, molecular dy-
namics with long range interactions, hydrodynamics,
computational fluid dynamics.

Note that this (oversimplified) view has granularity de-
creasing as systems spend more and more time commu-
nicating data so that the various nodes can take a step.
Thus granularity is a function of the computer system
as much as it is the code or problem!

Note also that the goal of system design is to pick the
cost /benefit optimal parallel computation system that
allows YOUR problem to be effectively and efficiently
coarse grained.

Beware nonlinearities! CPU/cache/memory/disk bot-
tlenecks can create “superlinear speedup” and violate

Amdahl’s Law!

Designs: NOW /COW /Beowulf

e (Goal is optimizing overall performance per dollar.
The following are appropriate for increasing fineness
of program granularity.

e NOW (Network of Workstations) + e.g. Mosix or
master/slave PVM or perl script permits double us-
age of all CPUs — desktop activities eat tiny frac-
tion of capacity, the rest is all calculation(s). Totally
maximizes utility of boxes.

e COW (Cluster of Workstations) +
Mosix/PVM/MPI protects the network a bit and
isolates the compute resource (from humans). A bit
more computation power, a bit less desktop utility.

e Beowulf (dedicated, single headed COW) +
Mosix/PVM /MPI + custom software. A totally iso-
lated COW with (usually) a private network and a
single head.

These are suitable for increasingly fine granularity, at
increasing cost and decreasing general purpose utility.

Schematics for the general designs follow, first a “true
beowulf” and then a workstation cluster.

A True Beowulf

Node Node Node

Node Node Node

Node Node

Node Node

Node Node Beowulf "body"
Node Node

Node Node

Node M

ped
Server Node Switch

————e e - - - —

| | ‘
' |Head Node = Beowulf "head"

Network Backbone

A Workstation Cluster

Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
_ Network Backbone
Switch
—
Server | | Server | |\Workstation (head)

"Cluster" Supercomputer

Workstation (head)

Intel Beowulf or Cluster
Cost /Benefit

e $500-$2500/node (varying CPU, memory, disk, com-
munications, graphical head).

e Absolute maximum (IMHO) raw CPU perfor-
mance/price is stripped Celeron nodes — 500 MIPS
at $500/node. Good for many/most CG problems.

e Ranges up to 1 GHz PIII’s with big memory, big
disk, graphical head, multiple fast ethernets and
channel bonding. Myrinet possible, add $1500/node

e Best for medium to coarse grained problems. Ideal
for embarrasingly parallel problems, e.g. - SETI,
RC5/DES, multiple independent (Monte Carlo) sim-
ulations.

e Tools like Mosix permit “the network to be the com-
puter” as never before.

e Strictly COTS components (e.g. — www.intrex.com
under “parts”). Cheap and easily maintained.

e Do it yourself (easy) or buy turnkey operation (Par-
alogics, Alta Systems, VA Linux).

Alpha/Myrinet Beowulf Cost/Benefit

e $5000-$8000/node (Base 21264 alpha might cost
$3500, Myrinet $1500 give or take, plus hardware
variations in memory and so forth).

e Absolute maximum (IMHO) raw CPU and network
performance — nodes 3x faster in floating point, 10x
faster in network IPC, lower OS overhead.

e Makes most Intel “fine grained” problems coarse
grained.

e Excellent scaling (to 64 processors and beyond) on
fine grained code.

® Beats a T3E, SGI Origin, or IBM SP2 in raw perfor-
mance on a per-processor basis for fine grain paral-
lel code (e.g. cosmology, weather apps) at a fraction
(perhaps 1/10) of the cost.

e Do it yourself or buy turnkey operation (from Greg
Lindahl of HPTi, or perhaps Michael Huntingdon of
spcnet).

“Big Iron”

e Bad: Not infrequently, can build a beowulf of equiv-
alent power for the maintenance costs alone of a T3E,
SP2, or Origin.

e Bad: Is unlikely to be better and is often going to
be worse than a suitable beowulf design regardless
of the cost.

e Bad: Difficult and expensive to maintain and up-
grade — depreciation rates of 50% /year or even more
are standard fare, given Moore’s Law.

e Bad: Proprietary, single source vendor, expensive
software, high infrastructure costs. Not COTS!

e Good: Their IPC’s can be marginally superior for
certain classes of problems. Sometimes.

e Good: They keep a whole staff of computer people
off the street caring for and feeding a big iron sys-
tem and yields huge profits to the companies that
make them. This keeps our taxes low, except when
government grants are used to buy them.

Conclusions

e MOST if not ALL parallelizable problems can be
run most cost-efficiently on a COTS compute cluster
(beowulf).

e Worth learning how to design “properly”. See ref-
erences following.

e Beowulfish clusters generally at least order of mag-
nitude more price productive, often yield staggering
productivity efficiency...

e ...so literally everybody is buying or building them.

e Beware Bottlenecks! Ditto nonlinearities in general,
synchronization issues. Your mileage may vary!

References and Resources

e http://www.beowulf.org
e http://www.phy.duke.edu/brahma/

e “How To Build a Beowulf”, by Sterling, Becker, et.
al.

e http://www.phy.duke.edu/~rgb/beowulf.pdf
(private snapshot my book on beowulfery).

e http://www.phy.duke.edu/~rgb/beowulf intro.pdf
(this talk).

e Online book on designing parallel programs by
Ian Foster at Argonne National Labs, http://www-
unix.mcs.anl.gov/dbpp/

e “Highly Parallel Computing”, by Amalsi and Got-
tlieb.

