The Beowulf Design

COTS Parallel Clusters
and Supercomputers

Robert G. Brown
Duke University Physics Department

Abstract

Amdahl’s Law is a relation that describes fundamental
limits on how much (if any) benefit can be obtained by
parallelizing any given application in the best of all pos-
sible worlds. However, the real world is even less kind
and has a lot more variables. This introductory-level
tutorial will focus on how to take a task, identify at
least some of the parallelizable subtasks, determine the
amount of time the task spends actually doing the par-
allelizable computations, determine the amount of time
the parallel tasks will spend communicating for various
node configurations between subtask epochs, and then
pick a suitable beowulf architecture for accomplishing

the task (if one exists, as there is no guarantee that one
will).

The cost-benefit of various design alternatives (for ex-
ample, clusters versus “true beowulfs” will also be dis-
cussed, as the economics of COTS cluster computing is
at the heart of beowulfery and “extreme linux”.

o e o

Beowulf "body"

Network Backbone

"Cluster" Supercomputer

Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
Workstation Workstation Workstation
_ Network Backbong
Switch
—
Server | | Server| |\Workstation (head)

Workstation (head)

4.

Introduction
“The Standard Recipe”

. Buy a pile of M?COTS (Mass Market Commodity-

Off-The-Shelf) PC’s for “nodes”. Details (graphics
adapter or no, processor speed and family, amount
of memory, UP or SMP, presence and size of disk)
unimportant.

. Add a nice, cheap 100BT NIC to each. Connect each

NIC to nice, cheap 100BT switch to interconnect all
nodes.

. Add Linux and various “ExtremeLinux/Beowul”

packages to support distributed parallel computing;
PVM, MPI, maybe more.

Blow your code away by running it in parallel...

...NOT!

Or perhaps more correctly, MAYBE. But wouldn’t one
like to know that one’s code can be profitably run on a

Beowulf BEFORE building it? And again, aren’t there
a few wee details glossed over in this “recipe”?

Steps in Building a Beowulf

Here is the One True Secret to building a successful
beowulf. This has been certified over and over again
on the beowulf list by virtually every “expert” on the
list (and a few bozo’s, like myself:-). BEFORE putting
together even a paper plan for the beowulf:

e Study your code.
e Study your code some more.
e Study it still some more.

® Then design and build your Beowulf or Cluster.

The word “Study” here means to, if at all possi-
ble, use measurements and prototyping more than back-
of-the-envelope estimates. Measurements are far more
valuable than any theoretical estimate, however well-
informed.

Profile your serial code and try running it on differ-
ent candidate architectures. Try small parallelizations
on just a few handy hosts connected by ANY network.
Borrow a friend’s beowulf for a few days if necessary.

Below I show in some detail both why and how to go
about this...

First, some (very important) theory!

Amdahl’s Law

The “speed” of a program is:
Work
Ts+Tp

where T, (serial time) is the time spent doing things
that have to be done one after another (serially) and 7,
(parallel time) is the time spent doing things that might
be doable in parallel.

Even with “perfect” parallelization and many (P) pro-
cessors, the program cannot take less than 7, to com-
plete. This is:

Amdahl’s Law (Gene Amdahl, 1967)

If S is the fraction of a calculation that is serial
and 1 — S the fraction that can be parallelized,
then the greatest speedup that can be achieved
using P processors is: © +(1i $)/P) which has a lim-
iting value of 1/S for an infinite number of pro-
Cessors.

(The result is expressed in fractions to get the RELA-
TIVE speedup for a given amount of work.) No matter
how many processors are employed, if a calculation has
a 10% serial component, the maximum speedup obtain-
able is 10.

Of course, reality is generally worse than predicted by
Amdahl’s Law as we’ll see later...

Profiling
The First Step

e To see if a beowulf makes sense, we therefore must
begin by determining 7; and 7, (for a given amount
of work W and total execution time 7).

e For example, word processors are almost entirely se-
rial; S = T;/T ~ 1 and are I/O bound as well (we’ll
get to this later). It would be stupid to build a par-
allel word processor.

e Many statistical simulations, on the other hand, can
be run “completely” in parallel, with a relatively
tiny fraction of the code serialized to collect results.
For these S < 1 and it is easy and profitable to run
in parallel.

e Compile with (gcc) -pg compiler flag, use gprof to see
where program does the most work, identify paral-
lelizable sub-tasks. Or use BERT (Fortran), or other
similar tools. It 7), (even under ideal circumstances)
worth it?

e Note: “Larger” problems can be attacked by a be-
owulf than on a UP system, which may make them
worthwhile even when the scaling is lousy.

Parallelizing the
Discoveri,, Neural Network
An Example

Run gprof on discover building a simple neural network
(ten bit “divisible by seven”). Small training set, not
many neurons. We get:

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls ms/call ms/call name

38.53 20.84 20.84 67549440 0.00 0.00 act_func

34 .81 39.67 18.83 67549440 0.00 0.00 dotprod
8.36 44 .19 4.52 67549440 0.00 0.00 activity
6.84 47.89 3.70 13305088 0.00 0.00 trial
4.66 50.41 2.52 4052 0.62 1.65 find_grad
3.29 52.19 1.78 47919 0.04 0.95 eval_error
1.72 53.12 0.93 800 1.16 1.19 dsvdcmp
0.89 53.60 0.48 5186560 0.00 0.00 actderiv
0.30 53.76 0.16 800 0.20 2.27 regress

trial, act_func, activity, and dotprod are all used to eval-
uate the training set error of a neural network. Together
they comprise more than 80% of the code. If we can
parallelize the evaluation of training set error, we can
expect a fivefold or better speedup for the run I profiled.

Or can we....?

The answer, of course, is NO — this is just an upper
bound and one that depends strongly on problem size
at that. Still a useful case to investigate.

Training Set

A

Network (weights) — Error

~_ “

Alter weights

;height=3in

Figure 1: Training cycle of feed-forward, backprop network

e Many evaluations of error, but cannot run multiple
evaluations of error in parallel throughout the code
— in many places it is serial! Only error evaluations
in the “genetic” part are parallel.

e Training set of example is small, but training sets
get much larger. Training sets are static (fixed once
at the beginning).

e Error cumulative!
This suggests as a solution:

e Send training set to nodes (once). Send weights to
nodes each time error is needed. Split up application
of network to training set among the nodes, cumu-
late resulting error and reassemble into total error.

e “Master-Slave” paradigm. Often good for beowulf,
but beware accumulation of NEW serial time asso-
ciated with bottlenecked IPC’s...

Bottlenecks

Bottlenecks? What are those? Bottlenecks are by defi-
nition rate determining factors in code execution (serial
or parallel). We need to be aware of various bottlenecks:

CPU. The CPU itself is often the primary bottle-
neck. This is usually a Good Thing for a beowulf
application, since CPU is what you get more of in a
parallel system.

Input/Output (I/0). The disk, the keyboard, video
— all MUCH slower than processing itself (and prob-
ably serial, recall word processor).

Memory. CPU speed has grown faster than memory
speed can keep up. Which leads us to...

Cache. A cache is a small block of “superfast” mem-
ory attached directly to the CPU. All sorts of poten-
tial bottlenecks (and optimizations) here.

Kernel. Systems calls may be fast or slow or blocked
(SMP).

Network. In a beowulf, the network is the “inter-
processor communications channel” (IPC). This is
such an important and complex bottleneck that we
consider it in detail later.

These bottlenecks all interact, sometimes in surpris-
ing ways.

Master
Training Set

Slaves

Y

Network (weights)
A
:\Alter weights
= Error

1 2 3 4

;height=3in

Figure 2: Training cycle of parallelized feed-forward, backprop network

Tp vs IPC Time T;

The Second Step

Suppose that after profiling your task (like the discover
example) appears suitable for parallelization. Are you

done studying your code? Definitely not.

Look at the very rough schematic of our parallel neural

training cycle.

Every solid arrow crudely represents an interprocessor
communication cycle that takes time we represent 7;. In
a master-slave paradigm this time adds to the serial time
T,. In a more symmetric communcations model, part of
this time might itself be parallelized.

Parallelizing code changes the serial and parallel fractions!

This introduces new P variation into our earlier state-
ment of Amdahl’s Law. Call T;; the serial IPC time per
node and call 7;, the parallel IPC time (which still adds
to the serial time). Then following Amalsi and Gottleib,

we can crudely represent the modified “speed” as:

Work
(Ts+T; p)+P*T; +Tp/P

We see that T; ; # 0 will ALWAYS prevent us from prof-
itably reaching P — oco. Amalsi and Gottlieb write this
modified version of Amdahl’s Law for the special case

of a Master-Slave algorithm as:
1
S+(1=9)/P1P/r

where they’ve introduced r = T,/(P x T;,), the ratio of
compute time to serial communications time, per node.

Even THIS isn’t pessimistic enough. It assumes “per-
fect” parallelizability. In real code, the parallel tasks
may well need to be organized so that they complete
in certain orders and parts are available where they are
needed just when they are needed. Then there may be
random delays on the nodes due to other things they
are doing. All of this can further degrade performance.

Which leads us to...

Problem Granularity and Synchronicity
The Key Parameters of Beowulf Design

Let us define two general kinds of parallel subtasks:

e Coarse Grain subtasks are those where 7, > T; (r; >
1) for both serial and parallel IPC’s. Life is good —
computation dominates IPC’s.

e Fine Grain subtasks are those where T, ~ T; (r; ~
O(1)), or worse. Too bad, IPC’s dominate computa-
tion.

In addition, each of these subtasks may be synchronous
where they all have to proceed together or asynchronous
where they can proceed effectively independently. This
gives us at least four (really more) descriptors like
“coarse grained asynchronous code” or “fine grained,
tightly coupled synchronous code”.

The former is easy to program on nearly any beowulf
(or cluster!). There are many valuable tasks in this cat-
egory, which partly explains the popularity of beowulfs.

Coarse grained synchronous code can also run well on
most simple beowulf designs, although it is harder to
program and load balance efficiently. What about mod-
erate to fine grain code, though?

The Good News — and the Bad News

The good news is that one can often find great profit
using beowulfs to solve problems with moderate to fine
granularity. Of course, one has to work harder to ob-
tain such a benefit, both in programming and in the
design of the beowulf! Still, for certain problem scales
the cost /benefit advantage of a “high end” beowulf so-
lution may be an order of magnitude greater than that
of any competitive “big iron” supercomputer sold by a
commercial vendor.

There are, however, limits. Those limits are time de-
pendent (recall Moore’s Law) but roughly fixed on the
timescale of the beowulf design and purchase process.
They are basically determined by what one can cost-
effectively buy in M2-COTS components.

For any given proposed beowulf architecture, if 7) is any-
where close to T;,, chances are good that your parallel
efforts are doomed. When it takes longer to commu-
nicate what is required to take a parallel synchronous
step than it does to take the step, parallelization yields
a negative benefit unless calculation size is your goal.

Beowulf hardware and software engineering consists of
MAKING YOUR PROBLEM RELATIVELY COARSE
GRAINED ON THE (COTS) HARDWARE IN QUES-
TION. That is, keeping 7T; ; under control.

Estimating or Measuring Granularity

Estimating is difficult. Inputs include:

e “Bare” estimates of 7; and 7, (determined from
gprof)..

e Raw network bandwidth (10 Mbps, 100 Mbps, 1000
Mbps) (test with netperf, ttcp).

e Raw network latency (extremely variable) (test with
netperf).

e Contributions and tradeoffs galore. The protocol
stack, the paradigm, hardware bottlenecks, the ker-
nel, the interconnection structure, the attempted
number of nodes — all nonlinearly interact to pro-
duce 7; and the modified 7 and 7,.

Experts rarely analyze beyond a certain point. They
measure (or just know) the base numbers for various al-
ternatives and then prototype instead. Or they ask on
lists for experiences with similar problems. By far the
safest and most successful approach is to build (or bor-
row) a small 3-4 node switched 100BT cluster (see recipe
above) to prototype and profile your parallel code.

Remember that granularity is often something you can
control (improve) by, for example, working on a bigger
problem or buying a faster network. Whether or not
this is sensible is an economic question.

Repeat Until Done
Back to the Example

In a moment, we will think about specific ways to im-
prove granularity and come up with a generalized recipe
for a beowulf or cluster that ought to be able to Get the
Job Done. First, let’s complete the “study the problem”
section by showing the results of prototyping runs of the
“splitup the error evaluation” algorithm for the neu-
ral net example at various granularities, on a switched
100BT network of 400 MHz PII nodes.

\# First round of timing results

\# Single processor on 300 MHz master ganesh, no PVM
0.880user 21.220sys 99.9%, 0ib Oob Otx 0Oda Oto Oswp 0:22.11
0.280user 21.760sys 100.0%, Oib Oob Otx Oda Oto Oswp 0:22.04
\# Single processor on 400 MHz slave b4 using PVM

0.540user 11.280sys 31.3%, 0ib Oob Otx Oda Oto Oswp 0:37.65
0.700user 11.010sys 31.1%, 0ib Oob Otx 0Oda Oto Oswp 0:37.62
\# 2x400 MHz (b4, b9) with PVM

1.390user 14.530sys 38.3%, O0ib Oob Otx Oda Oto Oswp 0:41.48
\# 3x400 MHz (b4, b9, bil) with PVM

1.800user 18.050sys 46.5%, 0ib Oob Otx Oda Oto Oswp 0:42.60

This, of course, was terrible! The problem slowed down
when we run it in parallel! Terrible or not, this is typ-
ical for “small” prototyping runs and we should have
expected it.

Clean Up the Hacks

We made two changes in the code. First, we eliminated
some debugging cruft in the slave code that was increas-
ing the bottlenecked serial fraction. Second, originally
we multicast the network but sent each host its slice
boundaries serially. This, in retrospect, was stupid,
as the communication was latency bounded, not band-
width bounded (small messages nearly always are). In-
stead we multicast the entire slave slice assignments
along with the weights and then awaited the slave re-
sults.

The results now:

\# Single processor on 300 MHz master ganesh, no PVM. Guess not.
1.250user 20.630sys 99.9%, 0ib Oob Otx Oda Oto Oswp 0:21.90
\# Single processor on 400 MHz slave b4 using PVM. Better.
0.350user 10.460sys 32.9%, 0ib Oob Otx 0Oda Oto Oswp 0:32.79
2.380user 8.410sys 32.5%, 0ib Oob Otx Oda Oto Oswp 0:33.11
\# 2x400 MHz (b4, b9) with PVM

2.260user 11.140sys 37.7%, 0ib Oob Otx Oda Oto Oswp 0:35.53
\# 3x400 MHz (b4, b9, bll) with PVM

1.630user 11.160sys 40.3%, Oib Oob Otx Oda Oto Oswp 0:31.67
\# 4x400 MHz (b4, b9, bil, b12) with PVM

2.720user 14.720sys 42.9%, 0ib Oob Otx Oda Oto Oswp 0:40.61

Still no gain, but closer!

Crank Up the Granularity

Finally, we tried increasing the granularity a bit by using
a bigger dataset. We thus used a 16 bit divide by sevens
problem. Small as the increase was, it was big enough:

\# Single processor on 300 MHz master ganesh, no PVM. Takes longer.
9.270user 207.020sys 99.9%, 0ib Oob Otx Oda Oto Oswp 3:36.32

\# Single processor on 400 MHz slave b4 using PVM. Better.
4.380user 61.410sys 28.3),, 0ib Oob Otx Oda Oto Oswp 3:51.67

\# 2x400 MHz (b4, b9) with PVM. At last a distinct benefit!
3.080user 71.420sys 51.1%, 0ib Oob Otx 0Oda Oto Oswp 2:25.73

\# 3x400 MHz (b4, b9, bll) with PVM. Still better.

1.270user 70.570sys 58.9%, 0ib Oob Otx Oda Oto Oswp 2:01.89

\# 4x400 MHz (b4, b9, bll, bl2) with PVM. And peak.

6.000user 71.820sys 63.3%, 0ib Oob Otx Oda Oto Oswp 2:02.83

\# More processors would actually cost speedup at this granularity.

We’re Home! A nice speedup, even for this SMALL
(toy) problem. But why are we bothering?

Show me the Money...

We’re bothering because predictive modeling is valuable
and time is money. In an actual credit card cross-sell
model built for a large North Carolina bank (with 132
distinct inputs — optimization in 132 dimensions with
sparse data!), it took a full day and a half to run a single
full network training cycle on a single processor PII at
450 MHz. This can be too long to drive a real-time
direct phone campaign, and is annoyingly long from the
point of view of tying up compute resources as well.

A smaller version of the same credit card model was
also run with only 22 inputs. This model required over
two hours to run on a 400 MHz PII. We benchmarked
our new parallel neural network program on this smaller
model to obtain the following:

CCA with 22 inputs. There are well over 4 million quadrants and only
a few thousand members in the training set! A truly complex problem.
Time with just one serial host

442 .560user 7618.620sys 99.9%, 0ib Oob Otx Oda Oto Oswp 2:14:26.12

Time with two PVM hosts

112.840user 1999.970sys 37.4%, 0ib Oob Otx Oda Oto Oswp 1:34:06.02

Time with five PVM hosts

95.030user 2361.560sys 60.0%, Oib Oob Otx Oda Oto Oswp 1:08:11.86

Discoveri,, Conclusions

The scaling of our preliminary parallelization is still
worse than we might like, but the granularity is still
a factor of 5 to 10 smaller than the real models we wish
to apply it to. We expect to be able to obtain a maxi-
mum speedup of five or more with about eight Celeron
nodes in actual application (that cost little more alto-
gether than many of our single or dual CPU PII’s did
originally).

Finally, our profiling indicates that about 2/3 of the
remaining serial code (the regression routine, part of
the conjugate gradient cycle, and the genetic algorithm
itself) can be parallelized as well. Using this parallelized
network, we expect to be able to tackle bigger, more
complex networks and still get excellent results.

This, in turn, will make both our clients money and
(we hope) us money. Thar’s Gold in Them Thar Hills
(of the joint probability distribution being modeled, of
course)...

At Last...How to Design a Beowulf

By this point, the answer should be obvious, which is
why I saved it until now. AFTER one has finished
studying the problem, or problems, one plans to run
on the beowulf, the design parameters are real things
that apply to the actual bottlenecks you encountered
and parallel computation schema you expect to imple-
ment, not just things “rgb told me to use”. The follow-
ing is a VERY ROUGH listing of SOME of the possible
correspondances between problem and design solution:

Problem: Embarrassingly coarse grained problems; e.g.
Monte Carlo simulations.

Solution: Anything at all. Typically CPU bound, r; all
but infinite. I can get nearly perfect parallelization of
my Monte Carlo code by walking between consoles of
workstations, loading the program from a floppy, and
coming back later to collect the results on the same
floppy. Beowulf based on sneakernet, yeah! Of course,
a network makes things easier and faster to manage...

Advise to builders: Focus on the CPU/memory
cost /benefit peak and single system bottlenecks, not the
network. Get a decent network though — these days
switched 100 BT is sort of the lowest common denom-
inator because it is so cheap. You might want to run
your simulations in not-so-coarse grain mode one day.
Also be aware that ordinary workstation clusters run-
ning linux can work on a problem with 98% of the CPU
and still provide “instant” interactive response. A MA-
JOR REASON for businesses to consider linux clusters
is that their entire office can “be” a parallel supercom-
puter even while the desktop units it’s composed of en-
able folks to read mail and surf the web! No Microsoft
product can even think of competing here.

Problem: Coarse grained problems (but not embarrass-
ingly so) to medium grain problems; e.g. Monte Carlo
problems where a lattice is split up across nodes, neural
networks.

Solution: The “standard beowulf” recipe still holds IF
latency isn’t a problem. A switched 100 BT network
of price/performance-optimal nodes is a good choice.
Check carefully to ensure that cache size and memory
bus are suitable on the nodes. Also, take more care that
the network itself is decent — you do have to transmit a
fair amount of data between nodes, but there are clever
ways to synchronize all this. If bandwidth (not latency)
becomes a problem, consider channel bonding several
100 BT connections through a suitable switch.

Advise to builders: Think about cost/benefit very care-
fully. There is no point in getting a lot more network
than you need right now. It will be faster and cheaper
next year if that’s when you’ll actually (maybe) need it.
Get a cheap net and work up. Also do you really need
512 MB of node memory when your calculation only oc-
cupies 20 MB? Do you need a local disk? Is cache or
cost a major factor? Are you really CPU bound and do
you need very fast nodes (so Alpha’s make sense)?

You are in the “sweet spot” of beowulf design where
they are really immensely valuable but not too hard
or expensive to make. Start small, prototype, scale up
what works.

Problem: Medium to fine grained problems; e.g. molec-
ular dynamics with long range forces, hydrodynamics
calculations — examples abound. These are the prob-
lems that were once the sole domain of Big Iron “real”
parallel supercomputers. No more.

Solution: Make the problem coarse grained, of course,
by varying the design of the program and the beowulf
until this can be achieved. As Walter Ligon (a luminary
of the beowulf list) recently noted, a beowulf isn’t really
suited for fine grained code. Of course, no parallel com-
puting environment is well-suited for fine grained code
— the trick is to pick an environment where the code
you want to run has an acceptable granularity. Your
tools for achieving this are clever and wise program-
ming, faster networks and possibly nodes, and increas-
ing the problem size.

The “standard” solution for fine(r) grain code is to con-
vert to Myrinet (or possibly gigabit ethernet as its la-
tency problem is controlled). This can reduce your T; by
an order of magnitude if you are lucky, which will usu-
ally make a fine grained problem coarse enough to get
decent gain with the number of processors once again.
If your problem is (as is likely enough) ALSO memory
bound (big matrices, for example), possessed of a large
stride (ditto), and CPU bound, seriously consider the
AlphaLinux+Myrinet solution described by Greg Lin-
dahl (for example) or wait for the K7 or Merced. If

it is just IPC bound, it may be enough to get a faster
network without increasing CPU speed (and cost) sig-
nificantly — diverting a larger fraction of one’s resources
to the network is the standard feature of dealing with
finer problem granularities.

Advise to builders: Take the problem seriously. Get and
read Almasi and Gottlieb or other related references
on the theory and design of parallel code. There are
clever tricks that can significantly improve the ratio of
computation to communication and I’ve only scratched
the surface of the theory. Don’t be afraid to give up (for
now). There are problems that it just isn’t sensible to
parallelize. Also don’t be put off by a bad prototyping
experience. As one ramps up the scale (and twiddles
the design of the beowulf) one can often get dramatic
improvements.

Summary

e Remember Amdahl’s Law (and variants)
e Bottlenecks (serial and parallel)

e Make crude estimates of 7, T, and T; /.

e Give up if 7,,/T is too small to be worth it.

e Seek cheapest/simplest design for which 7,/7; and
AL predict decent speedup for a cost-effective value
of P.

e Beware nonlinearities in general, P-dependent serial
costs in 7; especially (common in master/slave) and
remain aware of synchronization issues.

Conclusion

Beowulfs and linux clusters in general are an amazingly
cost effective way to collect the cycles necessary to do
large scale computing, if your problem has an appropri-
ate granularity and parallelizable fraction. On the ad-
vanced end, they are rapidly approaching the efficiency
of systems that cost ten or more times as much from
commercial vendors. On the low end, they are bring-
ing supercomputing “home” to elementary schools and
even homes (this cluster lives in my “typical” home, for
example).

There are clearly huge opportunities for making money
by solving previously inaccessible problems using this
technology, especially in business modeling and data
mining. E pluribus penguin, and for Microsoft sic gloria
transit mundi.

References

First, the beowulf and linux-smp lists. For years. Check
the archives.

Second, “Highly Parallel Computing”, by Almasi and
Gottlieb.

Third, “How To Build a Beowulf”, by Sterling, Becker,
et. al.

