Maximizing Beowulf Performance

Robert GG. Brown
Duke University Physics Department
Box 90305, Durham, NC, 27708-0305
Email: rgb@phy.duke.edu
Web: http://www.phy.duke.edu/~rgb

This work was supported by the
U. S. Army Research Office

10/14/00

“Recipe” for a Beowulf

e Purchase N more or less identical COTS computers
for compute nodes.

e Connect them by a COTS fast private network, for
example switched fast ethernet.

e Serve them, isolate them and access them from auxil-

iary nodes (which may well be a single common “head
node”).

e Install Linux and a small set of more or less standard
parallel computation tools (PVM, MPI....).

Often works, sometimes doesn’t. The difference is in
the details.

Critical design decisions (of both a parallel program and
a beowulf to run it on) are informed by a deep and quan-
titative understanding of the fundamental rates of the
nodes and the network and how they dictate program
performance and scaling.

In previous presentation! the programming of parallel
applications was considered. In this presentation, we
will focus on the hardware.

thttp: //www.phy.duke.edu/brahma/beowulf advanced.ps

Beowulf "body"

Network Backbone

Figure 1: Typical “Recipe” Beowulf.

Amdahl’s Law

Let T(N) be the time required to complete the task on
N processors. The speedup S(N) is the ratio

T()
S(N)=——=. 1
V)= 70 (1)
T(1) = “serial time” T, + “parallel(izeable) time” T,,.
The best speedup one can expect is thus:
T(1) T, +1T, ©)
T(N) T,+T,/N

S(N) =

This is Amdahl’s Law (usually expressed as an inequal-
ity)

Amdahl’s Law immediately eliminates many, many
tasks from consideration for parallelization. However,
Amdahl’s law is still far too optimistic (overhead in-
curred due to parallelizing the code). We must general-
ize it.

Ts The original single-processor serial time.

Tis The (average) additional serial time spent doing
things like interprocessor communications (IPCs),
setup, and so forth in all parallelized tasks. This
time can depend on N in a variety of ways, but the
simplest assumption is that each system has to ex-
pend this much time, one after the other, so that the
total additional serial time is for example N * T},.

T, The original single-processor parallelizeable time.

Tip The (average) additional time spent by each pro-
cessor doing just the setup and work that it does in
parallel. This may well include idle time, which is of-
ten important enough to be accounted for separately.

Improved estimate of speedup on N nodes is:
Ts+ 1T,

S(N) = - F . 3

(V) Ts+ N «Ts+T,/N + T, ()

This expression will suffice to get at least a general feel

for the scaling properties of a task that might be paral-
lelized on a typical beowulf.

‘ 7,
7
7
7
/
7
Vs
V.
100 P -
YV
YV
Vi

o 7

5 /

< e

; /

7 /.
~

50 [~ m
U2

0
0 50 100

N (processors)

Figure 2: Tjs = 0 and T, = 10, 100, 1000, 10000, 100000 (in increasing
order).

It is useful to plot the dimensionless “real-world
speedup” (3) for various relative values of the times. Let
Ts = 10 (which sets our basic scale, if you like) and 7,
= 10, 100, 1000, 10000, 100000 (to show the systematic
effects of parallelizing more and more work compared
to 7). T;, =1 fixed (often very small).

Figure 1 shows just about pure Amdahl’s Law scaling
for various parallel fractions.

‘ Ve
Ve
Ve
Ve
s
Ve
7
100 - -
Ve
Ve
Ve

P //

o, .

= s

< 7

(D) s

c o

Ve

N2 s
N— /
~ %

— 50 [~ P -
@ /

Va
Va
7
; r ; |
0
0 50 100

N (processors)

Figure 3: Tjs = 10 and T}, = 10, 100, 1000, 10000, 100000 (in increasing
order).

Fairly typical curve for a “real” beowulf, with a rela-
tively small IPC overhead of T, = 1. T, > T, “good”.
Even small serial communications process on each node
causes the gain curves to peak well short of the satura-
tion predicted by Amdahl’s Law in the first figure.

T
v
v
v
v
v
v
Ve
v
L 7 |
100 ~
v
v
v

/ Ve

O, v

= v

v

e v

(D) Ve

v
2. P
Ve

0N v
N~— Ve
~~ 7

v
= 50 Y]
N~— Ve
wn v
v
v
v
s
v
v/
v
Yz
Y
0 |
0 50 100

N (processors)

Figure 4: T;s = 10 and 7, = 10, 100, 1000, 10000, 100000 (in increasing
order) with T;; contributing quadratically in N.

In figure 3 T;; = 1, but with quadratic N dependence
N? % T;, of the serial IPC time. (Can happen due to
communications topology, long range communications).
Can have nonlinear dependences of the additional serial
time on N with a profound effect on the per-processor
scaling of the speedup.

Lessons

e Bigger beowulf is not always better beowulf.
e Faster nodes are not always better nodes.

e Many nonlinearities and tradeoffs in both code design
and hardware design.

e Our “beowulf recipe” has a moderate capacity for

failure if naively applied.

The Best Plan

e Study your problem (with Real Parallel Program-
ming book in hand).

® Learn something about the interactions and depen-
dencies of performance on node hardware and net-
working design.

e Combine the two with benchmarking and prototyp-
ing.

® Recognize that beowulfery is all about cost-benefit
optimzization.

As a final note, accept that some problems may not yet
run on a beowulf architecture, at least not one that you
can afford.

Measuring Hardware Performance
Microbenchmarks and Sweeps

Ts, T, and T;; depend on:

e Type, speed, cache structure of processor.

e Type, speed, structure of memory.

e Compiler and libraries used.

e OS Kernel.

e Network (with its many dimensions and choices).

® ...and more.
Recognizing this, it is silly to try to characterize non-
linear, complex systems performance in terms of a sin-

gle number, but a beowulf FAQ is certainly “how many
GFLOPS will my N node beowulf have?”

Still some purpose to benchmarks, but the only reliable
macroscopic benchmark is your code.

Let us see how system design decisions can be better in-
formed by microscopic benchmarks (that measure per-
formance in only one fairly narrow task), ideally across
a sweep of key system parameters.

Microbenchmarking Tools
Lmbench, Netperf, CPU-Rate

We typically wish to measure rates, latencies and
bandwidths of particular system components with mi-
crobenchmarking tools.

Exploiting advantages of the nonlinearities (or avoid-
ing their disadvantages) can result in dramatic improve-
ments in performance: e.g. — ATLAS. It would be useful
to have a set of basic system rates automatically built
and maintained by a microbenchmark daemon and made
available in e.g. /proc/rates.

Larry McVoy and Carl Staelin’s “Imbench” toolset has
the promise of becoming the fundamental toolset to sup-
port systems engineering and cluster design. It is still
incomplete for this purpose (but improving rapidly).
Supplemented below a privately written “cpu-rate”
tool.

Applied to (among other systems) “lucifer”: a 466 MHz
dual Celeron system in my home beowulf. The cpu-
rate results are also included on this page (Imbench had
no microscopic CPU performance measuring tools when
this project was begun).

HOST lucifer

CPU Celeron (Mendocino) (x2)
CPU Family 1686

MHz 467

L1 Cache Size 16 KB (code)/16 KB (data)
L2 Cache Size 128 KB

Motherboard Abit BP6

Memory 128 MB of PC100 SDRAM
0OS Kernel Linux 2.2.14-5.0smp
Network (100BT) | Lite-On 82¢168 PNIC rev 32
Network Switch Netgear FS108

Table 1: Lucifer System Description

L1 Cache 6.00 + 0.000
L2 Cache 112.40 +7.618
Main mem | 187.10 £ 1.312

Table 22 Lmbench memory latencies in nanoseconds (smaller is bet-
ter).

Single precision | 289.10+ 1.394
Double precision | 299.09 + 2.295

Table 3: CPU-rates in BOGOMFLOPS - 10° simple arithmetic oper-
ations/second, in L1 cache (bigger is better). However, see graph!
This single “number” hides more than it reveals!

TCP | 11.21+0.018
UDP | (not available)

Table 4 Lmbench mnetwork communication bandwidths, in 10°
bytes/second (bigger is better). Again, see graph!

2p/0K | 1.91 +0.036
2p/16K | 14.12+ 0.724
2p/64K | 144.67 + 9.868
8p/0K | 3.30 + 1.224
8p/16K | 48.45+ 1.224
8p/64K | 201.23 + 2.486
16p/0K | 6.26 +0.159
16p/16K | 63.66 = 0.779
16p/64K | 211.38 + 5.567

Table 5: Lmbench latencies for context switches, in
microseconds (smaller is better).

null call 0.696 + 0.006
null I/0 1.110 £+ 0.005
stat 3.794 £ 0.032
open/close 5.547 £ 0.054
select 44.7+0.82
signal install | 1.971 £ 0.006
signal catch | 3.981 £ 0.002
fork proc 634.4 + 28.82
exec proc 2755.5+10.34
shell proc 10569.0 £+ 46.92

Table 6: Imbench latencies for selected proces-
sor/process activities. The values are all times in mi-
croseconds averaged over ten independent runs (with
error estimates provided by an unbiased standard de-
viation), so “smaller is better”.

NOTE to anyone who can read this in the brief
time I flash it onto the screen: The LMbench
“rules” require that all the LMbenchmark results
for a machine be published or presented at one
time or none at all. So look, I’ve published it. At
least to those with good eyes...;-)

pipe 10.62 £ 0.069
AF UNIX 33.74 + 3.398
UDP 55.13 & 3.080
TCP 127.71 + 5.428

TCP Connect | 265.44 4 7.372
RPC/UDP 140.06 £+ 7.220
RPC/TCP 185.30 & 7.936

Table 7: Lmbench local communication latencies, in
microseconds (smaller is better).

UDP

TCP

TCP Connect
RPC/UDP
RPC/TCP

164.91 + 2.787
187.92 + 9.357
312.19 £ 3.587
210.65 £ 3.021
257.44 £+ 4.828

Table 8: Lmbench network communication latencies,
in microseconds (smaller is better).

pipe

AF UNIX
TCP

UDP

beopy (libc)
beopy (hand)
mem read
mem write

290.17 +£11.881
64.44 + 3.133
31.70 £ 0.663
(not available)
79.51 +0.782
72.93 +0.617
302.79 + 3.054
97.92 £ 0.787

Table 9: Lmbench local communication bandwidths,
in 10 bytes/second (bigger is better).

Arggggh!
What were all those Damn Numbers?

Imbench clearly produces an extremely detailed picture
of microscopic systems performance. Actually, exam-
ined closely, many of these numbers are of obvious in-
terest to beowulf and system and kernel designers (yes,
Linus Torvalds Himself uses lmbench).

However, we must focus in order to conduct a sane dis-
cussion. Let’s look only at the:

e The network

e The memory

e The “cpu-rates”
Single numbers seem somehow too, what, zero dimen-
sional? Let’s at least study these things as functions in

one dimension by sweeping over an important paramet-
ric range and plotting the results so we can see them.

100 F——————mm —

Mbits/Second

40 —

20 —

O i 1 1 1 1 ‘ 1 1 1 1 ‘ 1 1 1 1 ‘]
0 500 1000 1500

Packet Size

Figure 5: TCP Stream measurements of bandwidth as a function of
packet size between lucifer and eve.

bw_tcp Results

e Imbench: 150-200 microseconds/one-byte TCP mes-
sage (on lucifer) or at most 5000-7000 packets can
be sent per second. For small packets the bandwidth
observed is dominated by latency.

e It also reveals some interesting and unexpected struc-
ture. Bad [card|switch|driver kernel|...]?

e Clearly my home beowulf needs work if it is to de-
liver top networking performance. It is not enough
to know that a card/switch combination “works with
linux”.

double precision floating point speed
400

300

Speed(Bogomflops)
)
o
)

100

0 10° 2x10° 3x10° 4x10°
Size(Bytes)

Figure 6: Double precision floating point operations per second as a
function of vector length (in bytes). All points average 100 inde-
pendent runs. The dashed lines indicate the locations of the L1
and L2 cache boundaries.

CPU Results: cpu-rate

ex[i] = (1.0 + x[i])*(1.5 - x[1]1)/x[i]; (=«[i] = 1.0).
e Still, MFLOPS are somewhat bogus — “bogomflops”.

e Still, it’s what I think “most people” mean when they
ask how fast a system can do floating point arith-
metic.

double precision speed o(standard deviation)

|
\

|
1
|

|

|

\

:

|
4 =
|

|

!

|

|

|

|
(-
|

|

|

|

\

0 I I I I ‘ I I I I ‘ I I
0 10° 2x10° 3x10° 4x10°%

Size(Bytes)

Figure 7: The standard deviation (error) associated with figure 6.

Cool Fact: L2 Susceptibility Peak

e L2 cache boundary (so I'm told) difficult to pick out
of a benchmark (L1, from previous figure, is easy).

e In many independent runs, averaged, a clear peak in
the variance across L2 region. L2 cache size power of
2, so easy to pick out.

e Measurable effect of (lack of) page coloring (which
might reduce the fluctuations in the L2 latency)?
Don’t know for sure.

double precision floating point speed

800 I I I

600 —

Speed(Bogomflops)
N
)
)
\

200 —

|
\
|
\
|
1 10 100 1000 10+ 105 108 107
Size(Bytes)

Figure 8: A beautiful figure comparing four “important” potential be-
owulf nodes

Comparative Results

e 933 MHz PIII (triangles) much faster in L1 and out
to first half of L2!

e 667 MHz 2.264 Alpha (hexagons) weak in L1 (no
better than a Celeron!) but ever so strong out of
main memory.

e 750 MHz Athlon (squares: older generation, not e.g.
Duron) probable cost-benefit winner.

e 466 MHz Celeron (circles) looks like it finally is dead
— or is it?

Clock/CPU

200 MHz PPro

300 MHz PII

300 MHz Celeron

466 MHz Celeron

900 MHz Athlon

667 MHz Alpha EV67
933 MHz PIII

Time (seconds)
97.35

68.46

66.06

46.48

28.7

23.79

21.11

Clock*Time
19470
20538
19818
21660
25830
15868
21111

Table 10: OnSpin3dd times corrected for CPU clock!

MHz*Time is better.)

(Smaller

Meditations upon the purpose of cache...

My favorite “benchmark” is the Monte Carlo program
I use in my physics research. I’ve run it on many years

of systems and CPUs back to Sparc 1 and 2’s.

e Intel P6 family scales with ONLY clock from PPro -
PIII, including the Celeron.

e Cache memory really works! For me, anyway.

e Exercise for the audience: Correct these results for
the cost of the systems to pick a cost-benefit winner!

Conclusions

With these microbenchmark tools and the results they
return, one can at least imagine being able to scientifi-
cally:

e Develop a parallel program to run efficiently on a
given beowulf.

e Tune an existing program on a given beowulf by
considering (for example) bottlenecks and program
scale.

e Develop a beowulf to run a given parallel program
efficiently.

e Tune an existing beowulf to yield improved perfor-
mance on a given program.

e Or (better yet) simultaneously develop, improve, and
tune a matched beowulf design and parallel program
together.

e Collecting comparative results can enable one to do
the all-important optimization of cost-benefit that is
really the fundamental motivation for using a beowulf
design in the first place.

e Finally, I have dreams of an automatically generated
set of system tuning parameters that can be read by
and used by userspace programs and libraries — e.g.
a portable, truly “automatically tuned” ATLAS?

double precision o(standard deviation)

50 I

Size(Bytes)

Figure 9: A beautiful figure comparing the L2 sigma for four “impor-
tant” potential beowulf nodes

Comparative Sigma Results
e PIIT (triangles) sharp peak across rapid drop off,
ends at 256 KB L2 boundary.

e Alpha (hexagons) hardly any peak at all (4 MB L2,
after all) but weak boundary at 4 MB..

e Athlon (squares) sharp peak at 512 KB L2 cache, but
then “matches” Alpha.

e Celeron (circles) sharp peak ends at 128 KB L2

Function | Rate (MB/s) | RMS time | Min time | Max time
Copy 136.9658 0.2340 0.2336 0.2348
Scale 154.7853 0.2070 0.2067 0.2086
Add 189.6199 0.2533 0.2531 0.2534
Triad 174.0612 0.2760 0.2758 0.2761

Table 11: Stream Results for lucifer.

Reread bandwidth for Linux 1686@468

4K —
2K—
1K—
512 —
256 —

128 —

ODNNIZ Se TeQ==0Q3Q0 0

64—

32—

16 [[| \ | [[| \ |
256 1K 4K 16K 64K 256K m 4aM 16M 64M 256M

Memory size

i
ile open2close reread

E le reread

E'Ie mmap reread
1

M

i
ile mmap open2close reread

ibc bcopy unaligned
emory read bandwidth

Figure 10: LMbench memory read results plotted.

Memory Stuff

Bibliography

[beowulf] See http://wuw.beowulf.org and links there-
upon for a full description of the beowulf project,
access to the beowulf mailing list, and more.

[Amdahl] Amdahl’s law was first formulated by Gene
Amdahl (working for IBM at the time) in 1967. It
(and many other details of interest to a beowulf
designer or parallel program designer) is discussed
in detail in the following three works, among many
others.

[Amalsi] G. S. Amalsi and A. Gottlieb, Highly Paral-
lel Computing (2nd edition), Benjamin/Cummings,
1994.

[Foster] I. Foster, Designing and Building Parallel Pro-
grams, Addison-Wesley, 1995. Also see the online
version of the book at Argonne National Labs,
http://www-unix.mcs.anl.gov/dbpp/.

[Kumar| V. Kumar, A. Grama, A. Gupta, and
G. Karypis, Introduction to Parallel Comput-
ing, Design and Analysis of Algorithms, Ben-
jamin/Cummings, 1994.

23

[lmbench] A microbenchmark toolset developed by
Larry McVoy and Carl Staelin of Bitmover, In-
corporated. GPL plus special restrictions. See
http://www.bitmover.com/lmbench/.

[netperf]| A network performance microbenchmark suite
developed under the auspices of the Hewlett-
Packard company. It was written by a number of
people, starting with Rick Jones. Non-GPL open
source license. See http://www.netperf.org/.

[cpu-rate] A crude tool for measuring “bogomflops”
written by Robert G. Brown and adapted for this
paper. GPL. See http://www.phy.duke.edu/brahma.

[Eden] The “Eden” beowulf consists of lucifer, abel,
adam, eve, and sometimes caine and lilith. It lives
in my home office and is used for prototyping and
development.

[profiling] Robert G. Brown, The Beowulf Design:
COTS Parallel Clusters and Supercomputers, tu-
torial presented for the Extreme Linux Track at
the 1999 Linux Expo in Raleigh, NC. Linked to
http://www.phy.duke.edu/brahma, along with several
other introductory papers and tools of interest to
beowulf developers.

[ATLAS] Automatically Tuned Linear Algebra Systems,
developed by Jack Dongarra, et. al. at the In-
novative Computing Laboratory of the University
of Tennessee. Non-GPL open source license. See
http://www.netlib.org/atlas.

