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Model

Classical Heisenberg ferromagnet (CHF) (the O(3)
model on a 3d simple cubic lattice with periodic bound-
ary conditions) in zero external field:

H=—50" JanSa - Sp + Hpan({Si}, T)
Goal

To compute and “measure” (with Monte Carlo) the crit-
ical exponents of the model, in particular the critical
exponent vy of the Helicity Modulus Y(¢).

Methods

e Importance Sampling Monte Carlo (heat bath)
“with a twist” to get E(L, T, 6s) at high precision
for L € [8,64...].

e Finite size scaling used to get critical exponents at
T. = 1.44295 (accepted value, 4+0.00005).

e Helicity studied by freezing and twisting the (previ-
ously periodic) boundary conditions in the (X,Y,1)
plane.



Review of Theory

e Landau potential for a continuous ferromagnetic
model is:

1 1
V(S) = S70SaSa + 10SaSaS55s, (1)

where S, are the cartesian components of the coarse
grain block spins.

e Define the block spin S(7) in terms of its mean value
(the order parameter) plus a fluctuation:

S(7) = 1 + A (2)

e Further decompose the fluctuation into a longitudi-
nal and transverse piece:

S(7) = (m + Amy)i + A, (3)

® Derive the following general form for the free en-
ergy in terms of the transverse coarse grained spin
fluctuation gradient Vm  (7):

1
zmAmy:mgmmmapmn+§/ﬂfbmvmgﬂﬁ. (4)

(with phenomenological parameter b, the “spin wave
stiffness”.



e One can relate a state of uniform twist angle to the
gradient of the transverse spin fluctuation via V¢ =
|V, |/m. Substituting and differentiating to find the
free energy density, one obtains the following two

relations:
dFr 1 5
I §T<T)(V¢) (5)
with
T(T) = bm*(T). (6)

e In Landau theory, b approximately constant so T ~
m?(T) as T — T, from below. In detailed treatment
one gets corrections:

T(t) ~ (=)™ (7)

e Finally, to use finite-size scaling theory (FSST) to
extract the critical exponent, we must substitute
—t — L7V, or

T(L) ~ (L)t (8)

In the last expression, T(L) ~ L~2%/V. 23/v term from m?
clearly dominant (7 is very small, ~ 0.01, for this model,
while 5 ~ 1/3 and v =~ 2/3). The helicity modulus should

vanish sharply near 7, according to Landau theory.



But...

We cannot directly measure the free energy density
dF/dV. We can directly measure the enthalpy density
E. Following an identical argument:

AB(©) ~ [ Tx(T)(V4) 9)

where AF(0O) is the change in internal energy caused by
twisting the boundary conditions through the angle 0 <
7/2 with either helicity. From this obvious substitutions
yield:

Tp(T)=—=AFE(O) (10)
With a page or two of algebra we can show that:
Tr(t) ~ tE ~ 70 (11)
with the critical exponent

vp=—¢=1-2v—« (12)

This is what we wish to measure, in part to nvert this
equation and deduce the values of v and «a.



Note that as before, if we make the finite size scaling
hypothesis we will actually measure:

T(L) ~ (D)7 ~ (L) (13)
or :
—’UE/I/IQ— Va (14)
The enthalpy helicity should thus diverge at T..
It is easy to show that:
1 —
d—2—vp/v = d— VO‘ (15)
1
l—vg/v = » (16)
1
V= T (17)

14

where the second step uses “hyperscaling” (widely be-
lieved but by no means proven for this model) to elim-
inate a for d = 3. With this we can compute o and v
given —vp/v and possibly check hyperscaling.



Measuring Y(7, L) with Monte Carlo

e Calculations were performed on several generations
of “brahma” (our beowulf compute cluster, also
ganesh and rama).

e Heat bath only (cluster method a bit difficult if
boundary layers are “frozen”).

e Equilibrate L x L x L lattice with periodic boundary
conditions.

e “Freeze” (x,y,1) layer of spins.

e Rotate (x,y,1) spins through angle 6 and store them
in (x,y,L+1) layer (replacing PBC’s in z-direction
with frozen twisted PBC’s).

e Re-equilibrate only the (x,y,2) to (x,y,L) spins with
the heat bath (with PBC’s in the x and y directions).

e Sample

e Repeat (easiest to restore PBC’s, re-equilibrate, re-
peat).

e Sweep angles 0 € [0,7/2], L € [8,48] at T..

o Fit 5 = 1T(L)(V¢)? where V¢ =6/L.

o Fit T (L) = L*/

e Obtain v, a from hyperscaling.
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Figure 1: E per spin as function of interlayer twist angle A¢ for L = 64 (in progress). This
is fit to obtain the helicity.

Results
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Figure 2: Y(T) for L = 8 and L = 16, evaluated at low precision to get trend only.
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Figure 3: The helicities for various L at 7.. The nonlinear least squares fit of this yields
/v = —v./v.

Best result to date: z/v = 0.353 £ 0.02



Conclusions

e The only direct measurement of this quantity to date.

1.353
compared to most other Monte Carlo results (which

tend to yield v =~ 0.705 4+ 0.01) but is not inconsistent
with the most recent renormalization predictions.

oy = oy = 2 = 0.739 & 0.01. This is quite large

e The hyperscaling relation itself then yields a =
—0.222. This is a weakly singular quantity and is
very difficult to measure. This is a major motivation of
this work.

e For this particular talk, we emphasize that there
are easily more than 30 “GFLOP-years” of effort
in this result (whatever you consider a GFLOP to
be). (32x400x3 = 38400) + (16x1300x2 = 41600)
+ (32x1600x1 = 51200) = 131.200 GHz-years, su-
percomputing indeed. Impossible without the be-
owulf/cluster model.



