
Zen and the Art of Beowulf Clusters

Robert G. Brown

Duke University Physics Department

rgb@phy.duke.edu

November 8, 2006

Principles of Zen

• Zen is a blend of Taoism and Buddhism with an em-

phasis on meditation (sitting zazen).

• The purpose of pursuing a zen path is to seek En-

lightenment.

• Enlightenment comes from quieting the mind to live

in the now.

• With a quiet mind focussed on the present, one can

obtain great insight.

Principles of Beowulf Clusters

• A Beowulf Cluster is a blend of Commodity Off The

Shelf (COTS) computer hardware and a high quality

network.

• The purpose of building a Beowulf Cluster is to per-

form parallel computations.

• Parallel computations can complete work in much

less time than serial computations.

• With the rapid results obtained from parallel com-

putations, the quiet mind can obtain great insight.

(an obvious connection, right...? :-)

How to build a Parallel Cluster

• Get a pile of PC’s.

• Install Linux

– Fedora Core via PXE from a server (VERY effi-

cient, see fedora.redhat.com).

– Warewulf (www.warewulf.org).

– Debian (www.debian.org).

– Scyld (www.scyld.com)

– It is possible and sometimes advantageous to run

linux diskless in a small cluster.

• Install parallel computation support as needed – net-

work, PVM, MPI, libraries.

• Program and run parallel programs.

There are a few details, of course. To design an optimal

cluster for any given task one has to understand parallel

computations and how to match them to cluster design.

sT

sT

sT

sT

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

1 2 3 4 5 6 7 8 9 10 11 ...

1

2

3

4

5

6

7

8

9

10

11

...

Overhead

C

B

A

*

Figure 1: Parallelization of a Task

So what ARE Parallel Computations?

• “Tasks” typically have both serial and parallel com-

ponents.

• Parallel subtask completion time under ideal circum-

stances scales like 1/N where N is the number of par-

allel tasks undertaken (on e.g. different processors)

at the same time. “Many hands make light work”.

• Parallel subtasks often (but not always) require in-

terprocessors communications (IPCs) between the

subtasks. This communication time adds to to the

total and can take more or less time than the work

itself.

• All this is made formal in Amdahl’s Law and quanti-

tatively corrected in books on parallel computation.

Amdahl’s Law
The speedup S experienced running a task on P proces-

sors is less than or equal to:

S ≤
(Ts + Tp)

(Ts + (Tp/P))
(1)

where Ts is the time program spends doing “serial work”

and Tp is the time spend doing “parallelizable work”

split up on P processors.

Limiting result, not horribly useful quantitatively ex-

cept to tell you when there is no point in parallelizing

something. Can do much better.

For example, we can account for the time spent com-

municating between processors, the time spent setting

things up, and changes in the times to perform various

tasks with different algorithms. Defining things like:

Ts The original single-processor serial time.

Tis The (average) additional serial time spent doing

things like IPC’s, setup, and so forth, per processor,

in all parallelized tasks.

Tp The original single-processor parallizable time.

Tip The (average) additional time spent by each pro-

cessor doing just the setup and work that it does

in parallel. This may well include idle time, which

is often important enough to be accounted for sepa-

rately.

we can obtain improved estimates of the speedup:

Ttot(P) = Ts + P ∗ Tis + Tp/P + Tip. (2)

or

S ≈
Ts + Tp

Ts + P ∗ Tis + Tp/P + Tip
. (3)

All You Need to Know
About Code Granularity

• If tcomputation ≫ tcommunication, (lots of work, little commu-

nication) coarse grained. P completely independent

jobs are “embarrassingly parallel” (EP). (e.g. Monte

Carlo, data field explorations.)

• If tcomputation > tcommunication (but not tremendously so)

medium grained. (e.g. problems on a lattice (where

the lattice is partitioned among nodes with short

range communications), lattice gauge theory.)

• If tcomputation = tcommunication or less fine grained. (e.g. –

Cosmology, molecular dynamics with long range in-

teractions, hydrodynamics, computational fluid dy-

namics.)

Granularity typically is somewhat controllable. Net-

work speed and latency, scaling of computation to com-

munication as a function of problem size, CPU/memory

speed, program organization all control variables.

Fine grained tasks are “bad” for scaling to many nodes

N . Coarse grained tasks are “good”.

Beware nonlinearities! CPU/cache/memory/disk bot-

tlenecks can create “superlinear speedup” and violate

Amdahl’s Law!

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Huh? Whaddideesay?
In all the figures below, Ts = 10 (which sets our basic

scale, if you like) and Tp = 10, 100, 1000, 10000, 100000. In

the first three figures we just vary Tis = 0, 1, 10 for Tip = 1

(fixed). Finally, the last figure is Tis = 1, but this time

with a quadratic dependence P 2 ∗ Tis.

Designs: NOW/COW/Beowulf
Goal is optimizing overall performance per dollar. The

following are appropriate for increasing fineness of pro-

gram granularity:

• GRID (Network of clusters, supercluster). SGE or

shell-level tools. EP tasks, primarily.

• NOW (Network of Workstations) + e.g. Mosix, mas-

ter/slave PVM, MPI, shell-level tools or perl scripts

permit double usage of all CPUs.

• COW (Cluster of Workstations) same as NOW but

protects the network a bit and isolates the compute

resource from interactive humans and GUIs. Most

common Duke design?

• Beowulf (dedicated, single headed COW) +

Scyld/clustermatic and PVM/MPI. A totally iso-

lated COW with (usually) a private network, custom

OS, and a single head.

These are suitable for increasingly fine granularity, at

increasing cost and decreasing general purpose utility.

Schematics for the general designs follow, first a “true

beowulf” and then a workstation cluster.

A True Beowulf

Node

Node

Node

Node

Node

Node Node

Node

Node

Node

Node Node

Node

Node

Node

Node

Node

Node Node Node

NodeNodeNode

Node

Server Node Switch

Head Node

Network Backbone

Beowulf "body"

Beowulf "head"

A Workstation Cluster

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Workstation

Server Workstation (head)Server

Workstation (head)

Switch
Network Backbone

"Cluster" Supercomputer

Node Design and Cost
The following are some possible node configurations and

prices:

• Dimension C521 AMD Athlon 64 X2 Dual-Core

5000+ (2GB) with 10/100 ethernet and 3 year onsite

service = $900

• PowerEdge SC1435 Dual Dual Core AMD Opteron

2210; 1.8GHz,2X1MB Cache,1Ghz HyperTransport,

4 GB, (1U form factor), dual Gigabit ethernet, 3

year Standard Support = $2900

• High end network interconnects range in price from

$800 to $1500 per PC, plus switch hardware (where

gigabit ethernet is not a high end interconnect and

for small clusters is actually cheap).

• In addition, a cluster is likely to need: Shelving or a

rack, network switch, cabling, a KVM arrangement,

a system configured as a “server”. A pro-grade clus-

ter is likely to cost around $1000/CPU (and up).

The cheapest barebones clusters for learning and

experimentation can cost surprisingly little. On

www.clustermonkey.net, for example, you can find an

article on a “value cluster” – an 8 node cluster that cost

$2500 total in 2005. This is easily within the reach of

individuals, clubs, or small schools.

Turnkey Clusters
Turnkey clusters can make sense if you are building a

very specialized cluster and need help designing and in-

stalling it. A turnkey integrator will typically resell the

hardware components to you pretty much at standard

retail marked up to cover their “integration fee” for

designing the cluster, installing the clusterware on it,

and so forth. This ends up being anywhere from a 20%

markup of OTC prices on up.

Cluster Networks

• Switched 100BT (old standard, nearly obsolete).

• Switched 1000BT (emerging standard). Good band-

width. Relatively poor latency. Cheap.

• Infiniband. Excellent bandwidth and latency. Ex-

pensive

• 10 GB Ethernet. Excellent bandwidth and latency.

Expensive.

• Dolphinics. Excellent bandwidth and latency. Ex-

pensive.

• Etc. (You get the idea – bandwidth and latency

beyond ethernet are expensive).

Parallel Program Support

• MPI (Message Passing Interface). API + library for

writing portable parallel programs with a message

passing interface for IPC’s. Several versions avail-

able, LAM in Red Hat and on repository.

• PVM (Parallel Virtual Machine). API + library for

writing portable parallel programs that run across

networks. My personal favorite API (written as

open source effort from beginning, not by a con-

sortium of massively parallel supercomputer vendors

under governmental threat).

• Raw Sockets (yeah!)

• Mosix

• Remote Shells (e.g. rsh, ssh)

• Miscellaneous: Monitors, batch/queue systems,

GUI’s, scripts, bproc, scyld, cod, more...

Simple Example: xep (PVM Mandelbrot Set)

• Mandelbrot set is iterated map that either “escapes”

or doesn’t.

• Colors mapped to steps until escape makes pretty

pictures.

• Self-referential, fractal, infinitely fine structure as we

rubber-band down into set.

• Easily parallelizeable (coarse grained parallel).

On a good day, this will work as a demo...

Physical Infrastructure Requirements

• Space: Shelfmount > 1 ft2/node, Rackmount ≈ 0.5

ft2/node, blades “different”. 1-2 CPUs/node, maybe

UPS. Heavy! Strong floors!

• Power: Guestimate 100W/CPU, better to mea-

sure. Special wiring requirements for switching

power supplies! Overwire!

• A/C: All power IN turns to heat and must come

OUT. 1 Ton of A/C removes ∼ 3500 W. Again, need

surplus to keep room COOL, plus specific deliv-

ery/circulation/return design. Thermal kill?

• Network: Cable trays, patch panels, backbone

ports on copper or fiber. BOTH local net-

work(s) for cluster AND connection to departmental

LAN/WAN.

• Etc: Decent lighting. Work bench and tools! Chairs

and carts. Monitor, keyboard. KVM switch? Jack-

ets and ear protectors or noise-reduction headphones

plus music. Phone. X10/temp/humidity/intrusion

monitoring?

Physical Infrastructure Costs

• Anywhere from $400 to $5000 per node straight com-

pute hardware cost. Typically $1000/CPU “reason-

able” memory non-bleeding edge clock config.

• Anywhere from $30 to $1000 (or more?) per node

for network. In some designs network will cost more

than CPU!

• Amortized renovation costs. For example, $100,000

for space to hold 100 nodes, over 10 years, is ballpark

$150/node/year (including cost of money).

• Recurring costs. $1 W/year for power/cooling,

maybe rent or physical space maintenance. 100

nodes at 100 W each cost at least $10,000 year to

run 24x7 for the year!

Note well that recurring costs for operating a node can

compete with the cost of the node! This favors getting

relatively expensive nodes and dumping nodes quickly

when obsolete!

Administrative Infrastructure

• Installation: Min: 15 min TOTAL/node (unpack-

ing it and racking it plus e.g. kickstart. Max: Any

nightmarish thing you can imagine (prototype)!

• Operational maintenance: Min: 1 hour per

node per year (OS upgrades, fixing “rare” hardware

failures, new software). Presumes automation of

nearly everything (yum) and preexisting LAN (with

accounts, fileservers, etc.). Max: Any nightmarish

thing you can imagine.

• LARGE Monitoring: Min: 20-30 minutes/day per

cluster Presumes syslog-ng, monitoring tools like

ganglia or xmlsysd/wulfstat, alert users. Max: A

couple hours a day.

• LARGE User support: Min: 0 minutes a day if you

have smart users and a sucker rod handy to school

the lazy. Max: Arrrrrggghh! (*whack!* *whack!*)

In summary, Min: ∼ 1 hour a day, on average, for a

“good” 100+ node cluster; Max: full time job and then

some for a “bad” cluster (depending on luck, hardware

reliability, your general admin skills, your cluster admin

skills, user support requirements, and the availability of

cluster expertise in a distributed support environment).

Conclusions
Total Cost of Ownership (TCO) can range from:

• $1000 (node) + $300 (power and A/C) + $100 (3

hours sysadmin time) = $1400 per node for a three

year expected lifetime; to

• $3000 (node) + $600 (power and A/C) + $450

(amortized share of expensive renovation) + $800

(24 hours sysadmin time) $150 (amortized share of

four post smoked glass rack, UPS, = $5000 for the

same three year lifetime.

Wide range, provokes TCO fistfights in bars.

Still, beowulfish clusters often yield staggering produc-

tivity efficiency. Generally 3-10x more cost/benefit than

comparable power “big iron”. SO, literally everybody

is buying or building them.

