
One Sheet Vector Review

Vectors are numerical objects characterized by a mag-
nitude and a direction. Vectors can be moved around as
long as their length (magnitude) and direction/orientation
do not change.

Unit Vectors

Unit vectors are vectors of length 1 in the fundamental
perpendicular directions of your coordinate system. There
are two common conventions for representing the unit vec-
tors in the x, y, and z directions:

x̂, ŷ, ẑ or î, ĵ, k̂

We can stretch these unit vectors to any length we like by
multiplying by scalar magnitudes, e.g .

Axx̂ or By ĵ or Czẑ

2D Vector Representations

xA x

A y

A

y

θ
A cos(   )θ

A sin(   )θ

(Quadrants)

Q4

Q2 Q1

Q3

Cartesian: ~A = Axx̂+Ayŷ or ~A = (Ax, Ay)

Polar: ~A = (A, θ)
where:

Ax = A cos(θ) Ay = A sin(θ)

A =
√

A2
x +A2

y θ = tan−1(Ay/Ax)

θ is measured positive as the angle between the positive
x-axis and the vector in the counterclockwise direction.

Adding or Subtracting Vectors

Given vectors ~A and ~B with components (Ax, Ay) and
(Bx, By) respectively:

~C = ~A+ ~B = (Ax +Bx)x̂+ (Ay +By)ŷ

similarly:

~D = ~A− ~B = (Ax −Bx)x̂+ (Ay −By)ŷ

Triangles for Vector Addition

Vectors can graphically be visualized or added by putting
the head of one vector at the tail of the other and drawing
the resultant as the triangle connecting the first tail to the
second head:

A

B

B

AC = A + B D = A − B(a) (b)

Useful Trig/Triangles You Should Know

sin(30◦) = cos(60◦) = 1/2 cos(30◦) = sin(60◦) =
√
3/2

sin(45◦) = cos(45◦) =
√
2/2

(30◦= π/6, 45◦= π/4)

sin(37◦) ≈ 0.6 cos(37◦) ≈ 0.8

(3-4-5 triangle angles are 37◦and 53◦)

Kinds of Products of (3D) Vectors

Inner or Scalar or Dot Product:

~A · ~B = AxBx +AyBy +AzBz = AB cos(θ)

The (scalar) length of a vector is defined to be:

A = +
√
A2 = +

√

~A · ~A = +
√

A2
x +A2

y +A2
z

Cross or Vector Product:

| ~A× ~B| = AB sin(θ)

and direction from right hand rule, align fingers of right
hand with ~A, rotate through the smaller angle in the plane
into ~B, thumb indicates the direction of the cross product,
or use the Cartesian representation:

~C = ~A× ~B = (AyBz −AzBy) x̂ +
(AzBx −AxBz) ŷ +

(AxBy −AyBx) ẑ

To easily remember this last form, note that there are
three cyclic permutations of the coordinates in alphabet-
ical order: x y z, y z x, z x y. Observe that the positive
term in each parentheses and the unit vector contain x
y z in cyclic order : for example AxByẑ. The negative
terms in each parentheses simply have the first two indices
swapped, as in −AyBxẑ.



One Sheet Calculus Review

Derivatives

dun

du
= n un−1

deu

du
= eu

d sin(u)

du
= cos(u)

d cos(u)

du
= − sin(u)

d ln(u)

du
=

1

u

Indefinite Integrals

for (n 6= −1)

∫

un du =
un+1

n+ 1

for (n = −1)

∫

u−1 du =

∫

du

u
= ln |u|

∫

eu du = eu

∫

cos(u) du = sin(u)

∫

sin(u) du = − cos(u)

In all cases a constant of integration must be added if the
integral is not used to evaluate a definite integral (one
with explicit limits).

Definite Integral Rule

Given:
dF (x)

dx
= f(x)

or
dF = f(x) dx

then

F (x)|ba = F (b)− F (a) =

∫ b

a
dF =

∫ b

a
f(x) dx

Integration by Parts

It’s differentiation of a product, both ways:

d(uv) = v du+ u dv

Move one term to the other side, rearrange, and integrate
both sides to get:

∫

u dv =

∫

d(uv) −
∫

v du = uv −
∫

v du

The Chain Rule

df

dx
=

df

du

du

dx

u-Substitution (Examples)

An application of the chain rule. We wish to do
∫

e−αt dt.
Let u = −αt. Thus du = −α dt. We convert the integral
into a u-form by muliplying and dividing by du

dt = −α to
turn dt into du:

∫

e−αt dt =

(

1

−α

)
∫

e−αt(−α dt) = − 1

α
e−αt

Similarly:

∫

cos(ωt) dt =
1

ω
sin(ωt)

∫

(3x+ 2)2 dx =

(

1

3

)

(3x+ 2)3

3
=

1

9
(3x+ 2)3

∫

dv

v −mg/b
= ln |v −mg/b|

Taylor Series

Works best for “small” x:

f(u) = f(a+ x) = f(a) +
df

dx

∣

∣

∣

∣

a
x+

d2f

dx2

∣

∣

∣

∣

∣

a

x2

2!
+ ...

Binomial Expansion

A special case of the Taylor Series for f(u) = un =
(1 + x)n, expanded for u = 1 + x around 1. Requires
|x| < 1 to unconditionally converge:

(1 + x)n = 1 +
nx

1!
+

n(n− 1)x2

2!
+ ...



One Sheet Algebra Review

Solving Simple Equations for an Unknown

For single linear equations, perform operations to both
sides of an equation to isolate the unknown. Find x:

mx+ b = c → mx = c− b → x = (c− b)/m

For simple quadratic equations, you can sometimes factor
it into two linear equations and solve each linear equation.
Find the two x roots:

ax2 + bx = 0 → (ax+ b)x = 0

Each factor can equal zero independently, so:

x = 0,−b/a

are the two roots. Or find the two t roots:

3t2 + 2t− 1 = 0 → (3t− 1)(t+ 1) = 0

Each factor can equal zero independently, so:

t = 1/3,−1

These tricks only work by inspection for simple quadrat-
ics. The quadratic formula, derived from completing
the square, will always work. Given:

ax2 + bx+ c = 0

the two roots are given by:

x =
−b±

√
b2 − 4ac

2a

For the second example above, a = 3, b = 2, c = −1 and:

t± =
−2±

√
4 + 12

6
= (1/3)(+), (−1)(−)

Best Practice for Radicals

Do not leave radicals in the denominator of a fraction.
Rationalize the expression by multiplying by a clever
form of 1:

1√
2
=

1√
2

√
2√
2
=

√
2

2

Here are two simple examples of multiply or factoring,
moving things into or out of radicals:

√
12 =

√
4 · 3 =

√
4 ·

√
3 = 2

√
3

1√
2
· 1√

8
=

1√
16

=
1

4

Powers and Exponentials

Here are some very useful things to remember about pow-
ers. Suppose a, b,m, and n are ordinary nonzero numbers.
Then:

an · am = am+n an · bn = (ab)n

a or b can be zero most of the time, but beware negative
exponents and (for example) 0−1 = 1/0 which is undefined
or maybe “infinity”! Another useful rule:

(an)m = an·m

There are three “bases” worth knowing: 2 (binary), e (ex-
ponential), and 10 (fingers).

Let’s consider the exponential function ex and its inverse,
the natural log ln(x). Two important true facts worth
remembering:

e = 2.718281828... ≈ 2.7 and ln(2) = 0.681347... ≈ 0.7

Then:
f = ex → ln(f) = ln(ex) = x

g = ey → ln(g) = ln(ex) = y

fg = exey = ex+y

or we get the very important result concerning logs:

ln |fg| = ln(ex+y) = x+ y = ln(f) + ln(g)

Also:

1/g = g−1 = (ey)−1 = e−y → ln(g−1) = −y = − ln(g)

ln |f/g| = ln(f)− ln(g)

A similar argument can be used to show that:

ln(yn) = n ln(y)

in general. This is an important property of logarithms
(in any base) complementary to the exponential product
rules above.

Log functions, natural or otherwise, map multiplication
into addition! Here’s how we might put this to use to
analyze exponential decay. Find the half life t1/2 when

A(t) = A0e
−t/7:

A0/2 = A0e
−t/7 → 1/2 = e−t/7

ln(1/2) = ln(e−t/7) = −t/7

t1/2 = −7 ln(1/2) = 7 ln(2) ≈ 4.9

Here’s another useful example in base 10:

log10(2) ≈ 0.3 so, e.g. log10(200) = log10(2 · 102)
= log10(2) + log10(10

2) = 0.3 + 2 = 2.3



One Sheet Simultaneous Equation Review

Things to Consider

• You must have as many independent equations
as you have unknowns. If you have three unknowns
and only two equations, keep looking, think about
constraint equations or missing physics.

• Your “answer” for one unknown may not con-
tain other unknowns. If it does, the system is not
solved! This is a common mistake! Find your
answer in terms of the given/known quantities
only!

• Check the units of your answers! Let me put that
more clearly as it applies to ALL of the algebraic
work you do on the basis of this guide:

CHECK THE UNITS
OF YOUR ANSWERS!

Simple Substitution or Elimination)

Suppose you know (as the result of applying some physical
reasoning) that at some given time tf :

xf =
1

2
at2f + v0tf + x0

and
vf = atf + v0

where x0, xf , a and v0 all are given, but vf and tf are not
known. We would like to find vf . To find it, we have
to eliminate the unknown tf between the two equations.
We could rearrange the first equation (which has only one
unknown in it) and solve for tf in terms of the givens,
and substitute it into the second, but that involves the
quadratic formula. It is simpler to solve the second equa-
tion for tf in terms of vf and givens, and substitute this
into the first equation:

tf = (vf − v0)/a

(xf − x0) =
1

2
a(vf − v0)

2/a2 + v0(vf − v0)/a

v2f − v20 = 2a(xf − x0)

(where you should fill in the missing steps of algebra).
Other times it is even simpler:

a = (m1 −m2 sin(θ))g/(m1 +m2) and

α = a/R so α = (m1 −m2 sin(θ))g/(m1 +m2)R

Gauss Elimination and Back Substitution

This is the meat and potatoes approach for linear prob-
lems. It is the way computers often solve the problem
(with a few bells and whistles). It involves lining equa-
tions up so that their variables are right above one an-
other. Then it uses the following reasoning: Multiplying
a true equation by a constant produces a true equation.
Add two true equations produces a (possibly new) true
equation. So we multiply equations by scale factors so
that adding or subtracting pairs causes terms with the
unknowns to disappear, one at a time, until only one is
left and the equation can be solved. One then back sub-
stitutes the result into the preceding step (where you
had two unknowns, now only one) and solve for the next

unknown, repeating until all unknowns are known!

I’ll give a single example, corresponding to a falling mass
unrolling a rope coiled around a massive disk to make it
spin up. The unknowns are a, α and T (don’t worry yet
about what these mean). The system is:

mg − T = ma

RT = βMR2α

α = a/R

The knowns are m,M,R, g. Substitute the third equation
into the second to eliminate α immediately. The second
becomes:

T = βMa

Now add these two equations:

mg − T = ma

+(T = βMa)

to cancel T and get:

mg = (m+ βM)a

Solve for a:
a = mg/(m + βM)

Back substitute this into the equation for T above:

T = βMmg/(m + βM)

and α:
α = mg/(m+ βM)R

Finally, we check units. Hmmm, mass units cancel, g has
units of acceleration, T has an extra mass and hence is a
force, α is inverse time squared, all correct. We’re good
to go!



One Sheet Line Integral Review

Motivation

In physics we have a number of occasions to integrate
quantities along a specific directed path. Sometimes
the quantity of interest is a scalar, such as mass density
to find the total mass of e.g. a piece of string. More of-
ten it is used to integrate forces or fields (both vector
quantities) along a vector path. In particular, this occurs
when evaluating work, potential energy, and poten-
tial, where the latter is the potential energy per unit mass
or charge for the gravitational field or electrostatic field.
Line integrals of this sort appear in Maxwell’s Equa-
tions, which describe the fundamental electromagnetic
field.

Definitions

Let C be a curved path of finite length in space. Imag-
ine chopping the curve into a large (eventually infinite)
number N of pieces of length ∆s. Then:

∫

C
f(x, y, z)ds = lim

n→∞

n
∑

i=1

f(xi, yi, zi)∆si

is the integral of f(x, y, z) along the curve C. In order to
use our existing skills in one dimensional integration, we
usually have to express ds in terms of a parameter that
plays the role of i in this sum and then integrate over that
parameter.

Example: Find the total mass M of a piece of string
with uniform mass density λ shaped like a circular arc of
radius R from θ = 0 to θ = π/2.

Solution: An infinitesimal chunk of the string has length
ds =

√

dx2 + dy2 and hence mass dm = λ ds. With con-
siderable effort we could express and perform this integral
in terms of cartesian coordinates. However, since R is
constant, it is much easier to express ds in terms of the
single parameter θ:

ds = Rdθ

and

M =

∫

dm =

∫

λds

= λ

∫ π/2

0
R dθ

=
πRλ

2

This makes sense, since the length of the circular arc is
πR
2 .

Vector Application

Suppose ~F = Fxx̂ + Fyŷ + Fzẑ where the Fi(x, y, z) are
functions of the general space coordinates x, y, z. In order
to evaluate

∫

C
~F ·d~ℓ along the curve C we once again have

to break the curve up into infinitesimal vector chunks of
scalar length dℓ, each directed tangent to the curve. Let
us write:

d~ℓ = dℓ ℓ̂ = dℓxx̂+ dℓyŷ + dℓzẑ

Then

∫

C

~F · d~ℓ =

∫

C
(Fxdℓx + Fydℓy + Fzdℓz

In order to make this integral doable using ordinary one-
dimensional integration techniques, we usually (again) pa-
rameterize the pieces in terms of an independent variable
e.g. s. That is, let each point (x, y, z) on the curve C be
a function of a one-dimensional monotonic parameter s:
(x(s), y(s), z(s)). Then we can write the integral in terms
of s:

∫

C

~F · d~ℓ =

∫ s1

s0
Fx(x(s), y(s), z(s)

dℓx
ds

ds

+ Fy(x(s), y(s), z(s)
dℓy
ds

ds

+ Fz(x(s), y(s), z(s)
dℓz
ds

ds

We only evaluate this for simple cases in an introduc-
tory class. For example, suppose ~B = µ0I

2πr (+ sin(θ)x̂ −
cos(θ)ŷ)) (clockwise and tangent to a circle of radius r)
and the vector curve C is a circle of radius R directed
counterclockwise. Then we can parameterize C with θ
such that d~ℓ = Rdθ(− sin(θ)x̂+ cos(θ)ŷ)) and

∫

C

~B · d~ℓ = − µ0I

2πR

∫ 2π

0
R(sin2(θ) + cos2(θ))dθ = −µ0I

An even simpler example is the change in gravitational po-
tential energy of a particle of mass m moving from height
y0 to height y1 along any path:

∆U = −
∫

C

~F · d~ℓ = −
∫

C
−mgŷ · d~ℓ =

∫ y1

y0
mgdy

= mg(y1 − y0)



One Sheet Area Integral Review

Motivation

In physics we have a number of occasions to integrate
quantities over a surface. Sometimes the quantity of
interest is a scalar, such as a surface charge density to
find the total charge in e.g. a spherical sheet of charge.
However, it is also used to integrate the flux (flow) of a
vector field through a surface. Area integrals of this lat-
ter sort appear in Maxwell’s Equations, which describe
the fundamental electromagnetic field, although they also
describe the vector flow of fluids or electrical currents or
radiated energy and much more.

Definitions

Let S be a bounded smooth surface in space. Imagine
chopping the surface into a large (eventually infinite) num-
ber N of small pieces, each with an area ∆A. Then:

∫

S
f(x, y, z)dA = lim

n→∞

n
∑

i=1

f(xi, yi, zi)∆Ai

is the integral of f(x, y, z) over the surface S. In order to
use our existing skills in one dimensional integration, we
usually express dA in terms of two one-dimensional con-
tinuous parameters that together play the role of i in this
sum and then integrate over those parameters. Doing this
integral analytically is very difficult or impossible in all by
the very simplest of cases.

These simple cases are those where the surface in question
is flat in 2 dimensions and suitably bounded in separable
coordinates (rectangles or polar wedges) or is a suitably
bounded curved surface of symmetry in three dimensions
– spherical or cylindrical surface segments. We will con-
fine our attention to these cases.

Example: Find the total mass M of a planar uniform
surface mass density σ bounded by θ ∈ [0, π/2] and
r ∈ [R/2, R] in polar coordinates.

Solution: An infinitesimal chunk of the mass has dif-
ferential area dA = r dθ dr, the area element in polar
coordinates. The mass of this chunk is dm = σdA. Then:

M =

∫

dm =

∫

σdA

= σ

∫ π/2

0

∫ R

R/2
r dr dθ = σ

(

∫ π/2

0
dθ

)(

∫ R

R/2
r dr

)

=
πσ

2

r2

2

∣

∣

∣

∣

∣

R

R/2

=
3πσR2

16

One can similarly integrate over rectangular areas with
area element dA = dx dy in cartesian coordinates.

Flux Integrals

Flux is the flow of a vector field through a surface. It re-
quires the specification of the direction that will be consid-
ered “through”. We do this using a unit vector perpen-
dicular to the area element in the desired direction of
“positive” flow. The flux is then the sum/integral of the
component of the vector field through the surface
over the surface :

ΦE =

∫

S

~E(x, y, z) · n̂ dA = lim
n→∞

n
∑

i=1

En(xi, yi, zi)∆Ai

where En is the component of ~E perpendicular to the area
element dA at each point in the desired direction.

Example 1: Suppose ~E = E0(
√
2/2x̂+

√
2/2ẑ (a uniform

field tipped at π/4 in the x direction from the z direction).
What is the downward-directed flux through the rectangle
bounded by x ∈ [0, a], y ∈ [0, b], when n̂ = −ẑ?

ΦE =

∫

S

~E(x, y, z) · n̂ dA = −E0

√
2/2

∫ a

0

∫ b

0
dxdy

=
E0

√
2

2

(
∫ a

0
dx

)

(

∫ b

0
dy

)

= −E0

√
2ab

2

Example 2: Suppose ~E = E0ẑ, a uniform field in the
z-direction. We wish to find the total upward-directed
flux out through the hemispherical surface S defined by
r = R above the x-y plane. The area element for a
spherical surface in spherical polar coordinates is dA =
r2 dr sin(θ)dθ dφ, and n̂ = r̂ so that n̂ · ẑ = cos(θ).
Then:

ΦE =

∫

S

~E · n̂dA = E0

∫ π/2

0

∫ 2π

0
R2 cos(θ) sin(θ)dθdφ

= E0R
2

(

∫ π/2

0
cos(θ) sin(θ)dθ

)

(
∫ 2π

0
dφ

)

= E0R
2
(

1

2

)

(2π)

= E0πR
2

This result is easily understood as the projective area per-
pendicular to ~E is the area of the circle at the base of the
hemisphere, πR2.

In most cases of interest at this level we will be able to
evaluate flux as a constant times an area ΦE = E

∫

dA or
as zero when ~E ⊥ n̂dA for all or part of a surface.


