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About These Problems

This is an experiment. Beamer allows me to make slides that will successively
reveal lines of math-heavy text. This gives me a unique opportunity to build a
collection of self-guided learning problems for physics that do what I’ve fantasized
about doing for years now – present a problem, then provide a hint, then another
hint, then another (or reveal a step, and then another step) until finally, the entire
souution is presented, annotated.

Hopefully these problems will help students everywhere as they struggle to learn
physics problems solving techniques and learn to “think like a physicist” as they
do so.

To use this resource, pick a problem or topic from the table of contents and go
directly to it, or work your way through all the problems systematically. Work on a
separate sheet of paper, and when you get stuck, page down through the frames
to see (hopefully) where you went wrong.

Remember, the point is to master these problems, not just to get through
them. Make sure that before you are done, you can do every problem without
looking, without hints, and without remembering the exact solution but
rather, understanding how to find it!
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Kinematics: Two Bumper Cars

v02v0 0a

D

Two bumper cars are headed straight at
one another, one travelling at 2v0 to the
right, the other at speed v0 to the left.
When they are separated by a distance D,
the car on the right slows down with a
constant acceleration a0. Does the right
hand car manage to stop before being hit
by the left hand car?
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* - The solution is on the next page. Don’t advance until you are ready!
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Kinematics: Two Bumper Cars-Solution
v02v0 0a
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Solution: xl (t) = 2v0t, vl (t) = 2v0

xr (t) = D − v0t +
1

2
a0t2, vr (t) = −v0 + a0t
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It makes sense – larger D makes it less likely to collide, larger a0 makes it less likely
they will collide, larger v0 makes it more likely.
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collide before the right hand car comes to rest. We can simplify this to:

D <
5v2

0

2a0

It makes sense – larger D makes it less likely to collide, larger a0 makes it less likely
they will collide, larger v0 makes it more likely. Knowing they collide, if we write:

xl (tc) = 2v0tc = D − v0tc +
1

2
a0t2

c = xr (tc)

would let us find the time of collision and answer other questions about e.g. their
relative velocity at that time. This is a simple quadratic equation for tc .
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Kinematics: 2D Basketball Trajectory
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A basketball player shoots a jump hook at
a (horizontal) distance R from the basket,
releasing the ball at a height H above the
rim as shown. To shoot over his opponent’s
outstretched arm, he releases the basketball
at an angle θ with respect to the horizontal.

Find v0, the speed he must release the basketball with (in terms of H , R , g and
θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.
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rim as shown. To shoot over his opponent’s
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θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.

Hints: First write down ax = 0, ay = −g and solve for x(t), vx (t), y(t) and
vy (t).
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Hints: First write down ax = 0, ay = −g and solve for x(t), vx (t), y(t) and
vy (t). Note that there are really two unknowns – v0 and tb, the time the ball
reaches the basket.

Robert G. Brown Introductory Physics 141/151/161 9 / 35



Kinematics: 2D Basketball Trajectory

0v

R
θ

y

x
H

A basketball player shoots a jump hook at
a (horizontal) distance R from the basket,
releasing the ball at a height H above the
rim as shown. To shoot over his opponent’s
outstretched arm, he releases the basketball
at an angle θ with respect to the horizontal.

Find v0, the speed he must release the basketball with (in terms of H , R , g and
θ) for the ball to go through the hoop “perfectly” as shown. Assume that his
release is on line and undeflected, at initial speed v0 and that the acceleration of
the basketball is ~a = −g ĵ , ignoring drag.
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Kinematics: 2D Basketball Trajectory-Solution

Initial Conditions:

ax = 0, v0x = v0 cos θ, x0 = 0 and ay = −g , v0y = v0 sin θ, y0 = 0
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Initial Conditions:

ax = 0, v0x = v0 cos θ, x0 = 0 and ay = −g , v0y = v0 sin θ, y0 = 0

Integrate:

x(t) = v0 cos θt vx (t) = v0 cos θ y(t) = −
1

2
gt2+v0 sin θt vy (t) = v0 sin θ−gt
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x(t) = v0 cos θt vx (t) = v0 cos θ y(t) = −
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2
gt2+v0 sin θt vy (t) = v0 sin θ−gt

Find the time tb that the basketball reaches the horizontal position of the hoop:

R = v0 cos θtb ⇒ tb = R/(v0 cos θ)

This must also be the time that the ball has exactly the height of the hoop:

−H = −
1

2
gt2

b + v0 sin θtb ⇒
gR2

2v2
0 cos2 θ

= R tan θ + H

And finally, we solve for v0:
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ax = 0, v0x = v0 cos θ, x0 = 0 and ay = −g , v0y = v0 sin θ, y0 = 0

Integrate:
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Find the time tb that the basketball reaches the horizontal position of the hoop:

R = v0 cos θtb ⇒ tb = R/(v0 cos θ)

This must also be the time that the ball has exactly the height of the hoop:

−H = −
1

2
gt2

b + v0 sin θtb ⇒
gR2

2v2
0 cos2 θ

= R tan θ + H

And finally, we solve for v0:

v0 =

√

gR2

2(R sin θ cos θ + H cos2 θ)

After doing the algebra, check the dimensions. Are they OK?
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Firing a Speargun

v0dF

An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:
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Firing a Speargun

v−bv

An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:

First, draw a picture of the general motion and drag force.
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involves separating variables and integrating both sides separately, using (easiest)
definite integrals.

Robert G. Brown Introductory Physics 141/151/161 11 / 35



Firing a Speargun

v−bv

An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:

First, draw a picture of the general motion and drag force. Then, write Newton’s

Second Law, expressing a in terms of v , not x . Then, integrate to find v(t)! This
involves separating variables and integrating both sides separately, using (easiest)
definite integrals.

Finding the range is trickier. If you did/do things right, the velocity is decaying
exponentially, and v = dx

dt
!

Robert G. Brown Introductory Physics 141/151/161 11 / 35



Firing a Speargun

v−bv

An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:

First, draw a picture of the general motion and drag force. Then, write Newton’s

Second Law, expressing a in terms of v , not x . Then, integrate to find v(t)! This
involves separating variables and integrating both sides separately, using (easiest)
definite integrals.

Finding the range is trickier. If you did/do things right, the velocity is decaying
exponentially, and v = dx

dt
! It will come to rest “at” t → ∞.
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Firing a Speargun
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An underwater fisherman fires her speargun
at a distant fish. The neutral-buoyancy
spear leaves the gun at initial speed v0 and
experiences a linear drag force Fd = −bv

opposite to its velocity. Find v(t) and R ,
the maximum range of the spear.Hints:

First, draw a picture of the general motion and drag force. Then, write Newton’s

Second Law, expressing a in terms of v , not x . Then, integrate to find v(t)! This
involves separating variables and integrating both sides separately, using (easiest)
definite integrals.

Finding the range is trickier. If you did/do things right, the velocity is decaying
exponentially, and v = dx

dt
! It will come to rest “at” t → ∞. So, the range should

be the integral of the velocity from 0 to infinity!
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Loop the Loop

H
R

v

m A block of mass M sits at the top of a
frictionless hill of height H leading to a
circular loop-the-loop of radius R . Find the
minimum height Hmin for which the block
barely gess around the loop staying on the
track at the top. If the block is started at
this position, what is the normal force
exerted by the track at the bottom of the
loop, where it is greatest?

Solution Map:
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Spring-Driven Collision
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v=0
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In the figure above, a mass 2m connected to a
spring k is released from rest when the spring
is compressed to the position x0 = −A and
collides elastically with a mass m just as it
reaches its equilibrium position moving with
velocity v0x̂ as shown. Find: A in terms of v0,
m, and k ; v2m and vm immediately after the
collision; the maximum amplitude A′ of the
big (2m) block’s oscillation after the collision.
Ignore friction, and m starts at rest.
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big (2m) block’s oscillation after the collision.
Ignore friction, and m starts at rest.

Solution Map:
Use energy conservation to find A. Solve the 1D elastic collision for v2m and vm.
Use energy conservation again to find A′. Pretty simple, but it mixes energy
conservation and elastic collisions. If you don’t remember the solution for the final
velocity after a 1D elastic collision, advance the page to see it, but remember that
you can’t look it up like this on a quiz or exam!
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Solve the elastic collision:

vcm =
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=

2v0

3
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(Note that A =
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ω
as one expects from the

solution obtained in Chapter 9.)

Solve the elastic collision:

vcm =
2mv0

2m + m
=

2v0

3
⇒ v2m =

v0

3
vm =

4v0

3

Use mechanical energy conservation again to find A′:
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2m =
1

9
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Rolling with Slipping

F

µ s,k

M

R

A disk with mass M, radius R , is sitting on
a rough floor with coefficients of friction
µk,s respectively. It is pulled by a force
F (t) = At that increases linearly with
time (A is a constant with units N/sec).
Write an expression for fs(t), the
magnitude of the force of static friction as
a function of time. Find the time ts that
the disk starts to slip instead of roll without
slipping.
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at the point of contact. Next, write N2 for translation and rotation both. Solve
for fs (which will not contain µs !). You can solve for the acceleration a(t) if you
wish as well (this might have been part of the question, and may be needed in
order to most easily find fs).
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order to most easily find fs). Use fs < µsN to determine the time that the disk
will start to slip. If you like, find the independent linear and angular accelerations
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As always, draw a force diagram and choose good coordinates. Let fs and N act
at the point of contact. Next, write N2 for translation and rotation both. Solve
for fs (which will not contain µs !). You can solve for the acceleration a(t) if you
wish as well (this might have been part of the question, and may be needed in
order to most easily find fs). Use fs < µsN to determine the time that the disk
will start to slip. If you like, find the independent linear and angular accelerations
after it starts to slip (this could easily have been a question too).

* - The solution is on the next page. Don’t advance until you are ready!
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Rolling with Slipping-Solution

F

µ s,k

M

R

Choose coordinates so a = Rα (in x -
direction). Then:
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Rolling with Slipping-Solution

z(out)
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F

µ s,k

Mg
Nfs,k

+α (in)
Choose coordinates so a = Rα (in x -
direction). Then:

F − fs = Ma τin = fs�R =
1

2
M✚✚R2 a

�R
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direction). Then:
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2F (t)
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1
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F (t) =

1

3
At
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direction). Then:
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Simplify and add:

F =
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Ma ⇒ a =
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F (t) =
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Next, note that N − Mg = 0 ⇒ N = Mg and find the slip time ts :

fs =
1

3
At < µsN = µsMg ⇒

1

3
Ats = µsMg ⇒ ts =

3µsMg

A

Robert G. Brown Introductory Physics 141/151/161 18 / 35



Rolling with Slipping-Solution

z(out)

y

x

F

µ s,k

Mg
Nfs,k

+α (in)
Choose coordinates so a = Rα (in x -
direction). Then:

F − fs = Ma τin = fs�R =
1

2
M✚✚R2 a

�R

Simplify and add:

F =
3

2
Ma ⇒ a =

2F (t)

3M
, fs =

1

3
F (t) =

1

3
At

Next, note that N − Mg = 0 ⇒ N = Mg and find the slip time ts :

fs =
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Ats = µsMg ⇒ ts =

3µsMg

A

Finally, after it slips, fk = µkMg and hence:
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F (t) =

1
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Next, note that N − Mg = 0 ⇒ N = Mg and find the slip time ts :

fs =
1

3
At < µsN = µsMg ⇒

1

3
Ats = µsMg ⇒ ts =

3µsMg

A

Finally, after it slips, fk = µkMg and hence:

F − µkMg = Ma′ ⇒ a′ =
At

M
− µkg Rfk = RµkMg =

1

2
MR2α′ ⇒ α′ =

µkg

R
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Rolling with Slipping-Solution Comments

Note Well: a′ 6= α′R!
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Rolling with Slipping-Solution Comments

Note Well: a′ 6= α′R!

We could integrate to find x(t) and v(t) as well, e.g.:

v(t) =

∫ t

0

2At ′

3M
dt ′ =

A

3M
t2, x(t) =

∫ t

0

A

3M
t ′2dt ′ =

A

9M
t3 for (t ≤ ts))

Robert G. Brown Introductory Physics 141/151/161 19 / 35



Rolling with Slipping-Solution Comments

Note Well: a′ 6= α′R!

We could integrate to find x(t) and v(t) as well, e.g.:

v(t) =

∫ t

0

2At ′

3M
dt ′ =

A

3M
t2, x(t) =

∫ t

0

A

3M
t ′2dt ′ =

A

9M
t3 for (t ≤ ts))

For practice, see if you can find v(t) and x(t) for times t > ts . Use the result
above to find x0 and v0 and then integrate a′(t) twice!
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Note Well! We can solve for everything using just F for the applied force and
substitute F = At only at the end when we need it!
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Note Well: a′ 6= α′R!

We could integrate to find x(t) and v(t) as well, e.g.:

v(t) =

∫ t

0

2At ′

3M
dt ′ =
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t2, x(t) =

∫ t

0

A

3M
t ′2dt ′ =

A

9M
t3 for (t ≤ ts))

For practice, see if you can find v(t) and x(t) for times t > ts . Use the result
above to find x0 and v0 and then integrate a′(t) twice!

Note Well! We can solve for everything using just F for the applied force and
substitute F = At only at the end when we need it!

And note above all that fs = 1
3
At 6= µsN . We only use µsN to find the

(critical) slipping point, never to find fs itself!
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A Bullet Grazes a Sphere

vm

Rr

M
Ω = 0

0

i
(sphere)

A small bullet of mass m fired at an initial speed
of v0 grazes a free (unpivoted!) sphere sphere of
mass M and radius R (I = 2

5 MR2) grazes the sur-
face of the sphere at its equator and emerges trav-
elling along the same line at the reduced speed
v1 = v0/2.
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Find: Ωf the angular velocity of the sphere after the collision; the velocity vf of
the center of mass of the sphere after the collision; the energy lost during the
collision. Is there any value of m (relative to M) for which this collision is elastic?
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collision. Is there any value of m (relative to M) for which this collision is elastic?
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Start by drawing/visualizing the state right after the collision. Both linear
momentum and angular momentum are conserved. Use these concepts to find vf

(to the right) and Ωf . Then use ∆E = Ef − Ei to find the energy (lost).
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collision. Is there any value of m (relative to M) for which this collision is elastic?

Solution Map:
Start by drawing/visualizing the state right after the collision. Both linear
momentum and angular momentum are conserved. Use these concepts to find vf

(to the right) and Ωf . Then use ∆E = Ef − Ei to find the energy (lost). Finally,
see if any value of m will make ∆E = 0.
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the center of mass of the sphere after the collision; the energy lost during the
collision. Is there any value of m (relative to M) for which this collision is elastic?

Solution Map:
Start by drawing/visualizing the state right after the collision. Both linear
momentum and angular momentum are conserved. Use these concepts to find vf

(to the right) and Ωf . Then use ∆E = Ef − Ei to find the energy (lost). Finally,
see if any value of m will make ∆E = 0. Don’t forget to give directions! The
problem asks for velocities which are vectors! A picky instructor will take off
points if you just give magnitudes!
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Solution Map:
Start by drawing/visualizing the state right after the collision. Both linear
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see if any value of m will make ∆E = 0. Don’t forget to give directions! The
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points if you just give magnitudes!

* - The solution is on the next page. Don’t advance until you are ready!
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A Bullet Grazes a Sphere-Solution
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Start by drawing/visualizing the final state of the
rotating sphere.
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A Bullet Grazes a Sphere-Solution
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Ω = 0i
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f (out)Ω

vf

M

Start by drawing/visualizing the final state of the
rotating sphere. (v1 = v0/2 and x -directed mo-
tion only). Then:
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rotating sphere. (v1 = v0/2 and x -directed mo-
tion only). Then:

pi = mv0 = mv1 + Mvf = pf ⇒ vf =
m

2M
v0
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vf
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Start by drawing/visualizing the final state of the
rotating sphere. (v1 = v0/2 and x -directed mo-
tion only). Then:

pi = mv0 = mv1 + Mvf = pf ⇒ vf =
m

2M
v0

Li = mv0R = mv1R + IΩf = Lf ⇒ Ωf =
5mv0

4MR
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Start by drawing/visualizing the final state of the
rotating sphere. (v1 = v0/2 and x -directed mo-
tion only). Then:

pi = mv0 = mv1 + Mvf = pf ⇒ vf =
m

2M
v0

Li = mv0R = mv1R + IΩf = Lf ⇒ Ωf =
5mv0

4MR

Then compute initial and final energies and form ∆E (use Krot = 1
2 IΩ2

f ):
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A Bullet Grazes a Sphere-Solution

m

R

Ω = 0i

v /2v0 0

f (out)Ω

vf

M

Start by drawing/visualizing the final state of the
rotating sphere. (v1 = v0/2 and x -directed mo-
tion only). Then:

pi = mv0 = mv1 + Mvf = pf ⇒ vf =
m

2M
v0

Li = mv0R = mv1R + IΩf = Lf ⇒ Ωf =
5mv0

4MR

Then compute initial and final energies and form ∆E (use Krot = 1
2 IΩ2

f ):

Ei =
1

2
mv2

0 Ef =
1

2
m

(v0

2

)2

+
1

2
M

(mv0

2M

)2

+
1

2

(

2

5
MR2

) (

5mv0

4MR

)2

∆E =

({

1

4
+

7m

8M

}

− 1

)

1

2
mv2

0 and ∆E = 0 if m =
6

7
M
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Static Equilibrium: Carrying A Box Up the Stairs

F

F1

2

w
h

mg
θ

φ

Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure.
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!).
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2? Can you back
substitute to find F1?
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

First, choose a good pivot and coordinate
frame for the torque! Avoid the frame
needing φ = tan−1(h/w) in the trig!

An optimal choice of frame uses the vertical direction for force balance and the
tipped frame shown for evaluating the torque. I’ve provided some useful angles in
the figure. For the torque, first decompose the forces in the tipped frame using θ
only (not φ!). Can you now write down equations for force balance and torque
balance? Can you solve the torque balance equation for F2? Can you back
substitute to find F1?

* – The solution is on the next page. Don’t advance until you are ready!
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Static Equilibrium: Carrying A Box Up the Stairs-Solution
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?
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Static Equilibrium: Carrying A Box Up the Stairs-Solution
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 − mg = 0
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 − mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0
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Static Equilibrium: Carrying A Box Up the Stairs-Solution

F

F1

2

w
h

θ

w/2

mg

h/2

r
θ

θ
y

x
z

Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 − mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1 −
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 − mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1 −
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)

Note: F1 > F2 for all θ ∈ (0, π/2). It’s better to be the student at the top!
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Static Equilibrium: Carrying A Box Up the Stairs-Solution
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Two students are carrying a heavy box of
mass m, width w , and height h up the
stairs (with center of mass in the middle).
The stairs make an angle θ. How is the
weight distributed between the two
workers?

F2x = F2 sin θ, F2y = F2 cos θ,
Fgx = −mg sin θ, Fgy = −mg cos θ.

(Vertically) F1 + F2 − mg = 0

τz = wF2 cos θ −
mg

2
(w cos θ − h sin θ) = 0

So:

F2 =
mg

2

(

1 −
h

w
tan θ

)

and F1 =
mg

2

(

1 +
h

w
tan θ

)

Note: F1 > F2 for all θ ∈ (0, π/2). It’s better to be the student at the top! Note:

F1 = mg when θ = tan−1 w

h
. At this point F2 = 0 and the student at the top is

just helping balance the load!
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Draining into a Lake

A

H

D
pv

a

The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example.
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example. This is a Bernoulli’s Formula problem, so start by writing it down.
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Draining into a Lake
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example. This is a Bernoulli’s Formula problem, so start by writing it down. You’ll
also need conservation of flow at the top of the barrel and the opening of the
pipe.
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example. This is a Bernoulli’s Formula problem, so start by writing it down. You’ll
also need conservation of flow at the top of the barrel and the opening of the
pipe. The trickiest part of this solution is that you need to use the static pressure

Pp at the mouth of the pipe in Bernoulli’s Formula, which is not given in the
problem.

Robert G. Brown Introductory Physics 141/151/161 24 / 35
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example. This is a Bernoulli’s Formula problem, so start by writing it down. You’ll
also need conservation of flow at the top of the barrel and the opening of the
pipe. The trickiest part of this solution is that you need to use the static pressure

Pp at the mouth of the pipe in Bernoulli’s Formula, which is not given in the
problem. Use the “Torricelli assumption” A ≫ a (really, for the lake side as well)
and solve the Bernoulli formula for vp!
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The figure shows a rain-barrel that drains
into a nearby lake through an underground
pipe. The cross sectional area of the pipe is
a, the top of the barrel has area A ≫ a, the
water has a height H in the barrel, and the
pipe enters the lake at a depth D. Find vp ,
the speed with which the water drains into
the lake through the pipe, and the rate of
flow through the pipe. Lake and barrel are
obviously open to air pressure.

Pick good coordinates – the y origin at the height of the pipe opening, for
example. This is a Bernoulli’s Formula problem, so start by writing it down. You’ll
also need conservation of flow at the top of the barrel and the opening of the
pipe. The trickiest part of this solution is that you need to use the static pressure

Pp at the mouth of the pipe in Bernoulli’s Formula, which is not given in the
problem. Use the “Torricelli assumption” A ≫ a (really, for the lake side as well)
and solve the Bernoulli formula for vp!

* - The solution is on the next page. Don’t advance until you are ready!
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Draining into a Lake-Solution

A

D
pv

a

x

H+D

y
Choose coordinates like those shown.

Robert G. Brown Introductory Physics 141/151/161 25 / 35



Draining into a Lake-Solution
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Choose coordinates like those shown.
Evaluate Pp = Pa + ρgD.
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Draining into a Lake-Solution
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Choose coordinates like those shown.
Evaluate Pp = Pa + ρgD. Apply Bernoulli
Formula:

Pa + ρg(H + D) +
1

2
ρv2

b = Pp +
1

2
ρv2

p
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Draining into a Lake-Solution
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Choose coordinates like those shown.
Evaluate Pp = Pa + ρgD. Apply Bernoulli
Formula:

Pa + ρg(H + D) +
1

2
ρv2

b = Pp +
1

2
ρv2

p

or (neglecting 1
2 ρv2

b because vb ≪ vp because A ≫ a – Torricelli assumption):

1

2
ρv2

p = Pa + ρgH + ρgD − Pa − ρgD = ρgH ⇒ vp =
√

2gH
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Draining into a Lake-Solution
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Choose coordinates like those shown.
Evaluate Pp = Pa + ρgD. Apply Bernoulli
Formula:

Pa + ρg(H + D) +
1

2
ρv2

b = Pp +
1

2
ρv2

p

or (neglecting 1
2 ρv2

b because vb ≪ vp because A ≫ a – Torricelli assumption):

1

2
ρv2

p = Pa + ρgH + ρgD − Pa − ρgD = ρgH ⇒ vp =
√

2gH

This makes sense! If H = 0, the water will not flow (vp = 0). The contribution to
the pressure from the extra depth D basically cancels out.
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Choose coordinates like those shown.
Evaluate Pp = Pa + ρgD. Apply Bernoulli
Formula:

Pa + ρg(H + D) +
1

2
ρv2

b = Pp +
1

2
ρv2

p

or (neglecting 1
2 ρv2

b because vb ≪ vp because A ≫ a – Torricelli assumption):

1

2
ρv2

p = Pa + ρgH + ρgD − Pa − ρgD = ρgH ⇒ vp =
√

2gH

This makes sense! If H = 0, the water will not flow (vp = 0). The contribution to
the pressure from the extra depth D basically cancels out.

The flow is then easy:

Ip = vpa = a
√

2gH

where the speed in the pipe is much larger than the speed of water in either the
rainbarrel or the body of the lake.
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).
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A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ.
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor.
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force.
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Oscillations: A Rolling Pendulum
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A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force. Rearrange into SHOE, find ω, write
θ(t) = s/R , and backsubstitute to find fs .
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Oscillations: A Rolling Pendulum

R

m,r

θ0

A disk of mass m and radius r is gently set
on a rough circular floor so that it makes
an angle θ0 relative to a vertical through
the center of curvature of the floor, with its
center of mass a distance R from the
center of curvature as shown, and is
released from rest at t = 0 so that it rolls

without slipping and oscillates.

Find: a) ω of the oscillation; b) θ(t); c)
fs(t) (the force of static friction as a

function of time!).

Draw a force diagram on the rolling mass at a general angle θ. Choose a positive
direction for θ and (I recommend) choose to use s = Rθ as a linear coordinate
and choose a pivot either at the CM of the disk or the point where it touches the
floor. Write N2 for both torque and force. Rearrange into SHOE, find ω, write
θ(t) = s/R , and backsubstitute to find fs .

* - The solution is on the next page. Don’t advance until you are ready!
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Oscillations: A Rolling Pendulum-Solution

θ
R

r

fs
mg

N

pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2
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Oscillations: A Rolling Pendulum-Solution

θ
R

r

fs

mg

N

pivot We’ll make θ positive into the page, s positive to
the left. Then:

vt =
ds

dt
= R

dθ

dt
, at =

d2s

dt2
= R

d2θ

dt2

We write N2 for translation:

fs − mg sin θ = at
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Oscillations: A Rolling Pendulum-Solution

θ
R

r

fs

mg

N
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Oscillations: A Rolling Pendulum-Comments

Note that fs is a function of time!
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Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.

Note fs always has the same sign as θ(t) – when it is positive (on the left half
of the curved floor) fs points up the incline, when it is negative (or the right
half of the curved floor) fs points up the incline, to the right! It is symmetric,
as it must be as we could be viewing the solution from the other side of the
page!
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as it must be as we could be viewing the solution from the other side of the
page!

If we wanted to find the angular velocity of the disk about its own center of
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Note that fs is not µsN . Indeed, both µs and N are irrelevant to the solution
as long as µsN is large enough throughout that the disk rolls without slipping.

Note fs always has the same sign as θ(t) – when it is positive (on the left half
of the curved floor) fs points up the incline, when it is negative (or the right
half of the curved floor) fs points up the incline, to the right! It is symmetric,
as it must be as we could be viewing the solution from the other side of the
page!

If we wanted to find the angular velocity of the disk about its own center of
mass, from the previous page:

−rΩdisk = R
dθ(t)

dt
⇒ Ωdisk = −

R

r

dθ
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=
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√
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This too makes sense! At t = 0, the disk starts to roll down to the right, so
Ωdisk is into the page, positive. You should be able to trace each quarter
cycle of its oscillation and see that everything is consistent and correct.
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Construct a Travelling Wave

Suppose: Amplitude A = 1 cm; Wavelength λ = 0.5 m; Period T = 0.001 sec
Write down the formula for a transverse wave travelling in the −x direction

What is the speed of the wave on the string in terms of the givens? Which of the
following changes would double the power transmitted by the string (changing
only one of A, T , λ and nothing else)?

Change the amplitude to A′ = 0.707 A

Change the amplitude to A′ = 2 A

Change the period to T ′ = 0.707 T

Change the period to T ′ = 0.5 T

Change the wavelength to λ′ = 0.5 λ

Change the wavelength to λ′ = 2.0 λ
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* - The solution is on the next page. Don’t advance until you are ready!
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Construct a Travelling Wave-Solution

y(x , t) = 0.01 sin(4πx + 2000πt) m v =
λ

T
= 500 m/sec
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Construct a Travelling Wave-Solution

y(x , t) = 0.01 sin(4πx + 2000πt) m v =
λ

T
= 500 m/sec

Start with P = 1
2 µω2A2v . Then: P ∝ A2; also both ω = 2π

T
and v = λ

T
change,

so P ∝ 1
T 3 ; finally if λ changes only v changes, so P ∝ λ. Hence:

Change the amplitude to A′ = 0.707 A (No! P ∝ A2)

Change the amplitude to A′ = 2 A (No! P ∝ A2)

Change the period to T ′ = 0.707 T (No! P ∝ 1
T 3 )

Change the period to T ′ = 0.5 T (No! P ∝ 1
T 3 )

Change the wavelength to λ′ = 0.5 λ (No! P ∝ λ)

��❅❅ Change the wavelength to λ′ = 2.0 λ (Yes! P ∝ λ)

Robert G. Brown Introductory Physics 141/151/161 30 / 35



Passed by the Ambulance

v0
2vf

0
0

You are slowed down, being overtaken by an am-
bulance that is travelling at twice your speed of
v0. You happen to know from your days work-
ing in EMS that the frequency of the siren of the
ambulance is f0, but the frequency detector app
on your phone reads f1 > f0. Using f0, f1 and va

(the speed of sound in air) find an expression for
v0, the speed of your car at the time. Evaluate
this for f0 = 1900 Hz, f1 = 2000 Hz.
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x = v0/va in the algebra until the end).
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v0, the speed of your car at the time. Evaluate
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You are a moving receiver, the ambulance is a moving source. Write down the
combined moving source/moving receiver doppler shift formula for f1, the double
shifted f0. Solve this equation algebraically for v0 in terms of va (I like to use
x = v0/va in the algebra until the end). If you don’t remember the doppler shift
formula, it is given next. If you do remember it, finish your work before revealing
the next step:

f ′ =
1 ± vr

va

1 ∓ vs

va

f0 (upper signs approaching, lower signs receding).
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Passed by the Ambulance-Solution

v0
2vf

0
0

This one is simple. The car (you, receiver)
is receding. The source (ambulance) is
approaching. So:
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is receding. The source (ambulance) is
approaching. So:

Let x = v0/va. Then:

f1 =
1 − x

1 − 2x
f0 ⇒ (1 − 2x)f1 = (1 − x)f0

Robert G. Brown Introductory Physics 141/151/161 32 / 35



Passed by the Ambulance-Solution

v0
2vf

0
0

This one is simple. The car (you, receiver)
is receding. The source (ambulance) is
approaching. So:

Let x = v0/va. Then:

f1 =
1 − x

1 − 2x
f0 ⇒ (1 − 2x)f1 = (1 − x)f0

Or:

f1 − f0 = 2xf1 − xf0 = x(2f1 − f0) ⇒ x =
v0

va

=
f1 − f0

2f1 − f0
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Passed by the Ambulance-Solution

v0
2vf

0
0

This one is simple. The car (you, receiver)
is receding. The source (ambulance) is
approaching. So:

Let x = v0/va. Then:

f1 =
1 − x

1 − 2x
f0 ⇒ (1 − 2x)f1 = (1 − x)f0

Or:

f1 − f0 = 2xf1 − xf0 = x(2f1 − f0) ⇒ x =
v0

va

=
f1 − f0

2f1 − f0

And:

v0 =
f1 − f0

2f1 − f0
va or in SI units, v0 =

100

2100
343 =

343

21
≈ 16 m/sec

If we multiply by 9/4, we get a good estimate of miles per hour: v0 = 37
mph and the ambulance is going around 75 mph.
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Collision with a Neutron Star

M

m

R

Neutron Star Comet

In the figure, a neutron star with mass M = 1030 kg and
radius R = 8000 m is drawn. Find: a) Escape speed from
its surface. First find it algebraically, then evaluate it
numerically as a fraction of the speed of light c = 3×108

m/sec.
b) A comet of mass m = 1014 kg falls “from infinity” to its surface. Estimate the
energy lost to heat in the collision algebraically, and then evaluate it numerically,
expressing it as a fraction of the relativistic rest energy of the comet.
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expressing it as a fraction of the relativistic rest energy of the comet.

First, use energy conservation to relate total energy at the surface of the comet to
total energy at infinity. Remember, E∞ = 0 and then solve for ve . Falling in,
remember it starts with E∞ = 0 so the total energy at the surface will tell you the
kinetic energy at the time of impact.
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total energy at infinity. Remember, E∞ = 0 and then solve for ve . Falling in,
remember it starts with E∞ = 0 so the total energy at the surface will tell you the
kinetic energy at the time of impact. It’s bb with BB fully inelastic so all of this
KE goes to heat!

* - The solution is on the next page. Don’t advance until you are ready!
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Collision with a Neutron Star-Solution
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1

c
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2GM

R
=

1

3 × 108

√

2 × 6.67 × 10−11 × 1030

8000
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ve = 0.43c = 1.3 × 108 m/sec

And:
∆Eheat

mc2
=

GM

Rc2
=

6.67 × 10−11 × 1030

8000 × 9 × 1016
⇒

Eheat = .093mc2 = 8.34 × 1029 joules.

This classical, non-relativistic solution isn’t quite right! Because ve is so close to
the speed of light, to do it correctly we’d have to use relativistic expressions for
things like the total energy and kinetic energy. But it does give us a realistic
appreciation for the strangeness of things like neutron stars!
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The End

Feedback Welcome

Send Comments To: rgb at duke dot edu
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