next up previous contents
Next: Energy Diagrams and Orbits Up: Gravity Previous: The Gravitational Field   Contents

Gravitational Potential Energy

\begin{figure}\centerline{
\psfig{file=gravity.7.eps,height=2.5in}
}\end{figure}

Gravitation is a conservative force, because the work done going ``around'' the attractor (perpendicular to the force) is zero, and the work done varying $r$ is the same going out as in, so the work done is independent of path (see figure above). So:


$\displaystyle U(r)$ $\textstyle =$ $\displaystyle -\int_{r_0}^r \vec{\bf F}\cdot d\vec{\bf r}$ (15)
  $\textstyle =$ $\displaystyle -\int_{r_0}^r -\frac{GMm}{r^2} dr$ (16)
  $\textstyle =$ $\displaystyle -(\frac{GMm}{r}-\frac{GMm}{r_0})$ (17)
  $\textstyle =$ $\displaystyle -\frac{GMm}{r} + \frac{GMm}{r_0}$ (18)

where $r_0$ is the radius of an arbitrary point where we define the potential energy to be zero. By convention, unless there is a good reason to choose otherwise, we require the zero of the potential energy to be at $r_0 = \infty$. Thus:
\begin{displaymath}
U(r) = -\frac{GMm}{r}
\end{displaymath} (19)




next up previous contents
Next: Energy Diagrams and Orbits Up: Gravity Previous: The Gravitational Field   Contents
Robert G. Brown 2004-04-12