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1.1 Cosmology and Kepler’s Laws

• Early western cosmology earth-centered.

• Ptolemy (140 A.D.) “explained” planets (which failed this model) with
“epicycles”. Church embraced this model as consistent with Genesis.

• Copernicus (1543 A.D.) solar-centered model.

• Tycho Brahe accumulated data and Johannes Kepler fit that data to
specific orbits and deduced laws:

Kepler’s Laws

1. All planets move in elliptical orbits with the sun at one focus (see next
section).

2. A line joining any planet to the sun sweeps out equal areas in equal
times (dA/dt = constant).

3. The square of the period of any planet is proportional to the cube of
the planet’s mean distance from the sun (T 2 = CR3). Note that the
semimajor or semiminor axis of the ellipse will serve as well as the
mean, with different contants of proportionality.
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1.2 Ellipses and Conic Sections

• An ellipse is one of the conic sections (intersections of a right circular
cone with a crossing plane). The others are hyperbolas and parabolas
(circles are special cases of ellipses). All conic sections are actually
possible orbits, not just ellipses.

• One possible equation for an ellipse is:

x2

a2
+

y2

b2
= 1 (1)

The larger parameter (a above) is called the semimajor axis; the smaller
(b) the semiminor; they lie on the similarly defined major and minor
axes, where the foci of the ellipse lie on the major axis.

• Not all ellipses have major/minor axes that can be easily chosen to be
x and y coordinates. Another general parameterization of an ellipse
that is useful to us is a parametric cartesian representation:

x(t) = x0 + a cos(ωt + φx) (2)

y(t) = y0 + b cos(ωt + φy) (3)

This equation will describe any ellipse centered on (x0, y0) by varying
ωt from 0 to 2π. Adjusting the phase angles φx and φy and amplitudes a
and b vary the orientation and eccentricity of the ellipse from a straight
line at arbitrary angle to a circle.

• The foci of an ellipse are defined by the property that the sum of the
distances from the foci to every point on an ellipse is a constant (so
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an ellipse can be drawn with a loop of string and two thumbtacks at
the foci). If f is the distance of the foci from the origin, then the sum
of the distances must be 2d = (f + a) + (a − f) = 2a (from the point
x = a, y = 0. Also, a2 = f2 + b2 (from the point x = 0, y = b). So
f =

√
a2 − b2 where by convention a ≥ b.
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1.3 Newton’s Law of Gravity

1. Force of gravity acts on a line joining centers of masses.

2. Force of gravity is attractive.

3. Force of gravity is proportional to each mass.

4. Force of gravity is inversely proportional to the distance between
the centers of the masses.

or,

~F12 = −Gm1m2

r2
r̂ (4)

where G = 6.67x10−11 N-m2/kg2 is the universal gravitational constant.
Kepler’s first law follow from solving Newton’s laws and the equations

of motion for this particular force law. This is a bit difficult and beyond
the scope of this course, although we will show that circular orbits are one
special solution that easily satisfy Kepler’s Laws.
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dA = | r x vdt |

v   t

r

∆

Kepler’s Second Law is proven by observing that this force is radial, and
hence exerts no torque. Thus the angular momentum of a planet is constant!
That is,

dA =
1

2
|~r × ~vdt| =

1

2
|~r||~vdt| sin θ (5)

=
1

2m
|~r × m~vdt| (6)

or
dA

dt
=

1

2m
|~L| = constant (7)

(and Kepler’s second law is proved for this force).
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For a circular orbit, we can also prove Kepler’s Third Law. The orbit is
circular, so we have a relation between v and Fr.

GMsmp

r2
= mpar = mp

v2

r
(8)

so that

v2 =
GMs

r
(9)

But, v is related to r and the period T by:

v =
2πr

T
(10)

so that

v2 =
4π2r2

T 2
=

GMs

r
(11)

Finally,

r3 =
GMs

4π2
T 2 (12)

and Kepler’s third law is proved for circular orbits (and the constant C
evaluated for the solar system!).
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1.4 The Gravitational Field

We define the gravitational field to be the cause of the gravitational force.
We define it conveniently to be the force per unit mass

~g(~r) = −GM

r2
r̂ =

~F

m
(13)

The gravitational field at the surface of the earth is:

g(r) =
F

m
=

GME

R2
E

(14)

This equation can be used to find g, RE, ME , or G, from any of the other
three, depending on which ones you think you know best. g is easy. RE is
actually also easy to measure independently and some classic methods were
used to do so long before Columbus. ME is hard! What about G?

Henry Cavendish made the first direct measurement of G using a torsional
pendulum and some really massive balls. From this he was able to “weigh
the earth” (find ME). By measuring ∆θ(r) (r measured between the centers)
it was possible to directly measure G. He got 6.754 (vs 6.673 currently
accepted) ×10−11 N-m2/kg2. Not bad!
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1.5 Gravitational Potential Energy

Gravitation is a conservative force, because the work done going “around”
the attractor (perpendicular to the force) is zero, and the work done varying
r is the same going out as in, so the work done is independent of path (see
figure above). So:

U(r) = −
∫ r

r0

~F · d~r (15)

= −
∫ r

r0

−GMm

r2
dr (16)

= −(
GMm

r
− GMm

r0

) (17)

= −GMm

r
+

GMm

r0

(18)

where r0 is the radius of an arbitrary point where we define the potential
energy to be zero. By convention, unless there is a good reason to choose
otherwise, we require the zero of the potential energy to be at r0 = ∞. Thus:

U(r) = −GMm

r
(19)
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1.6 Energy Diagrams and Orbits

Let’s write the total energy of a particle moving in a gravitational field in a
clever way:

Etot =
1

2
mv2 − GMm

r
(20)

=
1

2
mv2

r +
1

2
mv2

⊥
− GMm

r
(21)

=
1

2
mv2

r +
1

2mr2
(mv⊥r)2 − GMm

r
(22)

=
1

2
mv2

r +
L2

2mr2
− GMm

r
(23)

=
1

2
mv2

r + Ueff(r) (24)

Where

Ueff(r) =
L2

2mr2
− GMm

r
(25)

is the (radial) potential energy plus the transverse kinetic energy (related
to the constant angular momentum of the particle). If we plot the effective
potential (and its pieces) we get a one-dimensional radial energy plot.
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By drawing a constant total energy on this plot, the difference between
Etot and Ueff(r) is the radial kinetic energy, which must be positive. We can
determine lots of interesting things from this diagram.

In this figure, we show orbits with a given angular momentum ~L 6= 0 and
four generic total energies Etot. These orbits have the following characteris-
tics and names:

1. Etot > 0. This is a hyperbolic orbit.

2. Etot = 0. This is a parabolic orbit. This orbit defines escape veloc-
ity as we shall see later.

3. Etot < 0. This is generally an elliptical orbit (consistent with Kepler’s
First Law).

4. Etot = Ueff ,min. This is a circular orbit. This is a special case of an
elliptical orbit, but deserves special mention.

Note well that all of the orbits are conic sections. This interesting
geometric connection between 1/r2 forces and conic orbits was a tremendous
motivation for important mathematical work two or three hundred years ago.
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1.7 Escape Velocity, Escape Energy

As we noted in the previous section, a particle has “escape energy” if and
only if its total energy is greater than or equal to zero. We define the escape
velocity (a misnomer!) of the particle as the minimum speed (!) that it
must have to escape from its current gravitational field – typically that of a
moon, or planet, or sun. Thus:

Etot = 0 =
1

2
mv2

escape −
GMm

r
(26)

so that

vescape =

√

2GM

r
=
√

2gr (27)

where in the last form g = GM
r2 (the magnitude of the gravitational field –

see next item). For earth:

vescape =

√

2GME

RE

=
√

2gRE = 11.2 km/sec (28)

(Note: Recall the form derived by equating Newton’s Law of Gravitation
and mv2/r in an earlier section for the velocity of a mass m in a circular
orbit around a larger mass M :

v2
circ =

GM

r
(29)

from which we see that vescape =
√

2vcirc.)
It is often interesting to contemplate this reasoning in reverse. If we drop

a rock onto the earth from a state of rest “far away” (much farther than
the radius of the earth, far enough away to be considered “infinity”), it will
REACH the earth with escape (kinetic) energy. Since the earth is likely to be
much larger than the rock, it will undergo an inelastic collision and release
nearly all its kinetic energy as heat. If the rock is small, this is not a problem.
If it is large (say, 1 km and up) it releases a lot of energy.

M =
4πρ

3
r3 (30)

is a reasonable equation for the mass of a spherical rock. ρ can be estimated
at 104 kg/m3, so for r ≈ 1000 meters, this is roughly M ≈ 4 × 1013 kg, or
around 10 billion metric tons of rock, about the mass of a small mountain.

16



This mass will land on earth with escape velocity, 11.2 km/sec, if it falls
in from far away. Or more, of course – it may have started with velocity
and energy from some other source – this is pretty much a minimum. As an
exercise, compute the number of Joules this collision would release to toast
the dinosaurs – or us!
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2 Oscillations
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2.1 Oscillations

Oscillations occur whenever a force exists that pushes an object back towards
a stable equilibrium position whenever it is displaced from it.

Such forces abound in nature – things are held together in structured form
because they are in stable equilibrium positions and when they are disturbed
in certain ways, they oscillate.

When the displacement from equilibrium is small, the restoring force is
often linearly related to the displacement, at least to a good approximation.
In that case the oscillations take on a special character – they are called
harmonic oscillations as they are described by harmonic functions (sines and
cosines) known from trigonometery.

In this course we will study simple harmonic oscillators, both with
and without damping forces. The principle examples we will study will be
masses on springs and various penduli.

Springs obey Hooke’s Law: ~F = −k~x (where k is called the spring con-

stant. A perfect spring produces perfect harmonic oscillation, so this will be
our archetype.

A pendulum (as we shall see) has a restoring force or torque proportional
to displacement for small displacements but is much too complicated to treat
in this course for large displacements. It is a simple example of a problem
that oscillates harmonically for small displacements but not harmonically for
large ones.

An oscillator can be damped by dissipative forces such as friction and
viscous drag. A damped oscillator can have exhibit a variety of behaviors
depending on the relative strength and form of the damping force, but for
one special form it can be easily described.
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2.2 Springs

We will work in one dimension (call it x) and will for the time being place
the spring equilibrium at the origin. Its equation of motion is thus:

F = −kx = ma = m
d2x

dt2
(31)

Rearranging:

d2x

dt2
+

k

m
x = 0 (32)

d2x

dt2
+ ω2x = 0 (33)

where ω2 = k/m must have units of inverse time squared (why?).
This latter form is the standard harmonic oscillator equation (of motion).

If we solve it once and for all now, whenever we can put an equation of motion
into this form in the future we can just read off the solution by identifying
similar quantities.

To solve it, we note that it basically tells us that x(t) must be a function
that has a second derivative proportional to the function itself. We know at
least three functions whose second derivatives are proportional to themselves:
cosine, sine and exponential. To learn something very important about the
relationship between these functions, we’ll assume the exponential form:

x(t) = x0e
αt (34)
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(where α is an unknown parameter). Substituting this into the differential
equation and differentiating, we get:

d2x0e
αt

dt2
+ ω2x0e

αt = 0 (35)
(

α2 + ω2
)

x0e
αt = 0 (36)

(

α2 + ω2
)

= 0 (37)

where the last relation is called the characteristic equation for the differential
equation. If we can find an α such that this equation is satisfied, then our
assumed answer will indeed solve the D.E.

Clearly:
α = ±iω (38)

and we get two solutions! We will always get n independent solutions for an
nth order differential equation, so this is good:

x+(t) = x0+e+iωt (39)

x−(t) = x0−e−iωt (40)

and an arbitrary solution can be made up of a sum of these terms:

x(t) = x0+e+iωt + x0−e−iωt (41)
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2.3 Math: Complex Numbers and Harmonic Trigono-
metric Functions

Some extremely useful and important True Facts:

2.3.1 Complex Numbers

This is a very terse review of their most important properties. An arbitrary
complex number z can be written as:

z = x + iy (42)

= |z| cos(θ) + i|z| sin(θ) (43)

= |z|eiθ (44)

where x = |z| cos(θ), y = |z| sin(θ), and |z| =
√

x2 + y2. All complex numbers

can be written as a real amplitude |z| times a complex exponential form
involving a phase angle. Again, it is difficult to convey how incredibly useful
this result is without further study, but I commend it to your attention.

2.3.2 Relations between cosine, sine and exponential functions

e±iθ = cos(θ) ± i sin(θ) (45)

cos(θ) =
1

2

(

e+iθ + e−iθ
)

(46)

sin(θ) =
1

2i

(

e+iθ − e−iθ
)

(47)
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From these relations and the properties of exponential multiplication you
can painlessly prove all sorts of trigonometric identities that were immensely
painful to prove back in high school

2.3.3 Power Series Expansions

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (48)

cos(x) = 1 − x2

2!
+

x4

4!
+ . . . (49)

sin(x) = x − x3

3!
+

x5

5!
+ . . . (50)

Depending on where you start, these can be used to prove the relations
above. They are most useful for getting expansions for small values of their
parameters. For small x (to leading order):

ex ≈ 1 + x (51)

cos(x) ≈ 1 − x2

2!
(52)

sin(x) ≈ x (53)

tan(x) ≈ x (54)

We will use these fairly often in this course, so learn them.

2.3.4 An Important Relation

A relation I will state without proof that is very important to this course is
that the real part of the x(t) derived above:

<(x(t)) = <(x0+e+iωt + x0−e−iωt) (55)

= X0 cos(ωt + φ) (56)

where φ is an arbitrary phase. You can prove this in a few minutes or
relaxing, enjoyable algebra from the relations outlined above – remember
that x0+ and x0− are arbitrary complex numbers and so can be written in
complex exponential form!
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2.4 Simple Harmonic Oscillation

2.4.1 Solution

We generally are interested in real part of x(t) when studying oscillating
masses, so we’ll stick to the following solution:

x(t) = X0 cos(ωt + φ) (57)

where X0 is called the amplitude of the oscillation and φ is called the phase of
the oscillation. The amplitude tells you how big the oscillation is, the phase
tells you when the oscillator was started relative to your clock (the one that
reads t). Note that we could have used sin(ωt + φ) as well, or any of several
other forms, since cos(θ) = sin(θ + π/2). But you knew that.

X0 and φ are two unknowns and have to be determined from the initial
conditions, the givens of the problem. They are basically constants of in-
tegration just like x0 and v0 for the one-dimensional constant acceleration
problem. From this we can easily see that:

v(t) =
dx

dt
= −ωX0 sin(ωt + φ) (58)

and

a(t) =
d2x

dt2
= −ω2X0 cos(ωt + φ) = − k

m
x(t) (59)

(where the last relation proves the original differential equation).

2.4.2 Relations Involving ω

We remarked above that omega had to have units of t−1. The following are
some True Facts involving ω that You Should Know:

ω =
2π

T
(60)

= 2πf (61)

where T is the period of the oscillator the time required for it to return to an
identical position and velocity) and f is called the frequency of the oscillator.
Know these relations instantly. They are easy to figure out but will cost you
valuable time on a quiz or exam if you don’t just take the time to completely
embrace them now.
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Note a very interesting thing. If we build a perfect simple harmonic
oscillator, it oscillates at the same frequency independent of its amplitude. If
we know the period and can count, we have just invented the clock. In fact,
clocks are nearly always made out of various oscillators (why?); some of the
earliest clocks were made using a pendulum as an oscillator and mechanical
gears to count the oscillations, although now we use the much more precise
oscillations of a bit of stressed crystalline quartz (for example) and electronic
counters. The idea, however, remains the same.

2.4.3 Energy

The spring is a conservative force. Thus:

U = −W (0 → x) = −
∫ x

0
(−kx)dx =

1

2
kx2 (62)

=
1

2
kX2

0 cos2(ωt + φ) (63)

where we have arbitrarily set the zero of potential energy to be the equilib-
rium position (what would it look like if the zero were at x0?).

The kinetic energy is:

K =
1

2
mv2 (64)

=
1

2
m(ω2)X2

0 sin2(ωt + φ) (65)

=
1

2
m(

k

m
)X2

0 sin2(ωt + φ) (66)

=
1

2
kX2

0 sin2(ωt + φ) (67)

The total energy is thus:

E =
1

2
kX2

0 sin2(ωt + φ) +
1

2
kX2

0 cos2(ωt + φ) (68)

=
1

2
kX2

0 (69)

and is constant in time! Kinda spooky how that works out...
Note that the energy oscillates between being all potential at the extreme

ends of the swing (where the object comes to rest) and all kinetic at the
equilibrium position (where the object experiences no force).
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2.5 The Pendulum

The pendulum is another example of a simple harmonic oscillator, at least
for small oscillations. Suppose we have a mass m attached to a string of
length `. We swing it up so that the stretched string makes a (small) angle
θ0 with the vertical and release it. What happens?

We write Newton’s Second Law for the force component tangent to the
arc of the circle of the swing as:

Ft = −mg sin(θ) = mat = m`
d2θ

dt2
(70)

where the latter follows from at = `α (the angular acceleration). Then we
rearrange to get:

d2θ

dt2
+

g

`
sin(θ) = 0 (71)

This is almost a simple harmonic equation with ω2 = g

`
. To make it one,

we have to use the small angle approximation sin(θ) ≈ θ. Then

d2θ

dt2
+

g

`
θ = 0 (72)

and we can just read off the solution:

θ(t) = θ0 cos(ωt + φ) (73)
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If you compute the gravitational potential energy for the pendulum for
arbitrary angle θ, you get:

U(θ) = mg` (1 − cos(θ)) (74)

Somehow, this doesn’t look like the form we might expect from blindly sub-
stituting into our solution for the SHO above:

U(t) =
1

2
mg`θ2

0 sin2(ωt + φ) (75)

As an interesting and fun exercise (that really isn’t too difficult) see if you
can prove that these two forms are really the same, if you make the small
angle approximation for θ in the first form! This shows you pretty much
where the approximation will break down as θ0 is gradually increased. For
large enough θ, the period of a pendulum clock does depend on the amplitude
of the swing. This might explain grandfather clocks – clocks with very long
penduli that can swing very slowly through very small angles – and why they
were so accurate for their day.

2.5.1 The Physical Pendulum

In the treatment of the ordinary pendulum above, we just used Newton’s
Second Law directly to get the equation of motion. This was possible only
because we could neglect the mass of the string and because we could treat
the mass like a point mass at its end.
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However, real grandfather clocks often have a large, massive pendulum
like the one above – a long massive rod (of length L and mass mL) with a large
round disk (of radius R and mass MR) at the end. The round weight rotates
through an angle of 2θ0 in each oscillation, so it has angular momemtum.
Newton’s Law for forces no longer suffices. We must use torque and the
moment of inertia to obtain the frequency of the oscillator.

To do this we go through the same steps (more or less) that we did for
the regular pendulum. First we compute the net gravitational torque on the
system at an arbitrary (small) angle θ:

τ = −
(

L

2
mLg + LMRg

)

sin(θ) (76)

(The - sign is there because the torque opposes the angular displacement
from equilibrium.)

Next we set this equal to Iα, where I is the total moment of inertia for
the system about the pivot of the pendulum and simplify:

τ = −
(

L

2
mLg + LMRg

)

sin(θ) = Iα = I
d2θ

dt2
(77)

I
d2θ

dt2
+
(

L

2
mLg + LMRg

)

sin(θ) = 0 (78)

and make the small angle approximation to get:

d2θ

dt2
+

(

L
2
mLg + LMRg

)

I
θ = 0 (79)

Note that for this problem:

I =
1

12
mLL2 +

1

2
MRR2 + MRL2 (80)

(the moment of inertia of the rod plus the moment of inertial of the disk
rotating about a parallel axis a distance L away from its center of mass).
From this we can read off the angular frequency:

ω2 =
4π2

T
=

(

L
2
mLg + LMRg

)

I
(81)

With ω in hand, we know everything. For example:

θ(t) = θ0 cos(ωt + φ) (82)
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gives us the angular trajectory. We can easily solve for the period T , the
frequency f = 1/T , the spatial or angular velocity, or whatever we like.

Note that the energy of this sort of pendulum can be tricky. Obviously
its potential energy is easy enough – it depends on the elevation of the center
of masses of the rod and the disk. The kinetic energy, however, is:

K =
1

2
I

(

d2θ

dt2

)2

(83)

where I do not write 1
2
Iω2 as usual because it confuses ω (the angular fre-

quency of the oscillator, roughly contant) and ω(t) (the angular velocity of
the pendulum bob, which varies between 0 and some maximum value in every
cycle).

2.6 Damped Oscillation

So far, all the oscillators we’ve treated are ideal. There is no friction or
damping. In the real world, of course, things always damp down. You have
to keep pushing the kid on the swing or they slowly come to rest. Your car
doesn’t keep bouncing after going through a pothole in the road. Buildings
and bridges, clocks and kids, real oscillators all have damping.

Damping forces can be very complicated. There is kinetic friction, which
tends to be independent of speed. There are various fluid drag forces, which
tend to depend on speed, but in a sometimes complicated way. There may
be other forces that we haven’t studied yet that contribute to damping. So
in order to get beyond a very qualitative description of damping, we’re going
to have to specify a form for the damping force (ideally one we can work
with, i.e. integrate).

We’ll pick the simplest possible one:

Fd = −bv (84)

(b is called the damping constant or damping coefficient) which is typical of
an object being damped by a fluid at relatively low speeds. With this form
we can get an exact solution to the differential equation easily (good), get a
preview of a solution we’ll need next semester to study LRC circuits (better),
and get a very nice qualitative picture of damping besides (best).
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We proceed with Newton’s second law for a mass m on a spring with
spring constant k and a damping force −bv:

F = −kx − bv = ma = m
d2x

dt2
(85)

Again, simple manipulation leads to:

d2x

dt2
+

b

m

dx

dt
+

k

m
x = 0 (86)

which is standard form.
Again, it looks like a function that is proportional to its own first deriva-

tive is called for (and in this case this excludes sine and cosine as possibilities).
We guess x(t) = x0e

αt as before, substitute, cancel out the common x(t) 6= 0
and get the characteristic:

α2 +
b

m
α +

k

m
= 0 (87)

This is pretty easy, actually – each derivative just brings down an α.
To solve for α we have to use the dread quadratic formula:

α =
−b
m

±
√

b2

m2 − 4k
m

2
(88)

This isn’t quite where we want it. We simplify the first term, factor a

−4k/m out from under the radical (where it becomes iω0, where ω0 =
√

k/m
is the frequency of the undamped oscillator with the same mass and spring
constant) and get:

α =
−b

2m
± iω0

√

1 − b2

4km
(89)

Again, there are two solutions, for example:

x±(t) = X0±e
−b
2m

te±iω′t (90)

where

ω′ = ω0

√

1 − b2

4km
(91)

Again, we can take the real part of their sum and get:

x±(t) = X0e
−b
2m

t cos(ω′t + φ) (92)

where X0 is the real initial amplitude and phi determines the relative phase
of the oscillator.
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2.7 Properties of the Damped Oscillator

There are several properties of the damped oscillator that are important to
know.

• The amplitude damps exponentially as time advances. After a certain
amount of time, the amplitude is halved. After the same amount of
time, it is halved again.

• The frequency is shifted.

• The oscillator can be (under)damped, critically damped, or overdamped.

The oscillator is underdamped if ω′ is real, which will be true if 4km > b2.
It will undergo true oscillations, eventually approaching zero amplitude due
to damping.

The oscillator is critically dampled if ω′ is zero, when 4km = b2. The
oscillator will not oscillate – it will go to zero exponentially in the shortest
possible time.

The oscillator is overdamped if ω′ is imaginary, which will be true if 4km <
b2. In this case α is entirely real and has a component that damps very
slowly. The amplitude goes to zero exponentially as before, but over a longer
(possibly much longer) time and does not oscillate through zero at all.

A car’s shock absorbers should be barely underdamped. If the car ”bounces”
once and then damps to zero when you push down on a fender and suddenly
release it, the shocks are good. If it bounces three of four time the shocks are
too underdamped and dangerous as you could lose control after a big bump.
If it doesn’t bounce up and back down at all at all and instead slowly oozes
back up to level from below, it is overdamped and dangerous, as a succes-
sion of sharp bumps could leave your shocks still compressed and unable to
absorb the impack.

Tall buildings also have dampers to keep them from swaying in a strong
wind. Houses are build with lots of dampers in them to keep them quiet.
Fully understanding damped (and eventually driven) oscillation is essential
to many sciences as well as both mechanical and electrical engineering.
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3 Waves
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3.1 Wave Summary

• Wave Equation
d2y

dt2
− v2 d2y

dx2
= 0 (93)

where for waves on a string:

v = ±
√

T

µ
(94)

• Superposition Principle

y(x, t) = Ay1(x, t) + By2(x, t) (95)

(sum of solutions is solution). Leads to interference, standing waves.

• Travelling Wave Pulse

y(x, t) = f(x± vt) (96)

where f(u) is an arbitrary functional shape or pulse

• Harmonic Travelling Waves

y(x, t) = y0 sin(kx± ωt). (97)

where frequency f , wavelength λ, wave number k = 2π/λ and angular
frequency ω are related to v by:

v = fλ =
ω

k
(98)

• Stationary Harmonic Waves

y(x, t) = y0 cos(kx + δ) cos(ωt + φ) (99)

where one can select k and ω so that waves on a string of length L
satisfy fixed or free boundary conditions.
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• Energy (of wave on string)

Etot =
1

2
µω2A2λ (100)

is the total energy in a wavelength of a travelling harmonic wave. The
wave transports the power

P =
E

T
=

1

2
µω2A2λf =

1

2
µω2A2v (101)

past any point on the string.

• Reflection/Transmission of Waves

1. Light string (medium) to heavy string (medium): Transmitted
pulse right side up, reflected pulse inverted. (A fixed string bound-
ary is the limit of attaching to an “infinitely heavy string”).

2. Heavy string to light string: Transmitted pulse right side up, re-
flected pulse right side up. (a free string boundary is the limit of
attaching to a “massless string”).

3.2 Waves

We have seen how a particle on a spring that creates a restoring force propor-
tional to its displacement from an equilibrium position oscillates harmonically
in time about that equilibrium. What happens if there are many particles,
all connected by tiny “springs” to one another in an extended way? This is
a good metaphor for many, many physical systems. Particles in a solid, a
liquid, or a gas both attract and repel one another with forces that maintain
an average particle spacing. Extended objects under tension or pressure such
as strings have components that can exert forces on one another. Even fields
(as we shall learn next semester) can interact so that changes in one tiny
element of space create changes in a neighboring element of space.

What we observe in all of these cases is that changes in any part of
the medium ”propagate” to other parts of the medium in a very systematic
way. The motion observed in this propagation is called a wave. We have all
observed waves in our daily lives in many contexts. We have watched water
waves propagate away from boats and raindrops. We listen to sound waves
(music) generated by waves created on stretched strings or from tubes driven
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by air and transmitted invisibly through space by means of radio waves. We
read these words by means of light, an electromagnetic wave. In advanced
physics classes one learns that all matter is a sort of quantum wave, that
indeed everything is really a manifestation of waves.

It therefore seems sensible to make a first pass at understanding waves
and how they work in general, so that we can learn and understand more in
future classes that go into detail.

The concept of a wave is simple – it is an extended structure that oscillates
in both space and in time. We will study two kinds of waves at this point in
the course:

• Transverse Waves (e.g. waves on a string). The displacement of
particles in a transverse wave is perpendicular to the direction of the
wave itself.

• Longitudinal Waves (e.g. sound waves). The displacement of par-
ticles in a longitudinal wave is in the same direction that the wave
propagates in.

Some waves, for example water waves, are simultaneously longitudinal and
transverse. Transverse waves are probably the most important waves to
understand for the future; light is a transverse wave. We will therefore start
by studying transverse waves in a simple context: waves on a stretched string.
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3.3 Waves on a String

Suppose we have a uniform string (such as a guitar string) that is stretched
so that it is under tension T . The string is characterized by its mass per
unit length µ – thick guitar strings have more mass per unit length than thin
ones. It is fairly harmless at this point to imagine that the string is fixed to
pegs at the ends that maintain the tension.

Now imagine that we have plucked the string somewhere between the end
points so that it is displaced in the y-direction from its equilibrium (straight)
stretched position and has some curved shape. If we examine a short segment
of the string of length ∆x, we can write Newton’s 2nd law for that segment.
If θissmall, in the x-direction the components of the tension nearly perfectly
cancel. Each bit of string therefore moves more or less straight up and down,
and a useful solution is described by y(x, t), the y displacement of the string
at position x and time t. The permitted solutions must be continuous if the
string does not break.

In the y-direction, we find write the force law by considering the difference

between the y-components at the ends:

Fy = T sin(θ2) − T sin(θ1) = µ∆xay (102)

We make the small angle approximation: sin(θ) ≈ tan(θ) ≈ θ, divide out the
µ∆x, and note that tan(θ) = dy

dx
(the slope of the string is the tangent of the

angle the string makes with the horizon). Then:

d2y

dt2
=

T

µ

∆( dy

dx
)

∆x
(103)

In the limit that ∆x → 0, this becomes:

d2y

dt2
− T

µ

d2y

dx2
= 0 (104)

The quantity T
µ

has to have units of L2

t2
which is a velocity squared.

We therefore formulate this as the one dimensional wave equation:

d2y

dt2
− v2 d2y

dx2
= 0 (105)

where

v = ±
√

T

µ
(106)
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are the velocity(s) of the wave on the string. This is a second order linear
homogeneous differential equation and has (as one might imagine) well known
and well understood solutions.

Note well: At the tension in the string increases, so does the wave velocity.
As the mass density of the string increases, the wave velocity decreases. This
makes physical sense. As tension goes up the restoring force is greater. As
mass density goes up one accelerates less for a given tension.

3.4 Solutions to the Wave Equation

In one dimension there are at least three distinct solutions to the wave equa-
tion that we are interested in. Two of these solutions propagate along the
string – energy is transported from one place to another by the wave. The
third is a stationary solution, in the sense that the wave doesn’t propagate
in one direction or the other (not in the sense that the string doesn’t move).
But first:

3.4.1 An Important Property of Waves: Superposition

The wave equation is linear, and hence it is easy to show that if y1(x, t)
solves the wave equation and y2(x, t) (independent of y1) also solves the
wave equation, then:

y(x, t) = Ay1(x, t) + By2(x, t) (107)

solves the wave equation for arbitrary (complex) A and B.
This property of waves is most powerful and sublime.

3.4.2 Arbitrary Waveforms Propagating to the Left or Right

The first solution we can discern by noting that the wave equation equates a
second derivative in time to a second derivative in space. Suppose we write
the solution as f(u) where u is an unknown function of x and t and substitute
it into the differential equation and use the chain rule:

d2f

du2
(
du

dt
)2 − v2 d2f

du2
(
du

dx
)2 = 0 (108)

or
d2f

du2

{

(
du

dt
)2 − v2(

du

dx
)2

}

= 0 (109)
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du

dt
= ±v

du

dx
(110)

with a simple solution:
u = x± vt (111)

What this tells us is that any function

y(x, t) = f(x± vt) (112)

satisfies the wave equation. Any shape of wave created on the string and
propagating to the right or left is a solution to the wave equation, although
not all of these waves will vanish at the ends of a string.

3.4.3 Harmonic Waveforms Propagating to the Left or Right

An interesting special case of this solution is the case of harmonic waves
propagating to the left or right. Harmonic waves are simply waves that
oscillate with a given harmonic frequency. For example:

y(x, t) = y0 sin(x− vt) (113)

is one such wave. y0 is called the amplitude of the harmonic wave. But
what sorts of parameters describe the wave itself? Are there more than one
harmonic waves?

This particular wave looks like a sinusoidal wave propagating to the right
(positive x direction). But this is not a very convenient parameterization. To
better describe a general harmonic wave, we need to introduce the following
quantities:

• The frequency f . This is the number of cycles per second that pass
a point or that a point on the string moves up and down.

• The wavelength λ. This the distance one has to travel down the string
to return to the same point in the wave cycle at any given instant in
time.

To convert x (a distance) into an angle in radians, we need to multiply it
by 2π radians per wavelength. We therefore define the wave number:

k =
2π

λ
(114)
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and write our harmonic solution as:

y(x, t) = y0 sin(k(x− vt)) (115)

= y0 sin(kx − kvt) (116)

= y0 sin(kx − ωt) (117)

where we have used the following train of algebra in the last step:

kv =
2π

λ
v = 2πf =

2π

T
= ω (118)

and where we see that we have two ways to write v:

v = fλ =
ω

k
(119)

As before, you should simply know every relation in this set of algebraic
relations between λ, k, f, ω, v to save time on tests and quizzes. Of course
there is also the harmonic wave travelling to the left as well:

y(x, t) = y0 sin(kx + ωt). (120)

A final observation about these harmonic waves is that because arbitrary
functions can be expanded in terms of harmonic functions (e.g. Fourier Series,
Fourier Transforms) and because the wave equation is linear and its solutions
are superposable, the two solution forms above are not really distinct. One
can expand the “arbitrary” f(x − vt) in a sum of sin(kx − ωt)’s for special
frequencies and wavelengths. In one dimension this doesn’t give you much,
but in two or more dimensions this process helps one compute the dispersion

of the wave caused by the wave “spreading out” in multiple dimensions and
reducing its amplitude.

3.4.4 Stationary Waves

The third special case of solutions to the wave equation is that of standing

waves. They are especially apropos to waves on a string fixed at one or both
ends. There are two ways to find these solutions from the solutions above.
A harmonic wave travelling to the right and hitting the end of the string
(which is fixed), it has no choice but to reflect. This is because the energy

in the string cannot just disappear, and if the end point is fixed no work can
be done by it on the peg to which it is attached. The reflected wave has to
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have the same amplitude and frequency as the incoming wave. What does
the sum of the incoming and reflected wave look like in this special case?

Suppose one adds two harmonic waves with equal amplitudes, the same
wavelengths and frequencies, but that are travelling in opposite directions:

y(x, t) = y0 (sin(kx − ωt) + sin(kx + ωt)) (121)

= 2y0 sin(kx) cos(ωt) (122)

= A sin(kx) cos(ωt) (123)

(where we give the standing wave the arbitrary amplitude A). Since all the
solutions above are independent of the phase, a second useful way to write
stationary waves is:

y(x, t) = A cos(kx) cos(ωt) (124)

Which of these one uses depends on the details of the boundary conditions
on the string.

In this solution a sinusoidal form oscillates harmonically up and down,
but the solution has some very important new properties. For one, it is
always zero when x = 0 for all possible lambda:

y(0, t) = 0 (125)

For a given λ there are certain other x positions where the wave vanishes at
all times. These positions are called nodes of the wave. We see that there
are nodes for any L such that:

y(L, t) = A sin(kL) cos(ωt) = 0 (126)

which implies that:

kL =
2πL

λ
= π, 2π, 3π, . . . (127)

or

λ =
2L

n
(128)

for n = 1, 2, 3, ...
Only waves with these wavelengths and their associated frequencies can

persist on a string of length L fixed at both ends so that

y(0, t) = y(L, t) = 0 (129)
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(such as a guitar string or harp string). Superpositions of these waves are
what give guitar strings their particular tone.

It is also possible to stretch a string so that it is fixed at one end but so
that the other end is free to move – to slide up and down without friction on
a greased rod, for example. In this case, instead of having a node at the free
end (where the wave itself vanishes), it is pretty easy to see that the slope of
the wave at the end has to vanish. This is because if the slope were not zero,
the terminating rod would be pulling up or down on the string, contradicting
our requirement that the rod be frictionless and not able to pull the string
up or down, only directly to the left or right due to tension.

The slope of a sine wave is zero only when the sine wave itself is a maxi-
mum or minimum, so that the wave on a string free at an end must have an
antinode (maximum magnitude of its amplitude) at the free end. Using the
same standing wave form we derived above, we see that:

kL =
2πL

λ
= π/2, 3π/2, 5π/2 . . . (130)

for a string fixed at x = 0 and free at x = L, or:

λ =
4L

2n − 1
(131)

for n = 1, 2, 3, ...
There is a second way to obtain the standing wave solutions that particu-

larly exhibits the relationship between waves and harmonic oscillators. One
assumes that the solution y(x, t) can be written as the product of a fuction
in x alone and a second function in t alone:

y(x, t) = X(x)T (t) (132)

If we substitute this into the differential equation and divide by y(x, t) we
get:

d2y

dt2
= X(x)

d2T

dt2
= v2 d2y

dx2
= v2T (t)

d2X

dx2
(133)

1

T (t)

d2T

dt2
= v2 1

X(x)

d2X

dx2
(134)

= −ω2 (135)
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where the last line follows because the second line equations a function of t
(only) to a function of x (only) so that both terms must equal a constant.
This is then the two equations:

d2T

dt2
+ ω2T = 0 (136)

and
d2X

dt2
+ k2X = 0 (137)

(where we use k = ω/v).
From this we see that:

T (t) = T0 cos(ωt + φ) (138)

and
X(x) = X0 cos(kx + δ) (139)

so that the most general stationary solution can be written:

y(x, t) = y0 cos(kx + δ) cos(ωt + φ) (140)

3.5 Reflection of Waves

We argued above that waves have to reflect of of the ends of stretched strings
because of energy conservation. This is true independent of whether the end
is fixed or free – in neither case can the string do work on the wall or rod to
which it is affixed. However, the behavior of the reflected wave is different
in the two cases.

Suppose a wave pulse is incident on the fixed end of a string. One way
to “discover” a wave solution that apparently conserves energy is to imagine
that the string continues through the barrier. At the same time the pulse hits
the barrier, an identical pulse hits the barrier from the other, “imaginary”
side.

Since the two pulses are identical, energy will clearly be conserved. The
one going from left to right will transmit its energy onto the imaginary string
beyond at the same rate energy appears going from right to left from the
imaginary string.

However, we still have two choices to consider. The wave from the imag-
inary string could be right side up the same as the incident wave or upside

down. Energy is conserved either way!
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If the right side up wave (left to right) encounters an upside down wave
(right to left) they will always be opposite at the barrier, and when superposed
they will cancel at the barrier. This corresponds to a fixed string. On the
other hand, if a right side up wave encounters a right side up wave, they
will add at the barrier with opposite slope. There will be a maximum at the
barrier with zero slope – just what is needed for a free string.

From this we deduce the general rule that wave pulses invert when re-
flected from a fixed boundary (string fixed at one end) and reflect right side
up from a free boundary.

When two strings of different weight (mass density) are connected, wave
pulses on one string are both transmitted onto the other and are generally
partially reflected from the boundary. Computing the transmitted and re-
flected waves is straightforward but beyond the scope of this class (it starts
to involve real math and studies of boundary conditions). However, the fol-
lowing qualitative properties of the transmitted and reflected waves should
be learned:

• Light string (medium) to heavy string (medium): Transmitted pulse
right side up, reflected pulse inverted. (A fixed string boundary is the
limit of attaching to an “infinitely heavy string”).

• Heavy string to light string: Transmitted pulse right side up, reflected
pulse right side up. (a free string boundary is the limit of attaching to
a “massless string”).

3.6 Energy

Clearly a wave can carry energy from one place to another. A cable we are
coiling is hung up on a piece of wood. We flip a pulse onto the wire, it runs
down to the piece of wood and knocks the wire free. Our lungs and larnyx
create sound waves, and those waves trigger neurons in ears far away. The
sun releases nuclear energy, and a few minutes later that energy, propagated
to earth as a light wave, creates sugar energy stores inside a plant that are
still later released while we play basketball. Since moving energy around
seems to be important, perhaps we should figure out how a wave manages it.

Let us restrict our attention to a harmonic wave of known angular fre-
quency ω. Our results will still be quite general, because arbitrary wave
pulses can be fourier decomposed as noted above. Consider a small piece of
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the string of length dx and mass dm = µdx. This piece of string, displaced
to its position y(x, t), will have potential energy:

dU =
1

2
dmω2y2(x, t) (141)

=
1

2
µdxω2y2(x, t) (142)

=
1

2
A2µω2 sin2(kx − ωt)dx (143)

We can easily integrate this over any specific interval. Let us pick a particular
time t = 0 and integrate it over a single wavelength:

U =
∫ λ

0

1

2
A2µω2 sin2(kx)dx (144)

=
1

2k
A2µω2

∫ λ

0
sin2(kx)kdx (145)

=
1

2k
A2µω2

∫ 2

0
π sin2(θ)dθ (146)

=
1

4
A2µω2λ (147)

Now we need to compute the kinetic energy in a wavelength at the same
instant.

dK =
1

2
dm

(

dy

dt

)2

(148)

=
1

2
A2µω2 cos2(kx − ωt)dx (149)

which has exactly the same integral:

K =
1

4
A2µω2λ (150)

so that the total energy in a wavelength of the wave is:

Etot =
1

2
µω2A2λ (151)

Study the dependences in this relation. Energy depends on the amplitude

squared! (Emphasis to convince you to remember this! It is important!)
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It depends on the mass per unit length times the length (the mass of the
segment). It depends on the frequency squared.

This energy moves as the wave propagates down the string. If you are
sitting at some point on the string, all the energy in one wavelength passes
you in one period of oscillation. This lets us compute the power carried by
the string – the energy per unit time that passes us going from left to right:

P =
E

T
=

1

2
µω2A2λf =

1

2
µω2A2v (152)

We can think of this as being the energy per unit length (the total energy per
wavelength divided by the wavelength) times the velocity of the wave. This
is a very good way to think of it as we prepare to study light waves, where a
very similar relation will hold.
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4 Sound
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4.1 Sound Summary

• Speed of Sound in a fluid

v =

√

B

ρ
(153)

where B is the bulk modulus of the fluid and ρ is the density. These
quantities vary with pressure and temperature.

• Speed of Sound in air is va ≈ 340 m/sec.

• Doppler Shift: Moving Source

f ′ =
f0

(1 ∓ vs

va
)

(154)

where f0 is the unshifted frequency of the sound wave for receding (+)
and approaching (-) source.

• Doppler Shift: Moving Receiver

f ′ = f0(1 ±
vs

va

) (155)

where f0 is the unshifted frequency of the sound wave for receding (-)
and approaching (+) receiver.

• Stationary Harmonic Waves

y(x, t) = y0 sin(kx) cos(ωt) (156)

for displacement waves in a pipe of length L closed at one or both ends.
This solution has a node at x = 0 (the closed end). The permitted
resonant frequencies are determined by:

kL = nπ (157)

for n = 1, 2... (both ends closed, nodes at both ends) or:

kL =
2n − 1

2
π (158)

for n = 1, 2, ... (one end closed, nodes at the closed end).
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• Beats If two sound waves of equal amplitude and slightly different
frequency are added:

s(x, t) = s0 sin(k0x− ω0t) + s0 sin(k1x− ω1t) (159)

= 2s0 sin(
k0 + k1

2
x − ω0 + ω1

2
t) cos(

k0 − k1

2
x − ω0 − ω1

2
t)(160)

which describes a wave with the average frequency and twice the am-
plitude modulated so that it “beats” (goes to zero) at the difference of
the frequencies δf = |f1 − f0|.

4.2 Sound Waves in a Fluid

Waves propagate in a fluid much in the same way that a disturbance propa-
gates down a closed hall crowded with people. If one shoves a person so that
they knock into their neighbor, the neighbor falls against their neighbor (and
shoves back), and their neighbor shoves against their still further neighbor
and so on.

Such a wave differs from the transverse waves we studied on a string
in that the displacement of the medium (the air molecules) is in the same

direction as the direction of propagation of the wave. This kind of wave is
called a longitudinal wave.

Although different, sound waves can be related to waves on a string in
many ways. Most of the similarities and differences can be traced to one
thing: a string is a one dimensional medium and is characterized only by
length; a fluid is typically a three dimensional medium and is characterized
by a volume.

Air (a typical fluid that supports sound waves) does not support “ten-
sion”, it is under pressure. When air is compressed its molecules are shoved
closer together, altering its density and occupied volume. For small changes
in volume the pressure alters approximately linearly with a coefficient called
the “bulk modulus” B describing the way the pressure increases as the frac-
tional volume decreases. Air does not have a mass per unit length µ, rather
it has a mass per unit volume, ρ.

The velocity of waves in air is given by

va =

√

B

ρ
≈ 343m/sec (161)
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The “approximately” here is fairly serious. The actual speed varies ac-
cording to things like the air pressure (which varies significantly with altitude
and with the weather at any given altitude as low and high pressure areas
move around on the earth’s surface) and the temperature (hotter molecules
push each other apart more strongly at any given density). The speed of
sound can vary by a few percent from the approximate value given above.

4.3 Sound Wave Solutions

Sound waves can be characterized one of two ways: as organized fluctuations
in the position of the molecules of the fluid as they oscillate around an equi-
librium displacement or as organized fluctuations in the pressure of the fluid
as molecules are crammed closer together or are diven farther apart than
they are on average in the quiescent fluid.

Sound waves propagate in one direction (out of three) at any given point
in space. This means that in the direction perpendicular to propagation, the
wave is spread out to form a “wave front”. The wave front can be nearly
arbitrary in shape initially; thereafter it evolves according to the mathematics
of the wave equation in three dimensions (which is similar to but a bit more
complicated than the wave equation in one dimension).

To avoid this complication and focus on general properties that are com-
monly encountered, we will concentrate on two particular kinds of solutions:

1. Plane Wave solutions. In these solutions, the entire wave moves in
one direction (say the x direction) and the wave front is a 2-D plane
perpendicular to the direction of propagation. These (displacement)
solutions can be written as (e.g.):

s(x, t) = s0 sin(kx− ωt) (162)

where s0 is the maximum displacement in the travelling wave (which
moves in the x direction) and where all molecules in the entire plane

at position x are displaced by the same amount.

Waves far away from the sources that created them are best described as
plane waves. So are waves propagating down a constrained environment
such as a tube that permits waves to only travel in “one direction”.

2. Spherical Wave solutions. Sound is often emitted from a source that is
highly localized (such as a hammer hitting a nail, or a loudspeaker). If
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the sound is emitted equally in all directions from the source, a spherical
wavefront is formed. Even if it is not emitted equally in all directions,
sound from a localized source will generally form a spherically curved
wavefront as it travels away from the point with constant speed. The
displacement of a spherical wavefront decreases as one moves further
away from the source because the energy in the wavefront is spread out
on larger and larger surfaces. Its form is given by:

s(r, t) =
s0

r
sin(kr − ωt) (163)

where r is the radial distance away from the point-like source.

4.4 Sound Wave Intensity

The energy density of sound waves is given by:

dE

dV
=

1

2
ρω2s2 (164)

(again, very similar in form to the energy density of a wave on a string).
However, this energy per unit volume is propagated in a single direction. It
is therefore spread out so that it crosses an area, not a single point. Just
how much energy an object receives therefore depends on how much area it
intersects in the incoming sound wave, not just on the energy density of the
sound wave itself.

For this reason the energy carried by sound waves is best measured by in-

tensity: the energy per unit time per unit area perpendicular to the direction
of wave propagation. Imagine a box with sides given by ∆A (perpendicular
to the direction of the wave’s propagation) and v∆t (in the direction of the
wave’s propagation. All the energy in this box crosses through ∆A in time
∆t. That is:

∆E = (
1

2
ρω2s2)∆Av∆t (165)

or

I =
∆E

∆A∆t
=

1

2
ρω2s2v (166)

which looks very much like the power carried by a wave on a string. In the
case of a plane wave propagating down a narrow tube, it is very similar – the
power of the wave is the intensity times the tube’s cross section.
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However, consider a spherical wave. For a spherical wave, the intensity
looks something like:

I(r, t) =
1

2
ρω2 s2

0 sin2(kr − ωt)

r2
v (167)

which can be written as:

I(r, t) =
P

r2
(168)

where P is the total power in the wave.
This makes sense from the point of view of energy conservation and sym-

metry. If a source emits a power P , that energy has to cross each successive
spherical surface that surrounds the source. Those surfaces have an area that
varies like A = 4πr2. A surface at r = 2r0 has 4 times the area of one at
r = r0, but the same total power has to go through both surfaces. Conse-
quently, the intensity at the r = 2r0 surface has to be 1/4 the intensity at
the r = r0 surface.

It is important to remember this argument, simple as it is. Think back to
Newton’s law of gravitation. Remember that gravitational field diminishes
as 1/r2 with the distance from the source. Electrostatic field also diminishes
as 1/r2. There seems to be a shared connection between symmetric propa-
gation and spherical geometry; this will form the basis for Gauss’s Law in
electrostatics and much beautiful math.

4.5 Doppler Shift

Everybody has heard the doppler shift in action. It is the rise (or fall) in
frequency observed when a source/receiver pair approach (or recede) from
one another. In this section we will derive expressions for the doppler shift
for moving source and moving receiver.

4.5.1 Moving Source

Suppose your receiver (ear) is stationary, while a source of harmonic sound
waves at fixed frequency f0 is approaching you. As the waves are emitted
by the source they have a fixed wavelength λ0 = va/f0 = vaT and expand
spherically from the point where the source was at the time the wavefront
was emitted.
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However, that point moves in the direction of the receiver. In the time
between wavefronts (one period T ) the source moves a distance vsT . The
distance between successive wavefronts in the direction of motion is thus:

λ′ = λ0 − vsT (169)

and (factoring and freely using e.g. f = 1/T ):

va

f ′
=

va − vs

f0

(170)

or

f ′ =
f0

1 − vs

va

(171)

If the source is moving away from the receiver, everything is the same
except now the wavelength is shifted to be bigger and the frequency smaller
(as one would expect from changing the sign on the velocity):

f ′ =
f0

1 + vs

va

(172)

4.5.2 Moving Receiver

Now imagine that the source of waves at frequency f0 is stationary but the
receiver is moving towards the source. The source is thus surrounded by
spherical wavefronts a distance λ0 = vaT apart. At t = 0 the receiver crosses
one of them. At a time T ′ later, it has moved a distance d = vrT

′ in the
direction of the source, and the wave from the source has moved a distance
D = vaT

′ toward the receiver, and the receiver encounters the next wave
front. That is:

λ0 = d + D (173)

= vrT
′ + vaT

′ (174)

= (vr + va)T
′ (175)

vaT = (vr + va)T
′ (176)

We use f0 = 1/T , f ′ = 1/T ′ (where T ′ is the apparent time between
wavefronts to the receiver) and rearrange this into:

f ′ = f0(1 +
vr

va

) (177)
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Again, if the receiver is moving away from the source, everything is the
same but the sign of vr, so one gets:

f ′ = f0(1 − vr

va

) (178)

4.5.3 Moving Source and Moving Receiver

This result is just the product of the two above – moving source causes one
shift and moving receiver causes another to get:

f ′ = f0

1 ∓ vr

va

1 ± vs

va

(179)

where in both cases relative approach shifts the frequency up and relative

recession shifts the frequency down.
I do not recommend memorizing these equations – I don’t have them

memorized myself. It is very easy to confuse the forms for source and receiver,
and the derivations take a few seconds and are likely worth points in and of
themselves. If you’re going to memorize anything, memorize the derivation

(a process I call “learning”, as opposed to “memorizing”). In fact, this is
excellent advice for 90% of the material you learn in this course!

4.6 Standing Waves in Pipes

Everybody has created a stationary resonant harmonic sound wave by whistling
or blowing over a beer bottle or by swinging a garden hose or by playing the
organ. In this section we will see how to compute the harmonics of a given
(simple) pipe geometry for an imaginary organ pipe that is open or closed at
one or both ends.

The way we proceed is straightforward. Air cannot penetrate a closed
pipe end. The air molecules at the very end are therefore “fixed” – they
cannot displace into the closed end. The closed end of the pipe is thus a
displacement node. In order not to displace air the closed pipe end has to
exert a force on the molecules by means of pressure, so that the closed end
is a pressure antinode.

At an open pipe end the argument is inverted. The pipe is open to the air
(at fixed background/equilibrium pressure) so that there must be a pressure
node at the open end. Pressure and displacement are π/2 out of phase, so
that the open end is also a displacement antinode.
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Actually, the air pressure in the standing wave doesn’t instantly equalize
with the background pressure at an open end – it sort of “bulges” out of
the pipe a bit. The displacement antinode is therefore just outside the pipe
end, not at the pipe end. You may still draw a displacement antinode (or
pressure node) as if they occur at the open pipe end; just remember that
the distance from the open end to the first displacement node is not a very
accurate measure of a quarter wavelength and that open organ pipes are a
bit “longer” than they appear from the point of view of computing their
resonant harmonics.

Once we understand the boundary conditions at the ends of the pipes,
it is pretty easy to write down expressions for the standing waves and to
deduce their harmonic frequencies.

4.6.1 Pipe Closed at Both Ends

There are displacement nodes at both ends. This is just like a string fixed at
both ends:

s(x, t) = s0 sin(knx) cos(ωnt) (180)

which has a node at x = 0 for all k. To get a node at the other end, we
require:

sin(knL) = 0 (181)

or
knL = nπ (182)

for n = 1, 2, 3.... This converts to:

λn =
2L

n
(183)

and
fn =

va

λn

=
van

2L
(184)

4.6.2 Pipe Closed at One End

There is a displacement node at the closed end, and an antinode at the open
end. This is just like a string fixed at one end and free at the other. Let’s
arbitrarily make x = 0 the closed end. Then:

s(x, t) = s0 sin(knx) cos(ωnt) (185)

56



has a node at x = 0 for all k. To get an antinode at the other end, we require:

sin(knL) = ±1 (186)

or

knL =
2n − 2

2
π (187)

for n = 1, 2, 3... (odd half-integral multiples of π. This converts to:

λn =
2L

2n − 1
(188)

and

fn =
va

λn

=
va(2n − 1)

4L
(189)

4.6.3 Pipe Open at Both Ends

There are displacement antinodes at both ends. This is just like a string free
at both ends. We could therefore proceed from

s(x, t) = s0 cos(knx) cos(ωnt) (190)

and
cos(knL) = ±1 (191)

but we could also remember that there are pressure nodes at both ends,
which makes them like a string fixed at both ends again. Either way one will
get the same frequencies one gets for the pipe closed at both ends above (as
the cosine is ±1 for knL = nπ) but the picture of the nodes is still different
– be sure to draw displacement antinodes at the open ends!

4.7 Beats

If you have ever played around with a guitar, you’ve probably noticed that
if two strings are fingered to be the “same note” but are really slightly out
of tune and are struck together, the resulting sound “beats” – it modulates
up and down in intensity at a low frequency often in the ballpark of a few
cycles per second.
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Beats occur because of the superposition principle. We can add any two
(or more) solutions to the wave equation and still get a solution to the wave
equation, even if the solutions have different frequencies. Recall the identity:

sin(A) + sin(B) = 2 sin(
A + B

2
) cos(

A − B

2
) (192)

If one adds two waves with different wave numbers/frequencies and uses
this rule, one gets

s(x, t) = s0 sin(k0x − ω0t) + s0 sin(k1x − ω1t) (193)

= 2s0 sin(
k0 + k1

2
x− ω0 + ω1

2
t) cos(

k0 − k1

2
x− ω0 − ω1

2
t)(194)

This describes a wave that has twice the maximum amplitude, the average

frequency (the first term), and a second term that (at any point x) oscillates
like cos(∆ωt

2
).

The “frequency” of this second modulating term is f0−f1

2
, but the ear

cannot hear the inversion of phase that occurs when it is negative and the
difference is small. It just hears maximum amplitude in the rapidly oscillating
average frequency part, which goes to zero when the slowing varying cosine
does, twice per cycle. The ear then hears two beats per cycle, making the
“beat frequency”:

fbeat = ∆f = |f0 − f1| (195)

4.8 Interference and Sound Waves

We will not cover interference and diffraction of harmonic sound waves in
this course. Beats are a common experience in sound as is the doppler shift,
but sound wave interference is not so common an experience (although it can
definitely and annoyingly occur if you hook up speakers in your stereo out of
phase). Interference will be treated next semester in the context of coherent
light waves. Just to give you a head start on that, we’ll indicate the basic
ideas underlying interference here.

Suppose you have two sources that are at the same frequency and have
the same amplitude and phase but are at different locations. One source
might be a distance x away from you and the other a distance x + ∆x away
from you. The waves from these two sources add like:

s(x, t) = s0 sin(kx− ωt) + s0 sin(k(x + ∆x) − ωt) (196)

= 2s0 sin(k(x +
∆x

2
− ωt) cos(k

∆x

2
) (197)
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The sine part describes a wave with twice the amplitude, the same fre-
quency, but shifted slightly in phase by k∆x/2. The cosine part is time

independent and modulates the first part. For some values of ∆x it can
vanish. For others it can have magnitude one.

The intensity of the wave is what our ears hear – they are insensitive
to the phase (although certain echolocating species such as bats may be
sensitive to phase information as well as frequency). The average intensity
is proportional to the wave amplitude squared:

I0 =
1

2
ρω2s2

0v (198)

With two sources (and a maximum amplitude of two) we get:

I =
1

2
ρω2(22s2

0 cos2(k
∆x

2
)v (199)

= 4I0 cos2(k
∆x

2
) (200)

There are two cases of particular interest in this expression. When

cos2(k
∆x

2
) = 1 (201)

one has four times the intensity of one source at peak. This occurs when:

k
∆x

2
= nπ (202)

(for n = 0, 1, 2...) or
∆x = nλ (203)

If the path difference contains an integral number of wavelengths the waves
from the two sources arrive in phase, add, and produce sound that has twice
the amplitude and four times the intensity. This is called complete construc-

tive interference.
On the other hand, when

cos2(k
∆x

2
) = 0 (204)

the sound intensity vanishes. This is called destructive interference. This
occurs when

k
∆x

2
=

2n + 1

2
π (205)
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(for n = 0, 1, 2...) or

∆x =
2n + 1

2
λ (206)

If the path difference contains a half integral number of wavelengths, the
waves from two sources arrive exactly out of phase, and cancel. The sound
intensity vanishes.

You can see why this would make hooking your speakers up out of phase
a bad idea. If you hook them up out of phase the waves start with a phase
difference of π – one speaker is pushing out while the other is pulling in. If
you sit equidistant from the two speakers and then harmonic waves with the
same frequency from a single source coming from the two speakers cancel as
they reach you (usually not perfectly) and the music sounds very odd indeed,
because other parts of the music are not being played equally from the two
speakers and don’t cancel.

You can also see that there are many other situations where constructive
or destructive interference can occur, both for sound waves and for other
waves including water waves, light waves, even waves on strings. Our “stand-
ing wave solution” can be rederived as the superposition of a left- and right-
travelling harmonic wave, for example. You can have interference from more
than one source, it doesn’t have to be just two.

This leads to some really excellent engineering. Ultrasonic probe arrays,
radiotelescope arrays, sonar arrays, diffraction gratings, holograms, are all
examples of interference being put to work. So it is worth it to learn the
general idea as early as possible, even if it isn’t assigned.
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5 Fluids
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5.1 Fluids Summary

• Fluids are states of matter characterized by a lack of long range order.
They are characterized by their density ρ and their compressibility.
Liquids such as water are (typically) relatively incompressible; gases
can be significantly compressed. Fluids have other characteristics, for
example viscosity (how “sticky” the fluid is). We will ignore these in
this course.

• Pressure is the force per unit area exerted by a fluid on its surround-
ings:

P = F/A (207)

Its SI units are pascals where 1 pascal = 1 newton/meter squared.
Pressure is also measured in “atmospheres” (the pressure of air at or
near sea level) where 1 atmosphere ≈ 105 pascals. The pressure in an
incompressible fluid varies with depth according to:

P = P0 + ρgD (208)

where P0 is the pressure at the top and D is the depth.

• Pascal’s Principle Pressure applied to a fluid is transmitted undi-
minished to all points of the fluid.

• Conservation of Flow We will study only steady/laminar flow in the
absence of turbulence and viscosity.

A1v1 = A2v2 (209)

• Bernoulli’s Equation

P +
1

2
ρv2 + ρgh = constant (210)

• Toricelli’s Rule: If a fluid is flowing through a very small hole (for
example at the bottom of a large tank) then the velocity of the fluid
at the large end can be neglected in Bernoulli’s Equation.

• Archimedes’ Principle The buoyant force on an object

Fb = ρgVdisp (211)

where frequency Vdisp is the volume of fluid displaced by an object.
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• Venturi Effect The pressure in a fluid increases as the velocity of the
fluid decreases. This is responsible for e.g. the lift of an airplane wing.

5.2 Fluids

Fluids are the generic name given to two states of matter characterized by a
lack of long range order and a high degree of mobility at the molecular scale.
Fluids have the following properties:

• They usually assume the shape of any vessel they are placed in (ex-
ceptions are associated with surface effects such as surface tension and
how well the fluid adheres to the surface in question).

• They are characterized by a mass per unit volume density ρ.

• They exert a pressure P (force per unit area) on themselves and any
surfaces they are in contact with.

• The pressure can vary according to the dynamic and static properties
of the fluid.

• The fluid has a measure of its “stickiness” and resistance to flow called
viscosity. Viscosity is the internal friction of a fluid, more or less. We
will treat fluids as being “ideal” and ignore viscosity in this course.

• Fluids are compressible – when the pressure in a fluid is increased, its
volume descreases according to the relation:

∆P = −B
∆V

V
(212)

where B is called the bulk modulus of the fluid (the equivalent of a
spring constant).

• Fluids where B is a large number (so large changes in pressure create
only tiny changes in fractional volume) are called incompressible. Water
is an example of an incompressible fluid.

• Below a critical speed, the dynamic flow of a moving fluid tends to
be laminar, where every bit of fluid moves parallel to its neighbors in
response to pressure differentials and around obstacles. Above that
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speed it becomes turbulent flow. Turbulent flow is quite difficult to
treat mathematically and is hence beyond the scope of this introductory
course – we will restrict our attention to ideal fluids either static or in
laminar flow.

5.3 Static Fluids

A fluid in static equilibrium must support its own weight. If one considers a
small circular box of fluid with area ∆A perpendicular to gravity and sides
of thickness dx, the force on the sides cancels due to symmetry. The force
pushing down at the top of the box is P0∆A. The force pushing up from
the bottom of the box is (P0 + dP )∆A. The weight of the fluid in the box is
w = ρg∆Adx. Thus:

{(P0 + dP ) − P0}∆A = ρg∆Adx (213)

or
dP = ρgdx (214)

If ρ is itself a function of pressure/depth (as occurs with e.g. air) this can
be a complicated expression to evaluate. For an incompressible fluid such as
water, ρ is constant over rather large variations in pressure. In that case,
integration yields:

P = P0 + ρgD (215)
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6 Zeroth Law of Thermodynamics
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6.1 0th Law of Thermodynamics Summary

• Thermal Equilibrium

A system with many microscopic components (for example, a gas, a
liquid, a solid with many molecules) that is isolated from all forms of
energy exchange and left alone for a “long time” moves toward a state
of thermal equilibrium. A system in thermal equilibrium is character-
ized by a set of macroscopic quantities that depend on the system in
question and characterize its “state” (such as pressure, volume, density)
that do not change in time.

Two systems are said to be in (mutual) thermal equilibrium if, when
they are placed in “thermal contact” (basically, contact that permits
the exchange of energy between them), their state variables do not
change.

• Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system C, and system B
is in thermal equilibrium with system C, then system A is in thermal
equilibrium with system B.

• Temperature and Thermometers

The point of the Zeroth Law is that it is the basis of the thermometer. A
thermometer is a portable device whose thermal state is related linearly
to some simple property, for example its density or pressure. Once a
suitable temperature scale is defined for the device, one can use it to
measure the temperature of a variety of disparate systems in thermal
equilibrium. Temperature thus characterizes thermal equilibrium.

• Temperature Scales

1. Fahrenheit: This is one of the oldest scales, and is based on the
coldest temperature that could be achieved with a mix of ice and
alcohol. In it the freezing point of water is at 32◦ F, the boiling
point of water is at 212◦ F.

2. Celsius or Centigrade: This is a very sane system, where the
freezing point of water is at 0◦ C and the boiling point is at 100◦

C. The degree size is thus 9/5 as big as the Fahrenheit degree.
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3. Kelvin or Absolute: 0◦ K is the lowest possible temperature,
where the internal energy of a system is at its absolute minimum.
The degree size is the same as that of the Centigrade or Celsius
scale. This makes the freezing point of water at atmospheric pres-
sure 273.16◦ K, the boiling point at 373.16◦ K.

• Thermal Expansion
∆L = αL∆T (216)

where α is the coefficient of linear expansion. If one applies this in
three dimensions:

∆V = βV ∆T (217)

where β = 3α.

• Ideal Gas Law
PV = nRT = NkT (218)

where R = 8.315 J/mol-K, and k = R/NA = 1.38×10−23 J/K.
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7 First Law of Thermodynamics
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7.1 First Law of Thermodynamics Summary

• Internal Energy

Internal energy is all the mechanical energy in all the components of a
system. For example, in a monoatomic gas it might be the sum of the
kinetic energies of all the gas atoms. In a solid it might be the sum of
the kinetic and potential energies of all the particles that make up the
solid.

• Heat

Heat is a bit more complicated. It is internal energy as well, but it
is internal energy that is transferred into or out of a given system.
Furthermore, it is in some fundamental sense “disorganized” internal
energy – energy with no particular organization, random energy. Heat
flows into or out of a system in response to a temperature difference,
always flowing from hotter temperature regions (cooling them) to cooler
ones (warming them).

Common units of heat include the ever-popular Joule and the calorie

(the heat required to raise the temperature of 1 gram of water at 14.5◦

C to 15.5◦ C. Note that 1 cal = 4.186 J. Less common and more eso-
teric ones like the British Thermal Unit (BTU) and erg will be mostly
ignored in this course; BTUs raise the temperature of one pound of
water by one degree Fahrenheit, for example. Ugly.

• Heat Capacity

If one adds heat to an object, its temperature usually increases (ex-
ceptions include at a state boundary, for example when a liquid boils).
In many cases the temperature change is linear in the amount of heat
added. We define the heat capacity C of an object from the relation:

∆Q = C∆T (219)

where ∆Q is the heat that flows into a system to increase its temper-
ature by ∆T . Many substances have a known heat capacity per unit
mass. This permits us to also write:

∆Q = mc∆T (220)
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where c is the specific heat of a substance. The specific heat of liquid
water is approximately:

cwater = 1calorie/gram−◦ C (221)

(as one might guess from the definition of the calorie above).

• Latent Heat As noted above, there are particular times when one
can add heat to a system and not change its temperature. One such
time is when the system is changing state from/to solid to/from liquid,
or from/to liquid to/from gas. At those times, one adds (or removes)
heat when the system is at fixed temperature until the state change is
complete. The specific heat may well change across phase boundaries.
There are two trivial equations to learn:

∆Qf = mLf (222)

∆Qv = mLv (223)

where Lf is the latent heat of fusion and Lv is the latent heat of vapor-

ization. Two important numbers to keep in mind are Lf (H2O) = 333
kJ/kg, and Lv(H2O) = 2260 kJ/kg. Note the high value of the latter
– the reason that “steam burns worse than water”.

• Work Done by a Gas

W =
∫ Vf

Vi

PdV (224)

This is the area under the P (V ) curve, suggesting that we draw lots of
state diagrams on a P and V coordinate system. Both heat transfer and
word depend on the path a gas takes P (V ) moving from one pressure
and volume to another.

• The First Law of Thermodynamics

∆Eint = ∆Q − W (225)

In words, this is that the change in total mechanical energy of a system
is equal to heat put into the system plus the work done on the system
(which is minus the work done by the system, hence the minus above).
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This is just, at long last, the fully generalized law of conservation of
energy. All the cases where mechanical energy was not conserved in
previous chapters because of nonconservative forces, the missing energy
appeared as heat, energy that naturally flows from hotter systems to
cooler ones.

• Cyclic Processes Most of what we study in these final sections will
lead us to an understanding of simple heat engines based on gas ex-
panding in a cylinder and doing work against a piston. In order to
build a true engine, the engine has to go around in a repetitive cycle.
This cycle typically is represented by a closed loop on a state e.g. P (V )
curve. A direct consequence of the 1st law is that the net work done
by the system per cycle is the area inside the loop of the P (V )
diagram. Since the internal energy is the same at the beginning and
the end of the cycle, it also tells us that:

∆Qcycle = Wcycle (226)

the heat that flows into the system per cycle must exactly equal the
work done by the system per cycle.

• Adiabatic Processes are processes (PV curves) such that no heat
enters or leaves an (insulated) system.

• Isothermal Processes are processes where the temperature T of the
system remains constant.

• Isobaric Processes are processes that occur at constant pressure.

• Isovolumetric Processses are processes that occur at constant vol-
ume.

• Work done by an Ideal Gas: Recall,

PV = NkT (227)

where N is the number of gas atoms or molecules. Isothermal work at
(fixed) temperature T0 is thus:

W =
∫ V2

V1

NkT0

V
dV (228)

= NkT ln(
V2

V1

) (229)
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Isobaric work is trivial. P = P0 is a constant, so

W =
∫ V2

V1

P0dV = P0(V2 − V1) (230)

Adiabatic work is a bit tricky and depends on some of the internal
properties of the gas (for example, whether it is mono- or diatomic).
We’ll examine this in the next section.
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8 Equipartition and Adiabatic Processes
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8.1 Equipartition and Adiabatic Processes

• Equipartition Theorem

There is 1
2
kT of energy per degree of freedom of a molecule in a system.

A monoatomic gas has three degrees of freedom (three dimensions of
kinetic energy). A diatomic gas typically has five (three translational
degrees, two rotational degrees, skip vibration and the third rotation).
A solid typically has six (three translational degrees, three vibrational
degrees). The internal energy of N molecules of a monoatomic gas are
thus:

Etot =
3

2
NkT (231)

and so forth.

• Molecular Model of Ideal Gas leads to PV = NkT using the
equipartition theorem.

• Molar Specific Heats

At constant volume, no work is done and all heat that goes into a system
increases its internal energy. At constant pressure, heat going into a
system can both do work and increase internal energy and typically
does both. We define:

∆Q = nCv∆T (constantvolume) (232)

∆Q = nCp∆T (constantpressure) (233)

where Cv is the molar specific heat at constant volume and Cp is the
molar specific heat at constant pressure (and n is the number of moles
of gas). These specific heats are also often expressed per molecule with
an obvious conversion based on NA.

• Cv

Cv =
1

n

dEtot

dT
=

df

2
R (234)

where df is the number of degrees of freedom of a molecule in the
system (e.g. 3 for monoatomic gas, 5 for diatomic gas, 6 for solid).

• Cp From the first law:

dQ = dE + dW =
df

2
nRdT + PdV =

df

2
nRdT + nRdT (235)
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(where the last follows because with P constant, dV must be propor-
tional to dT ) so

Cp =
1

n

dQ

dT
=

df

2
R + R = Cv + R (236)

• γ We define:

γ =
Cp

Cv

(237)

Thus γ = 5/3 for monoatomic gases, 7/5 for diatomic gases.

• Adiabatic Processes are characterized by ∆Q = 0. From the first law,
this means that:

dE = −dW (238)

or
nCvdT = nRdT = −PdV (239)

If we take the full derivative of the ideal gas law:

d(PV ) = PdV + V dP = nRdT (240)

and substitute in the first law and rearrange, we get:

PdV + V dP = − R

Cv

PdV (241)

Collecting terms, rearranging, and dividing by PV we get:

(1 +
R

Cv

)PdV + V dP = 0 (242)

(
Cv + R

Cv

)PdV + V dP = 0 (243)

(
Cp

Cv

)PdV + V dP = 0 (244)

γPdV + V dP = 0 (245)

γ
dV

V
+

dP

P
= 0 (246)

and integrating it leads us to

lnP + γ lnV = constant (247)
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or
PV γ = constant (248)

This is the equation for the PV curve of an adiabatic process. There
are lots of ways to manipulate this algebraically by e.g. combining
it with the ideal gas law to eliminate P or V in favor of T and the
remaining one.

We will need the PV γ = constant result in order to solve problems
involving adiabatic processes in cyclic heat engines, so learn it well.
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9 Second Law of Thermodynamics
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9.1 Second Law of Thermodynamics Summary

• Heat Engines

A heat engine is a cyclic device that takes heat QH in from a hot

reservoir, converts some of it to work W , and rejects the rest of it QC

to a cold reservoir so that at the end of a cycle it is in the same state
(and has the same internal energy) with which it began. The net work
done per cycle is (recall) the area inside the PV curve.

The efficiency of a heat engine is defined to be

ε =
W

QH

=
QH − QC

QH

= 1 − QC

QH

(249)

• Kelvin-Planck statement of the Second Law of Thermodynam-
ics

It is impossible to construct a cyclic heat engine that produces no
other effect but the absorption of energy from a hot reservoir and the
production of an equal amount of work.

• Refrigerators (and Heat Pumps)

A refrigerator is basically a cyclic heat engine run backwards. In a
cycle it takes heat QC in from a cold reservoir, does work W on it,
and rejects a heat QH to a hot reservoir. Its net effect is thus to make
the cold reservoir colder (refrigeration) by removing heat from inside it
to the warmer warm reservoir (warming it still further, e.g. as a heat
pump). Both of these functions have practical applications – cooling
our homes in summer, heating our homes in winter.

The coefficient of performance of a refrigerator is defined to be

COP =
QC

W
(250)

It is not uncommon for heat pumps to have a COP of 3-5 (depending
on the temperature differential) giving them a significant economic ad-
vantage over resistive heating. The bad side is that they don’t work
terribly well when the temperature difference is large in degrees K.

• Clausius Statement of the Second Law of Thermodynamics
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It is impossible to construct a cyclic refrigerator whose sole effect is the
transfer of energy from a cold reservoir to a warm reservoir without the
input of energy by work.

• bf Reversible Processes Reversible processes are ones where no friction
or turbulence or dissipative forces are present that represent an addi-
tional source of energy loss or gain for a given system. For the purposes
of this book, both adiabatic and isothermal processes are reversible. Ir-
reversible processes include the transfer of heat energy from a hot to
a cold reservoir in general – heat engines and refrigerators can be con-
structed whose steps in a cycle are all reversible, but the overall effect
of transferring heat one way or the other is irreversible.

• Carnot Engine

The Carnot Cycle is the archetypical reversible cycle, and a Carnot
Cycle-based heat engine is one that does not dissipate any energy in-
ternally and uses only reversible steps. Carnot’s Theorem states that
no real heat engine operating between a hot reservoir at temperature
TH and a cold reservoir at temperature TC can be more efficient than
a Carnot engine operating between those two reservoirs.

The Carnot efficiency is easy to compute (see text and lecture example).
A Carnot Cycle consists of four steps:

1. Isothermal expansion (in contact with the heat reservoir)

2. Adiabatic expansion (after the heat reservoir is removed)

3. Isothermal compression (in contact with the cold reservoir)

4. Adiabatic compression (after the cold reservoir is removed)

The efficiency of a Carnot Engine is:

εCarnot = 1 − TC

TH

(251)

• Entropy

Entropy S is a measure of disorder. The change in entropy of a system
can be evaluated by integrating:

dS =
dQ

T
(252)
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between successive infinitesimally separated equilibrium states (the weasel
language is necessary because temperature should be constant in equi-
librium, but systems in equilibrium have constant entropy). Thus:

∆S =
∫

Ti

Tf

dQ

T
(253)

has limited utility except for particularly simple processes (like the
cooling of a hot piece of metal in a body of cold water.

We extend our definition of reversible processes. A reversible process is
one where the entropy of the system does not change. An irreversible
process increases the entropy of the system and its surroundings.

• Entropy Statement of the Second Law of Thermodynamics

The entropy of the Universe never decreases. It either increases (for
irreversible processes) or remains the same (for reversible processes).
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