next up previous contents
Next: Parallel to Plane of Up: Dynamics and Reflection/Refraction Previous: Coordinate choice and Brewster's   Contents

$\mbox{\boldmath$E$}$ Perpendicular to Plane of Incidence

The electric field in this case is perforce parallel to the surface and hence $\mbox{\boldmath$E$}\cdot\hat{\mbox{\boldmath$n$}} = 0$ and $\vert\mbox{\boldmath$E$}\times\hat{\mbox{\boldmath$n$}}\vert = 1$ (for incident, reflected and refracted waves). Only two of the four equations above are thus useful. The $\mbox{\boldmath$E$}$ equation is trivial. The $\mbox{\boldmath$B$}$ equation requires us to determine the magnitude of the cross product of $\mbox{\boldmath$B$}$ of each wave with $\hat{\mbox{\boldmath$n$}}$. Let's do one component as an example. Examining the triangle formed between $\mbox{\boldmath$B$}_0$ and $\hat{\mbox{\boldmath$n$}}$ for the incident waves (where $\theta_i$ is the angle of incidence and/or reflection, and $\theta_r$ is the angle of refraction), we see that:

$\displaystyle \frac{1}{\mu}\vert\mbox{\boldmath$B$}_0 \times \hat{\mbox{\boldmath$n$}}\vert$ $\textstyle =$ $\displaystyle \frac{1}{\mu} B_0
\cos(\theta_i)$  
  $\textstyle =$ $\displaystyle \frac{\sqrt{\mu \epsilon}}{\mu} E_0 \cos(\theta_i)$  
  $\textstyle =$ $\displaystyle \sqrt{\frac{\epsilon}{\mu}} E_0 \cos(\theta_i)$ (9.61)

Repeating this for the other two waves and collecting the results, we obtain:

$\displaystyle E_0 + E_0''$ $\textstyle =$ $\displaystyle E_0'$ (9.62)
$\displaystyle \sqrt{\frac{\epsilon}{\mu}} (E_0 - E_0'')\cos(\theta_i)$ $\textstyle =$ $\displaystyle \sqrt{\frac{\epsilon'}{\mu'}} E_0'\cos(\theta_r)$ (9.63)

This is two equations with two unknowns. Solving it is a bit tedious. We need:
$\displaystyle \cos(\theta_r)$ $\textstyle =$ $\displaystyle \sqrt{1 - \sin^2(\theta_r)}$ (9.64)
  $\textstyle =$ $\displaystyle \sqrt{1 - \frac{n^2}{n'^2}\sin^2(\theta_i)}$ (9.65)
  $\textstyle =$ $\displaystyle \frac{\sqrt{n'^2 - n^2\sin^2(\theta_i)}}{n'}$ (9.66)

Then we (say) eliminate $E_0'$ using the first equation:
\begin{displaymath}
\sqrt{\frac{\epsilon}{\mu}} (E_0 - E_0'')\cos(\theta_i) =
\...
...} (E_0 + E_0'')
\frac{\sqrt{n'^2 - n^2\sin^2(\theta_i)}}{n'}
\end{displaymath} (9.67)

Collect all the terms:
$\displaystyle E_0 \left( \sqrt{\frac{\epsilon}{\mu}} \cos(\theta_i) -
\sqrt{\fr...
...n'}{\mu'}} \frac{\sqrt{n'^2 -
n^2\sin^2(\theta_i)}}{n'} \right) = \hspace*{2cm}$      
$\displaystyle E_0''\left(\sqrt{\frac{\epsilon'}{\mu'}}\frac{\sqrt{n'^2 - n^2\sin^2(\theta_i)}}{n'}
+ \sqrt{\frac{\epsilon}{\mu}} \cos(\theta_i) \right)$     (9.68)

Solve for $E_0''$:
\begin{displaymath}
E_0'' = E_0
\frac{
\left( \sqrt{ \frac{\epsilon}{\mu} } \...
...\frac{ \sqrt{n'^2 -
n^2\sin^2(\theta_i)} }{ n' } \right)
}
\end{displaymath} (9.69)

This expression can be simplified after some tedious cancellations involving

\begin{displaymath}
\frac{n}{n'} = \sqrt{\frac{\mu \epsilon}{\mu'\epsilon'}}
\end{displaymath} (9.70)

and either repeating the process or back-substituting to obtain :
$\displaystyle E_0''$ $\textstyle =$ $\displaystyle E_0
\frac{
\left( n\cos(\theta_i) -
\frac{\mu}{\mu'}\sqrt{ n'^2 -...
... n\cos(\theta_i) +
\frac{\mu}{\mu'}\sqrt{n'^2 - n^2\sin^2(\theta_i) } \right)
}$ (9.71)
$\displaystyle E_0'$ $\textstyle =$ $\displaystyle E_0
\frac{
2n\cos(\theta_i)
}{
\left( n\cos(\theta_i) +
\frac{\mu}{\mu'}\sqrt{n'^2 - n^2\sin^2(\theta_i) } \right)
}$ (9.72)


next up previous contents
Next: Parallel to Plane of Up: Dynamics and Reflection/Refraction Previous: Coordinate choice and Brewster's   Contents
Robert G. Brown 2007-12-28