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Notice
This set of “lecture notes” is designed to support my personal teach-

ing activities at Duke University, in particular teaching its Physics 318/319

series (graduate level Classical Electrodynamics) using J. D. Jackson’s Clas-

sical Electrodynamics as a primary text. However, the notes may be useful

to students studying from other texts or even as a standalone text in its own

right.

It is freely available in its entirety online at

http://www.phy.duke.edu/∼rgb/Class/phy319.php

as well as through Lulu’s “book previewer” at

http://www.lulu.com/content/1144184

(where one can also purchase an inexpensive clean download of the book

PDF in Crown Quarto size – 7.444 × 9.681 inch pages – that can be read

using any PDF browser or locally printed).

In this way the text can be used by students all over the world, where

each student can pay (or not) according to their means. Nevertheless, I am

hoping that students who truly find this work useful will purchase either

the PDF download or the current paper snapshot, if only to help subsidize

me while I continue to write more inexpensive textbooks in physics or other

subjects.

These are real lecture notes, and they therefore have errors great and

small, missing figures (that I usually draw from memory in class), and they

cover and omit topics according to my own view of what is or isn’t important

to cover in a one-semester course. Expect them to change without warning

as I add content or correct errors. Purchasers of a paper version should

be aware of its imperfection and be prepared to either live with it or mark

up their own copies with corrections or additions as need be in the lecture

note spirit, as I do mine. The text has generous margins, is widely spaced,

and contains scattered blank pages for students’ or instructors’ own use to

facilitate this.

I cherish good-hearted communication from students or other instructors

pointing out errors or suggesting new content (and have in the past done

my best to implement many such corrections or suggestions).

http://www.phy.duke.edu/~rgb/Class/phy319.php
http://www.lulu.com/content/1144184
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Preface

Classical Electrodynamics is one of the most beautiful things in the world.

Four simple vector equations (or one tensor equation and an asssociated

dual) describe the unified electromagnetic field and more or less directly

imply the theory of relativity. The discovery and proof that light is an

electromagnetic wave stands to this day as one of the greatest moments in

the history of science.

These four equations even contain within them the seeds of their own

destruction as a classical theory. Once Maxwell’s equations were known,

the inconsistency of the classical physics one could then easily derive from

them with countless experimental results associated with electromagnetism

forced the classicists of the day, many of them metaphorically kicking or

screaming, to invent quantum mechanics and quantum electrodynamics to

explain them. Indeed, once the single fact that an accelerated charged par-

ticle necessarily radiates electromagnetic energy was known, it became vir-

tually impossible to conceptually explain the persistence of structure at the

microscopic level (since the forces associated with binding objects together

out of discrete charged parts inevitably produce an oscillation of charge due

to small perturbations of position, with an associated acceleration)., The

few hypotheses that were advanced to account for it “without” an overtly

oscillatory model were rapidly and decisively shot down by (now famous)

experiments by Rutherford, Millikan, and others.

Even though the Universe proves to be quantum mechanical at the mi-

croscopic level, classical electrodynamics is nevertheless extremely relevant

and useful in the real world today at the macroscopic level. It describes

extremely precisely nearly all the mundane aspects of ordinary electrical en-

gineering and electromagnetic radiation from the static limit through optical

frequencies. Even at the molecular level or photonic level where it breaks
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down and a quantum theory must be used it is first necessary to understand

the classical theory before exploring the quantum theory, as the quantum

theory is built on top of the entire relativistic electrodynamic conceptual

framework already established.

This set of lecture notes is designed to be used to teach graduate students

(and possibly advanced and motivated undergraduates) classical electrody-

namics. In particular, it supports the second (more difficult) semester of a

two semester course in electrodynamics that covers pretty much “all” of the

theory itself (omitting, of course, many topics or specific areas where it can

be applied) out to the points where the theory itself breaks down as noted

above. At that point, to make further progress a student needs to learn

about more fields, quantum (field) theory, advanced (general) relativity –

topics generally beyond the scope of these notes.

The requirements for this course include a thorough understanding of

electricity and magnetism at the level of at least one, ideally two, undergrad-

uate courses. At Duke, for example, physics majors are first exposed first

to an introductory course that covers the integral formulation of Maxwell’s

equations and light that uses no multivariate differential calculus, then a

second course that develops the vector differential formulation of Maxwell’s

equations and their consequences) as does this course) but with considerably

less mathematical rigor and completeness of the treatment as students tak-

ing it have likely still not had a course in e.g. contour integration. Students

using these notes will find it useful to be at least somewhat comfortable

with vector differential and integral calculus, to have had exposure to the

theory and solution methodology of ordinary and partial differential equa-

tions, to be familiar with the mathematics of complex variables and analytic

functions, contour integration, and it would be simply lovely if they at least

knew what a “tensor” was.

However, even more so than is the case for most physics texts, this book

will endeavor to provide internal support for students that are weak in one

or more of these required mathematical skills. This support will come in one

of several forms. At the very least, considerable effort has been made to hunt

down on behalf of the student and explicitly recommend useful textbooks

and online resources on various mathematical and physical topics that may

be of use to them. Many of these resources are freely available on the web.

Some mathematical methods are completely developed in the context of the



discussion, either because it makes sense to do so or because there simply

are no references a student is likely to be able to find. Finally, selected

topics will be covered in e.g. appendices or as insertions in the text where

they are short enough to be coverable in this way and important enough

that students are likely to be highly confused without this sort of support.

A very brief review of the electrodynamics topics covered includes: plane

waves, dispersion, penetration of waves at a boundary (skin depth), wave

guides and cavities and the various (TE, TM, TEM) modes associated with

them, radiation in the more general case beginning with sources. This latter

exhibition goes considerably beyond Jackson, treating multipolar radiation

in detail. It includes a fairly thorough exposition of the underlying PDEs,

the properties of the Green’s functions used to generate multipoles both ap-

proximate and exact, and formally precise solutions that extend inside the

source charge-current density (as indeed they must for this formalism to be

of use in e.g. self-consistent field theories treating extended charge density

distributions). In addition to the vector spherical harmonics, it defines and

derives the properties of the Hansen multipoles (which are otherwise very

nearly a lost art) demonstrating their practical utility with example prob-

lems involving antennae. It concludes this part of the exposition with a

short description of optical scattering as waves interact with “media”, e.g.

small spheres intended to model atoms or molecules.

It then procedes to develop relativity theory, first reviewing the elemen-

tary theory presumably already familiar to students, then developing the

full Lorentz Group. As students tend to not be familiar with tensors, the

notes contain a special appendix on tensors and tensor notation as a sup-

plement. It also contains a bit of supplemental support on at least those

aspects of contour integration relevant to the course for similar reasons.

With relativity in hand, relativistic electrodynamics is developed, including

the properties of radiation emitted from a point charge as it is accelerated.

Finally, the notes conclude with a nice overview of radiation reaction (ex-

ploring the work of Lorentz, Dirac, and Wheeler and Feynman) and the

puzzles therein – self-interaction versus action at a distance, the need for

a classical renormalization in a theory based on self-interaction, and a bit

more.

One note-worthy feature of these notes (sorry, but I do like puns and

you’ll just have to get used to them:-) is that the electronic/online version of



them includes several inventions of my own such as a wikinote1 , a reference

to supporting wikipedia articles that appears as a URL and footnote in the

text copy but which is an active link in a PDF or HTML (online) copy.

Similarly, there are google links and ordinary web links presented in the

same way.

As noted at the beginning of the text, these are real lecture notes and

subject to change as they are used, semester by semester. In some cases the

changes are quite important, for example when a kind reader gently points

out a bone-headed mistake that makes some aspect of the presentation quite

incorrect. In others they are smaller improvements: a new link, a slightly

improved discussion, fixing clumsy language, a new figure (or putting in

one of the missing old ones). As time passes I hope to add a selection of

problems that will make the text more of a stand-alone teaching aid as well.

For both of these reasons, students who are using these notes may wish

to have both a paper snapshot of the notes – that will inevitably contain

omissions and mistakes or material I don’t actually cover in this year’s class

– and a (more current) electronic copy. I generally maintain the current

snapshot of the electronic copy that I’m actually using to teach from where

it is available, for free to all comers, on my personal/class website at:

http://www.phy.duke.edu/∼rgb/Class/phy319.php

(which cleverly and self-consistently demonstrates an active link in action,

as did the wikilink above). In this way they can have the convenience of a

slightly-out-of-date paper copy to browse or study or follow and mark up

during lecture as well as an electronic copy that is up to date and which

contains useful active links.

Let it be noted that I’m as greedy and needy as the next human, and

1Wikipedia: http://www.wikipedia.org/wiki/wikipedia. A wikinote is basically a foot-

note that directs a student to a useful article in the Wikipedia. There is some (frankly

silly) controversy on just how accurate and useful the Wikipedia is for scholarly work, but

for teaching or learning science and mathematics on your own it is rapidly becoming in-

dispensible as some excellent articles are constantly being added and improved that cover,

basically, all of electrodynamics and the requisite supporting mathematics. Personally,

I think the objections to it are largely economic – in a few more years this superb free

resource will essentially destroy the lucrative textbook market altogether, which honestly

is probably a good thing. At the very least, a textbook will have to add significant value

to survive, and maybe will be a bit less expensive than the $100-a-book current standard.

http://www.phy.duke.edu/~rgb/Class/phy319.php
http://www.wikipedia.org/wiki/wikipedia


can always use extra money. As I’ve worked quite hard on these notes (and

from observation they go quite beyond what e.g. most of my colleagues make

available for their own courses) I have done the work required to transform

them into an actual bound book that students can elect to purchase all at

once instead of downloading the free PDF, printing it out as two-sided pages,

punching it, and inserting it into a three ring binder that anonymously joins

the rest of their notes and ultimately is thrown away or lost.

This printed book is remarkably inexpensive by the standards of modern

textbooks (where e.g Wyld, which I once purchased now at $16 a copy, is

not available new for $70 a copy). At the same site, students can find the

actual PDF from which the book is generated available for a very low cost

and are at liberty to purchase and keep that on their personal laptops or

PDF-capable e-book readers, or for that matter to have it printed and bound

by a local printer. In both cases I make a small royalty (on the order of $5)

from their sale, which is both fair and helps support me so that I can write

more texts such as this.

However, students around the world have very different means. Purchas-

ing a $7.50 download in the United States means (for most students) that

a student has to give up a few Latte Enormes from Starbucks. Purchas-

ing that same download could be a real hardship for students from many

countries around the world including some from the United States. For this

reason students will always have the option of using the online notes directly

from the class website for free or printing their own copy on paper at cost.

All that I ask of students who elect to use them for free is that they “pay

it forward” – that one day they help others who are less fortunate in some

way for free so that we can all keep the world moving along in a positive

direction.

These notes begin with my course syllabus and class rules and so on.

Obviously if you are reading this and are not in my class these may be of

no use to you. On the other hand, if you are a teacher planning to use these

notes to guide a similar course (in which case you should probably contact

me to get a free copy of the latex sources so you can modify them according

to your own needs) or just a student seeking to learn how to most effectively

use the notes and learn electrodynamics effectively, you might still find the

syllabus and class rules worth at least a peek.



The one restriction I have, and I think it is entirely fair, is that instructors

who elect to use these notes to help support the teaching of their own classes

(either building them with or without modifications from the sources or

using any of the free prebuilt images) may not resell these notes to their

own students for a profit (recovering printing costs is OK) at least without

arranging to send a fair share of that profit back to me, nor may they

alter this preface, the authorship or copyright notice (basically all the front-

matter) or the license. Everything from the syllabus on is fair game, though,

and the notes should easily build on any e.g. linux system.

Anyway, good luck and remember that I do cherish feedback of all sorts,

corrections, additions (especially in ready-to-build latex with EPS figures:-),

suggestions, criticisms, and or course money in the form of the aforemen-

tioned small royalties.





Chapter 1

Syllabus and Course Rules

1.1 Contact Information

Instructor: Robert G. Brown

Office: Room 260

Office Phone: 660-2567 quad Cell Phone: 280-8443

Email: rgb@phy.duke.edu

Notes URL: http://www.phy.duke.edu/∼rgb/Class/phy319.php

1.2 Useful Texts and Web References

• J.D Jackson, Classical Electrodynamics, 3rd ed.

• Bound paper copy of these notes:

http://www.lulu.com/content/1144184

• Orfanidi’s Electromagnetic Waves and Antennas:

http://www.ece.rutgers.edu/∼orfanidi/ewa/

• H. Wyld, Methods of Mathematical Physics, ISBN 978-0738201252,

available from e.g. http://amazon.com. Other mathematical physics

texts such as Arfken or Morse and Feshback are equivalently useful.

• Donald H. Menzel’s Mathematical Physics, Dover press, ISBN 0-486-

60056-4. This reference has a very nice discussion of dyads and how
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to express classical mechanics in tensor form, which is actually quite

lovely.

• Fabulous complex variable/contour integration reference by Mark Trod-

den at Syracuse:

http://physics.syr.edu/∼trodden/courses/mathmethods/

This online lecture note/book actually works through the Euler-Lagrange

equation as well, but stops unfortunately short of doing EVERY-

THING that we need in this course. It is only 70 pages, though –

probably unfinished.

• Introduction to tensors by Joseph C. Kolecki at NASA:

www.grc.nasa.gov/WWW/K-12/Numbers/Math/documents/Tensors TM2002211716.pdf

• Short review of tensors for a Berkeley cosmology course:

http://grus.berkeley.edu/∼jrg/ay202/node183.html

• Short review of tensors for a Winnipeg University cosmology course:

http://io.uwinnipeg.ca/∼vincent/4500.6-001/Cosmology/Tensors.htm

• Wikipedia:

http://www.wikipedia.org Wikipedia now contains some excellent ar-

ticles on real graduate-level electrodynamics, relativity theory, and

more. The math and science community are determined to make it a

one stop shop for supporting all sorts of coursework.

• Mathworld:

http://mathworld.wolfram.com This site, too, is very good although

some of the articles tend to be either then or overly technical at the

expense of clarity.

• GIYF (Google Is Your Friend). When looking for help on any topic,

give google a try. I do.

http://physics.syr.edu/~trodden/courses/mathmethods/
file:www.grc.nasa.gov/WWW/K-12/Numbers/Math/documents/Tensors_TM2002211716.pdf
http://grus.berkeley.edu/~jrg/ay202/node183.html
http://io.uwinnipeg.ca/~vincent/4500.6-001/Cosmology/Tensors.htm
http://www.wikipedia.org
http://mathworld.wolfram.com
http://www.google.com


1.3 Course Description

In this year’s course we will cover the following basic topics:

• Very rapid review of Maxwell’s equations, wave equation for EM po-

tentials, Green’s functions for the wave and Helmholtz equations, mag-

netic monopoles. You should all know this already, but it never hurts

to go over Maxwell’s equations again...

• Plane waves and wave guides. Polarization, propagating modes. (Jack-

son chapters 7 and 8). This year (fall 2007) Ronen tells me that he

got through about the first half of chapter 7, but we’ll probably review

this quickly for completeness.

• Radiating systems and multipolar radiation (Jackson chapter 9). We

will cover this material thoroughly. We’ll do lots of really hard prob-

lems for homework and you’ll all just hate it. But it’ll be soooo good

for you. The new edition of Jackson no longer covers multipoles in

two places, but its treatment of vector harmonics is still quite inad-

equate. We will add a significant amount of material here and go

beyond Jackson alone. We may do a tiny bit of material from the

beginning of chapter 10 (scattering) – just enough to understand e.g.

blue skies and polarization, and perhaps to learn of the existence of

e.g. critical opalescence. We will not cover diffraction, apertures, etc.

as those are more appropriate to a course in optics.

• Relativity (Jackson chapters 11 and 12). We will do a fairly complete

job of at lease special relativity that will hopefully complement the

treatments some of you have had or are having in other courses, but

those of you who have lived in a Euclidean world all your lives need

not be afraid. Yes, I’ll continue to beat you to death with problems.

It’s so easy. Five or six should take you days.

• Radiation by moving charges (Jacksom chapters 14 and 16). Basi-

cally, this uses the Green’s functions deduced during our discussion of

relativity to show that accelerated charges radiate, and that as they

do so a somewhat mysterious ”self-force” is exerted that damps the

motion of the particle. This is important, because the (experimen-

tal) observation that bound charges (which SHOULD be accelerating)



don’t radiate leads to the collapse of classical physics and the logical

necessity of quantum physics.

• Miscellaneous (Jackson chapters 10, 13, 15). As noted above, we may

look a bit at sections here and there in this, but frankly we won’t have

time to complete the agenda above as it is without working very hard.

Stuff in these chapters you’ll likely have to learn on your own as you

need it.

1.4 Basis of Grade

1.4.1 Percentages

There will be, as you may have guessed, lots of problems. Actually, there

will only be a few problems, but they’ll seem like a lot. The structure and

organization of the course will be (approximately!):

50% of grade Homework.

20% Take-Home Midterm Exam.

20% Take-Home Final Exam.

10% Research/Computing project.

In more detail, Homework is Homework, the Exams are Homework (fancied

up a bit) and the Research Project is described below. These figures are

only approximate. I may make homework worth a little more or less, but

this is about right. Actual grades will be assigned based on performance

and experience, curved (if you will) not just across your class but previous

graduate classes I have taught the same material to as well. It will be very

easy to pass cleanly (B- or better, in a graduate class) if you’ve done all the

homework and perhaps less easy to get an A.

Note also that grades aside, there is a fundamental need to pass qualifiers.

Qualifiers are much easier than the problems we cover in this class, but to

comfortably pass it is essential that you learn the physics associated with

all of the problems and methodologies. Do not miss learning the large scale,



intuitive ideas in physics covered (the ‘forest’) in favor of mastering all sorts

of methods for PDEs or transformations for specific problems (the ‘trees’).

I will do my best to help convey these in lecture, but you should read on

your own, ask questions, and so on.

1.4.2 Research Project:

I’m offering you instead the following assignment, with several choices. You

may prepare any of:

1. A set of lecture notes on a topic, relevant to the material we will

cover, that interests you. If you select this option you may be asked

to present the lecture(s), time permitting. This is an especially good

option for people who have had courses that have significant overlap

with something we will cover, but requires early action!

2. A review paper on a topic, relevant to the material we will cover, that

interests you. Typically, in the past, students going into (e.g.) FEL

have prepared review papers on the electromechanism of the FEL.

That is, relevance to your future research is indicated but not man-

dated.

3. A computer demonstration or simulation of some important electro-

dynamical principle or system. Possible projects here include solv-

ing the Poisson and inhomogeneous Helmholtz equation numerically,

evaluating and plotting radiation patterns and cross-sections for com-

plicated but interesting time dependent charge density distributions,

etc. Resources here include Mathematica, maple, SuperMongo, the

Gnu Scientific Library, matlab/octave, and more. Obviously now is

not the time to learn to program; presumably you are all competent

in f77 or C or java or perl or SOMETHING if you select this option,

or are willing to work very hard to becomes so. I can provide limited

guidance in many (most) of these languages or environments, but will

not have time to teach you to code from scratch in this class.

If you choose to do a project, it is due TWO WEEKS before the last

class1 so don’t blow them off until the end. It is strongly recommended that

1This is a transparent ploy to make you hand it in on time. But I mean it! Really!



you clear the topic with me beforehand, as a weak topic will get a weak

grade even if the presentation itself is adequate.

I will grade you on: doing a decent job (good algebra), picking an in-

teresting topic (somewhat subjective, but I can’t help it and that’s why I

want to talk to you about it ahead of time), adequate preparation (enough

algebra), adequate documentation (where did you find the algebra), orga-

nization, and Visual Aids (pictures are sometimes worth a thousand equa-

tions). Those of you who do numerical calculations (applying the algebra)

must also write it up and (ideally) submit some nifty graphics, if possible.

I’m not going to grade you particularly brutally on this — it is supposed

to be fun as well as educational. However, if you do a miserable job on the

project, it doesn’t count. If you do a decent job (evidence of more than 20

hours of work) you get your ten percent of your total grade (which works

out to maybe a third-of-a-grade credit and may be promoted from, say, a

B+ to a A-).

1.5 Course Rules

The following are the course rules. Read them and fully understand

them! Violations of the rules below will be considered academic dishonesty

and may result in your summary dismissal from our graduate program!

• You may collaborate with your classmates in any permutation

on the homework. In fact, I encourage you to work in groups, as

you will probably all learn more that way. However, you must each

write up all the solutions even if they are all the same within a group.

Writing them up provides learning reinforcement.

• You may not get worked out “solutions to Jackson problems”

from more advanced graduate students, the solutions book

(if you can find it), the web (!) or anyplace else. It obviously

removes the whole point of the homework in the first place. If you do

not struggle with these problems (as I did and really, still do) you will

not learn. It is a mistake to have too much guidance or to try to avoid

the pain.



• You may ask for help with your homework from more advanced

students, other faculty, personal friends, or your household pets, as

long as no worked–out solutions to the assigned problems are

present at any sessions where the problems are discussed.

That way, with or without help, you will participate in finding the

solution of each problem, which is the idea.

Obviously your degree of long term success in the class and physics

in general will depend largely on the enthusiasm and commitment of

your personal participation. Passive is not good, active is good. Take

charge of learning this material by doing the work required to do so.

• You may (indeed must) use the library and all available non–

human resources to help solve the problems. I don’t even care if

you find the solution to some problem somewhere in the literature and

copy it verbatim provided that you understand it afterwards (which

is the goal), cite your source, and provided that you do not use

the solution manual/book for Jackson problems (which exists, floating

around somewhere, and which has all sorts of errors in it besides), see

second item above.

• You may NOT collaborate with each other or get outside hu-

man help on the take home (midterm, final) exam problems.

They are to be done alone. There will be a time limit (typically 24

hours total working time) on the take home exams, spread out over

four days or so.

• I reserve the right to specify open or closed book (or note, or library)

efforts for the midterm and final exams. In the past I have permit-

ted these exams to be done open book, but there is some advantage

to making them closed book as well. Please obey whatever rule is

specified in the exam itself.

I will usually be available for questions right after class. Otherwise,

it is best to make appointments to see me via e-mail. My third depart-

ment/university job is helping to manage the computer network, especially

with regard to cluster computing (teaching this is my second and doing re-

search is my first) so I’m usually on the computer and always insanely busy.



However, I will nearly always try to answer questions if/when you catch me.

That doesn’t mean that I will know the answers, of course . . .

I welcome feedback and suggestions at any time during the year. I would

prefer to hear constructive suggestions early so that I have time to implement

them this semester.

1.6 The Interplay of Physics and

Mathematics

Before we begin, it is worth making one very important remark that can

guide a student as they try to make sense of the many, many things devel-

oped in this work. As you go through this material, there will be a strong

tendency to view it all as being nothing but mathematics. For example,

we’ll spend a lot of time studying the wave (partial differential) equation,

Green’s functions, and the like. This will “feel like” mathematics. This in

turn inspires students to at least initially view every homework problem,

every class derivation, as being just another piece of algebra.

This is a bad way to view it. Don’t do this. This is a physics course,

and the difference between physics and abstract mathematics is that physics

means something, and the mathematics used in physics is always grounded

in physical law. This means that solving the very difficult problems assigned

throughout the semester, understanding the lectures and notes, developing a

conceptual understanding of the physics involves a number of mental actions,

not just one, and requires your whole brain, not just the symbolic sequential

reasoning portions of your left brain.

To develop insight as well as problem solving skills, you need to be able

to:

• Visualize what’s going on. Electrodynamics is incredibly geometric.

Visualization and spatiotemporal relationships are all right brain func-

tions and transcend and guide the parsed logic of the left brain.

• Care about what’s going on. You are (presumably) graduate students

interested in physics, and this is some of the coolest physics ever dis-

covered. Even better, it is cool and accessible; you can master it com-



pletely if you care to and work hard on it this semester. Be engaged in

class, participate in classroom discussions, show intiative in your group

studies outside of the classroom. Maybe I suck as an instructor – fine,

so what? You are in charge of your own learning at this point, I’m

just the ‘facilitator’ of a process you could pursue on your own.

• Recognize the division between physics and mathematics and geometry

in the problem you’re working on! This is the most difficult step for

most students to achieve.

Most students, alas, will try to solve problems as if they were math

problems and not use any physical intuition, geometric visualization, or

(most important) the fundamental physical relationships upon which the

solution is founded. Consequently they’ll often start it using some physics,

and then try to bull their way through the algebra, not realizing that at they

need to add more physics from different relations at various points on the way

through that algebra. This happens, in fact, starting with a student’s first

introductory physics class when they try to solve a loop-the-loop problem

using only an expression for centripetal force, perhaps with Newton’s laws,

but ignore the fact that energy is conserved too. In electrodynamics it more

often comes from e.g. starting with the wave equation (correctly) but failing

to re-insert individual Maxwell equations into the reasoning process, failing

to use e.g. charge conservation, failing to recognize a physical constraint.

After a long time and many tries (especially with Jackson problems,

which are notorious for this) a student will often reach the perfect level of

utter frustration and stop, scratch their head a bit, and decide to stop just

doing math and try using a bit of physics, and half a page later the problem

is solved. This is a valuable learning experience, but it is in some sense

maximally painful. This short section is designed to help you at minimize

that pain to at least some extent.

In the following text some small effort will be made on occasion to

differentiate the “mathy” parts of a demonstration or derivation from the

“physicsy” parts, so you can see where physics is being injected into a math

result to obtain a new understanding, a new constraint or condition on an

otherwise general solution, the next critical step on the true path to a de-

sired solution to a problem. Students might well benefit from marking up

their texts or notes as they go along in the same way.



What part of what you are writing down is “just math” (and hence

something you can reasonably expect your math skills to carry you through

later if need be) and what part is physics and relies on your knowledge

of physical laws, visualizable physical relationships, and intuition? Think

about that as you proceed through this text.



Part I

Mathematical Physics
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Chapter 2

Mathematical Prelude

When I first started teaching classical electrodynamics, it rapidly became

apparent to me that I was spending as much time teaching what amounted

to remedial mathematics as I was teaching physics. After all, to even write

Maxwell’s equations down in either integral or differential form requires mul-

tivariate calculus – path integrals, surface integrals, gradients, divergences,

curls. These equations are rapidly converted into inhomogeneous partial

differential equations and their static and dynamic solutions are expanded

in (multipolar) representations, requiring a knowledge of spherical harmon-

ics and various hypergeometric solutions. The solutions are in many cases

naturally expressed in terms of complex exponentials, and one requires a

certain facility in doing e.g. contour integrals to be able to (for example)

understand dispersion or establish representations between various forms of

the Green’s function. Green’s functions themselves and Green’s theorem

emerge, which in turn requires a student to learn to integrate by parts in

vector calculus. This culminates with the development of vector spherical

harmonics, Hansen functions, and dyadic tensors in the integral equations

that allow one to evaluate multipolar fields directly.

Then one hits theory of special relativity and does it all again, but

now expressing everything in terms of tensors and the theory of continu-

ous groups. It turns out that all the electrodynamics we worked so hard on

is much, much easier to understand if it is expressed in terms of tensors of

various rank1.

1Some parts are simpler still if expressed in terms of the geometric extension of the
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We discover that it is essential to understand tensors and tensor oper-

ations and notation in order to follow the formulation of relativity theory

and relativistic electrodynamics in a compact, workable form. This is in

part because some of the difficulties we have encountered in describing the

electric and magnetic fields separately result from the fact that they are not,

in fact, vector fields! They are components of a second rank field strength

tensor and hence mix when one changes relativistic frames. Tensors are in-

deed the natural language of field theories (and much else) in physics, one

that is unfortunately not effectively taught where they are taught at all.

The same is true of group theory. Relativity is best and most generally

derived by looking for the group of all (coordinate) transformations that

preserve a scalar form for certain physical quantities, that leave e.g. equa-

tions of motion such as the wave equation form invariant. There are strong

connections between groups of transformations that conserve a property,

the underlying symmetry of the system that requires that property to be

conserved, and the labels and coordinatization of the physical description of

the system. By effectively exploiting this symmetry, we can often tremen-

dously simplify our mathematical description of a physical system even as

we deduce physical laws associated with the symmetry.

Unfortunately, it is the rare graduate student that already knows com-

plex variables and is skilled at doing contour integrals, is very comfortable

with multivariate/vector calculus, is familiar with the relevant partial differ-

ential equations and their basic solutions, has any idea what you’re talking

about when you introduce the notion of tensors and manifolds, has worked

through the general theory of the generators of groups of continuous trans-

formations that preserve scalar forms, or have even heard of either geometric

algebra or Hansen multipoles. So rare as to be practically non-existent.

I don’t blame the students, of course. I didn’t know it, either, when I

was a student (if it can honestly be said that I know all of this now, for

all that I try to teach it). Nevertheless filling in all of the missing pieces,

one student at a time, very definitely detracts from the flow of teaching

graded division algebra associated with complex numbers: “geometric algebra”. This is

the algebra of a class of objects that includes the reals, the complex numbers, and the

quaternions – as well as generalized objects of what used to be called “Clifford algebra”.

I urge interested students to check out Lasenby’s lovely book on Geometric Algebra,

especially the parts that describe the quaternionic formulation of Maxwell’s equations.



electrodynamics, while if one doesn’t bother to fill them in, one might as well

not bother trying to teach the course at all.

Over the years in between I’ve tried many approaches to dealing with the

missing math. The most successful one has been to insert little minilectures

that focus on the math at appropriate points during the semester, which

serve to both prepare the student and to give them a smattering of the

basic facts that a good book on mathematical physics would give them, and

to also require that the students purchase a decent book on mathematical

physics even though the ones available tend to be encyclopediac and say far

too much or omit whole crucial topics and thereby say far too little (or even

both).

I’m now trying out a new, semi-integrated approach. This part of the

book is devoted to a lightning fast, lecture note-level review of mathematical

physics. Fast or not, it will endeavor to be quite complete, at least in terms

of what is directly required for this course. However, this is very much a

work in progress and I welcome feedback on the idea itself as well as mistakes

of omission and commission as always. At the end of I list several readily

available sources and references that I’m using myself as I write it and that

you might use independently both to learn this material more completely

and to check that what I’ve written is in fact correct and comprehensible.





Chapter 3

Vector Calculus: Integration

by Parts

There is one essential theorem of vector calculus that is essential to the

development of multipoles – computing the dipole moment. Jackson blithely

integrates by parts (for a charge/current density with compact support)

thusly:

∫

IR3

Jd3x = −
∫

IR3

(x∇ · J)d3x (3.1)

Then, using the continuity equation and the fact that ρ and J are pre-

sumed harmonic with time dependenct exp(−iωt), we substitute ∇ · J =

−∂ρ
∂t

= iωρ to obtain:
∫

IR3

Jd3x = −iω
∫

IR3

xρ(x) d3x = −iωp (3.2)

where p is the dipole moment of the fourier component of the charge density

distribution.

However, this leaves a nasty question: Just how does this integration by

parts work? Where does the first equation come from? After all, we can’t

rely on always being able to look up a result like this, we have to be able

to derive it and hence learn a method we can use when we have to do the

same thing for a different functional form.

We might guess that deriving it will use the divergence theorem (or

Green’s theorem(s), if you like), but any naive attempt to make it do so will
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lead to pain and suffering. Let’s see how it goes in this particularly nasty

(and yet quite simple) case.

Recall that the idea behind integration by parts is to form the derivative

of a product, distribute the derivative, integrate, and rearrange:

d(uv) = u dv + v du
∫ b

a
d(uv) =

∫ b

a
u dv +

∫ b

a
v du

∫ b

a
u dv = (uv)|ba −

∫ b

a
v du (3.3)

where if the products u(a)v(a) = u(b)v(b) = 0 (as will often be the case

when a = −∞, b = ∞ and u and v have compact support) the process

“throws the derivative from one function over to the other”:
∫ b

a
u dv = −

∫ b

a
v du (3.4)

which is often extremely useful in evaluating integrals.

The exact same idea holds for vector calculus, except that the idea is to

use the divergence theorem to form a surface integral instead of a boundary

term. Recall that there are many forms of the divergence theorem, but they

all map ∇ to n̂ in the following integral form:
∫

V
∇ ...d3x→

∮

S/V
n̂ ...d2x (3.5)

or in words, if we integrate any form involving the pure gradient operator

applied to a (possibly tensor) functional form indicated by the ellipsis ...

in this equation, we can convert the result into an integral over the surface

that bounds this volume, where the gradient operator is replaced by an

outward directed normal but otherwise the functional form of the expression

is preserved. So while the divergence theorem is:
∫

V
∇ · A d3x =

∮

S/V
n̂ · A d2x (3.6)

there is a “gradient theorem”:
∫

V
∇f d3x =

∮

S/V
n̂f d2x (3.7)

and so on.



To prove Jackson’s expression we might therefore try to find a suitable

product whose divergence contains J as one term. This isn’t too easy,

however. The problem is finding the right tensor form. Let us look at the

following divergence:

∇ · (xJ) = ∇x · J + x∇ · J
= Jx + x∇ · J (3.8)

This looks promising; it is the x-component of a result we might use. How-

ever, if try to apply this to a matrix dyadic form in what looks like it might

be the right way:

∇ · (xJ) = (∇ · x)J + x(∇ · J)

= 3J + x(∇ · J) (3.9)

we get the wrong answer.

To assemble the right answer, we have to sum over the three separate

statements:

(∇ · (xJ)) x̂ = (Jx + x∇ · J) x̂

+ (∇ · (yJ)) ŷ = + (Jy + y∇ · J) ŷ

+ (∇ · (zJ)) ẑ = + (Jz + z∇ · J) ẑ

(3.10)

or
∑

i

x̂i (∇ · (xiJ)) = J + x(∇ · J) (3.11)

which is the sum of three divergences, not a divergence itself. If we integrate

both sides over all space we get:
∫

IR3

∑

i

x̂i (∇ · (xiJ)) d3x =
∫

IR3

Jd3x+
∫

IR3

x(∇ · J)d3x (3.12)

∑

i

x̂i

∫

S(∞)
(n̂ · (xiJ)) d3x =

∫

IR3

Jd3x+
∫

IR3

x(∇ · J)d3x (3.13)

∑

i

x̂i0 =
∫

IR3

Jd3x+
∫

IR3

x(∇ · J)d3x (3.14)

0 =
∫

IR3

Jd3x+
∫

IR3

x(∇ · J)d3x (3.15)



where we have used the fact that J (and ρ) have compact support and are

zero everywhere on a surface at infinity.

We rearrange this and get:

∫

IR3

Jd3x = −
∫

IR3

x(∇ · J)d3x (3.16)

which is just what we needed to prove the conclusion.

This illustrates one of the most difficult examples of using integration

by parts in vector calculus. In general, seek out a tensor form that can be

expressed as a pure vector derivative and that evaluates to two terms, one

of which is the term you wish to integrate (but can’t) and the other the

term you want could integrate if you could only proceed as above. Apply

the generalized divergence theorem, throw out the boundary term (or not –

if one keeps it one derives e.g. Green’s Theorem(s), which are nothing more

than integration by parts in this manner) and rearrange, and you’re off to

the races.

Note well that the tensor forms may not be trivial! Sometimes you do

have to work a bit to find just the right combination to do the job.



Chapter 4

Numbers

(Note: This appendix is very much under development. Check back period-

ically.)

It may seem silly to devote space to numbers as physicists by hypothesis

love numbers, but the standard undergraduate training of physicists does not

include a course in number theory per se, so most of what they are likely

to know is gleaned from at most one course in complex numbers (math

double majors and math minors excepted). This chapter makes no attempt

to present an exhaustive review of number theory (however cool and worthy

of a deeper treatment it might be) but instead confines itself to just a few

points of direct relevance to electrodynamics.

4.1 Real Numbers

Real numbers are of obvious importance in physics, and electrodynamics

is no exception. Measured or counted quantities are almost invariably de-

scribed in terms of real numbers or their embedded cousins, the integers.

Their virtue in physics comes from from the fact that they form a (mathe-

matical) field1 that is, they support the mathematical operations of addi-

tion, subtraction, multiplication and division, and it empirically turns out

that physical laws turn out to be describable in terms of algebraic forms

based on (at least) real numbers. Real numbers form a group under or-

1Wikipedia: http://www.wikipedia.org/wiki/Field mathematics. ;
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dinary multiplication and, because multiplication is associative and each

element possesses a unique inverse, they form a division algebra2

A division algebra is one where any element other than zero can be

divided into any other element to produce a unique element. This property

of real numbers is extremely important – indeed it is the property that makes

it possible to use algebra per se to solve for many physical quantities from

relations expressed in terms of products and sums. The operational steps:

b · c = a

(b · c) · c−1 = a · c−1

b · (c · c−1) = a · c−1

b = b · 1 = a · c−1 (4.1)

are so pervasively implicit in our algebraic operations because they are all

learned in terms of real numbers that we no longer even think about them

until we run into them in other contexts, for example when a, b, c are ma-

trices, with at least c being an invertible matrix.

In any event real numbers are ideally suited for algebra because they

form a field, in some sense the archetypical field, whereby physical law can

be written down in terms of sums and products with measurable quantities

and physical parameters represented by real numbers. Other fields (or rings)

are often defined in terms of either subsets of the real numbers or extensions

of the real numbers, if only because when we write a symbol for a real number

in an algebraic computation we know exactly what we can and cannot do

with it.

Real numbers are the basis of real “space” and “time” in physics – they

are used to form an algebraic geometry wherein real numbers are spatiotem-

poral coordinates. This use is somewhat presumptive – spacetime cannot be

probed at distances shorter than the Planck length (1.616× 10−35 meters) –

and may be quantized and granular at that scale. Whatever this may or may

not mean (close to nothing, lacking a complete quantum theory of gravity)

it makes no meaningful difference as far as the applicability of e.g. calculus

down to that approximate length scale, and so our classical assumption of

smooth spacetime will be quite reasonable.

Are real numbers sufficient to describe physics, in particular classical

2Wikipedia: http://www.wikipedia.org/wiki/Division algebra. .

http://www.wikipedia.org/wiki/Division_algebra


electrodynamics? The answer may in some sense be yes (because classical

measurable quantities are invariably real, as are components of e.g. complex

numbers) but as we will see, it will be far easier to work over a different field:

complex numbers, where we will often view real numbers as just the real part

of a more general complex number, the real line as just one line in a more

general complex plane. As we will see, there is a close relationship between

complex numbers and a two-dimensional Euclidean plane that permits us to

view certain aspects of the dynamics of the real number valued measurable

quantities of physics as the real projection of dynamics taking place on the

complex plane. Oscillatory phenomena in general are often viewed in this

way.

4.2 Complex Numbers

The operation of taking the square root (or any other roots) of a real number

has an interesting history which we will not review here. Two aspects of

number theory that have grown directly out of exploring square roots are,

however, irrational numbers (since the square root of most integers can

be shown to be irrational) and imaginary numbers. The former will not

interest us as we already work over at least the real numbers which include

all rationals and irrationals, positive and negative. Imaginary numbers,

however, are a true extension of the reals.

Since the product of any two non-negative numbers is non-negative, and

the product of any two negative numbers is similarly non-negative, we can-

not find any real number that, when squared, is a negative number. This

permits us to “imagine” a field of numbers where the square root of a nonzero

negative number exists. Such a field cannot be identical to the reals already

discussed above. It must contain the real numbers, though, in order to be

closed under multiplication (as the square of an “imaginary” number is a

negative real number, and the square of that real number is a positive real

number).

If we define the unit imaginary number to be:

i = +
√
−1 (4.2)



such that

± i2 = −1 (4.3)

we can then form the rest of the field by scaling this imaginary unit through

multiplication by a real number (to form the imaginary axis) and then gen-

erating the field of complex numbers by summing all possible combinations

of real and imaginary numbers. Note that the imaginary axis alone does

not form a field or even a multiplicative group as the product of any two

imaginary numbers is always real, just as is the product of any two real

numbers. However, the product of any real number and an imaginary num-

ber is always imaginary, and closure, identity, inverse and associativity can

easily be demonstrated.

The easiest way to visualize complex numbers is by orienting the real

axis at right angles to the imaginary axis and summing real and imaginary

“components” to form all of the complex numbers. There is a one-to-one

mapping between complex numbers and a Euclidean two dimensional plane

as a consequence that is very useful to us as we seek to understand how this

“imaginary” generalization works.

We can write an arbitrary complex number as z = x+iy for real numbers

x and y. As you can easily see, this number appears to be a point in a

(complex) plane. Addition and subtraction of complex numbers are trivial –

add or subtract the real and imaginary components separately (in a manner

directly analogous to vector addition).

Multiplication, however, is a bit odd. Given two complex numbers z1
and z2, we have:

z = z1 · z2 = x1x2 + i(x1y2 + y1x2) − y1y2 (4.4)

so that the real and imaginary parts are

ℜz = x1x2 − y1y2 (4.5)

ℑz = x1y2 + y1x2 (4.6)

This is quite different from any of the rules we might use to form the

product of two vectors. It also permits us to form the so-called complex

conjugate of any imaginary number, the number that one can multiply it

by to obtain a purely real number that appears to be the square of the



Euclidean length of the real and imaginary components

z = x+ iy (4.7)

z∗ = x− iy (4.8)

|z|2 = z∗z = zz∗ = x2 + y2 (4.9)

A quite profound insight into the importance of complex numbers can

be gained by representing a complex number in terms of the plane polar

coordinates of the underlying Euclidian coordinate frame. We can use the

product of a number z and its complex conjugate z∗ to define the amplitude

|z| = +
√

|z|2| that is the polar distance of the complex number from the

complex origin. The usual polar angle θ can then be swept out from the

positive real axis to identify the complex number on the circle of radius |z|.
This representation can then be expressed in trigonometric forms as:

z = x+ iy = |z| cos(θ) + i|z| sin(θ) (4.10)

= |z| (cos(θ) + i sin(θ)) (4.11)

= |z|eiθ (4.12)

where the final result can be observed any number of ways, for example by

writing out the power series of eu = 1 + u + u2/2! + ... for complex u = iθ

and matching the real and imaginary subseries with those for the cosine and

sine respectively. In this expression

θ = tan−1 y

x
(4.13)

determines the angle θ in terms of the original “cartesian” complex coordi-

nates.

Trigonometric functions are thus seen to be quite naturally expressible

in terms of the exponentials of imaginary numbers. There is a price to pay

for this, however. The representation is no longer single valued in θ. In fact,

it is quite clear that:

z = |z|eiθ±2nπ (4.14)

for any integer value of n. We usually avoid this problem initially by requir-

ing θ ∈ (−π, π] (the “first leaf”) but as we shall see, this leads to problems

when considering products and roots.



It is quite easy to multiply two complex numbers in this representation:

z1 = |z1|eiθ1 (4.15)

z2 = |z2|eiθ2 (4.16)

z = z1z2 = |z1||z2|ei(θ1+θ2) (4.17)

or the amplitude of the result is the product of the amplitudes and the phase

of the result is the sum of the two phases. Since θ1 + θ2 may well be larger

than π even if the two angles individually are not, to stick to our resolution

to keep the resultant phase in the range (π, π] we will have to form a suitable

modulus to put it back in range.

Division can easily be represented as multiplication by the inverse of a

complex number:

z−1 =
1

|z|e
−iθ (4.18)

and it is easy to see that complex numbers are a multiplicative group and

division algebra and we can also see that its multiplication is commutative.

One last operation of some importance in this text is the formation of

roots of a complex number. It is easy to see that the square root of a complex

number can be written as:

√
z = ±

√

|z|eiθ/2 =
√

|z|ei(θ/2±nπ) (4.19)

for any integer n. We usually insist on finding roots only within the first

“branch cut”, and return an answer only with a final phase in the range

(pi, π].

There is a connection here between the branches, leaves, and topology –

there is really only one actual point in the complex plane that corresponds

to z; the rest of the ways to reach that point are associated with a winding

number m that tells one how many times one must circle the origin (and in

which direction) to reach it from the positive real axis.

Thus there are two unique points on the complex plane (on the principle

branch) that are square roots (plus multiple copies with different winding

numbers on other branches). In problems where the choice doesn’t matter

we often choose the first one reached traversing the circle in a counterclock-

wise direction (so that it has a positive amplitude). In physics choice often



matters for a specific problem – we will often choose the root based on e.g.

the direction we wish a solution to propagate as it evolves in time.

Pursuing this general idea it is easy to see that z
1

n where n is an integer

are the points

|z| 1

n ei(θ/n±2mπ/n) (4.20)

where m = 0, 1, 2... as before. Now we will generally have n roots in the

principle branch of z and will have to perform a cut to select the one desired

while accepting that all of them can work equally well.

4.3 Contour Integration

4.4 Geometric Algebra





Chapter 5

Partial Differential Equations

(Note: This section is very much under development. Check back periodi-

cally.)

5.1 The Laplace Equation

5.2 The Helmholtz Equation

5.3 The Wave Equation
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Chapter 6

Tensors

6.1 The Dyad and N-adic Forms

There are two very different ways to introduce the notion of a tensor. One

is in terms of differential forms, especially the definition of the total differ-

ential. This form is ultimately the most useful (and we will dwell upon it

below for this reason) but it is also algebraically and intuitively the most

complicated. The other way is by contemplating the outer product of two

vectors, otherwise known as a dyad.

We will introduce the dyad in a two dimensional Euclidean space with

Cartesian unit vectors, but it is a completely general idea and can be used

in an arbitrary n-manifold within a locally Euclidean patch. Suppose one

has a vector A = Axx̂ + Ayŷ and another vector B = Bxx̂ + Byŷ. If one

simply multiplies these two vectors together as an outer product (ordinary

multiplication with the distribution of the terms) one obtains the following

result:

AB = AxBxx̂x̂ + AxByx̂ŷ + AyBxŷx̂ + AyByŷŷ (6.1)

This product of vectors is called a dyadic, and each pair of unit vectors

within is called a dyad.

A dyad is an interesting object. Each term appears to be formed out

of the ordinary multiplicative product of two numbers (which we can easily

and fully compute and understand) followed by a pair of unit vectors that

are juxtaposed. What, exactly does this juxtaposition of unit vectors mean?
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We can visualize (sort of) what x̂ by itself is – it is a unit vector in the x

direction that we can scale to turn into all possible vectors that are aligned

with the x-axis (or into components of general vectors in the two dimensional

space). It is not so simple to visualize what a dyad x̂x̂ is in this way.

The function of such a product becomes more apparent when we define

how it works. Suppose with take the inner product (or scalar product, or

contraction) of our vector A with the elementary dyad x̂hx. We can do this

in either order (from either side):

A · (x̂x̂) = (A · x̂)x̂ = Axx̂ (6.2)

or

(x̂x̂) · A = x̂(x̂ · A) = Axx̂ (6.3)

We see that the inner product of a unit dyad x̂x̂ with a vector serves to

project out the vector that is the x-component of A (not the scalar mag-

nitude of that vector Ax). The inner product of a dyad with a vector is a

vector.

What about the product of other dyads with A?

(x̂ŷ) · A = x̂(ŷ · A) = Ayx̂ (6.4)

A · (x̂ŷ) = (A · x̂)ŷ = Axŷ (6.5)

which are not equal. In fact, these terms seem to create the new vector com-

ponents that might result from the interchange of the x and y components

of the vector A, as do (ŷx̂) · A = Axŷ etc.

Note well! Some of the dyads commute with respect to an inner product

of the dyad with a vector, others (e.g. x̂ŷ) do not! Our generalized dyadic

multiplication produces what appear to be “intrinsically” non-commutative

results when contracted with vectors on the left or the right respectively.

This is in fact a break point – if we pursue this product in one direction

we could easily motivate and introduce Geometric Algebra, in terms of which

Maxwell’s equations can be written in a compact and compelling form. How-

ever, even without doing this, we can arrive at that a compelling form (that

is, in fact, quaternionic), so we will restrain ourselves and only learn enough

about tensors to be able to pursue the usual tensor form without worrying

about whether or how it can be decomposed in a division algebra.



The thing to take out of the discussion so far is that in general the inner

product of a dyad with a vector serves to project out the scalar amplitude

of the vector on the left or the right and reconstruct a possibly new vec-

tor out of the remaining unit vector. Very shortly we are going to start

writing relations that sum over basis vectors where the basis is not necessar-

ily orthonormal (as this isn’t really necessary or desireable when discussing

curvilinear coordinate systems). To do this, I will introduce at this point

the Einstein summation convention where writing a product with repeated

indices implies summation over those indices:

A =
∑

i

Aix̂i = Aix̂i (6.6)

You can see how the summation symbol is in some sense redundant unless for

some reason we wish to focus on a single term in the sum. In tensor analysis

this is almost never the case, so it is easier to just specify the exceptions.

Note that we can form general dyadic forms directly from the unit dyads

without the intermediate step of taking the outer product of particular vec-

tors, producing terms like {x̂x̂, x̂ŷ, ŷx̂, ŷŷ}. We can also take another outer

product from the left or right with all of these forms producing tryads,

terms like {x̂x̂x̂, x̂ŷx̂, ...ŷx̂ŷ, ŷŷŷ} (eight terms total). Furthermore we

can repeat all of the arguments above in higher dimensional spaces, e.g.

{x̂x̂, x̂ŷ, x̂ẑ, ..., ẑẑ}.
There is a clear one-to-one correspondance of these monad unit vectors

to specific column vectors, e.g.:

x̂ =









1

0

0









(6.7)

ŷ =









0

1

0









(6.8)

ẑ =









0

0

1









(6.9)



This correspondance continues through the various unit dyads, tryads:

x̂x̂ =









1 0 0

0 0 0

0 0 0









(6.10)

x̂ŷ =









0 1 0

0 0 0

0 0 0









(6.11)

and so on.

We will call all of these unit monads, dyads, tryads, and so on, as well as

the quantities formed by multiplying them by ordinary numbers and sum-

ming them according to similar -adic type, tensors. As we can see, there

are several ways of representing tensors that all lead to identical algebraic

results, where one of the most compelling is the matrix representation il-

lustrated above. Note well that the feature that differentiates tensors from

“ordinary” matrices is that the components correspond to particular -adic

combinations of coordinate directions in some linear vector space; tensors

will change, as a general rule, when the underlying coordinate description

is changed. Let us define some of the terms we will commonly use when

working with tensors.

The dimension of the matrix in a matrix representation of a tensor quan-

tity we call its rank. We have special (and yet familiar) names for the first

few tensor ranks:

0th rank tensor or scalar. This is an “ordinary number”, which may at

the very least be real or complex, and possibly could be numbers as-

sociated with geometric algebras of higher grade. It’s characteristic

defining feature is that is is invariant under transformations of the un-

derlying coordinate system. All of the following are algebraic examples

of scalar quantities: x, 1.182, π, Ax,A · B...

1st rank tensor or vector. This is a set of scalar numbers, each an ampli-

tude corresponding to a particular unit vector or monad, and inherits

its transformational properties from those of the underlying unit vec-



tors. Examples: A = Axx̂ + Ayŷ, {xi}, {xi},

ẑ =









Ax

Ay

Az









where the i in e.g. xi does not correspond to a power but is rather

a coordinate index corresponding to a contravariant (ordinary) vec-

tor where xi similarly corresponds to a covariant vector, and where

covariance and contravariance will be defined below.

2nd rank tensor or D×D matrix (where D is the dimension of the space,

so the matrix hasD2 components). Examples: Cxyx̂ŷ,AB,
⇔
C, Aij, A

j
i , A

ij,

⇔
A=









Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz









where again in matrix context the indices may be raised or lowered to

indicate covariance or contravariance in the particular row or column.

3rd and higher rank tensors are the D×D×D... matrices with a rank

corresponding to the number of indices required to describe it. In

physics we will have occassion to use tensors through the fourth rank

occasionally, through the third rank fairly commonly, although most

of the physical quantities of interest will be tensors of rank 0-2. For

examples we will simply generalize that of the examples above, using
⇔
T as a generic tensor form or (more often) explicitly indicating its

indicial form as in T111, T112, ... or ǫijk.

Using an indicial form with the Einstein summation convention is very

powerful, as we shall see, and permits us to fairly simply represent forms

that would otherwise involve a large number of nested summations over all

coordinate indices. To understand precisely how to go about it, however,

we have to first examine coordinate transformations.

6.2 Coordinate Transformations

Suppose we have a coordinate frame K in D dimensions, where D will

typically be 4 for relativistic spacetime (with the 0th coordinate equal to ct



as usual) or 3 for just the spatial part. To simplify our notation, we will

use roman characters such as i, j, k for the three-vector spatial-only part of

a four-vector, and use greek characters such as µ, ν, γ, δ for the entire four-

vector (where recall, repeated indices imply summation over e.g. i = 1, 2, 3

or µ = 0, 1, 2, 3, hence the distinction as it can be used to de-facto restrict

the summation range).

Now suppose that we wish to transform to a new coordinate frame K ′.

At this time we place very few restrictions on this transformation. The

transformation might, therefore, translate, rotate, rescale or otherwise alter

the original coordinate description. As we do this, our description of physical

quantities expressed in the old coordinates must systematically change to a

description in the new coordinates, since the actual physical situation being

described is not altered by the change in coordinate frames. All that is

altered is our point of view.

Our first observation might be that it may not be possible to describe our

physical quantities in the new frame if the transformation were completely

general. For example, if the dimension of K ′ were different (either larger

or smaller than that of K) we might well be unable to represent some of

the physics that involved the missing coordinate or have a certain degree of

arbitrariness associated with a new coordinate added on. A second possible

problem involves regions of the two coordinate frames that cannot be made

to correspond – if there is a patch of the K frame that simply does not map

into a corresponding patch of the K ′ frame we cannot expect to correctly

describe any physics that depends on coordinates inside the patch in the

new frame.

These are not irrelevant mathematical issues to the physicist. A per-

petual open question in physics is whether or not any parts of it involve

additional variables. Those variables might just be “parameters” that can

take on some range of values, or they might be supported only within space-

time scales that are too small to be directly observed (leaving us to infer

what happens in these microscale “patches” from observations made on the

macroscale), they may be macroscopic domains over which frame trans-

formations are singular (think “black holes”) or they may be actual extra

dimensions – hidden variables, if you like – in which interactions and struc-

ture can occur that is only visible to us in our four dimensional spacetime in

projection. With no a priori reason to include or exclude any of these pos-



sibilities, the wise scientist must be prepared to believe or disbelieve them

all and to include them in the “mix” of possible explanations for otherwise

difficult to understand phenomena.

However, our purposes here are more humble. We only want to be able

to describe the relatively mundane coordinate transformations that do not

involve singularities, unmatched patches, or additional or missing coordinate

dimensions. We will therefore require that our coordinate transformations

be one-to-one – each point in the spacetime frame K corresponds to one

and only one point in the spacetime frame K ′ – and onto – no missing or

extra patches in the K ′ frame. This suffices to make the transformations

invertible. There will be two very general classes of transformation that

satisfy these requirements to consider. In one of them, the new coordinates

can be reached by means of a parametric transformation of the original ones

where the parameters can be continuously varied from a set of 0 values that

describe “no transformation”. In the other, this is not the case.

For the moment, let’s stick to the first kind, and start our discussion

by looking at our friends the coordinates themselves. By definition, the

untransformed coordinates of an inertial reference frame are contravariant

vectors. We symbolize contravariant components (not just 4-vectors – this

discussion applies to tensor quantities on all manifolds on the patch of co-

ordinates that is locally flat around a point) with superscript indices:

xcontravariant = (x0, x1, x2, x3...) (6.12)

where we are not going to discuss manifolds, curved spaces, tangent or

cotangent bundles (much) although we will still use a few of these terms

in a way that is hopefully clear in context. I encourage you to explore the

references above to find discussions that extend into these areas. Note that

I’m using a non-bold x to stand for a four-vector, which is pretty awful, but

which is also very common.

Now let us define a mapping between a point (event) x in the frame K

and the same point x′ described in the K ′ frame. x in K consists of a set of

four scalar numbers, its frame coordinates, and we need to transform these

four numbers into four new numbers in K ′. From the discussion above, we

want this mapping to be a continuous function in both directions. That is:

x0′ = x0′(x0, x1, x2...) (6.13)



x1′ = x1′(x0, x1, x2...) (6.14)

x2′ = x2′(x0, x1, x2...) (6.15)

... (6.16)

and

x0 = x0(x0′, x1′, x2′...) (6.17)

x1 = x1(x0′, x1′, x2′...) (6.18)

x2 = x2(x0′, x1′, x2′...) (6.19)

... (6.20)

have to both exist and be well behaved (continuously differentiable and so

on). In the most general case, the coordinates have to be linearly independent

and span the K or K ′ frames but are not necessarily orthonormal. We’ll go

ahead and work with orthonormal coordinate bases, however, which is fine

since non-orthnormal bases can always be othogonalized with Gram-Schmidt

and normalized anyway.



Given this formal transformation, we can write the following relation

using the chain rule and definition of derivative:

dx0′ =
∂x0′

∂x0
dx0 +

∂x0′

∂x1
dx1 +

∂x0′

∂x2
dx2 + . . . (6.21)

dx1′ =
∂x1′

∂x0
dx0 +

∂x1′

∂x1
dx1 +

∂x1′

∂x2
dx2 + . . . (6.22)

dx2′ =
∂x2′

∂x0
dx0 +

∂x2′

∂x1
dx1 +

∂x2′

∂x2
dx2 + . . . (6.23)

...

where again, superscripts stand for indices and not powers in this context.

We can write this in a tensor-matrix form:















dx0′

dx1′

dx2′

...















=

















∂x0′

∂x0

∂x0′

∂x1

∂x0′

∂x1 . . .
∂x1′

∂x0

∂x1′

∂x1

∂x1′

∂x1 . . .
∂x2′

∂x0

∂x2′

∂x1

∂x2′

∂x1 . . .
...

...
...

. . .































dx0

dx1

dx2

...















(6.24)

The determinant of the matrix above is called the Jacobean of the trans-

formation and must not be zero (so the transformation is invertible. This

matrix defines the differential transformation between the coordinates in

the K and K ′ frame, given the invertible maps defined above. All first rank

tensors that transform like the coordinates, that is to say according to this

transformation matrix linking the two coordinate systems, are said to be

contravariant vectors where obviously the coordinate vectors themselves are

contravariant by this construction.

We can significantly compress this expression using Einsteinian summa-

tion:

dxi′ =
∂xi ′

∂xj
dxj (6.25)

in which compact notation we can write the definition of an arbitrary con-

travariant vector A as being one that transforms according to:

Ai′ =
∂xi ′

∂xj
Aj (6.26)

There, that was easy!





Chapter 7

Group Theory

(Note: This appendix is very much under development. Check back period-

ically.)

7.1 Definition of a Group

7.2 Groups of Transformation
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Chapter 8

Math References

• www.grc.nasa.gov/WWW/K-12/Numbers/Math/documents/. . .

. . . Tensors TM2002211716.pdf. This is a NASA white paper by Joseph

C. Kolecki on the use of tensors in physics (including electrodynamics)

and is quite lovely. It presents the modern view of tensors as entities

linked both traditional bases and manifolds much as I hope to do here.

• Mathematical Physics by Donald H. Menzel, Dover Press, ISBN 0-486-

60056-4. This book was written in 1947 and hence presents both the

“old way” and the “new way” of understanding tensors. It is cheap

(as are all Dover Press books) and actually is a really excellent desk

reference for both undergraduate and graduate level classical physics

in general! Section 27 in this book covers simple cartesian tensors,

section 31 tensors defined in terms of transformations.

• Schaum’s Outline series has a volume on vectors and tensors. Again

an excellent desk reference, it has very complete sections on vector

calculus (e.g. divergence theorem, stokes theorem), multidimensional

integration (including definitions of the Jacobian and coordinate trans-

formations between curvilinear systems) and tensors (the old way).

• http://www.mathpages.com/rr/s5-02/5-02.htm This presents tensors

in terms of the manifold coordinate description and is actually quite

lovely. It is also just a part of http://www.mathpages.com/, a rather

huge collection of short articles on all sorts of really cool problems

with absolutely no organization as far as I can tell. Fun to look over
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and sometimes very useful.

• Wikipedia: http://www.wikipedia.org/wiki/Manifold Tensors tend to

be described in terms of coordinates on a manifold. An n-dimensional

manifold is basically a mathematical space which can be covered with

locally Euclidean “patches” of coordinates. The patches must overlap

so that one can move about from patch to patch without ever losing

the ability to describe position in local “patch coordinates” that are

Euclidean (in mathematese, this sort of neighborhood is said to be

“homeomorphic to an open Euclidean n-ball”). The manifolds of in-

terest to us in our discussion of tensors are differentiable manifolds,

manifolds on which one can do calculus, as the transformational defini-

tion of tensors requires the ability to take derivatives on the underlying

manifold.

• Wikipedia: http://www.wikipedia.org/wiki/Tensor This reference is

(for Wikipedia) somewhat lacking. The better material is linked to

this page, see e.g.

Wikipedia: http://www.wikipedia.org/wiki/Covariant vector and

Wikipedia: http://www.wikipedia.org/wiki/Contravariant vector

and much more.

• http://www.mth.uct.ac.za/omei/gr/chap3/frame3.html This is a part

of a “complete online course in tensors and relativity” by Peter Dunsby.

It’s actually pretty good, and is definitely modern in its approach.

• http://grus.berkeley.edu/∼jrg/ay202/node183.html This is a section

of an online astrophysics text or set of lecture notes. The tensor review

is rather brief and not horribly complete, but it is adequate and is in

the middle of other useful stuff.

Anyway, you get the idea – there are plentiful resources in the form of

books both paper and online, white papers, web pages, and wikipedia articles

that you can use to really get to where you understand tensor algebra, tensor

calculus (differential geometry), and group theory. As you do so you’ll find

that many of the things you’ve learned in mathematics and physics classes in

the past become simplified notationally (even as their core content of course

does not change).

http://www.wikipedia.org/wiki/Manifold
http://www.wikipedia.org/wiki/Tensor
http://www.wikipedia.org/wiki/Covariant vector
http://www.wikipedia.org/wiki/Contravariant vector
http://www.mth.uct.ac.za/omei/gr/chap3/frame3.html
http://grus.berkeley.edu/~jrg/ay202/node183.html


As footnoted above, this simplification becomes even greater when some

of the ideas are further extended into a general geometric division algebra,

and I strongly urge interested readers to obtain and peruse Lasenby’s book

on Geometric Algebra. One day I may attempt to add a section on it here as

well and try to properly unify the geometric algebraic concepts embedded

in the particular tensor forms of relativistic electrodynamics.





Part II

Non-Relativistic
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Chapter 9

Plane Waves

9.1 The Free Space Wave Equation

9.1.1 Maxwell’s Equations

We begin with Maxwell’s Equations (ME):

∇ · D = ρ (9.1)

∇ × H − ∂D

∂t
= J (9.2)

∇ · B = 0 (9.3)

∇ × E +
∂B

∂t
= 0 (9.4)

in SI units, where D = ǫE and H = B/µ. By this point, remembering these

should be second nature, and you should really be able to freely go back and

forth between these and their integral formulation, and derive/justify the

Maxwell Displacement current in terms of charge conservation, etc. Note

that there are two inhomogeneous (source-connected) equations and two

homogeneous equations, and that the inhomogeneous forms are the ones

that are medium-dependent. This is significant for later, remember it.

For the moment, let us express the inhomogeneous MEs in terms of

just E = ǫD and B = H/µ, explicitly showing the permittivity ǫ and the

permeability µ1:

1In SI units, now that Jackson 3rd finally dropped the curséd evil of Gaussian units.

51



∇ · E =
ρ

ǫ
(9.5)

∇ × B − µǫ
∂E

∂t
= µJ (9.6)

It is difficult to convey to you how important these four equations are

going to be to us over the course of the semester. Over the next few months,

then, we will make Maxwell’s Equations dance, we will make them sing, we

will “mutilate” them (turn them into distinct coupled equations for trans-

verse and longitudinal field components, for example) we will couple them,

we will transform them into a manifestly covariant form, we will solve them

microscopically for a point-like charge in general motion. We will (hopefully)

learn them.

For the next two chapters we will primarily be interested in the properties

of the field in regions of space without charge (sources). Initially, we’ll focus

on a vacuum, where there is no dispersion at all; later we’ll look a bit at

dielectric media and dispersion. In a source-free region, ρ = 0 and J = 0 and

we obtain Maxwell’s Equations in a Source Free Region of Space:

∇ · E = 0 (9.7)

∇ · B = 0 (9.8)

∇ × E +
∂B

∂t
= 0 (9.9)

∇ × B − ǫµ
∂E

∂t
= 0 (9.10)

where for the moment we ignore any possibility of dispersion (frequency

dependence in ǫ or µ).

9.1.2 The Wave Equation

After a little work (two curls together, using the identity:

∇ × (∇ × a) = ∇(∇ · a) −∇2a (9.11)

Mostly, anyway. Except for relativity.



and using Gauss’ Laws) we can easily find that E and B satisfy the wave

equation:

∇2u− 1

v2

∂2u

∂t2
= 0 (9.12)

(for u = E or u = B) where

v =
1

√
µǫ
. (9.13)

The wave equation separates2 for harmonic waves and we can actually

write the following homogeneous PDE for just the spatial part of E or B:

(

∇2 +
ω2

v2

)

E =
(

∇2 + k2
)

E = 0 (9.14)

(

∇2 +
ω2

v2

)

B =
(

∇2 + k2
)

B = 0 (9.15)

where the time dependence is implicitly e−iωt and where v = ω/k.

This is called the homogeneous Helmholtz equation (HHE) and we’ll

spend a lot of time studying it and its inhomogeneous cousin. Note that

it reduces in the k → 0 limit to the familiar homogeneous Laplace equation,

which is basically a special case of this PDE.

Observing that3:

∇eikn·x = ikneikn·x (9.16)

we can easily see that the wave equation has (among many, many others) a

solution on IR3 that looks like:

u(x, t) = u0e
i(kn·x−ωt) (9.17)

where the wave number k = kn has the magnitude

k =
ω

v
=

√
µǫω (9.18)

and determines the propagation direction of this plane wave.

2In case you’ve forgotten: Try a solution such as u(x, t) = X(x)Y (y)Z(z)T (t), or

(with a bit of inspiration) E(x)e−iωt in the differential equation. Divide by u. You end

up with a bunch of terms that can each be identified as being constant as they depend

on x, y, z, t separately. For a suitable choice of constants one obtains the following PDE

for spatial part of harmonic waves.
3Yes, you should work this out termwise if you’ve never done so before. Don’t just

take my word for anything.



9.1.3 Plane Waves

Plane waves can propagate in any direction. Any superposition of these

waves, for all possible ω,k, is also a solution to the wave equation. However,

recall that E and B are not independent, which restricts the solution in

electrodynamics somewhat.

To get a feel for the interdependence of E and B, let’s pick k = ±kx̂ so

that e.g.:

E(x, t) = E+e
i(kx−ωt) + E−e

i(−kx−ωt) (9.19)

B(x, t) = B+e
i(kx−ωt) + B−e

i(−kx−ωt) (9.20)

which are plane waves travelling to the right or left along the x-axis for

any complex E+,E−, B+,B−. In one dimension, at least, if there is no

dispersion we can construct a fourier series of these solutions for various k

that converges to any well–behaved function of a single variable.

[Note in passing that:

u(x, t) = f(x− vt) + g(x+ vt) (9.21)

for arbitrary smooth f(z) and g(z) is the most general solution of the 1-

dimensional wave equation. Any waveform that preserves its shape and

travels along the x-axis at speed v is a solution to the one dimensional

wave equation (as can be verified directly, of course). How boring! These

particular harmonic solutions have this form (verify this).]

If there is dispersion (velocity a function of frequency) then the fourier

superposition is no longer stable and the last equation no longer holds. Each

fourier component is still an exponential, but their velocity is different, and

a wave packet spreads out it propagates. We’ll look at this shortly to see

how it works for a very simple (gaussian) wave packet but for now we’ll

move on.

Note that E and B are connected by having to satisfy Maxwell’s equa-

tions even if the wave is travelling in just one direction (say, in the direction

of a unit vector n); we cannot choose the wave amplitudes separately. Sup-

pose

E(x, t) = Eei(kn·x−ωt)

B(x, t) = Bei(kn·x−ωt)



where E, B, and n are constant vectors (which may be complex, at least for

the moment).

Note that applying (∇2 + k2) to these solutions in the HHE leads us to:

k2n · n = µǫω2 =
ω2

v2
(9.22)

as the condition for a solution. Then a real b ·n = 1 leads to the plane wave

solution indicated above, with k = ω
v
, which is the most familiar form of the

solution (but not the only one)!

This has mostly been “mathematics”, following more or less directly from

the wave equation. The same reasoning might have been applied to sound

waves, water waves, waves on a string, or “waves” u(x, t) of nothing in par-

ticular. Now let’s use some physics in the spirit suggested in the last section

of the Syllabus and see what it tells us about the particular electromagnetic

waves that follow from Maxwell’s equations turned into the wave equation.

These waves all satisfy each of Maxwell’s equations separately.

For example, from Gauss’ Laws we see e.g. that:

∇ · E = 0

∇ · Eei(kn·x−ωt) = 0

E · ∇ei(kn·x−ωt) = 0

ikE · nei(kn·x−ωt) = 0 (9.23)

or (dividing out nonzero terms and then repeating the reasoning for B):

n · E = 0 and n · B = 0. (9.24)

Which basically means for a real unit vector n that E and B are perpen-

dicular to n, the direction of propagation! A plane electromagnetic wave is

therefore a transverse wave. This seems like it is an important thing to

know, and is not at all a mathematical conclusion of the wave equation per

se.

Repeating this sort of thing using one of the the curl eqns (say, Faraday’s

law) one gets:

B =
√
µǫ (n × E) (9.25)



(the i cancels, k/ω = 1/v =
√
ǫµ). This means that E and B have the

same phase if n is real4

If n is real (and hence a unit vector), then we can introduce three real,

mutually orthogonal unit vectors (ǫ̂1, ǫ̂2, n̂) and use them to express the

field strengths:

E1 = ǫ̂1E0, B1 = ǫ̂2
√
µǫE0 (9.26)

and

E2 = ǫ̂2E
′
0, B2 = −ǫ̂1

√
µǫE ′

0 (9.27)

where E0 and E ′
0 are constants that may be complex. It is worth noting

that

|E| = v|B| (9.28)

have the same dimensions and that the magnitude of the electric field is

greater than that of the magnetic field to which it is coupled via Maxwell’s

Equations by a factor of the speed of light in the medium, as this will be

used a lot in electrodynamics.

These relations describe a wave propagating in the direction n̂ = ǫ̂1 ×
ǫ̂2 = ǫ̂3. This follows from the (time-averaged) Poynting vector (for any

particular component pair):

S =
1

2
(E × H∗) (9.29)

=
1

2µ
(E × B∗) (9.30)

=

√
ǫµ

2µ
(E × vB∗) (9.31)

=
1

2

√

ǫ

µ
| E0 |2 n̂ (9.32)

Now, kinky as it may seem, there is no real5 reason that k = kn cannot

be complex (while k remains real!) As an exercise, figure out the complex

vector of your choice such that

n · n = 1. (9.33)

4Whoops! You mean n doesn’t have to be real? See below. Note also that we are

assuming ǫ and µ are real as well, and they don’t have to be either.
5Heh, heh.



Since I don’t really expect you to do that (gotta save your strength for

the real problems later) I’ll work it out for you. Note that this is:

n = nR + inI (9.34)

n2
R − n2

I = 1 (9.35)

nR · nI = 0. (9.36)

So, nR must be orthogonal to nI and the difference of their squares must

be one. For example:

nR =
√

2 î nI = 1 ĵ (9.37)

works, as do infinitely more More generally (recalling the properties of hy-

berbolics functions):

n = ê1 cosh θ + iê2 sinh θ (9.38)

where the unit vectors are orthogonal should work for any θ.

Thus the most general E such that n · E = 0 is

E = (iê1 sinh θ − ê2 cosh θ)A + ê3B (9.39)

where (sigh) A and B are again, arbitrary complex constants. Note that if

n is complex, the exponential part of the fields becomes:

ei(kn·x−ωt) = e−knI ·xei(knR·x−ωt). (9.40)

This inhomogeneous plave wave exponentially grows or decays in some direc-

tion while remaining a “plane wave” in the other (perpendicular) direction.

Fortunately, nature provides us with few sources that produce this kind

of behavior (Imaginary n? Just imagine!) in electrodynamics. So let’s

forget it for the moment, but remember that it is there for when you run

into it in field theory, or mathematics, or catastrophe theory.

Instead we’ll concentrate on kiddy physics descriptions of polarization

when n is a real unit vector, continuing the reasoning above.

9.1.4 Polarization of Plane Waves

We’ve really done all of the hard work already in setting things up above (and

it wasn’t too hard). Indeed, the E1 and E2 defined a few equations back are



just two independent polarizations of a transverse plane wave. However, we

need to explore the rest of the physics, and understand just what is going on

in the whole electrodynamic field and not just the electric field component

of same.

Let’s start by writing E in a fairly general way:

Ei = ǫ̂iEie
i(k·x−ωt), (9.41)

Then we can return (as we will, over and over) to the curl equations to find:

Bi =
√
µǫ

k × Ei

k
(9.42)

for i = 1, 2 and ǫ̂i a unit vector perpendicular to the direction of propagation

n.

Then generally,

E(x, t) = (ǫ̂1E1 + ǫ̂2E2)e
i(k·x−ωt) (9.43)

B(x, t) =
1

v
(ǫ̂2E1 − ǫ̂1E2)e

i(k·x−ωt) (9.44)

where E1 and E2 are (as usual) complex amplitudes since there is no reason

(even in nature) to assume that the fields polarized in different directions

have the same phase. (Note that a complex E corresponds to a simple phase

shift in the exponential.)

The polarization of the plane wave describes the relative direction, magni-

tude, and phase of the electric part of the wave. We have several well-known

cases:

1. If E1 and E2 have the same phase (but different magnitude) we have

Linear Polarization of the E field with the polarization vector mak-

ing an angle θ = tan−1(E2/E1) with ǫ1 and magnitude E =
√

E2
1 + E2

2 .

Frequently we will choose coordinates in this case so that (say) E2 = 0.

2. If E1 and E2 have different phases and different magnitudes, we have

Elliptical Polarization. It is fairly easy to show that the electric

field strength traces out an ellipse in the 1, 2 plane.

3. A special case of elliptical polarization results when the amplitudes

are out of phase by π/2 and the magnitudes are equal. In this case we



have Circular Polarization. Since eiπ/2 = i, in this case we have a

wave of the form:

E =
E0√

2
(ǫ̂1 ± iǫ̂2) = E0ǫ̂±. (9.45)

where we have introduced complex unit helicity vectors such that:

ǫ̂∗± · ǫ̂∓ = 0 (9.46)

ǫ̂∗± · ǫ̂3 = 0 (9.47)

ǫ̂∗± · ǫ̂± = 1 (9.48)

As we can see from the above, elliptical polarization can have positive

or negative helicity depending on whether the polarization vector swings

around the direction of propagation counterclockwise or clockwise when

looking into the oncoming wave.

Another completely general way to represent a polarized wave is via the

unit helicity vectors:

E(x, t) = (E+ǫ̂+ + E−ǫ̂−) eik·x−ωt (9.49)

It is left as an exercise to prove this. Note that as always, E± are complex

amplitudes!

I’m leaving Stokes parameters out, but you should read about them on

your own in case you ever need them (or at least need to know what they

are). They are relevant to the issue of measuring mixed polarization states,

but are no more general a description of polarization itself than either of

those above.



9.2 Reflection and Refraction at a Plane In-

terface

Suppose a plane wave is incident upon a plane surface that is an interface

between two materials, one with µ, ǫ and the other with µ′, ǫ′.

Incident Wave

E = E0e
i(k·x−ωt) (9.50)

B =
√
µǫ

k × E

k
(9.51)

Refracted Wave

E′ = E′

0e
i(k′·x−ωt) (9.52)

B′ =
√

µ′ǫ′
k′ × E′

k′
(9.53)

Reflected Wave

E′′ = E′′

0e
i(k·x−ωt) (9.54)

B′′ =
√
µǫ

k × E′′

k′
(9.55)

where the reflected wave and incident wave do not leave the first medium

and hence retain speed v = 1/
√
µǫ, µ, ǫ and k = ω

√
µǫ = ω/v. The refracted

wave changes to speed v′ = 1/
√
µ′ǫ′, µ′, k′ = ω

√
µ′ǫ′ = ω/v′.

[Note that the frequency ω of the wave is the same in both media! Ask

yourself why this must be so as a kinematic constraint...]

Our goal is to completely understand how to compute the reflected and

refracted wave from the incident wave. This is done by matching the wave

across the boundary interface. There are two aspects of this matching – a

static or kinematic matching of the waveform itself and a dynamic matching

associated with the (changing) polarization in the medium. These two kinds

of matching lead to two distinct and well-known results.



9.2.1 Kinematics and Snell’s Law

The phase factors of all three waves must be equal on the actual boundary

itself, hence:

(k · x)z=0 = (k′ · x)z=0 = (k′′ · x)z=0 (9.56)

as a kinematic constraint for the wave to be consistent. That is, this has

nothing to do with “physics” per se, it is just a mathematical requirement

for the wave description to work. Consequently it is generally covered even

in kiddy-physics classes, where one can derive Snell’s law just from pictures

of incident waves and triangles and a knowledge of the wavelength shift

associated with the speed shift with a fixed frequency wave.

At z = 0, the three k’s must lie in a plane and we obtain:

k sin θincident = k′ sin θrefracted = k sin θreflected

n sin θincident = n′ sin θrefracted = n sin θreflected (9.57)

which is both Snell’s Law and the Law of Reflection, where we use k =

ω/v = nω/c to put it in terms of the index of refraction, defined by v = c/n.

Note that we cancel ω/c, using the fact that the frequency is the same in

both media.

9.2.2 Dynamics and Reflection/Refraction

Now we do the dynamics, that is to say, the real physics. Real physics

is associated with the equations of motion of the EM field, that is, with

Maxwell’s equations, which in turn become the wave equation, so dynam-

ics is associated with the boundary value problem satisfied by the (wave

equation) PDEs.

So what are those boundary conditions? Recall that the electric displace-

ment perpendicular to the surface must be continuous, that the electric field

parallel to the surface must be continuous, that the magnetic field parallel

to the surface must be continuous and the magnetic induction perpendicular

to the surface must be continuous.

To put it another (more physical) way, the perpendicular components of

the electric field will be discontinous at the surface due to the surface charge

layer associated with the local polarization of the medium in response to the



wave. This polarization is actually not instantaneous, and is a bulk response

but here we will assume that the medium can react instantly as the wave

arrives and that the wavelength includes many atoms so that the response

is a collective one. These assumptions are valid for e.g. visible light incident

on ordinary “transparent” matter. Similarly, surface current loops cause

magnetic induction components parallel to the surface to be discontinuously

changed.

Algebraically, this becomes (for E):

ǫ(E0 + E′′
0) · n̂ = ǫ′E′

0 · n̂ (9.58)

(E0 + E′′
0) × n̂ = E′

0 × n̂ (9.59)

where the latter cross product is just a fancy way of finding E⊥ components.

In most cases one wouldn’t actually “do” this decomposition algebraically,

one would just inspect the problem and write down the || and ⊥ components

directly using a sensible coordinate system (such as one where n̂ = ẑ).

Similarly for B:

(B0 + B′′
0) · n̂ = B′

0 · n̂ (9.60)
1

µ
(B0 + B′′

0) × n̂ =
1

µ′B
′
0 × n̂ (9.61)

(where, recall, B = (k × E)/(vk) etc.) Again, one usually would not use

this cross product algebraically, but would simply formulate the problem in

a convenient coordinate system and take advantage of the fact that:

|B0| =
|E0|
v

=
√
µǫ|E0| (9.62)

Coordinate choice and Brewster’s Law

What, then, is a “convenient coordinate system”? One where n̂ = ẑ is

perpendicular to the surface is good for starters. The remaining two coor-

dinates are selected to define the plane of reflection and refraction and its

perpendicular. This is particularly useful because (as we shall see) the re-

flected and refracted intensities depend on their polarization relative to the

plane of scattering.

Again, to motivate this before messing with the algebra, you hopefully

are all familiar with the result taught at the kiddy-physics level known as



Brewster’s Law. The argument works like this: because the refracted ray

consists of (basically) dipole re-radiation of the incident field at the surface

and because dipoles do not radiate along the direction of the dipole moment,

the polarization component with E in the scattering plane has a component

in this direction.

This leads to the insight that at certain angles the refracted ray will be

completely polarized perpendicular to the scattering plane (Brewster’s Law)!

Our algebra needs to have this decomposition built in from the beginning

or we’ll have to work very hard indeed to obtain this as a result!

Let us therefore treat rays polarized in or perpendicular to the plane of

incidence/reflection/refraction separately.

E Perpendicular to Plane of Incidence

The electric field in this case is perforce parallel to the surface and hence

E · n̂ = 0 and |E × n̂| = 1 (for incident, reflected and refracted waves).

Only two of the four equations above are thus useful. The E equation is

trivial. The B equation requires us to determine the magnitude of the cross

product of B of each wave with n̂. Let’s do one component as an example.

Examining the triangle formed between B0 and n̂ for the incident waves

(where θi is the angle of incidence and/or reflection, and θr is the angle of

refraction), we see that:

1

µ
|B0 × n̂| =

1

µ
B0 cos(θi)

=

√
µǫ

µ
E0 cos(θi)

=

√

ǫ

µ
E0 cos(θi) (9.63)

Repeating this for the other two waves and collecting the results, we

obtain:

E0 + E ′′
0 = E ′

0 (9.64)
√

ǫ

µ
(E0 − E ′′

0 ) cos(θi) =

√

ǫ′

µ′E
′
0 cos(θr) (9.65)



This is two equations with two unknowns. Solving it is a bit tedious. We

need:

cos(θr) =
√

1 − sin2(θr) (9.66)

=

√

1 − n2

n′2 sin2(θi) (9.67)

=

√

n′2 − n2 sin2(θi)

n′ (9.68)

Then we (say) eliminate E ′
0 using the first equation:

√

ǫ

µ
(E0 − E ′′

0 ) cos(θi) =

√

ǫ′

µ′ (E0 + E ′′
0 )

√

n′2 − n2 sin2(θi)

n′ (9.69)

Collect all the terms:

E0





√

ǫ

µ
cos(θi) −

√

ǫ′

µ′

√

n′2 − n2 sin2(θi)

n′



 =

E ′′
0





√

ǫ′

µ′

√

n′2 − n2 sin2(θi)

n′ +

√

ǫ

µ
cos(θi)



 (9.70)

Solve for E ′′
0 :

E ′′
0 = E0

(

√

ǫ
µ

cos(θi) −
√

ǫ′

µ′

√
n′2−n2 sin2(θi)

n′

)

(

√

ǫ
µ

cos(θi) +
√

ǫ′

µ′

√
n′2−n2 sin2(θi)

n′

) (9.71)

This expression can be simplified after some tedious cancellations involv-

ing
n

n′ =

√

µǫ

µ′ǫ′
(9.72)

and either repeating the process or back-substituting to obtain :

E ′′
0 = E0

(

n cos(θi) − µ
µ′

√

n′2 − n2 sin2(θi)
)

(

n cos(θi) + µ
µ′

√

n′2 − n2 sin2(θi)
) (9.73)

E ′
0 = E0

2n cos(θi)
(

n cos(θi) + µ
µ′

√

n′2 − n2 sin2(θi)
) (9.74)



E Parallel to Plane of Incidence

Now the magnetic field is parallel to the surface so B ·n̂ = 0 and |B×n̂| = 1.

This time three equations survive, but they cannot all be independent as we

have only two unknowns (given Snell’s law above for the reflected/refracted

waves). We might as well use the simplest possible forms, which are clearly

the ones where we’ve already worked out the geometry, e.g. E0 × n̂ =

E0 cos(θi) (as before for B0). The two simplest ones are clearly:

(E0 −E ′′
0 ) cos(θi) = E ′

0 cos(θr) (9.75)
√

ǫ

µ
(E0 + E ′′

0 ) =

√

ǫ′

µ′E
′
0 (9.76)

(from the second matching equations for both E and B above).

It is left as a moderately tedious exercise to repeat the reasoning process

for these two equations – eliminate either E ′
0 or E ′′

0 and solve/simplify for the

other, repeat or backsubstitute to obtain the originally eliminated one (or

use your own favorite way of algebraically solving simultaneous equations)

to obtain:

E ′
0 = E0

2nn′ cos(θi)
µ
µ′n′2 cos(θi) + n

√

n′2 − n2 sin2(θi)
(9.77)

E ′′
0 = E0

µ
µ′n

′2 cos(θi) − n
√

n′2 − n2 sin2(θi)

µ
µ′n′2 cos(θi) + n

√

n′2 − n2 sin2(θi)
(9.78)

The last result that one should note before moving on is the important

case of normal incidence (where cos θi = 1 and sin(θi) = 0). Now there

should only be perpendicular solutions. Interestingly, either the parallel

or perpendicular solutions above simplify with obvious cancellations and

tedious eliminations to:

E ′
0 = E0

2n

n′ + n
(9.79)

E ′′
0 = E0

n′ − n

n′ + n
(9.80)

Note well that the reflected wave changes phase (is negative relative to

the incident wave in the plane of scattering) if n > n′. This of course makes



sense – there are many intuitive reasons to expect a wave to invert its phase

when reflecting from a “heavier” medium starting with things one learns

studying wave pulses on a string. If this doesn’t make sense to you please

ask for help.

Intensity

Without wanting to get all tedious about it, you should be able to compute

the transmission coefficient and reflection coefficient for all of these waves

from these results. These are basically the fraction of the energy (per unit

area per unit time) in the incident wave that is transmitted vs being reflected

by the surface.

This is a simple idea, but it is a bit tricky to actually compute for a

couple of reasons. One is that we only care about energy that makes it

through the surface. The directed intensity of the wave (energy per unit

area per unit time) is the Poynting vector S. We therefore have to compute

the magnitude of the energy flux through the surface S · n̂ for each wave:

Sn =
1

2

√

ǫ

µ
|E0|2 cos(θi) (9.81)

S ′
n =

1

2

√

ǫ′

µ′ |E
′
0|2 cos(θr) (9.82)

S ′′
n =

1

2

√

ǫ

µ
|E ′′

0 |2 cos(θi) (9.83)

(9.84)

This is easy only if the waves are incident ⊥ to the surface, in which case

one gets:

T =
I ′0
I0

=

√

ǫ′µ

ǫµ′
|E ′

0|2
|E0|2

(9.85)

=
4nn′

(n′ + n)2
(9.86)

R =
I ′′0
I0

=
|E ′′

0 |2
|E0|2

(9.87)

=
(n′ − n)2

(n′ + n)2
(9.88)

In this case it is easy to verify that T +R = 1 as it should.



Polarization Revisited: The Brewster Angle

Note well the expression for the reflected wave amplitude for in-plane po-

larization:

E ′′
0 = E0

µ
µ′n

′2 cos(θi) − n
√

n′2 − n2 sin2(θi)

µ
µ′n′2 cos(θi) + n

√

n′2 − n2 sin2(θi)
(9.89)

This amplitude will be zero for certain angles, namely those such that:

µ

µ′n
′2 cos(θi) = n

√

n′2 − n2 sin2(θi) (9.90)

Squaring both sides and restoring cosine term to its original form:

(

µ

µ′

)2

n′2 cos2(θi) = n2 cos2(θr) (9.91)

We therefore expect the reflected wave to vanish when

µn′

µ′n
=

cos(θr)

cos(θi)
(9.92)

For optical frequencies µ ≈ µ′ (to simplify the algebra somewhat) and this

is equivalent to:

n′ cos(θi) = n cos(θr) (9.93)

From Snell’s law this in turn is:

n

n′ tan(θi) =
n′

n
tan(θr) (9.94)

This trancendental equation can be solved by observation from its symmetry.

It is true if and only if:

tan(θi) =
n′

n
= cot(θr) (9.95)

The angle of incidence

θb = tan−1

(

n′

n

)

(9.96)

is called Brewster’s angle. At this reflected and refracted wave travel at right

angles with respect to one another according to Snell’s law. This means that



the dipoles in the second medium that are responsible for the reflected wave

are parallel to the direction of propagation and (as we shall see) oscillating

dipoles to not radiate in the direction of their dipole moment! However, the

result above was obtained without any appeal to the microscopic properties

of the dielectric moments that actually coherently scatter the incident wave

at the surface – it follows strictly as the result of solving a boundary value

problem for electromagnetic plane waves.

Students interested in optical fibers are encouraged to read further in

Jackson, 7.4 and learn how the cancellation and reradiation of the waves

to produce a reflected wave at angles where total internal reflection hap-

pens does not occur instantaneously at the refracting surface but in fact

involves the penetration of the second medium some small distance by non-

propagating fields. This in turn is related to polarization, dispersion, and

skin depth, which we will now treat in some detail.

9.3 Dispersion

Up to now, we have obtained all of our results with the assumption that the

medium was free from dispersion. This just meant that we assumed that the

index of refraction was constant as a function of frequency, so all wavelengths

were similarly affected. Of course none of our results dependent particular

strongly on this result, but in any event it is not correct. The permittivity

(and to a lesser extent for transparent materials, the permeability) is a

function of the frequency and thus the speed of light changes as we pass

from one dielectric medium to another. Let us now figure out what and how

dispersion works.

By the way, when I say that it “isn’t correct” I’m not asserting an opin-

ion or mathematical conclusion. That’s not how physics works. Rather it is

always ultimately empirical: rainbows and prisms (not to mention opaque

objects) remind us that most physical media are not free from dispersion.

Understanding and modelling the dynamics of dispersion in a way that cor-

rectly explains these observed phenomena is a key step in the understanding

of much modern physics, which involves the measurement and prediction of

various susceptibilities (another form of the permittivity, basically, as you

can see below) in both classical and quantum circumstances. A full under-



standing of the particular dispersion of a physical medium is possible only in

the context of quantum theory, but to understand the phenomenon itself we

can fortunately rely on a rather simple model that exhibits all the essential

features observed in macroscopic media.

9.3.1 Static Case

Recall, (from sections 4.5 and 4.6) that when the electric field penetrates

a medium made of bound charges, it polarizes those charges. The charges

themselves then produce a field that opposes, and hence by superposition

reduces, the applied field. The key assumption in these sections was that

the polarization of the medium was a linear function of the total field in the

vicinity of the atoms.

Linearity response was easily modelled by assuming a harmonic (linear)

restoring force:

F = −mω2
0x (9.97)

acting to pull a charge e from a neutral equilibrium in the presence of an

electric field:

mω2
0x = eE (9.98)

where E is the applied external field. The dipole moment of this (presumed)

system is pmol = ex = e2

mω2

0

E. Real molecules, of course, have many bound

charges, each of which at equilibrium has an approximately linear restoring

force with its own natural frequency, so a more general model of molecular

polarizability is:

γmol =
1

ǫ0

∑

i

e2i
miω2

i

(9.99)

From the linear approximation you obtained an equation for the total

polarization (dipole moment per unit volume) of the material:

P = Nγmol

(

ǫ0E +
1

3
P

)

(9.100)

(equation 4.68). This can be put in many forms. For example, using the

definition of the (dimensionless) electric susceptibility:

P = ǫ0χeE (9.101)



we find that:

χe =
Nγmol

1 − Nγmol

3

. (9.102)

The susceptibility is one of the most often measured or discussed quantities

of physical media in many contexts of physics.

However, as we’ve just seen, in the context of waves we will most often

have occasion to use polarizability in terms of the permittivity of the medium,

ǫ. In term of χe, this is:

ǫ = ǫ0(1 + χe) (9.103)

From a knowledge of ǫ (in the regime of optical frequencies where µ ≈
µ0 for many materials of interest) we can easily obtain, e. g. the index of

refraction:

n =
c

v
=

√
µǫ

√
µ0ǫ0

≈
√

ǫ

ǫ0
≈
√

1 + χe (9.104)

or

n =

√

√

√

√

1 + 2Nγmol

3

1 − Nγmol

3

(9.105)

if N and γmol are known or at least approximately computable using the

(surprisingly accurate) expression above.

So much for static polarizability of insulators – it is readily understand-

able in terms of real physics of pushes and pulls, and the semi-quantitative

models one uses to understand it work quite well. However, real fields aren’t

static, and real materials aren’t all insulators. So we gotta

1. Modify the model to make it dynamic.

2. Evaluate the model (more or less as above, but we’ll have to work

harder.

3. Understand what’s going on.

Let’s get started.

9.3.2 Dynamic Case

The obvious generalization of the static model for the polarization is to as-

sume a damped linear response to a harmonic (plane wave) driving electric



field. That is, every molecule will be viewed as a collection of damped,

driven (charged) harmonic oscillators. Magnetic and non–linear effects will

be neglected. This is valid for a variety of materials subjected to “weak” har-

monic EM fields6 which in practice (with optical frequencies) means nearly

everything but laser light.

The equation of motion7 for a single damped, driven harmonically bound

charged electron is:

m
[

ẍ + γẋ + ω2
0x
]

= −eE(x, t) (9.106)

where γ is the damping constant (so −mγẋ is the velocity dependent damp-

ing force). If we assume that the electric field E and x are harmonic in time

at frequency ω (or fourier transform the equation and find its solution for a

single fourier component) and neglect the transients we get:

p = −ex =
e2

m

Eω

(ω2
0 − ω2 − iωγ)

(9.107)

for each electron8.

Actually, we have N molecules/unit volume each with Z electrons where

fi of them have frequencies and damping constants ωi and γi, respectively

(whew!) then (since we will stick in the definitions P ω = ǫ0χeEω and

ǫ = 1 + χe)

ǫ(ω) = ǫ0

(

1 +
Ne2

m

∑

i

fi

(ω2
i − ω2 − iωγi)

)

(9.108)

where the oscillator strengths satisfy the sum rule:
∑

i

fi = Z. (9.109)

These equations (within suitable approximations) are valid for quantum

theories, and indeed, since quantum oscillators have certain discrete frequen-

cies, they seem to “naturally” be quantum mechanical.

6Why? If you don’t understand this, you need to go back to basics and think about

expanding a potential well in a Taylor series about a particle’s equilibrium position. The

linear term vanishes because it is equilibrium, so the first surviving term is likely to

be quadratic. Which is to say, proportional to x2 where x is the displacement from

equilibrium, corresponding to a linear restoring force to lowest order.
7You do remember Newton’s law, don’t you? Sure hope so...
8I certainly hope you can derive this result, at least if your life depends on it. In

qualifiers, while teaching kiddy physics, whenever.



9.3.3 Things to Note

Before we go on, we should understand a few things:

1. ǫ is now complex! The imaginary part is explicitly connected to the

damping constant.

2. Consequently we can now see how the index of refraction

n =
c

v
=

√
µǫ

√
µ0ǫ0

, (9.110)

can be also be complex. A complex index of refraction describes ab-

sorption (or amplification!) and arises from the damping term in the

electrons’ EOM (or non–linear, non–equilibrium effects in lasers, which

we will not consider here). This makes energy conservation kind of

sense. Energy absorbed by the electrons and dissipated via the “fric-

tional” damping force is removed from the EM field as it propagates

through the medium. This (complex dispersion of incident waves) is

the basis for the “optical” description of scattering which is useful to

nuclear physicists.

3. The term
1

ω2
i − ω2 − iωγ

has a form that you will see again and again and again in your studies.

It should be meditated upon, studied, dreamed about, mentally mas-

ticated and enfolded into your beings until you understand it. It is a

complex equation with poles in the imaginary/real plane. It describes

(very generally speaking) resonances.

It is useful to convert this into a form which has manifest real and

imaginary parts, since we will have occasion to compute them in real

problems one day. A bit of algebra gives us:

1

ω2
i − ω2 − iωγ

=
(ω2

i − ω2) + iωγ

(ω2
i − ω2)2 + ω2γ2

4. If N is “small” (∼ 1019 molecules/cc for a gas) χe is small (just like

in the static case) and the medium is nearly transparent at most fre-

quencies.



5. if N is “large” (∼ 1023 molecules/cc for a liquid or solid) χe can be

quite large in principle, and near a resonance can be quite large and

complex!

These points and more require a new language for their convenient de-

scription. We will now pause a moment to develop one.

9.3.4 Anomalous Dispersion, and Resonant Absorp-

tion

Figure 9.1: Typical curves indicating the real and imaginary parts of ǫ/ǫ0
for an atom with three visible resonances. Note the regions of anomalous

(descending) real dispersion in the immediate vicinity of the resonances,

separated by large regions of normal (ascending) dispersion.

The γi are typically small compared to the oscillator frequencies ωi. (Just

to give you an idea, γi ∼ 109 sec−1 to ωi ∼ 1015 sec−1 for optical transitions



in atoms, with similar proportionalities for the other relevant transitions.)

That means that at most frequencies, ǫ(ω) is nearly real

Suppose we only have a few frequencies. Below the smallest ωi, all the

(real) terms in the sum are positive and Re ǫ(ω) > 1. As we increase ω,

one by one the terms in the sum become negative (in their real part) until

beyond the highest frequency the entire sum and hence Re ǫ(ω) < 1.

As we sweep past each “pole” (where the real part in the denominator of

a single term is zero) that term increases rapidly in the real part, then dives

through zero to become large and negative, then increases monotonically

to zero. Meanwhile, its (usually small) imaginary part grows, reaching a

peak just where the real part is zero (when ǫ(ω) is pure imaginary). In the

vicinity of the pole, the contribution of this term can dominate the rest of

the sum. We define:

Normal dispersion as strictly increasing Re ǫ(ω) with increasing ω. This

is the normal situation everywhere but near a pole.

Anomalous dispersion as decreasing Re ǫ(ω) with increasing ω. This is

true only near a sufficiently strong pole (one that dominates the sum).

At that point, the imaginary part of the index of refraction becomes

(relatively) appreciable.

Resonant Absorption occurs in the regions where Im ǫ is large. We will

parametrically describe this next.

9.3.5 Attenuation by a complex ǫ

Suppose we write (for a given frequency)

k = β + i
α

2
. (9.111)

Then

Eω(x) = eikx = eiβxe−
α
2

x (9.112)

and the intensity of the (plane) wave falls off like e−αx. α measures the

damping of the plane wave in the medium.

Let’s think a bit about k:

k =
ω

v
=
ω

c
n (9.113)



where:

n = c/v =

√
µǫ

√
µ0ǫ0

(9.114)

In most “transparent” materials, µ ≈ µ0 and this simplifies to n =
√

ǫ/ǫ0.

Thus:

k2 =
ω2

c2
ǫ

ǫ0
(9.115)

Nowever, now ǫ has real and imaginary parts, so k may as well! In fact,

using the expression for k in terms of β and α above, it is easy to see that:

Re k2 = β2 − α2

4
=
ω2

c2
Re

ǫ

ǫ0
(9.116)

and

Im k2 = βα =
ω2

c2
Im

ǫ

ǫ0
. (9.117)

As long as β2 >> α2 (again, true most of the time in trasparent materi-

als) we can thus write:
α

β
≈ Im ǫ(ω)

Re ǫ(ω)
(9.118)

and

β ≈ (ω/c)

√

Re
ǫ

ǫ0
(9.119)

This ratio can be interpreted as a quantity similar to Q, the fractional de-

crease in intensity per wavelength travelled through the medium (as opposed

to the fractional decrease in intensity per period).

To find α in some useful form, we have to examine the details of ǫ(ω),

which we will proceed to do next.

When ω is in among the resonances, there is little we can do besides

work out the details of the behavior, since the properties of the material can

be dominated strongly by the local dynamics associated with the nearest,

strongest resonance. However, there are two limits that are of particular

interest to physicists where the “resonant” behavior can be either evaluated

or washed away. They are the low frequency behavior which determines the

conduction properties of a material far away from the electron resonances

per se, and the high frequency behavior which is “universal”.



9.3.6 Low Frequency Behavior

Near ω = 0 the qualitative behavior depends upon whether or not there is

a “resonance” there. If there is, then ǫ(ω ≈ 0) can begin with a complex

component that attenuates the propagation of EM energy in a (nearly static)

applied electric field. This (as we shall see) accurately describes conduction

and resistance. If there isn’t, then ǫ is nearly all real and the material is a

dielectric insulator.

Suppose there are both “free” electrons (counted by ff ) that are “reso-

nant” at zero frequency, and “bound” electrons (counted by fb). Then if we

start out with:

ǫ(ω) = ǫ0

(

1 +
Ne2

m

∑

i

fi

(ω2
i − ω2 − iωγi)

)

= ǫ0

(

1 +
Ne2

m

∑

b

fb

(ω2
b − ω2 − iωγb)

)

+
Ne2

m

∑

f

ff

(−ω2 − iωγf)

= ǫb + iǫ0
Ne2ff

mω(γ0 − iω)
(9.120)

where ǫb is now only the contribution from all the “bound” dipoles.

We can understand this from

∇ × H = J +
dD

dt
(9.121)

(Maxwell/Ampere’s Law). Let’s first of all think of this in terms of a plain

old static current, sustained according to Ohm’s Law:

J = σE. (9.122)

If we assume a harmonic time dependence and a “normal” dielectric

constant ǫb, we get:

∇ × H = (σ − iωǫb) E

= −iω
(

ǫb + i
σ

ω

)

E. (9.123)

On the other hand, we can instead set the static current to zero and

consider all “currents” present to be the result of the polarization response



D to the field E. In this case:

∇ × H = −iωǫE

= −iω
(

ǫb + iǫ0
Ne2

m

ff

(γ0 − iω)

)

E (9.124)

Equating the two latter terms in the brackets and simplifying, we obtain

the following relation for the conductivity:

σ = ǫ0
nfe

2

m

1

(γ0 − iω)
. (9.125)

This is the Drude Model with nf = ffN the number of “free” electrons per

unit volume. It is primarily useful for the insight that it gives us concerning

the “conductivity” being closely related to the zero-frequency complex part

of the permittivity. Note that at ω = 0 it is purely real, as it should be,

recovering the usual Ohm’s Law.

We conclude that the distinction between dielectrics and conductors is

a matter of perspective away from the purely static case. Away from the

static case, “conductivity” is simply a feature of resonant amplitudes. It is

a matter of taste whether a description is better made in terms of dielectric

constants and conductivity or complex dielectric.

9.3.7 High Frequency Limit; Plasma Frequency

Way above the highest resonant frequency the dielectric constant takes on

a simple form (factoring out ω >> ωi and doing the sum to the lowest

surviving order in ωp/ω. As before, we start out with:

ǫ(ω) = ǫ0

(

1 +
Ne2

m

∑

i

fi

(ω2
i − ω2 − iωγi)

)

= ǫ0



1 − Ne2

ω2m

∑

i

fi

(1 + iγi

ω
− ω2

i

ω2 )





≈ ǫ0

(

1 − NZe2

ω2m

)

≈ ǫ0

(

1 − ω2
p

ω2

)

(9.126)



where

ω2
p =

ne2

m
. (9.127)

This is called the plasma frequency, and it depends only on n = NZ, the

total number of electrons per unit volume.

The wave number in this limit is given by:

ck =
√

ω2 − ω2
p (9.128)

(or ω2 = ω2
p + c2k2). This is called a dispersion relation ω(k). A large

portion of contemporary and famous physics involves calculating dispersion

relations (or equivalently susceptibilities, right?) from first principles.
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Figure 9.2: The dispersion relation for a plasma. Features to note: Gap at

k = 0, asymptoticallyx linear behavior.

The dielectric constant is essentially real and slightly less than one.

In certain physical situations (such as a plasma or the ionosphere) all

the electrons are essentially “free” (in a degenerate “gas” surrounding the



positive charges) and resonant damping is neglible. In that case this relation

can hold for frequencies well below ωp (but well above the static limit, since

plasmas are low frequency “conductors”). Waves incident on a plasma are

reflected and the fields inside fall off exponentially away from the surface.

Note that

αp ≈ 2ωp

c
(9.129)

shows how electric flux is expelled by the “screening” electrons.

The reflectivity of metals is caused by essentially the same mechanism.

At high frequencies, the dielectric constant of a metal has the form

ǫ(ω) ≈ ǫ0(ω) − ω2
p

ω2
(9.130)

where ω2
p = ne2/m∗ is the “plasma frequency” of the conduction electrons.

m∗ is the “effective mass” of the electrons, introduced to describe the effects

of binding phenomenologically.

Metals reflect according to this rule (with a very small field penetration

length of “skin depth”) as long as the dielectric constant is negative; in the

ultraviolet it becomes positive and metals can become transparent. Just one

of many problems involved in making high ultraviolet, x–ray and gamma ray

lasers — it is so hard to make a mirror!

9.4 Penetration of Waves Into a Conductor

– Skin Depth

9.4.1 Wave Attenuation in Two Limits

Recall from above that:

∇ × H = −iωǫE = −iω
(

ǫb + i
σ

ω

)

E. (9.131)

Then:

k2 =
ω2

v2
= µǫω2 = µǫbω

2
(

1 + i
σ

ωǫb

)

(9.132)



Also k = β + iα
2

so that

k2 =

(

β2 − α2

4

)

+ iαβ = µǫbω
2
(

1 + i
σ

ωǫb

)

(9.133)

Oops. To determine α and β, we have to take the square root of a

complex number. How does that work again? See the appendix on Complex

Numbers...

In many cases we can pick the right branch by selecting the one with the

right (desired) behavior on physical grounds. If we restrict ourselves to the

two simple cases where ω is large or σ is large, it is the one in the principle

branch (upper half plane, above a branch cut along the real axis. From the

last equation above, if we have a poor conductor (or if the frequency is much

higher than the plasma frequency) and α≪ β, then:

β ≈ √
µǫbω (9.134)

α ≈
√

µ

ǫb
σ (9.135)

and the attenuation (recall that E = E0e
−α

2 eiβn̂·E) is independent of fre-

quency.

The other limit that is relatively easy is a good conductor, σ ≫ ωǫb. In

that case the imaginary term dominates and we see that

β ≈ α

2
(9.136)

or

β ≈
√

µσω

2
(9.137)

α ≈
√

2µσω (9.138)

Thus

k = (1 + i)

√

µσω

2
(9.139)

Recall that if we apply the ∇ operator to Eeik(n·x−iωt we get:

∇ · E = 0

ikE0 · n̂ = 0

E0 · n̂ = 0 (9.140)



and

− ∂B

∂t
= ∇ × ~E

iωµH0 = i(n̂ × E0)(1 + i)

√

µσω

2

H0 =
1

ω

√

σω

µ
(n̂ × E0)

1√
2
(1 + i)

=
1

ω

√

σω

µ
(n̂ × E0)e

iπ/4 (9.141)

so E0 and H0 are not in phase (using the fact that i = eiπ/2).

In the case of superconductors, σ → ∞ and the phase angle between

them is π/4. In this case H0 ≫ E (show this!) and the energy is mostly

magnetic.

Finally, note well that the quantity
(

α
2

)−1
= δ is an exponential damping

length that describes how rapidly the wave attenuates as it moves into the

conducting medium. δ is called the skin depth and we see that:

δ =
2

α
=

1

β
=

√

2

µσω
(9.142)

We will examine this quantity in some detail in the sections on waveguides

and optical cavities, where it plays an important role.

9.5 Kramers-Kronig Relations

We find KK relations by playing looped games with Fourier Transforms. We

begin with the relation between the electric field and displacement at some

particular frequency ω:

D(x, ω) = ǫ(ω)E(x, ω) (9.143)

where we note the two (forward and backward) fourier transform relations:

D(x, t) =
1√
2π

∫ ∞

−∞
D(x, ω)e−iωtdω (9.144)

D(x, ω) =
1√
2π

∫ ∞

−∞
D(x, t′)eiωt′dt′ (9.145)



and of course:

E(x, t) =
1√
2π

∫ ∞

−∞
E(x, ω)e−iωtdω (9.146)

E(x, ω) =
1√
2π

∫ ∞

−∞
E(x, t′)eiωt′dt′ (9.147)

Therefore:

D(x, t) =
1√
2π

∫ ∞

−∞
ǫ(ω)E(x, ω)e−iωtdω

=
1√
2π

∫ ∞

−∞
ǫ(ω)e−iωtdω

1√
2π

∫ ∞

−∞
E(x, t′)eiωt′dt′

= ǫ0

{

E(x, t) +
∫ ∞

−∞
G(τ)E(x, t− τ)dτ

}

(9.148)

where we have introduced the susceptibility kernel:

G(τ) =
1

2π

∫ ∞

−∞

{

ǫ(ω)

ǫ0
− 1

}

e−iωτdω =
1

2π

∫ ∞

−∞
χe(ω)e−iωτdω (9.149)

(noting that ǫ(ω) = ǫ0(1 +χe(ω))). This equation is nonlocal in time unless

G(τ) is a delta function, which in turn is true only if the dispersion is

constant.

To understand this, consider the susceptibility kernel for a simple one

resonance model (more resonances are just superposition). In this case,

recall that:

χe =
ǫ

ǫ0
− 1 =

ω2
p

ω2
0 − ω2 − iγ0ω

(9.150)

so

G(τ) =
ω2

p

2π

∫ ∞

−∞

1

ω2
0 − ω2 − iγ0ω

e−iωτdω (9.151)

This is an integral we can do using contour integration methods. We use

the quadratic formula to find the roots of the denominator, then write the

factored denominator in terms of the roots:

ω1,2 =
−iγ ±

√

−γ2 + 4ω2
0

2
(9.152)

or

ω1,2 =
−iγ
2

± ω0

√

1 − γ2

4ω2
0

=
−iγ
2

± ν0 (9.153)



where ν0 ≈ ω0 as long as ω0 ≫ γ/2 (as is usually the case, remember β and

α/2). Note that these poles are in the lower half plane (LHP) because of

the sign of γ in the original harmonic oscillator – it was dissipative. This is

important.

Then

G(τ) = (2πi)
ω2

p

2π

∮

C

1

(ω − ω1)(ω − ω2)
e−iωτdω (9.154)

If we close the contour in the upper half plane (UHP), we have to restrict

τ < 0 (why? because otherwise the integrand will not vanish on the contour

at infinity where ω has a positive imaginary part. Since it encloses no

poles, G(τ < 0) vanishes, and we get no contribution from the future in

the integral above for E. The result appears to be causal, but really we

cheated – the “causality” results from the damping term, which represents

entropy and yeah, gives time an arrow here. But it doesn’t really break the

symmetry of time in this problem and if our model involved a dynamically

pumped medium so that the wave experienced gain moving through it (an

imaginary term that was positive) we would have had poles in the UHP and

our expression for E would not be “causal”. Really it is equally causal in

both cases, because the fourier transforms involved sample all times anyway.

If we close the integrand in the LHP, τ > 0 and if we do the rest of the

(fairly straightforward) algebra we get:

G(τ) = ω2
pe

− γτ
2

sin(ν0)

ν0
Θ(τ) (9.155)

where the latter is a Heaviside function to enforce the τ > 0 constraint.

Our last little exercise is to use complex variables and Cauchy’s theorem

again. We start by noting that D and E and G(τ) are all real. Then we

can integrate by parts and find things like:

ǫ(ω)

ǫ0
− 1 = i

G(0)

ω
− G′(0)

ω2
+ ... (9.156)

from which we can conclude that ǫ(−ω) = ǫ∗(ω∗) and the like. Note the

even/odd imaginary/real oscillation in the series. ǫ(ω) is therefore analytic

in the UHP and we can write:

ǫ(z)

ǫ0
− 1 =

1

2πi

∮

C

ǫ(ω′)
ǫ0

− 1

ω′ − z
dω′ (9.157)



We let z = ω + iδ where δ → 0+ (or deform the integral a bit below the

singular point on the Re(ω) axis). From the Plemlj Relation:

1

ω′ − ω − iδ
= P

1

ω′ − ω
+ iπδ(ω′ − ω) (9.158)

(see e.g. Wyld, Arfkin). If we substitute this into the integral above along

the real axis only, do the delta-function part and subtract it out, cancel a

factor of 1/2 that thus appears, we get:

ǫ(ω)

ǫ0
= 1 +

1

iπ
P
∫ ∞

−∞

ǫ(ω′)
ǫ0

− 1

ω′ − ω
dω′ (9.159)

Although this looks like a single integral, because of the i in the denomi-

nator it is really two. The real part of the integrand becomes the imaginary

part of the result and vice versa. That is:

Re

(

ǫ(ω)

ǫ0

)

= 1 +
1

π
P
∫ ∞

−∞

Im
(

ǫ(ω′)
ǫ0

)

ω′ − ω
dω′ (9.160)

Im

(

ǫ(ω)

ǫ0

)

= −1

π
P
∫ ∞

−∞

Re
(

ǫ(ω′)
ǫ0

)

− 1

ω′ − ω
dω′ (9.161)

These are the Kramers-Kronig Relations. They tell us that the dispersive

and absorptive properties of the medium are not independent. If we know

the entire absorptive spectrum we can compute the dispersive spectrum and

vice versa. There is one more form of the KK relations given in Jackson,

derived from the discovery above that the real part of ǫ(ω) is even in ω while

the imaginary part is odd. See if you can derive this on your own for the

fun of it all...

9.6 Plane Waves Assignment

To start off the semester right, visit the Wikipedia and Mathworld websites

and look up and understand:

1. Separation of variables

2. Spherical Harmonics

http://en.wikipedia.org/
http://mathworld.wolfram.com


3. Bessel Functions

4. Spherical Bessel Functions

5. Green’s Functions

6. Wave Equation

7. Plane Wave

Just explore the kinds of things you can find there – I’m discovering that

these web references are rapidly becoming THE universal free textbook. It is

actually amazing to watch it happen (and participate in it as time permits).

Jackson, problems:

7.4, 7.6, 7.19, 7.21

Also, derive on your own all the principal results presented in these online

lecture notes. It is easy to read and see me do it. It is not so easy to do it,

even for me. Working through this, possibly several times until you really

“get it”, will truly improve your understanding of how everything works.





Chapter 10

Wave Guides

10.1 Boundary Conditions at a Conducting

Surface: Skin Depth

Let us consider for a moment what time dependent EM fields look like at the

surface of a “perfect” conductor. A perfect conductor can move as much

charge instantly as is required to cancel all fields inside. The skin depth

δ = limσ→∞
√

2/µǫbσ = 0 as α diverges – effectively all frequencies are

“static” to a perfect conductor. This is how type I superconductors expel

all field flux.

If we examine the fields in the vicinity of a boundary between a perfect

conductor and a normal dielectric/diamagnetic material, we get:

(D − Dc) · n̂ = n̂ · D = Σ (10.1)

where Dc and Ec inside the conductor vanish. Similarly,

n̂ × (H − Hc) = n̂ × H = K (10.2)

(where in these expressions, Σ is the surface charge density so we don’t

confuse it with the conductivity σ, sigh, and similarly K is the surface

current density).

In addition to these two inhomogeneous equations that normal and par-

allel fields at the surface to sources, we have the usual two homogeneous
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equations:

n̂ · (B − Bc) = 0 (10.3)

n̂ × (E − Ec) = 0 (10.4)

Note that these are pretty much precisely the boundary conditions for a

static field and should come as no surprise. For perfect conductors, we

expect the fields inside to vanish, which in turn implies that E outside must

be normal to the conducting surface and B outside must lie only parallel to

the conducting surface, as usual.

However, for materials that are not perfect conductors, the fields don’t

vanish instantly “at” the mathematical surface. Instead they die off expo-

nentially within a few multiples of the skin depth δ. On scales large with

respect to this, they will “look” like the static field conditions above, but of

course within this cutoff things are very different.

For one thing, Ohm’s law tells us that we cannot have an actual “surface

layer of charge” because for any finite conductivity, the resistance scales like

the cross-sectional area through which charge flows. Consequently the real

boundary condition on H precisely at the surface is:

n̂ × (H − Hc) = 0 (10.5)

H || = Hc,|| (10.6)

where H || = (n̂ × H) × n̂. However, this creates a problem! If this field

varies rapidly in some direction (and it does) it will generate an electric field

according to Faraday’s law! If the direction of greatest variation is “into the

conductor” (as the field is being screened by induced surface currents) then

it will generate a small electric field parallel to the surface, one which is

neglected (or rather, cannot occur) in the limit that the conductivity is

infinite. This electric field, in turn, generates a current, which causes the

gradual cancellation of H || as less and less the total bulk current is enclosed

by a decending loop boundary.

If the conductivity is large but not infinite, one way to figure out what

happens is to employ a series of successive approximations starting with

the assumption of perfect conductivity and using it to generate a first order

correction based on the actual conductivity and wavelength. The way it

works is:



1. First, we assume that outside the conductor we have only E⊥ and

H || from the statement of the boundary conditions assuming that the

fields are instantly cancelled at the surface.

2. Assume δ ≪ k−1 along the surface – the skin depth is much less than

a wavelength and the fields (whatever they may be) vanish across

roughly this length scale, so we can neglect variation (derivatives)

with respect to coordinates that lie along the surface compared to the

coordinate perpendicular to the surface.

3. Use this approximation in Maxwell’s Equations, along with the as-

sumed boundary conditions for a perfect conductor, to derive relations

between the fields in the transition layer.

4. These relations determine the small corrections to the presumed bound-

ary fields both just outside and just inside the surface.

The assumption of rapid variation only as one decends into the conductor

is a key step, as we shall see.

Thus (from 1):

n̂ × (H − Hc) = 0 (10.7)

or H ||(outside) = H ||(inside) = H || 6= 0, where the latter assumption is

because the result is boring if there are no fields, right?

We both Ampere’s law (assuming no displacement in the conductor to

leading order) and Faraday’s law to obtain relations for the harmonic fields

in terms of curls of each other:

∇ × Hc = σEc = J (10.8)

∇ × Ec = −∂Bc

∂t
= iωµcHc (10.9)

become

Ec =
1

σ
∇ × H c (10.10)

Hc = −i 1

µcω
∇ × Ec (10.11)

As we might expect, high frequencies create relatively large induced electric

fields as the magnetic fields change, but high conductivity limits the size



of the supported electric field for any given magnetic field strength in a

frequency independent way.

Now we need to implement assumption 2 on the ∇ operator. If we pick a

coordinate ξ to be perpendicular to the surface pointing into the conductor

(in the −n̂ direction) and insist that only variations in this direction will be

significant only on length scales of δ:

∇ ≈ −n̂
∂

∂ξ
(10.12)

then we get:

Ec ≈ −1

σ

(

n̂ × ∂H c

∂ξ

)

Hc ≈ i
1

µcω

(

n̂ × ∂Ec

∂ξ

)

(10.13)

(Note well the deliberate use of approx to emphasize that there may well

be components of the fields in the normal direction or other couplings be-

tween the components in the surface, but those components do not vary

particularly rapidly along the surface and so are not large contributors to

the curl.)

These two equations are very interesting. They show that while the

magnitude of the fields in the vicinity of the conducting surface may be

large or small (depending on the charge and currents near the surface) the

curls themselves are dominated by the particular components of Ec and Hc

that are in the plane perpendicular to n̂ (and each other) because the field

strengths (whatever they are) are most rapidly varying across the surface.

What this pair of equations ultimately does is show that if there is a

magnetic field just inside the conductor parallel to its surface (and hence

perpendicular to n̂) H || that rapidly varies as one descends, then there

must be an electric field E|| that is its partner. Our zeroth approximation

boundary condition on H || above shows that it is actually continuous across

the mathematical surface of the boundary and does not have to be zero

either just outside or just inside of it. However, in a good conductor the E||
field it produces is small.

This gives us a bit of an intuitive foundation for the manipulations of

Maxwell’s equations below. They should lead us to expressions for the cou-



pled EM fields parallel to the surface that self-consistently result from these

two equations.

We start by determining the component of Hc (the total vector magnetic

field just inside the conductor) in the direction perpendicular to the surface:

n̂ · Hc =
i

µcω
n̂ · (n̂ × ∂Ec

∂ξ
) = 0 (10.14)

This tells us that Hc = H || = (n̂ × Hc) × n̂ – the magnetic field coupled

by Ec by Faraday’s law lies in the plane of the conducting surface to lowest

order.

Next we form a vector that lies perpendicular to both the normal and

the magnetic field. We expect Ec to lie along this direction one way or the

other.

n̂ × H c = n̂ ×
(

i
1

µcω
n̂ × ∂Ec

∂ξ

)

= i
1

µcω

∂

∂ξ
(n̂(n̂ · Ec) − Ec)

= −i 1

µcω

∂Ec,||
∂ξ

(where Ec,⊥ = n̂(n̂ · E) and Ec = Ec,⊥ + Ec,||) and find that it does! The

fact that the electric field varies most rapidly in the −n̂ (+ξ) direction picks

out its component in the plane whatever it might be and relates it to the

magnetic field direction also in the plane.

However, this does not show that the two conditions can lead to a self-

sustaining solution in the absence of driving external currents (for example).

To show that we have to substitute Ampere’s law back into this:

n̂ × Hc = −i 1

µcω

∂

∂ξ

(

−1

σ
(n̂ × ∂Hc

∂ξ
)

)

n̂ × Hc = i
1

µcωσ
(n̂ × ∂2Hc)

∂ξ2
)

(n̂ × ∂2Hc)

∂ξ2
) = −iµcωσn̂ × Hc

∂2

∂ξ2
(n̂ × Hc) + iµcωσ (n̂ × Hc) = 0



or
∂2

∂ξ2
(n̂ × Hc) +

2i

δ2
(n̂ × Hc) = 0 (10.15)

where we used the first result and substituted δ2 = 2/(µcωσ).

This is a well-known differential equation that can be written any of

several ways. Let κ2 = 2i
δ2 . It is equivalent to all of:

(
∂2

∂ξ2
+ κ2)(n̂ × Hc) = 0 (10.16)

(
∂2

∂ξ2
+ κ2)(n̂ × Hc) × n̂ = 0 (10.17)

(
∂2

∂ξ2
+ κ2)H || = 0 (10.18)

(
∂2

∂ξ2
+ κ2)Hc = 0 (10.19)

Where:

(n̂ × H c) × n̂ = H || (10.20)

as noted above. The solution to this form is then:

Hc(ξ) = H0e
±
√
−κ2ξ (10.21)

where H0 is the magnetic field vector in the plane of the conductor at the

surface and where this equation indicates how this value is attenuated as

one decends into the conductor.

As always, we have two linearly independent solutions. Either of them

will work, and (given the already determined sign/branch associated with

the time dependence e−iωt) will ultimately have the physical interpretation

of waves moving in the direction of +ξ (−n̂) or in the direction of −ξ (n̂).

Let us pause for a moment to refresh our memory of taking the square root

of complex numbers (use the subsection that treats this in the last chapter

of these notes or visit Wikipedia of there is any problem understanding).

For this particular problem,

√
−κ2 =

√

−2i

δ2
= ±1

δ
(−1 + i) (10.22)

(draw this out in pictures). We want the solution that propagates into the

surface of the conductor, decending from the dielectric medium, which is the



positive branch:

Hc = H0e
√
−κ2ξ = H0e

1

δ
(−1+i)ξ

= H0e
− ξ

δ ei ξ
δ (10.23)

(consider eiξ/δ−ωt).

Now we need to find an expression for Ec, which we do by backsubsti-

tuting into Ampere’s Law:

Ec = −1

σ

(

n̂ × ∂H c

∂ξ

)

= − 1

δσ
(−1 + i) (n̂ × H0) e

1

δ
(−1+i)ξ

Ec =

√

µcω

2σ
(1 − i)(n̂ × H0)e

− ξ
δ ei ξ

δ (10.24)

Note well the direction! Obviously n̂ · Ec = 0, (in this approximation)

so Ec must lie in the plane of the conductor surface, just like H ||!

As before (when we discussed fields in a good conductor):

• Ec,Hc not in phase, but out of phase by π/4.

• Rapid decay as wave penetrates surface.

• Hc ≫ Ec (σ “large”, δ “small”) so energy is primarily magnetic.

• n̂ ⊥ Ec ⊥ Hc ⊥ n̂ – fields are predominantly parallel to the sur-

face and mutually transverse, they propagate “straight into” surface,

attenuating rapidly as they go.

• Recall:

n̂ × (E − Ec) = 0 (10.25)

at the surface. Since Ec lies approximately in the surface, this yields

E ≈ Ec ≈
√

µcω

2σ
(1 − i)(n̂ × H0)e

− ξ
δ ei ξ

δ (10.26)

just outside the surface – the field is approximately continuous! At this

level of approximation, ∇ × E = iωB, E is parallel to the surface,

and there is a small B⊥ to the surface of the same general order of

magnitude as E.



Since both E|| 6= 0 and H || 6= 0 at the surface (ξ = 0) there must be a

power flow into the conductor!

dPin

dA
= −1

2
Re (n · (Ec × H∗

c)) =
µcωδ

4
|H0|2 (10.27)

where we HOPE that it turns into heat. Let’s see:

J = σE =

√

µcωσ

2
(1 − i)(n̂ × H0)e

−ξ(1−i)/δ (10.28)

so that the time averaged power loss is (from Ohm’s Law):

dP

dV
=

1

∆A

dP

dξ
=

1

2
J · E∗ =

1

2σ
J · J∗ (10.29)

∆P = ∆A
1

2σ

∫ ∞

0
dξJ · J∗

= ∆A
µcω

2
|H0|2

∫ ∞

0
dξe−2ξ/δ

= ∆A
µcω

4
|H0|2 (10.30)

which just happens to correspond to the flux of the pointing vector through

a surface ∆A!

Finally, we need to define the “surface current”:

Keff =
∫ ∞

0
Jdξ = (n̂ × H) (10.31)

where H is determined just outside(inside) of the surface of a “perfect”

conductor in an idealized limit – note that we are just adding up the total

current in the surface layer and that it all works out.

Hopefully this exposition is complete enough (and correct enough) that

any bobbles from lecture are smoothed out. You can see that although

Jackson blithely pops all sorts of punch lines down in the text, the actual

algebra of getting them, while straightforward, is not trivial!

10.2 Mutilated Maxwell’s Equations (MMEs)

We are now prepared to look at the propagation of waves in volumes of space

bounded in some way by conducting surfaces. We’ll generally assume that



the conductors in question are “perfect” as far as boundary conditions on

the dimensions of the volume in question are concerned. The place where

this will lead to error is in the gradual attenuation of a propagating wave as

it loses energy to the Joule heating of the surface of the bounding conductor,

but this process will be slow relative to a wavelength and using the results

of the previous section we can add this attenuation in by hand afterwards if

necessary.

Since we are going to have to solve boundary value problems for the wave

equations for the coupled field components, we’d better select a relatively

simple geometry or we’ll be here all semester. The two geometries we will

examine are cylindrical waveguides where propagation is along the z axis of

the cylinder and rectangular waveguides where the propagation is along the

z axis of a waveguide with a rectangular cross-section in the x− y plane of

dimension a × b. The transverse coordinates are therefore (ρ, φ) or (x, y),

respectively.

As usual, we will start by assuming that we’re dealing with a harmonic

wave with time dependence e−iωt, write down Maxwell’s equations in free

space (the cavity volume), turn them into wave equations for the field sep-

arately, note that the fields are coupled by Maxwell’s equations themselves,

and impose boundary conditions. The only thing that is “special” about

a cylinder is the form of the Laplacian and how we separate the laplacian

to respect the boundary conditions. Let’s skip ahead to the wave equation

since by now everybody should be able to do this in their sleep:

(∇2 + µǫω2) {E or B} = 0 (10.32)

We look at propagation along z, making it “plane-wave-like”:

E(x, t) = E(ρ, φ)e±ikz−iωt (10.33)

B(x, t) = B(ρ, φ)e±ikz−iωt (10.34)

so that the wave equation becomes:
(

∇2
⊥ + (µǫω2 − k2)

)

{E or B} = 0 (10.35)

(Note that ∇2
⊥ = ∇2 − ∂2

∂z2 ).

Resolve fields into components ⊥ and || to z:

E = Ezẑ + (ẑ × E) × ẑ



= Ez + E⊥ (10.36)

B = Bzẑ + (ẑ × B) × ẑ

= Bz + B⊥ (10.37)

(10.38)

(defining Ez and E⊥ etc. in fairly obvious ways). Now we try to write

Maxwell’s equations in terms of these field components, assuming that the

only z-dependence permitted is e±ikz.

This isn’t trivial to do – let’s start with Faraday’s law, for example:

∇ × E = −∂B
∂t

= iωB (10.39)

If we project out the z component of both sides we get:

ẑ · (∇ × E) = iωBz

ẑ ·
{(

∂Ez

∂y
− ∂Ey

∂z

)

x̂ +

(

∂Ex

∂z
− ∂Ez

∂x

)

ŷ +

(

∂Ey

∂x
− ∂Ex

∂y

)

ẑ

}

= iωBz

(

∂Ey

∂x
− ∂Ex

∂y

)

= iωBz

ẑ · (∇⊥ × E⊥) = iωBz (10.40)

as only the ⊥ components of the curl contribute to the z direction. Simi-

larly:

ẑ × (∇ × E) = iω(ẑ × B)

ẑ ×
{(

∂Ez

∂y
− ∂Ey

∂z

)

x̂ +

(

∂Ex

∂z
− ∂Ez

∂x

)

ŷ +

(

∂Ey

∂x
− ∂Ex

∂y

)

ẑ

}

= iω(ẑ × B⊥)

(

∂Ez

∂y
− ∂Ey

∂z

)

ŷ −
(

∂Ex

∂z
− ∂Ez

∂x

)

x̂ = iω(ẑ × B⊥)

∂E⊥
∂z

+ iω(ẑ × B⊥) = ∇⊥Ez (10.41)

(where ẑ × B = ẑ × B⊥, of course).



Ouch! Looks like working through the curl termwise is a certain amount

of pain! However, now that we’ve done it once (and see how it goes) Am-

pere’s law should be straightforward:

ẑ · (∇ × H) = −iωDz

ẑ · (∇⊥ × B⊥) = −iωµǫEz

and

ẑ × (∇ × H) = −iω(ẑ × D)

∂B⊥
∂z

− iωµǫ(ẑ × E⊥) = ∇⊥Bz

Finally, we have Gauss’s Law(s):

∇ · E = 0

∇⊥ · E⊥ +
∂Ez

∂z
= 0

∇⊥ · E⊥ = −∂Ez

∂z

and identically,

∇⊥ · B⊥ = −∂Bz

∂z
(10.42)

Let’s collect all of these in just one place now:

∇⊥ · E⊥ = −∂Ez

∂z
(10.43)

∇⊥ · B⊥ = −∂Bz

∂z
(10.44)

ẑ · (∇⊥ × B⊥) = −iωµǫEz (10.45)

ẑ · (∇⊥ × E⊥) = iωBz (10.46)

∂B⊥
∂z

− iωµǫ(ẑ × E⊥) = ∇⊥Bz (10.47)

∂E⊥
∂z

+ iω(ẑ × B⊥) = ∇⊥Ez (10.48)

Gee, only a few pages of algebra to obtain in a shortened way what

Jackson just puts down in three short lines. Hopefully the point is clear – to

“get” a lot of this you have to sooner or later work it all out, however long

it may take you, or you’ll end up memorizing (or trying to) all of Jackson’s



results. Something that most normal humans could never do in a lifetime

of trying...

Back to work, as there is still plenty to do.

10.3 TEM Waves

Now we can start looking at waveforms in various cavities. Suppose we let

Ez = Bz = 0. Then the wave in the cavity is a pure transverse electromag-

netic (TEM) wave just like a plane wave, except that it has to satisfy the

boundary conditions of a perfect conductor at the cavity boundary!

Note from the equations above that:

∇⊥ · E⊥ = 0

∇⊥ × ~E⊥ = 0

from which we can immediately see that:

∇2
⊥E⊥ = 0 (10.49)

and that

E⊥ = −∇φ (10.50)

for some suitable potential that satisfies ∇2
⊥φ = 0. The solution looks like

a propagating electrostatic wave. From the wave equation we see that:

µǫω2 = k2 (10.51)

or

k = ±ω√µǫ (10.52)

which is just like a plane wave (which can propagate in either direction,

recall).

Again referring to our list of mutilated Maxwell equations above, we see

that:

ikE⊥ = −iω(ẑ × B⊥)

D⊥ = −ωµǫ
k

(ẑ × H⊥)

D⊥ = ±√
µǫ(ẑ × H⊥) (10.53)



or working the other way, that:

B⊥ = ±√
µǫ(ẑ × E⊥) (10.54)

so we can easily find one from the other.

TEM waves cannot be sustained in a cylinder because the surrounding

(perfect, recall) conductor is equipotential. Therefore E⊥ is zero as is B⊥.

However, they are the dominant way energy is transmitted down a coaxial

cable, where a potential difference is maintained between the central con-

ductor and the coaxial sheathe. In this case the fields are very simple, as

the E is purely radial and the B field circles the conductor (so the energy

goes which way?) with no z components.

Finally, note that all frequencies are permitted for a TEM wave. It

is not “quantized” by the appearance of eigenvalues due to a constraining

boundary value problem.

10.4 TE and TM Waves

Note well that we have written the mutilated Maxwell Equations so that the

z components are all on the right hand side. If they are known functions,

and if the only z dependence is the complex exponential (so we can do all

the z-derivatives and just bring down a ±ik) then the transverse components

E⊥ and B⊥ are determined!

In fact (for propagation in the +z direction, e+ikz−iωt):

ikE⊥ + iω(ẑ × B⊥) = ∇⊥Ez

ik(ẑ × E⊥) + iωẑ × (ẑ × B⊥) = ẑ × ∇⊥Ez

ik(ẑ × E⊥) = iωB⊥ + ẑ × ∇⊥Ez (10.55)

ẑ · (∇⊥ × B⊥) = −iωµǫEz (10.56)

and

ikB⊥ − iωµǫ(ẑ × E⊥) = ∇⊥Bz

ikB⊥ − ∇⊥Bz = iωµǫ(ẑ × E⊥)

i
k2

ωµǫ
B⊥ − k

ωµǫ
∇⊥Bz = ik(ẑ × E⊥)



i
k2

ωµǫ
B⊥ − k

ωµǫ
∇⊥Bz = iωB⊥ + ẑ × ∇⊥Ez

(10.57)

or

B⊥ =
i

µǫω2 − k2
(k∇⊥Bz + µǫω(ẑ × ∇⊥Ez)) (10.58)

E⊥ =
i

µǫω2 − k2
(k∇⊥Ez − ω(ẑ × ∇⊥Bz)) (10.59)

(where we started with the second equation and eliminated ẑ × B⊥ to get

the second equation just like the first).

Now comes the relatively tricky part. Recall the boundary conditions

for a perfect conductor:

n̂ × (E − Ec) = n̂ × E = 0

n̂ · (B − Bc) = n̂ · B = 0

n̂ × H = K

n̂ · D = Σ

They tell us basically that E (D) is strictly perpendicular to the surface

and that B (H) is strictly parallel to the surface of the conductor at the

surface of the conductor.

This means that it is not necessary for Ez or Bz both to vanish everywhere

inside the dielectric (although both can, of course, and result in a TEM wave

or no wave at all). All that is strictly required by the boundary conditions

is for

Ez|S = 0 (10.60)

on the conducting surface S (it can only have a normal component so the z

component must vanish). The condition on Bz is even weaker. It must lie

parallel to the surface and be continuous across the surface (where H can

discontinuously change because of K). That is:

∂Bz

∂n
|S = 0 (10.61)

We therefore have two possibilities for non-zero Ez or Bz that can act as

source term in the mutilated Maxwell Equations.



10.4.1 TM Waves

Bz = 0 (10.62)

Ez|S = 0 (10.63)

The magnetic field is strictly transverse, but the electric field in the z di-

rection only has to vanish at the boundary – elsewhere it can have a z

component.

Thus:

E⊥ =
i

µǫω2 − k2
(k∇⊥Ez − ω(ẑ × ∇⊥Bz))

(µǫω2 − k2)E⊥ = ik∇⊥Ez

1

ik
(µǫω2 − k2)E⊥ = ∇⊥Ez

(10.64)

which looks just perfect to substitute into:

B⊥ =
i

µǫω2 − k2
(k∇⊥Bz + µǫω(ẑ × ∇⊥Ez))

(µǫω2 − k2)B⊥ = iµǫω(ẑ × ∇⊥Ez)

(µǫω2 − k2)B⊥ =
µǫω

k
(µǫω2 − k2)(ẑ × E⊥)

(10.65)

giving us:

B⊥ = ±µǫω
k

(ẑ × E⊥) (10.66)

or (as the book would have it):

H⊥ = ±ǫω
k

(ẑ × E⊥) (10.67)

(where as usual the two signs indicate the direction of wave propagation).

Of course, we still have to find at least one of the two fields for this to

do us any good. Or do we? Looking above we see:

(µǫω2 − k2)E⊥ = ik∇⊥ψ

E⊥ =
±ik

(µǫω2 − k2)
∇⊥ψ

(10.68)



Where ψ(x, y)eikz = Ez. This must satisfy the transverse wave function:

(

∇2
⊥ + (µǫω2 − k2)

)

ψ = 0 (10.69)

and the boundary conditions for a TM wave:

ψ|S = 0 (10.70)

TE Waves

Ez = 0 (10.71)

∂Bz

∂n
|S = 0 (10.72)

The electric field is strictly transverse, but the magnetic field in the z-

direction can be nonzero. Doing exactly the same algebra on the same two

equations as we used in the TM case, we get instead:

H⊥ = ± k

µω
(ẑ × E⊥) (10.73)

along with

B⊥ =
±ik

(µǫω2 − k2)
∇⊥ψ (10.74)

where ψ(x, y)eikz = Bz and

(

∇2
⊥ + (µǫω2 − k2)

)

ψ = 0 (10.75)

and the boundary conditions for a TE wave:

∂ψ

∂n
|S = 0 (10.76)

10.4.2 Summary of TE/TM waves

The transverse wave equation and boundary condition (dirichlet or neu-

mann) are an eigenvalue problem. We can see two things right away. First

of all:

µǫω2 ≥ k2 (10.77)



or we no longer have a wave, we have an exponential function that cannot be

made to satisfy the boundary conditions on the entire surface. Alternatively,

v2
p =

ω2

k2
≥ 1

µǫ
= v2 (10.78)

which has the lovely property (as a phase velocity) of being faster than the

speed of light in the medium!

To proceed further in our understanding, we need to look at an actual

example – we’ll find that only certain kn = k0n for n = 1, 2, 3...ncutoff will

permit the boundary conditions to be solved, and we’ll learn some important

things about the propagating solutions at the same time.

10.5 Rectangular Waveguides

Rectangular waveguides are important for two reasons. First of all, the

Laplacian operator separates nicely in Cartesian coordinates, so that the

boundary value problem that must be solved is both familiar and straight-

forward. Second, they are extremely common in actual application in physics

laboratories for piping e.g. microwaves around as experimental probes.

In Cartesian coordinates, the wave equation becomes:
(

∂2

∂x2
+

∂2

∂y2
+ (µǫω2 − k2)

)

ψ = 0 (10.79)

This wave equation separates and solutions are products of sin, cos or

exponential functions in each variable separately. To determine which com-

bination to use it suffices to look at the BC’s being satisfied. For TM waves,

one solves for ψ = Ez subject to Ez|S = 0, which is automatically true if:

Ez(x, y) = ψmn(x, y) = E0 sin
(

mπx

a

)

sin
(

nπy

b

)

(10.80)

where a and b are the dimensions of the x and y sides of the boundary

rectangle and where in principle m,n = 0, 1, 2....

However, the wavenumber of any given mode (given the frequency) is

determined from:

k2 = µǫω2 − π2

(

m2

a2
+
n2

b2

)

+ (10.81)



where k2 > 0 for a “wave” to exist to propagate at all. If either index m

or n is zero, there is no wave, so the first mode that can propagate has a

dispersion relation of:

k2
11 = µǫω2 − π2(

1

a2
+

1

b2
) (10.82)

so that:

ω ≥ π√
µǫ

√

1

a2
+

1

b2
= ωc,TM(11) (10.83)

Each combination of permitted m and n is associated with a cutoff of this

sort – waves with frequencies greater than or equal to the cutoff can support

propogation in all the modes with lower cutoff frequencies.

If we repeat the argument above for TE waves (as is done in Jackson,

which is why I did TM here so you could see them both) you will be led by

nearly identical arguments to the conclusion that the lowest frequency mode

cutoff occurs for a > b, m = 1 and n = 0 to produce the Hz(x, y) = ψ(x, y)

solution to the wave equation above. The cutoff in this case is:

ω ≥ π√
µǫ

1

a
= ωc,TE(10) < ωc,TM(11) (10.84)

There exists, therefore, a range of frequencies in between where only one TE

mode is supported with dispersion:

k2 = k2
10 = µǫω2 − π2

a2
. (10.85)

Note well that this mode and cutoff corresponds to exactly one-half a

free-space wavelength across the long dimension of the waveguide. The wave

solution for the right-propagating TE mode is:

Hz = H0 cos
(

πx

a

)

eikz−iωt (10.86)

Hx =
ik

µǫω2 − k2

∂Hz

∂x
= −ika

π
H0 sin

(

πx

a

)

eikz−iωt (10.87)

Ey =
µω

k
Hx =

iµωa

π
H0 sin

(

πx

a

)

eikz−iωt (10.88)

We used γ2 = µǫω2 − k2 = π2/a2 and E⊥ = ik/γ2∇⊥ψ to get the second of

these, and H⊥ = k
ωµ

(ẑ × E⊥)) to get the last one.

There is a lot more one can study in Jackson associated with waveguides,

but we must move on at this time to a brief look at resonant cavities (another

important topic) and multipoles.



10.6 Resonant Cavities

We will consider a resonant cavity to be a waveguide of length d with caps

at both ends. As before, we must satisfy TE or TM boundary conditions on

the cap surfaces, either Dirichlet in Ez or Neumann in Bz. In between, we

expect to find harmonic standing waves instead of travelling waves.

Elementary arguments for presumed standing wave z-dependence of:

A sin kz +B cos kz (10.89)

such that the solution has nodes or antinodes at both ends lead one to

conclude that only:

k = p
π

d
(10.90)

for p = 0, 1, 2... are supported by the cavity. For TM modes E⊥ must vanish

on the caps because the nonzero Ez field must be the only E field component

sustained, hence:

Ez = ψ(x, y) cos
(

pπz

d

)

(10.91)

For TE modes Hz must vanish as the only permitted field component is

a non-zero H⊥, hence:

Hz = ψ(x, y) sin
(

pπz

d

)

(10.92)

Given these forms and the relations already derived for e.g. a rectangular

cavity, one can easily find the formulae for the permitted transverse fields,

e.g.:

E⊥ = − pπ

d(µǫω2 − k2)
sin

(

pπz

d

)

∇⊥ψ (10.93)

H⊥ = − iǫω

µǫω2 − k2
cos

(

pπz

d

)

(ẑ × ∇⊥ψ) (10.94)

for TM fields and

E⊥ = − iµω

µǫω2 − k2
sin

(

pπz

d

)

(ẑ × ∇⊥ψ) (10.95)

H⊥ =
pπ

d(µǫω2 − k2)
cos

(

pπz

d

)

∇⊥ψ (10.96)

for TE fields, with ψ(x, y) determined as before for cavities.



However, now k is doubly determined as a function of both p and d and as a

function of m and n. The only frequencies that lead to acceptable solutions

are ones where the two match, where the resonant k in the z direction

corresponds to a permitted k(ω) associated with a waveguide mode.

I leave you to read about the definition of Q:

Q =
ω0

∆ω
(10.97)

or the fractional energy loss per cycle of the cavity oscillator in the limit

where this quantity is small compared to the total energy. Note that ∆ω

is the full width at half maximum of the presumed resonant form (basically

the same as was presumed in our discussions of dispersion, but for energy

instead of field).

I strongly advise that you go over this on your own – Q describes the

damping of energy stored in a cavity mode due to e.g. the finite conductivity

of the walls or the partial transparency of the end caps to energy (as might

exist in the case of a laser cavity). If you go into laser physics, you will very

much need this. If not, you’ll need to understand the general idea of Q to

teach introductory physics and e.g. LRC circuits or damped driven harmonic

oscillators, where it also occurs and should know it at least qualitatively for

e.g. qualifiers. I added an optional problem for resonant cavities to the

homework assignment in case you wanted something specific to work on

while studying this.

10.7 Wave Guides Assignment

Jackson 8.2,8.4(,8.6 optional)



Chapter 11

Radiation

Well, now we have learned a little about how to describe waves propagating

through “free” space – dielectric media, possibly bounded by a conducting

surface. But how did they get there? Well, sit yourselves down and I’ll

tell you. They were radiated there by accelerating, time dependent charge–

current distributions!

And now we’ll learn how...

Note well! This treatment differs substantially from Jackson’s, which

actually kinda sucks. Ultimately it will be much simpler to understand and

is consistently developed. However, it really is the same thing and one gets

the same general expressions for the multipole fields or potentials.

11.1 Maxwell’s Equations, Yet Again

Suppose we are given a system of classical charges that oscillate harmonically

with time. Note that, as before, this can be viewed as the special case of

the Fourier transform at a particular frequency of a general time dependent

distribution; however, this is a very involved issue that we will examine in

detail later in the semester.

The form of the charge distribution we will study for the next few weeks

is:

ρ(x, t) = ρ(x)e−iωt (11.1)
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J(x, t) = J(x)e−iωt. (11.2)

The spatial distribution is essentially “arbitrary”. Actually, we want it to

have compact support which just means that it doesn’t extend to infinity

in any direction. Later we will also want it to be small with respect to a

wavelength.

11.1.1 Quickie Review of Chapter 6

Recall the following morphs of Maxwell’s equations, this time with the

sources and expressed in terms of potentials by means of the homogeneous

equations. Gauss’s Law for magnetism is:

∇ · B = 0 (11.3)

This is an identity if we define B = ∇ × A:

∇ · (∇ × A) = 0 (11.4)

Similarly, Faraday’s Law is

∇ × E +
∂B

∂t
= 0 (11.5)

∇ × E +
∂∇ × A

∂t
= 0 (11.6)

∇ × (E +
∂A

∂t
) = 0 (11.7)

and is satisfied as an identity by a scalar potential such that:

E +
∂A

∂t
= −∇φ (11.8)

E = −∇φ− ∂A

∂t
(11.9)

Now we look at the inhomogeneous equations in terms of the potentials.

Ampere’s Law:

∇ × B = µ(J + ǫ
∂E

∂t
) (11.10)

∇ × (∇ × A) = µ(J + ǫ
∂E

∂t
) (11.11)



∇(∇ · A) −∇2A = µJ + µǫ
∂E

∂t
(11.12)

∇(∇ · A) −∇2A = µJ − µǫ∇
∂φ

∂t
− µǫ

∂2A

∂t2
(11.13)

∇2A − µǫ
∂2A

∂t2
= −µJ + ∇(∇ · A + µǫ

∂φ

∂t
) (11.14)

Similarly Gauss’s Law for the electric field becomes:

∇ · E =
ρ

ǫ
(11.15)

∇ ·
(

−∇φ− ∂A

∂t

)

=
ρ

ǫ
(11.16)

∇2φ+
∂∇ · A
∂t

= −ρ
ǫ

(11.17)

In the the Lorentz gauge,

∇ · A + µǫ
∂Φ

∂t
= 0 (11.18)

the potentials satisfy the following inhomogeneous wave equations:

∇2Φ − µǫ
∂2Φ

∂t2
= −ρ

ǫ
(11.19)

∇2A − µǫ
∂2A

∂t2
= −µJ (11.20)

where ρ and J are the charge density and current density distributions, re-

spectively. For the time being we will stick with the Lorentz gauge, although

the Coulomb gauge:

∇ · A = 0 (11.21)

is more convenient for certain problems. It is probably worth reminding

y’all that the Lorentz gauge condition itself is really just one out of a whole

family of choices.

Recall that (or more properly, observe that in its role in these wave

equations)

µǫ =
1

v2
(11.22)

where v is the speed of light in the medium. For the time being, let’s just

simplify life a bit and agree to work in a vacuum:

µ0ǫ0 =
1

c2
(11.23)



so that:

∇2Φ − 1

c2
∂2Φ

∂t2
= − ρ

ǫ0
(11.24)

∇2A − 1

c2
∂2A

∂t2
= −µ0J (11.25)

If/when we look at wave sources embedded in a dielectric medium, we

can always change back as the general formalism will not be any different.

11.2 Green’s Functions for the Wave Equa-

tion

As by now you should fully understand from working with the Poisson equa-

tion, one very general way to solve inhomogeneous partial differential equa-

tions (PDEs) is to build a Green’s function1 and write the solution as an

integral equation.

Let’s very quickly review the general concept (for a further discussion

don’t forget WIYF ,MWIYF). Suppose D is a general (second order) linear

partial differential operator on e.g. IR3 and one wishes to solve the inhomo-

geneous equation:

Df(x) = ρ(x) (11.26)

for f .

If one can find a solution G(x−x0) to the associated differential equation

for a point source function2 :

DG(x,x0) = δ(x − x0) (11.27)

1Note that this expression stands for: “The generalized point source potential/field

developed by Green.” A number of people criticize the various ways of referring to it

– Green function (what color was that again? what shade of Green?), Greens function

(a function made of lettuce and spinach and kale?), “a” Green’s function (a singular

representative of a plural class referenced as a singular object). All have problems. I tend

to go with the latter of these as it seems least odd to me.
2 Note well that both the Green’s “function” and the associated Dirac delta “function”

are not functions – they are defined in terms of limits of a distribution in such a way that

the interchange of limits and values of the integrals above make sense. This is necessary

as both of the objects are singular in the limit and hence are meaningless without the

limiting process. However, we’ll get into real trouble if we have to write “The limit of

the distribution defined by Green that is the solution of an inhomogeneous PDE with a

http://www.wikipedia.org
http://mathworld.wolfram.com


then (subject to various conditions, such as the ability to interchange the

differential operator and the integration) to solution to this problem is a

Fredholm Integral Equation (a convolution of the Green’s function with the

source terms):

f(x) = χ(x) +
∫

IR3

G(x,x0)ρ(x0)d
3x0 (11.28)

where χ(x) is an arbitrary solution to the associated homogeneous PDE:

D [χ(x)] = 0 (11.29)

This solution can easily be verified:

f(x) = χ(x) +
∫

IR3

G(x,x0)ρ(x0)d
3x0 (11.30)

Df(x) = D [χ(x)] + D
∫

IR3

G(x,x0)ρ(x0)d
3x0 (11.31)

ρ(x0)d
3x0 (11.32)

Df(x) = 0 +
∫

IR3

DG(x,x0)ρ(x0)d
3x0 (11.33)

Df(x) = 0 +
∫

IR3

δ(x − x0)ρ(x0)d
3x0 (11.34)

Df(x) = ρ(x) (11.35)

It seems, therefore, that we should thoroughly understand the ways of

building Green’s functions in general for various important PDEs. I’m un-

certain of how much of this to do within these notes, however. This isn’t

really “Electrodynamics”, it is mathematical physics, one of the fundamen-

tal toolsets you need to do Electrodynamics, quantum mechanics, classical

mechanics, and more. So check out Arfken, Wyld, WIYF , MWIYFand we’ll

content ourselves with a very quick review of the principle ones we need:

11.2.1 Poisson Equation

The Green’s function for the Poisson (inhomogeneous Laplace) equation:

∇2φ = − ρ

ǫ0
(11.36)

source distribution that in the same limit approaches a unit source supported at a single

point” instead of just “Green’s function”. So we won’t.

http://www.wikipedia.org
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is the solution to:

∇2G(x,x0) = δ(x − x0) (11.37)

Thus G(x,x0) satisfies the homogeneous Laplace PDE everywhere but at

the single point x0. The solution to the Laplace equation that has the right

degree of singularity is the “potential of a unit point charge”:

G(x,x0) =
−1

4π|x − x0|
(11.38)

located at x0. Hence:

φ(x) = χ0(x) +
1

4πǫ0

∫

V

ρ(x0)

|x − x0|
d3x0 (11.39)

which is just exactly correct.

Note well that the inhomogeneous term χ0(x) solves the homogeneous

Laplace equation and has various interpretations. It can be viewed as a

“boundary term” (surface integral on S = ∂V , the surface S bounding the

volume V (Green’s Theorem) or, as we shall see, as the potential of all the

charges in the volume exterior to V , or as a gauge transformation of the

potential. All are true, but the “best” way to view it is as the potential of

exterior charges as that is what it is in nature even when it is expressed,

via integration by parts, as a surface integral, for a very sensible choice of

asymptotic behavior of the potential.

Note equally well that the Green’s function itself has precisely the same

gauge freedom, and can be written in its most general form as:

G(x,x0) = F (x,x0) +
−1

4π|x − x0|
(11.40)

where ∇2F (x,x0) = ∇2
0F (x,x0) = 0 is any bilinear (symmetric in both

coordinates) solution to the Laplace equation! However, we will not proceed

this way in this part of the course as it is in a sense unphysical to express

the PDEs this way even though it does upon occasion facilitate the solution

algebraically.

11.2.2 Green’s Function for the Helmholtz Equation

If we fourier transform the wave equation, or alternatively attempt to find

solutions with a specified harmonic behavior in time e−iωt, we convert it into



the following spatial form:
(

∇2 + k2
)

φ(x) = −ρω

ǫ0
(11.41)

(for example, from the wave equation above, where ρ(x, t) = ρω(x)e−iωt,

φ(x, t) = φω(x)e−iωt, and k2c2 = ω2 by assumption). This is called the

inhomogeneous Helmholtz equation (IHE).

The Green’s function therefore has to solve the PDE:
(

∇2 + k2
)

G(x,x0) = δ(x − x0) (11.42)

Once again, the Green’s function satisfies the homogeneous Helmholtz equa-

tion (HHE). Furthermore, clearly the Poisson equation is the k → 0 limit of

the Helmholtz equation. It is straightforward to show that there are several

functions that are good candidates for G. They are:

G0(x,x0) =
− cos(k|x − x0|)

4π|x − x0|
(11.43)

G+(x,x0) =
−e+ik|x−x0|

4π|x − x0|
(11.44)

G−(x,x0) =
−e−ik|x−x0|

4π|x − x0|
(11.45)

As before, one can add arbitrary bilinear solutions to the HHE, (∇2 +

k2)F (x,x0) = (∇2
0 + k2)F (x,x0) = 0 to any of these and the result is

still a Green’s function. In fact, these forms are related by this sort of

transformation and superposition:

G0(x,x0) =
1

2
(G+(x,x0) +G−(x,x0)) (11.46)

or

G+(x,x0) = F (x,x0) +G0(x,x0) (11.47)

=
−i sin(k|x − x0|)

4π|x − x0|
+G0(x,x0) (11.48)

etc.

In terms of any of these:

φ(x) = χ0(x) − 1

ǫ0

∫

V
ρ(x0)G(x,x0)d

3x0 (11.49)

= χ0(x) +
1

4πǫ0

∫

V

ρ(x0)e
ik|x−x0|

|x − x0|
d3x0 (11.50)



where (∇2 + k2)χ0(x) = 0 as usual.

We name these three basic Green’s functions according to their asymp-

totic time dependence far away from the volume V . In this region we expect

to see a time dependence emerge from the integral of e.g.

φ(x, t) ∼ eikr−iωt (11.51)

where r = |x|. This is an outgoing spherical wave. Consequently the Green’s

functions above are usually called the stationary wave, outgoing wave and

incoming wave Green’s functions.

It is essential to note, however, that any solution to the IHE can be

constructed from any of these Green’s functions! This is because the form

of the solutions always differ by a homogeneous solution (as do the Green’s

functions) themselves. The main reason to use one or the other is to keep

the form of the solution simple and intuitive! For example, if we are looking

for a φ(x, t) that is supposed to describe the radiation of an electromagnetic

field from a source, we are likely to use an outgoing wave Green’s function

where if we are trying to describe the absorption of an electromagnetic field

by a source, we are likely to use the incoming wave Green’s function, while

if we are looking for stationary (standing) waves in some sort of large spher-

ical cavity coupled to a source near the middle then (you guessed it) the

stationary wave Green’s function is just perfect.

[As a parenthetical aside, you will often see people get carried away in

the literature and connect the outgoing wave Green’s function for the IHE to

the retarded Green’s function for the Wave Equation (fairly done – they are

related by a contour integral as we shall see momentarily) and argue for a

causal interpretation of the related integral equation solutions. However, as

you can clearly see above, not only is there no breaking of time symmetry,

the resulting descriptions are all just different ways of viewing the same

solution! This isn’t completely a surprise – the process of taking the Fourier

transform symmetrically samples all of the past and all of the future when

doing the time integral.

As we will see when discussing radiation reaction and causality at the

very end of the semester, if anything one gets into trouble when one assumes

that it is always correct to use an outgoing wave or retarded Green’s function,

as the actual field at any point in space at any point in time is time reversal

invariant in classical electrodynamics – absorption and emission are mirror



processes and both are simultaneously occurring when a charged particle is

being accelerated by an electromagnetic field.]

11.2.3 Green’s Function for the Wave Equation

This time we are interested in solving the inhomogeneous wave equation

(IWE)
(

∇2 − 1

c2
∂2

∂t2

)

φ(x, t) = −ρ(x, t)
ǫ0

(11.52)

(for example) directly, without doing the Fourier transform(s) we did to

convert it into an IHE.

Proceeding as before, we seek a Green’s function that satisfies:
(

∇2 − 1

c2
∂2

∂t2

)

G(x, t,x0, t0) = δ(x − x′)δ(t− t′). (11.53)

The primary differences between this and the previous cases are a) the PDE

is hyperbolic, not elliptical, if you have any clue as to what that means; b)

it is now four dimensional – the “point source” is one that exists only at a

single point in space for a single instant in time.

Of course this mathematical description leaves us with a bit of an ex-

istential dilemna, as physicists. We generally have little trouble with the

idea of gradually restricting the support of a distribution to a single point

in space by a limiting process. We just squeeze it down, mentally. However,

in a supposedly conservative Universe, it is hard for us to imagine one of

those squeezed down distributions of charge just “popping into existence”

and then popping right out. We can’t even do it via a limiting process,

as it is a bit bothersome to create/destroy charge out of nothingness even

gradually! We are left with the uncomfortable feeling that this particular

definition is nonphysical in that it can describe no actual physical sources –

it is by far the most “mathematical” or “formal” of the constructs we must

use. It also leaves us with something to understand.

One way we can proceed is to view the Green’s functions for the IHE as

being the Fourier transform of the desired Green’s function here! That is,

we can exploit the fact that:

δ(t− t0) =
1

2π

∫ ∞

−∞
e−iω(t−t0)dω (11.54)



to create a Fourier transform of the PDE for the Green’s function:
(

∇2 + k2
)

G(x,x0, ω) = δ(x − x0)e
iωt0 (11.55)

(where I’m indicating the explicit ω dependence for the moment).

From the previous section we already know these solutions:

G0(x,x0, ω) =
− cos(k|x − x0|)

4π|x − x0|
eiωt0 (11.56)

G+(x,x0, ω) =
−e+ik|x−x0|

4π|x − x0|
eiωt0 (11.57)

G−(x,x0, ω) =
−e−ik|x−x0|

4π|x − x0|
eiωt0 (11.58)

At this point in time 3 the only thing left to do is to Fourier transform back

– to this point in time:

G+(x, t,x0, t0) =
1

2π

∫ ∞

−∞

−e+ik|x−x0|

4π|x − x0|
e−iω(t−t0)dω (11.59)

=
1

2π

−1

4π|x − x0|
∫ ∞

−∞
−e+i ω

c
|x−x0|e−iω(t−t0)dω (11.60)

=
−1

4π|x − x0|
×

{

1

2π

∫ ∞

−∞
− exp

(

−iω
[

(t− t0) −
|x − x0|

c

])

dω

}

(11.61)

=
−δ

(

(t− t0) − |x−x0|
c

)

4π|x − x0|
(11.62)

so that:

G±(x, t,x0, t0) =
−δ

(

(t− t0) ∓ |x−x0|
c

)

4π|x − x0|
(11.63)

G0(x, t,x0, t0) =
1

2
(G+(x, t,x0, t0) +G−(x, t,x0, t0)) (11.64)

Note that when we set k = ω/c, we basically asserted that the solution is be-

ing defined without dispersion! If there is dispersion, the Fourier transform

will no longer neatly line up and yield a delta function, because the differ-

ent Fourier components will not travel at the same speed. In that case one

3Heh, heh, heh...:-)



might still expect a peaked distribution, but not an infinitely sharp peaked

distribution.

The first pair are generally rearranged (using the symmetry of the delta

function) and presented as:

G(±)(x, t; x′, t′) =
δ(t′ −

[

t∓ |x−x′|
c

]

| vx− x′ | (11.65)

and are called the retarded (+) and advanced (-) Green’s functions for

the wave equation.

The second form is a very interesting beast. It is obviously a Green’s

function by construction, but it is a symmetric combination of advanced and

retarded. Its use “means” that a field at any given point in space-time (x, t)

consists of two pieces – one half of it is due to all the sources in space in

the past such that the fields they emit are contracting precisely to the point

x at the instant t and the other half is due to all of those same sources in

space in the future such that the fields currently emerging from the point x

at t precisely arrive at them. According to this view, the field at all points

in space-time is as much due to the charges in the future as it is those same

charges in the past.

Again it is worthwhile to note that any actual field configuration (solu-

tion to the wave equation) can be constructed from any of these Green’s

functions augmented by the addition of an arbitrary bilinear solution to the

homogeneous wave equation (HWE) in primed and unprimed coordinates.

We usually select the retarded Green’s function as the “causal” one to sim-

plify the way we think of an evaluate solutions as “initial value problems”,

not because they are any more or less causal than the others. Cause may

precede effect in human perception, but as far as the equations of classical

electrodynamics are concerned the concept of “cause” is better expressed

as one of interaction via a suitable propagator (Green’s function) that may

well be time-symmetric or advanced.

A final note before moving on is that there are simply lovely papers (that

we hope to have time to study) by Dirac and by Wheeler and Feynman that

examine radiation reaction and the radiation field as constructed by ad-

vanced and retarded Green’s functions in considerable detail. Dirac showed

that the difference between the advanced and retarded Green’s functions at

the position of a charge was an important quantity, related to the change it



made in the field presumably created by all the other charges in the Universe

at that point in space and time. We have a lot to study here, in other words.

Using (say) the usual retarded Green’s function, we could as usual write

an integral equation for the solution to the general IWE above for e.g.

A(x, t):

A(x, t) = χA(x, t) − µ0

∫

V
G+(x, t; x′, t)J(x′, t′)d3x′dt′ (11.66)

where χA solves the HWE. This (with χA = 0) is essentially equation (9.2),

which is why I have reviewed this. Obviously we also have

φ(x, t) = χφ(x, t) −
1

ǫ0

∫

V
G+(x, t; x′, t)ρ(x′, t′)d3x′dt′ (11.67)

for φ(x, t) (the minus signs are in the differential equations with the sources,

note). You should formally verify that these solutions “work” given the

definition of the Green’s function above and the ability to reverse the order

of differentiation and integration (bringing the differential operators, applied

from the left, in underneath the integral sign).

Jackson proceeds from these equations by fourier transforming back into

a k representation (eliminating time) and expanding the result to get to

multipolar radiation at any given frequency. However, because of the way

we proceeded above, we don’t have to do this. We could just as easily

start by working with the IHE instead of the IWE and use our HE Green’s

functions. Indeed, that’s the plan, Stan...

11.3 Simple Radiating Systems

Let us start by writing the integral equation for the vector potential A(x)

where we presume that we’ve already transformed the IWE into the IHE.

We will choose to use the outgoing wave Green’s function to make it clear

that the field we are looking for is the one that the source is emitting, not

one that it is absorbing.

A(x) = +µ0

∫

eik|x−x′|

4π|x − x′|J(x′)d3x′. (11.68)



There is no inhomogeneous term if there are no boundaries with a priori

known boundary conditions.

Note that a more general solution would be one that allowed for absorp-

tion of incoming waves as well as the emission of outgoing waves, but that

this would require knowing something about the sources outside the domain

considered to be infinite. We will talk about this later (scattering theory

and the optical theorem).

From A(x) we can easily find B or H :

B = µ0B = ∇ × A (11.69)

(by definition). Outside of the source, though (where the currents are all

zero) Ampere’s law tells us that:

∇ × H = −iωD (11.70)

or

∇ × B = −iωµ0ǫ0E (11.71)

∇ × B = −i ω
c2

E = i
k

c
E (11.72)

or

E = i
c

k
∇ × B (11.73)

Doing the integral above can be quite difficult in the general case. How-

ever, we’ll find that for most reasonable, physical situations we will be able

to employ certain approximations that will enable us to obtain a systematic

hierarchy of descriptions that converge to the correct answer as accurately

as you like, at the same time they increase our physical insight into the

radiative processes.

11.3.1 The Zones

Suppose the source lives inside a region of maximum size d ≪ λ where

λ = 2πc/ω. By that I mean that a sphere of radius d (about the origin)

completely contains all charge–current distributions. Then we can define

three zones of approximation:



1. The near (static) zone d << r << λ

2. The intermediate (induction) zone d << r ∼ λ

3. The far (radiation) zone d << λ << r

The field has very different properties in these zones. We will briefly discuss

each of them.

• (Atomic and Molecular) sources all live inside their own near zone at

optical frequencies. If the atoms are in a liquid or solid, there is a near

field interaction (implicitly alluded to in chapter 4 and 7) that may

be important in determining optical dispersion and other observable

phenomena. Only for microwave frequencies and less does the near

zone become relevant on a macroscopic scale. For rf waves it becomes

extremely relevant, as it may extend a hundred meters or more.

• The induction zone is an annoying region where most of the simple

approximations fail. It is distinguished by not being either of the other

two zones. The wave changes character completely inside this zone.

Because condensed matter theory invariably has objects interacting

within this zone it is important there, although it can only be crudely

treated. Without doing an obnoxious amount of work, that is.

• The far zone is where we all live, most of the time, with respect to the

major sources of EM radiation. Our detectors are many wavelengths

away from the atoms. Our radios are many wavelengths away from

the transmitters. And, generally, the sources are smaller, if not much

smaller, than a wavelength4. In the far zone, the emitted EM fields are

characteristically transverse and fall off in amplitude as 1/r or faster,

and often far enough away they look locally like plane waves! This is

typical of radiation fields from compact sources. We will spend most

of our time considering solutions in the far zone.

11.3.2 The Near Zone

Suppose that we are in the near zone. Then by definition

k|x − x′| << 1

4We will learn to treat certain exceptions, believe me.



and

eik|x−x′| ≈ 1

This makes the integral equation into the “static” form already consid-

ered in chapter 5 (cf. equation (5.32)). We see that −1/4π|x−x′| is just the

Green’s function for the good old Poisson equation in this approximation

and can be expanded in harmonic functions just like in the good old days:

G0(x,x
′) =

∑

L

−1

2ℓ+ 1

r′ℓ

rℓ+1
YL(r̂)YL(r̂′)∗. (11.74)

Note Well: I will use L ≡ (ℓ,m) freely and without warning in this

course. The sum is over all ℓ,m. Hopefully, by now you know what they

run over. If not, read the chapter in Wyld on spherical harmonics and review

Jackson as well. This is important!

This means that (if you like)

lim
kr→0

A(x) =
∑

L

1

(2ℓ+ 1)rℓ+1
YL(r̂)

∫

J(x′)r′ℓYL(r̂′)∗d3r′. (11.75)

We will use expressions like this (derived from the multipolar expansion of

the Green’s function) frequently in what follows. For that reason I suggest

that you study it carefully and be sure you understand it.

Since (for fixed r outside the source)

lim
k→0

→ lim
kr→0

we see that this limit is reached (among other times) when

k → 0

(relative to the size of the source and point of measurement)! But then

the IHE turns back into the Poisson equation (or inhomogeneous Laplace

equation, ILE) as it should, come to think about it. The near fields oscillate

harmonically in time, but are spatially identical to the fields produced by a

“static” current with the given spatial distribution. That’s why we also call

the near zone the “static zone”.



11.3.3 The Far Zone

Exactly the opposite is true in the far zone. Here kr >> 1 and the exponen-

tial oscillates rapidly. We can approximate the argument of the exponential

as follows:

|x − x′| =
√
r2 + r′2 − 2rn · x′

= r

{

1 − 2

r
n · x′ +

r′2

r2

}1/2

= r − n · x′ + O
(

1

r

)

(11.76)

where we have assumed that r′max < d << r and used a binomial expansion

of the root sum. We neglect higher order terms. Note that this approxima-

tion is good independent of k and may be good even in the near zone.

Then

lim
(k)r→∞

vA(x) =
µ0e

ikr

4πr

∫

J(x′)e−ikn̂·x′

d3x′. (11.77)

In the far zone, the solution behaves like an outgoing spherical wave times an

amplitude that depends on integral over the source that depends on angles

in an intricate fashion.

At this point I could continue and extract

lim
(k)r→∞

vA(x) =
µ0e

ikr

4πr

∑

n

(−ik)n

n!

∫

J(x′)(n̂ · x′)nd3x′ (11.78)

(if the source is actually small enough to allow expansion of the exponential

in a series5). This would give us a cheap introduction into multipoles. But

it is so sloppy!

Instead we are going to do it right. We will begin by reviewing the

solutions to the homogeneous Helmholtz equation (which should really be

discussed before we sweat solving the inhomogeneous equation, don’t you

think?) and will construct the multipolar expansion for the outgoing and

incoming (and stationary) wave Green’s function. Using this, it will be a

trivial matter to write down a formally exact and convergent solution to

the integral equation on all space that we can chop up and approximate as

we please. This will provide a much more natural (and accurate) path to

multipolar radiation. So let’s start.

5Taylor? Power? Laurent? Who can remember. . .



11.4 The Homogeneous Helmholtz Equation

Recall as you read this that WIYF and MWIYFin addition to the treatment

of this available in Jackson, chapters 2, 3, 6, and 8 of Wyld, and doubtless

Arfkin, Morse and Feshback, and probably six other sources if you look.

Very important stuff, can’t know it too well.

Recall from above the Homogeneous Helmholtz Equation (HHE):

(∇2 + k2)χ(x) = 0. (11.79)

We assume that6:

χ(x) =
∑

L

fℓ(r)YL(θ, φ). (11.80)

We reduce the HHE with this assumption to the radial differential equa-

tion
[

d2

dr2
+

2

r

d

dr
+ k2 − ℓ(ℓ+ 1)

r2

]

fℓ(r) = 0. (11.81)

If we substitute

fℓ(r) =
1

r1/2
uℓ(r) (11.82)

we transform this into an equation for uℓ(r),

[

d2

dr2
+

1

r

d

dr
+ k2 − (ℓ+ 1

2
)2

r2

]

uℓ(r) = 0. (11.83)

The is Bessel’s differential equation. See Wyld, (2-6) or Jackson in various

places (see key on back inside cover) for more detail. Or your own favorite

Math Physics book.

Two linearly independent solutions on IR3 minus the origin to this radial

DE are:

fℓ(r) = jℓ(kr) and (11.84)

fℓ(r) = nℓ(kr), (11.85)

6This really isn’t an assumption. We could equally well write ∇2 in spherical polar

coordinates, separate variables, note that the angular ODEs have spherical harmonics as

eigenstates (“quantized” by the requirement of single-valuedness on e.g. rotations of 2π

in φ) and reconstruct the separated solution. But that’s too much work and we already

did it at least once in our lives, right? So we’ll “assume”.

http://www.wikipedia.org
http://mathworld.wolfram.com


the spherical bessel function and spherical neumann functions respectively.

They are both real, and hence are stationary in time (why?). The jℓ(kr)

are regular (finite) at the origin while the nℓ(kr) are irregular (infinite) at

the origin. This is in exact analogy with the situation for the homogeneous

Laplace equation (which is a special case of this solution).

The following is a MINIMAL table of their important properties. A

better table can be found in Wyld between chps. 6 and 7 and in Morse and

Feshbach (I can’t remember which volume).

11.4.1 Properties of Spherical Bessel Functions

Recursion Relation

Let zℓ(x) be either solution or a linear combination of the two. x is a complex

scalar independent variable (in practice, x = kr). Then

zℓ+1(x) =
2ℓ+ 1

x
zℓ(x) − zℓ−1(x). (11.86)

This relation is stable for increasing ℓ for zℓ = nℓ. It is stable for decreasing

ℓ for zℓ = jℓ. For that reason it is unstable in both directions for h±ℓ (defined

below). How would you make it? See Abramowitz and Stegun, Handbook of

Mathmatical Functions for discussion of recursive algorithm and definition

of power series expansions.

The Lowest Few Functions

j0(x) =
sin(x)

x
(11.87)

j1(x) =
sin(x)

x2
− cos(x)

x
(11.88)

...

n0(x) = −cos(x)

x
(11.89)

n1(x) = −cos(x)

x2
− sin(x)

x
(11.90)

...



Asymptotic Forms

Small x:

lim
x→0

jℓ(x) =
2ℓℓ!

(2ℓ+ 1)!
xℓ (11.91)

lim
x→0

nℓ(x) = −(2ℓ)!

2ℓℓ!

1

xℓ+1
. (11.92)

Note that for small x (r << k) jℓ(kr) is proportional to rℓ and nℓ(kr) is

proportional to 1/rℓ+1, which are the regular and irregular solutions to the

separated Laplace equation. This is the correct way to obtain the static

limit.

Large x:

lim
x→∞

jℓ(x) =
1

x
cos(x− (ℓ+ 1)

π

2
) (11.93)

lim
x→∞

nℓ(x) =
1

x
sin(x− (ℓ+ 1)

π

2
). (11.94)

Note that both solutions are regular (go to zero smoothly) at infinity and

are the same (trig) function shifted by π/2 over x there. Note that they are

not square integrable on IR3 (for your quantum course) but are still better

than plane waves in that regard. Something to think about . . .

Hankel Functions

Examining the asymptotic forms, we see that two particular complex linear

combinations of the stationary solution have the behavior, at infinity, of an

outgoing or incoming spherical wave when the time dependence is restored:

h+
ℓ (x) = jℓ(x) + inℓ(x) (= h1

ℓ(x)) (11.95)

h−ℓ (x) = jℓ(x) − inℓ(x) (= h2
ℓ(x)) (11.96)

the spherical hankel functions of the first (+) (outgoing) and second

(−) (incoming) kinds. Both of these solutions are singular at the origin like

1/xℓ+1 (why?) and behave like

lim
x→∞

h+
ℓ (x) = (−i)ℓ+1 e

ix

x
(11.97)

lim
x→∞

h−ℓ (x) = (i)ℓ+1 e
−ix

x
(11.98)



at infinity. Two particularly useful spherical hankel functions to know are

the zeroth order ones:

h+
0 (x) =

eix

ix
(11.99)

h−0 (x) =
e−ix

−ix (11.100)

Plane Wave Expansion

Plane waves and free spherical waves both form an (on–shell) complete or-

thnormal set on IR3 (with or without the origin). That means that one must

be able to expand one in terms of the other. Plane waves can be expanded

in terms of free spherical waves by:

eik·r = eikr cos(Θ)

=
∑

L

4πiℓYL(k̂)jℓ(kr)YL(r̂)∗. (11.101)

This is due to Lord Rayleigh and is sometimes called the Rayleigh expansion.

Recall that Θ is the angle betwixt the ~r and the ~k and that cos(Θ) =

cos(−Θ).

There is similarly an (integral) expression for jℓ(kr) in terms of an inte-

gral over the eik·r but we will not use it here. It follows from the completeness

relation on page 214 in Wyld, the Rayleigh expansion, and the completeness

relation on page 212. Derive it for homework (or find it somewhere and copy

it, but you shouldn’t have to). Check your result by finding it somewhere. I

think it might be somewhere in Wyld, but I know it is elsewhere. This will

be handed in.

11.4.2 JL(r), NL(r), and H±
L (r)

For convenience, we define the following:

JL(r) = jℓ(kr)YL(r̂) (11.102)

NL(r) = nℓ(kr)YL(r̂) (11.103)

H±
L (r) = h±ℓ (kr)YL(r̂) (11.104)

These are the basic solutions to the HHE that are also eigenfunctions of L2

and Lz. Clearly there is an implicit label of k (or k2) for these solutions.



A general solution (on a suitable domain) can be constructed out of a linear

combination of any two of them.

11.4.3 General Solutions to the HHE

On “spherical” domains (the interior and exterior of a sphere, or in a spher-

ical shell) the completely general solution to the HHE can therefore be writ-

ten in stationary form as:

∑

L

ALJL(r) +BLNL(r) (11.105)

or (for scattering theory, mostly) in the outgoing wave form

∑

L

CLJL(r) + SLH
+
L (r). (11.106)

Inside a sphere, BL and SL must be zero. Outside a sphere, or in a spherical

annulus, all the coefficients can be non–zero unlike the situation for the

Laplace equation (why?).

[This should provoke deep thoughts about the fundamental significance

of the Laplace equation. Are there any “really” stationary sources in the

dynamical, covariant, universe? Do we expect to have a contribution to the

zero frequency charge/current density distribution in any region of space?

What would this correspond to?]

11.4.4 Green’s Functions and Free Spherical Waves

We expect, for physical reasons7 that the wave emitted by a time dependent

source should behave like an outgoing wave far from the source. Note that

inside the bounding sphere of the source that need not be true. Earlier in

this chapter, we used an “outgoing wave Green’s function” to construct the

solution to the IHE with this asymptotic behavior. Well, lo and behold:

G±(x,x′) = ∓ ik

4π
h±0 (k|x − x′|) (11.107)

7A cop–out phrase if there ever was one. It translates as: because that’s the way it

turns out at the end.



For stationary waves (useful in quantum theory)

G0(x,x
′) =

k

4π
n0(k|x − x′|). (11.108)

This extremely important relation forms the connection between free

spherical waves (reviewed above) and the integral equation solutions we are

interested in constructing.

This connection follows from the addition theorems or multipolar expan-

sions of the free spherical waves defined above. For the special case of

L = (0, 0) these are:

N0(r − r′) = n0(k|r− r′)
1√
4π

=
√

4π
∑

L

NL(r>)JL(r<)∗ (11.109)

and

H±
0 (r − r′) = h±0 (k|r − r′)

1√
4π

=
√

4π
∑

L

H±
L (r>)JL(r<)∗. (11.110)

From this and the above, the expansion of the Green’s functions in free

spherical multipolar waves immediately follows:

G0(r − r′) = k
∑

L

NL(r>)JL(r<)∗ (11.111)

and

G±(r− r′) = ∓ik
∑

L

H±
L (r>)JL(r<)∗. (11.112)

Note Well: The complex conjugation operation under the sum is ap-

plied to the spherical harmonic (only), not the Hankel function(s). This is

because the only function of the product YL(r̂)YL(r̂′)∗ is to reconstruct the

Pℓ(Θ) via the addition theorem for spherical harmonics. Study this point in

Wyld carefully on your own.

These relations will allow us to expand the Helmholtz Green’s functions

exactly like we expanded the Green’s function for the Laplace/Poisson equa-

tion. This, in turn, will allow us to precisely and beautifully reconstruct the

multipolar expansion of the vector potential, and hence the EM fields in the

various zones exactly8.

This ends our brief mathematical review of free spherical waves and we

return to the description of Radiation.

8Well, in a uniformly convergent expansion, which is kind of exact, in the limit of an

infinite sum. In the mean time, it is a damn good approximation. Usually.



11.5 Electric Dipole Radiation

Now that we have that under our belts we can address the multipolar ex-

pansion of the vector potential intelligently. To begin with, we will write

the general solution for the vector potential in terms of the multipolar

expansion for the outgoing wave Green’s function defined above:

A(r) = ik
∑

L

[

JL(r)
∫ ∞

r
µ0J(r′)HL(r′)(∗)d3r′

+ H+
L (r)

∫ r

0
µ0J(r′)JL(r′)(∗)d3r′

]

(11.113)

where, by convention, (∗) means that the YL(r̂) is conjugated but the bes-

sel/neumann/hankel function is not. This is because the only point of the

conjugation is to construct Pℓ(Θ) from the m–sum for each ℓ via the ad-

dition theorem for spherical harmonics. We certainly don’t want to change

h+ into h−, which changes the time dependent behavior of the solution9.

Note that the integral over all space is broken up in such a way that the

Green’s function expansions above always converge. This solution is exact

everywhere in space including inside the source itself !

We can therefore simplify our notation by defining certain functions of

the radial variable:

A(r) =
∑

L

ik
[

CL(r)J(r) + SL(r)H+
L (r)

]

. (11.114)

In this equation,

CL(r) =
∫ ∞

r
µ0J(r′)HL(r′)(∗)d3r′ (11.115)

SL(r) =
∫ r

0
µ0J(r′)JL(r′)(∗)d3r′. (11.116)

Clearly SL(0) = 0 and for r > d, CL(r) = 0. At the origin the solution

is completely regular and stationary. Outside the bounding sphere of the

source distribution the solution behaves like a linear combination of outgoing

spherical multipolar waves. From now on we will concentrate on the latter

case, since it is the one relevant to the zones.

9This suggests that there are some interesting connections between the conjugation

symmetry and time reversal symmetry. Too bad we won’t have time to explore them.

You may on your own, though.



11.5.1 Radiation outside the source

Outside the bounding sphere of the source,

A(r) = ik
∑

L

H+
L (r)

∫ ∞

0
µ0J(r′)JL(r′)(∗)d3r′. (11.117)

At last we have made it to Jackson’s equation 9.11, but look how elegant

our approach was. Instead of a form that is only valid in the far zone, we

can now see that this is a limiting form of a convergent solution that works

in all zones, including inside the source itself! The integrals that go into

the CL(r) and SL(r) may well be daunting to a person armed with pen

and paper (depending on how nasty J(x′) is) but they are very definitely

computable with a computer!

Now, we must use several interesting observations. First of all, JL(r)

gets small rapidly inside d as ℓ increases (beyond kd). This is the angular

momentum cut–off in disguise and you should remember it. This means

that if J(r) is sensibly bounded, the integral on the right (which is cut off

at r′ = d) will get small for “large” ℓ. In most cases of physical interest,

kd << 1 by hypothesis and we need only keep the first few terms (!). In

practically all of these cases, the lowest order term (ℓ = 0) will yield an

excellent approximation. This term produces the electric dipole radiation

field.

11.5.2 Dipole Radiation

Let us evaluate this term. It is (c. f. J9.13):

A(r) =
µ0e

ikr

4πr

∫ r

0
J(r′)d3r′ (11.118)

(note: Y00(r̂) = Y00(r̂)
∗ = 1/

√
4π). If we integrate this term by parts (a

surprisingly difficult chore that will be an exercise) and use the continuity

equation and the fact that the source is harmonic we get:

A(r) = −iµ0ω

4π
p
eikr

r
(11.119)

where

p =
∫

r′ρ(r′)d3r′ (11.120)



is the electric dipole moment (see J4.8). Note that if we define ρ(r) to be

a “probability density” for the electrons during a transition this expression

is still valid.

This is wonderfully simple. If only we could quit with the vector poten-

tial. Alas, no. We must reconstruct the electromagnetic field being radiated

away from the source from the expressions previously given

B = ∇ × A

and

E =
ic

k
∇ ×B.

After a tremendous amount of straightforward but nonetheless difficult alge-

bra that you will do and hand in next week (see problems) you will obtain:

H =
ck2

4π
(n× p)

eikr

r

(

1 − 1

ikr

)

(11.121)

and

E =
1

4πǫ0

{

k2(n × p) × n
eikr

r
+ [3n(n · p) − p]

(

1

r3
− ik

r2

)

eikr

}

(11.122)

The magnetic field is always transverse to the radial vector. Electric dipole

radiation is therefore also called transverse magnetic radiation. The elec-

tric field is transverse in the far zone, but in the near zone it will have a

component (in the p direction) that is not generally perpendicular to n.

Asymptotic properties in the Zones

In the near zone we get:

B = µ0H =
iωµ0

4π
(n̂ × p)

1

r2
(11.123)

E =
1

4πǫ0
[3n̂(n̂ · p) − p]

1

r3
(11.124)

and can usually neglect the magnetic field relative to the electric field (it

is smaller by a factor of kr << 1). The electric field is that of a “static”

dipole (J4.13) oscillating harmonically.



In the far zone we get:

B = µ0H =
ck2µ0

4π
(n̂ × p)

eikr

r
(11.125)

E =
ic

k
∇ × B = c (B × n̂) . (11.126)

This is transverse EM radiation. Expanded about any point, it looks just

like a plane wave (which is how “plane waves” are born!). We are most

interested, as you know, in the radiation zone and so we will focus on it for

a moment.

Energy radiated by the dipole

Recall our old buddy the complex Poynting vector for harmonic fields

(J6.132):

S =
1

2
Re {E × H∗} . (11.127)

The factor of 1/2 comes from time averaging the fields. This is the energy

per unit area per unit time that passes a point in space. To find the time

average power per solid angle, we must relate the normal area through which

the energy flux passes to the solid angle:

dAn = r2dΩ (11.128)

and project out the appropriate piece of S, i. e. — n ·S. We get (with µ = 1)

dP

dΩ
=

1

2
Re[r2n · (E× H∗)]. (11.129)

where we must plug in E and H from the expressions above for the far field.

After a bunch of algebra that I’m sure you will enjoy doing, you will

obtain:
dP

dΩ
=

c2

32π2

√

µ0

ǫ0
k4 | (n × p) × n |2 . (11.130)

The polarization of the radiation is determined by the vector inside the abso-

lute value signs. By this one means that one can project out each component

of p (and hence the radiation) before evaluating the square independently,

if so desired. Note that the different components of p need not have the

same phase (elliptical polarization, etc.).



If all the components of p (in some coordinate system) have the same

phase, then p necessarily lies along a line and the typical angular distribution

is that of (linearly polarized) dipole radiation:

dP

dΩ
=

c2

32π2

√

µ0

ǫ0
k4 | p |2 sin2 θ (11.131)

where θ is measured between p and n. When you integrate over the entire

solid angle (as part of your assignment) you obtain the total power radiated:

P =
c2k4

12π

√

µ0

ǫ0
| p |2 (11.132)

The most important feature of this is the k4 dependence which is, after all,

why the sky is blue (as we shall see, never fear).

Example: A centerfed, linear antenna

In this antenna, d << λ and

I(z, t) = I0

(

1 − 2 | z |
d

)

e−iωt. (11.133)

From the continuity equation (and a little subtle geometry),

∇ · J =
dI

dz
= −∂ρ

′(z)e−iωt

∂t
= iωρ′(z) (11.134)

and we find that the linear charge density (participating in the oscillation,

with a presumed neutral background) is independent of z:

ρ′(z) = ±2iI0
ωd

(11.135)



where the +/− sign indicates the upper/lower branch of the antenna and the
′ means that we are really treating ρ/(dxdy) (which cancels the related terms

in the volume integral below). We can then evaluate the dipole moment of

the entire antenna for this frequency:

pz =
∫ d/2

−d/2
zρ′(z)dz =

iI0d

2ω
. (11.136)

The electric and magnetic fields for r > d in the electric dipole approx-

imation are now given by the previously derived expressions. The angular

distribution of radiated power is

dP

dΩ
=

I2
0

128π2

√

µ0

ǫ0
(kd)2 sin2 θ (11.137)

and the total radiated power is

P =
I2
0 (kd)2

48π

√

µ0

ǫ0
. (11.138)

Remarks. For fixed current the power radiated increases as the square

of the frequency (at least when kd << 1, i. e. – long wavelengths relative to

the size of the antenna). The total power radiated by the antenna appears as

a “loss” in “Ohm’s Law” for the antenna. Factoring out I2
0/2, the remainder

must have the units of resistance and is called the radiation resistance of

the antenna:

Rrad =
2P

I2
0

=
(kd)2

24π

√

µ0

ǫ0
≈ 5(kd)2 ohms) (11.139)

where we do the latter multiplication to convert the resulting units to ohms.

Note that this resistance is there for harmonic currents even if the conduc-

tivity of the metal is perfect. Note further that by hypothesis this expression

will only be valid for small values of Rrad.

Good golly, this is wonderful. We hopefully really understand electric

dipole radiation at this point. It would be truly sublime if all radiators

were dipole radiators. Physics would be so easy. But (alas) sometimes the

current distribution has no ℓ = 0 moment and there is therefore no dipole

term! In that case we must look at the next term or so in the multipolar

expansions



Lest you think that this is a wholly unlikely occurrance, please note

that a humble loop carrying a current that varies harmonically is one such

system. So let us proceed to:

11.6 Magnetic Dipole and Electric Quadrupole

Radiation Fields

The next term in the multipolar expansion is the ℓ = 1 term:

A(x) = ikµ0h
+
1 (kr)

1
∑

m=−1

Y1,m(r̂)
∫ ∞

0
J(x′)j1(kr

′)Y1,m(r̂′)∗d3x′ (11.140)

When you (for homework, of course)

1. m–sum the product of the Yℓ,m’s

2. use the small kr expansion for j1(kr
′) in the integral and combine it

with the explicit form for the resulting P1(θ) to form a dot product

3. cancel the 2ℓ+ 1’s

4. explicitly write out the hankel function in exponential form

you will get equation (J9.30, for – recall – distributions with compact sup-

port):

A(x) =
µ0

4π

eikr

r

(

1

r
− ik

) ∫ ∞

0
J(x′)(n · x′)d3x′. (11.141)

Of course, you can get it directly from J9.9 (to a lower approximation) as

well, but that does not show you what to do if the small kr approximation

is not valid (in step 2 above) and it neglects part of the outgoing wave!

There are two important and independent pieces in this expression. One

of the two pieces is symmetric in J and x′ and the other is antisymmetric

(get a minus sign when the coordinate system is inverted). Any vector

quantity can be decomposed in this manner so this is a very general step:

J(n · x′) =
1

2
[(n · x′)J + (n · J)x′] +

1

2
(x′ × J) × n. (11.142)



11.6.1 Magnetic Dipole Radiation

Let’s look at the antisymmetric bit first, as it is somewhat simpler and we

can leverage our existing results. The second term is the magnetization

(density) due to the current J :

~M =
1

2
(x × J) (11.143)

(see J5.53, 5.54) so that

m =
∫

~M(x′)d3x′ (11.144)

where m is the magnetic dipole moment of the (fourier component of) the

current.

Considering only this antisymmetric term, we see that:

AM1(x) =
ikµ0

4π
(n× m)

eikr

r

(

1 − 1

ikr

)

. (11.145)

HMMMMMMM, (you had better say)! This looks “just like” the ex-

pression for the magnetic field that resulted from the electric dipole vector

potential. Sure enough, when you (for homework) crank out the algebra,

you will show that

B =
µ0

4π

{

k2(n× m) × n
eikr

r
+ [3n(n · m) −m]

(

1

r3
− ik

r2

)

eikr

}

(11.146)

and

E = − 1

4π

√

µ0

ǫ0
k2(n× m)

eikr

r

(

1 − 1

ikr

)

. (11.147)

Clearly, we don’t need to discuss the behavior of the fields in the zones

since they are completely analogous. The electric field is always transverse,

and the total field arises from a harmonic magnetic dipole. For this reason,

this kind of radiation is called either magnetic dipole (M1) radiation or

transverse electric radiation. For what it’s worth, electric dipole radiation

is also called (E1) radiation.

However, this is only ONE part of the contribution from ℓ = 1 terms in

the Green’s function expansion. What about the other (symmetric) piece?

Oooo, ouch.



11.6.2 Electric Quadrupole Radiation

Now let’s to untangle the first (symmetric) piece. This will turn out to be a

remarkably unpleasant job. In fact it is my nefarious and sadistic plan that

it be so unpleasant that it properly motivates a change in approach to one

that handles this nasty tensor stuff “naturally”.

We have to evaluate the integral of the symmetric piece. We get:

1

2

∫

[(n̂ · x′)J + (n̂ · J)x′]d3x′ = −iω
2

∫

x′(n̂ · x′)ρ(x′)d3x′ (11.148)

The steps involved are:

1. integrate by parts (working to obtain divergences of J).

2. changing ∇ · J into a ρ times whatever from the continuity equation

(for a harmonic source).

3. rearranging and recombining.

Don’t forget the boundary condition at infinity (J and ρ have compact

support)! You’ll love doing this one...

The vector potential is thus:

AE2(x) = −µ0ck
2

8π

eikr

r

(

1 − 1

ikr

) ∫

x′(n̂ · x′)ρ(x′)d3x′. (11.149)

Note that x′ appears twice under the integral, and that its vector character

similarly appears twice: once in x′ itself and once in its projection on n̂.

The integral is the electric quadrupole moment of the oscillating charge

density distribution and the resulting radiation field is called an electric

quadrupole (radiation) field or an E2 radiation field (for short).

To get the fields from this expression by taking its curl, and then the

curl of its curl, is – ahem – most unpleasant. Jackson wimps out! Actually,

taking the curls is no more difficult than it was for the magnetic term, but

untangling the integrals with the result is, because of the tensor forms that

appear. Consequently we too will wimp out (in the comforting knowledge

that we will shortly do this right and not wimp out to arbitrary order in a

precise decomposition) and will restrict our attention to the far zone.



There we need only consider the lowest order surviving term, which

always comes from the curl of the exponential times the rest:

B = ik(n̂ × A) (11.150)

E = ik

√

µ0

ǫ0
(n̂ × A) × n̂. (11.151)

If we keep only the lowest order terms of this we get

B = −ick
2µ0

8π

eikr

r

∫

(n̂ × x′)(n̂ · x′)ρ(x′)d3x′. (11.152)

If we recall (from the beginning of Chapter 4) the discussion and definition

of multipole moments, in particular the quadrupole moment tensor

Qαβ =
∫

(3x′αx
′
β − r′2δαβ)ρ(x′)d3x′ (11.153)

whose various components can be related to the five spherical harmonics

with ℓ = 2 (!) we can simplify matters. We can write the one messy integral

in terms of another:

n̂ ×
∫

x′(n̂ · x′)ρ(x′)d3x′ =
1

3
n̂ × Q(n̂) (11.154)

where

Q(n̂) =
∑

β

Qαβnβx̂β. (11.155)

Note that the “vector” Q(n̂) (and hence the fields) depends in both the

magnitude and direction on the direction to the point of observation n as

well as the properties of the source. With these definitions,

B = −ick
3µ0

24π

eikr

r
(n̂ × Q(n̂)) (11.156)

which looks (except for the peculiar form of Q) much like the E1 magnetic

field. It is transverse. The electric field is obtained by appending ×n and is

also transverse. Following exactly the same algebraic procedure as before,

we find from

S =
1

2
Re {E × H∗} (11.157)

and computing the flux of the Poynting vector through a sphere of radius r

as a function of angle that the angular power distribution is:

dP

dΩ
=

c2

1152π2

√

µ0

ǫ0
k6 | (n̂ × Q(n̂)) × n̂ |2 (11.158)



The angular distribution is too complicated to play with further unless

you need to calculate it, in which case you will have to work it out. The

total power can be calculated in a “straightforward” way (to quote Jackson).

First one changes the cross product to dot products using the second relation

on the front cover and squares it. One then writes out the result in tensor

components. One can then perform the angular integrals of the products of

the components of the n (which is straightforward). Finally one term in the

resulting expression goes away because Qαβ is traceless. The result is

P =
c2k6

1440π

√

µ0

ǫ0

∑

α,β

| Qαβ |2 (11.159)

(note k6 frequency dependence). For the numerologists among you, note

that there is almost certainly some sort of cosmic significance in the 1440 in

the denominator as this is the number of seconds in a day.

Just kidding.

For certain symmetric distributions of charge the general quadrupole mo-

ment tensor simplifies still further. A typical case of this occurs when there

is an additional, e. g. azimuthal symmetry such as an oscillating spheroidal

distribution of charge. In this case, the off–diagonal components of Qαβ

vanish and only two of the remaining three are independent. We can write

Q33 = Q0, Q11 = Q22 = −1

2
Q0 (11.160)

and the angular distribution of radiated power is

dp

dΩ
=

c2k6

512π2

√

µ0

ǫ0
Q2

0 sin2 θ cos2 θ (11.161)

which is a four–lobed radiation pattern characteristic of azimuthally sym-

metric sources. In this case it really is straightforward to integrate over the

entire solid angle (or do the sum in the expression above) and show that:

P =
c2k6

960π

√

µ0

ǫ0
Q2

0. (11.162)

At this point it should be clear that we are off on the wrong track. To

quote Jackson:



The labor involved in manipulating higher terms in (the mul-

tipolar expansion of A(x)) becomes increasingly prohibitive as

the expansion is extended beyond the electric quadrupole terms.

Some would say that we should have quit after the electric dipole or magnetic

dipole.

The problem has several roots. First, in the second and all succeeding

terms in the expansion as written, the magnetic and electric terms are all

mixed up and of different tensorial character. This means that we have to

project out the particular parts we want, which is not all that easy even in

the simplest cases. Second, this approach is useful only when the wavelength

is long relative to the source (kd << 1) which is not (always) physical for

radio antennae. Third, what we have done is algebraically inefficient; we

keep having to do the same algebra over and over again and it gets no

easier.

Understanding the problem points out the way to solve it. We must start

again at the level of the Green’s function expansion, but this time we must

construct a generalized tensorial multipolar expansion to use in the integral

equation. After that, we must do “once and for all” the necessary curl and

divergence algebra, and classify the resulting parts according to their formal

transformation properties. Finally, we will reassemble the solution in the

new vector multipoles and glory in its formal simplicity. Of course, the

catch is that it is a lot of work at first. The payoff is that it is general and

systematically extendable to all orders.

As we do this, I’m leaving you to work out the various example problems

in Jackson (e.g. section J9.4, 9.5) on your own. We’ve already covered most

of J9.6 but we have to do a bit more review of the angular part of the Laplace

operator, which we largely skipped before. This will turn out to be key as

we develop Multipolar Radiation Fields properly.

11.7 Radiation Assignment

1. Derive the integral expression for spherical bessel functions in terms

of plane waves at the same wavenumber.



2. The addition theorems:

N0(r− r′) = n0(k | r − r′)
1√
4π

=
√

4π
∑

L

NL(r>)JL(r<)∗ (11.163)

and

H±
0 (r− r′) = h±0 (k | r− r′)

1√
4π

=
√

4π
∑

L

H±
L (r>)JL(r<)∗. (11.164)

are derived someplace, for both this special case and for the general

case. Find at least one such place (for L = 0, 0), copy the derivation

(with acknowledgement), and hand it in. If you work in a group, see

how many places you can find it and compare. LEARN what you can

from the process, that is, read the text accompanying the derivation(s)

you find and try to understand it. Work it out. For extra credit, find

in the literature the original paper that derives the general addition

theorem. Hints: JMP, Danos and Maximon. Study it.

3. Derive the Green’s function for the Helmholtz equation in free space

(zero boundary conditions at infinity). Do not use the addition theo-

rem, since you do not (in principle) know its form yet and so do not

know that it is a Neumann or Hankel function. Naturally, you can

follow Wyld or Jackson or Arfken, but acknowledge your source and

show the entire derivation.

4. Make a neat sheet with Everything You Never Wanted To Know About

Spherical Bessel/Neumann/Hankel Functions but were Afraid Not To

Ask on it. Don’t hand it in, this will be your guide through life (for

at least a few weeks). Do NOT simply photocopy my notes. Do it

by hand. Pool your sheets with those of your friends — put together

everything to make a “best” sheet and then photocopy it. I use the

term “sheet” loosely. I expect it will fill several (it did in my notes).

5. Using the addition theorem derived above (in the form of the Green’s

function) and the asymptotic relations on your worksheet, derive the

static result for the vector potential A we previously obtained for the

near field zone (my equation 66). Find the lowest order correction to

this expression. This will, of course, involve finding more out about

spherical waves than I have so far told you! item Using the same addi-

tion theorem and the other asymptotic relations, derive an expression



for the v.p. A in the far zone. Is there a correspondance of some sort

with our previous result (Jackson 9.9)?

6. Show that

A(x) = ikh+
1 (kr)

1
∑

m=−1

Y1,m(r̂)
∫

J(x′)j1(kr
′)Y1,m(r̂′)∗d3x′

is equivalent to

A(x) =
eikr

4πr

(

1

r
− ik

)
∫

J(x′)(n · x′)d3x′

for kd << 1.

7. Any vector quantity can be decomposed in a symmetric and an an-

tisymmetric piece. Prove that, in the case of the ℓ = 1 term derived

above, the current term can be decomposed into

J(n · x′) =
1

2
[(n · x′)J + (n · J)x′] +

1

2
(x′ × J) × n

8. Evaluate the antisymmetric piece. Show (from the magnetic dipole

vector potential) that

B =
µ0

4π

{

k2(n× m) × n
eikr

r
+ [3n(n ·m) −m]

(

1

r3
− ik

r2

)

eikr

}

and

E = − 1

4π

√

µ0

ǫ0
k2(n× m)

eikr

r

(

1 − 1

ikr

)

.

Remark upon the similarities and differences between this result and

the electric dipole result.

9. Next start to evaluate the integral of the symmetric piece. Show that

you get:

1

2

∫

[(n · x′)J + (n · J)x′]d3x′ = −iω
2

∫

x′(n · x′)ρ(x′)d3x′

The steps involved are:

(a) integrate by parts (working to obtain divergences of J).



(b) changing ∇ ·J into a ρ times whatever from the continuity equa-

tion (for a harmonic source).

(c) rearranging and recombining.

Don’t forget the boundary condition at infinity!

10. Homemade tables, part II. What you did for spherical bessel functions,

do for spherical harmonics. In particular, derive the commutation rules

for the raising and lowering operators from the cartesian commutation

relations for L. From the commutation rules and LzYℓm = mYℓm derive

the (normalized) action of L± on Yℓ,m.

11. Jackson, problems 9.2, 9.3, 9.4





Chapter 12

Vector Multipoles

As I noted just above, we’re already half way through J9.6, which is mostly

the review of spherical bessel, neumann, and hankel functions that we have

just had. The remainder is a lightning review of scalar spherical harmonics.

Since we’re about to generalize that concept, we’ll quickly go over the high

parts.

12.1 Angular momentum and spherical har-

monics

The angular part of the Laplace operator ∇2 can be written:

1

r2

{

1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

}

= −L
2

r2
(12.1)

Eliminating −r2 (to solve for the L2 differential equation) one needs to

solve an eigenvalue problem:

L2ψ = eψ (12.2)

where e are the eigenvalues, subject to the condition that the solution be

single valued on φ ∈ [0, 2π) and θ ∈ [0, π].

This equation easily separates in θ, φ. The φ equation is trivial – solutions

periodic in φ are indexed with integer m. The θ equation one has to work
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at a bit – there are constraints on the solutions that can be obtained for any

given m – but there are many ways to solve it and at this point you should

know that its solutions are associated Legendre polynomials Pℓ,m(x) where

x = cos θ. Thus the eigensolution becomes:

L2Yℓm = ℓ(ℓ+ 1)Yℓm (12.3)

where ℓ = 0, 1, 2... and m = −ℓ,−ℓ+ 1, ..., ℓ− 1, ℓ and is typically orthonor-

mal(ized) on the solid angle 4π.

The angular part of the Laplacian is related to the angular momentum

of a wave in quantum theory. In units where h̄ = 1, the angular momentum

operator is:

L =
1

i
(x × ∇) (12.4)

and

L2 = L2
x + L2

y + L2
z (12.5)

Note that in all of these expressions L, L2, Lz, etc. are all operators. This

means that they are applied to the functions on their right (by convention).

When you see them appearing by themselves, remember that they only mean

something when they are applied, so ∇’s out by themselves on the right are

ok.

The z component of L is:

Lz = −i ∂
∂φ

(12.6)

and we see that in fact Y lm satisfies the two eigenvalue equations:

L2Yℓm = ℓ(ℓ+ 1)Yℓm (12.7)

and

LzYℓm = mYℓm (12.8)

The Y lm’s cannot be eigensolutions of more than one of the components

of L at once. However, we can write the cartesian components of L so that

they form an first rank tensor algebra of operators that transform the Yℓm,

for a given ℓ, among themselves (they cannot change ℓ, only mix m). This



is the hopefully familiar set of equations:

L+ = Lx + iLy (12.9)

L− = Lx − iLy (12.10)

L0 = Lz (12.11)

The Cartesian components of L do not commute. In fact, they form a nice

antisymmetric set:

[Li, Lj ] = iǫijkLk (12.12)

which can be written in the shorthand notation

L× L = iL. (12.13)

Consequently, the components expressed as a first rank tensor also do

not commute among themselves:

[L+, L−] = 2Lz (12.14)

and

[L±, Lz] = ∓L± (12.15)

but all these ways of arranging the components of L commute with L2:

[Li, L
2] = 0 (12.16)

and therefore with the Laplacian itself:

[∇2, Li] = 0 (12.17)

which can be written in terms of L2 as:

∇2 =
1

r

∂2

∂r2
(r ) − L2

r2
(12.18)

As one can easily show either by considering the explict action of the

actual differential forms on the actual eigensolutions Yℓm or more subtly by

considering the action of Lz on L±Yℓℓ (and showing that they behave like

raising and lower operators form and preserving normalization) one obtains:

L+Yℓm =
√

(ℓ−m)(ℓ+m+ 1) Yℓ,m+1 (12.19)

L−Yℓm =
√

(ℓ+m)(ℓ−m+ 1) Yℓ,m−1 (12.20)

LzYℓm = mYℓm (12.21)



Finally, note that L is always orthogonal to r where both are considered

as operators and r acts from the left:

r · L = 0. (12.22)

You will see many cases where identities such as this have to be written

down in a particular order.

Before we go on to do a more leisurely tour of vector spherical harmonics,

we pause to motivate the construction.

12.2 Magnetic and Electric Multipoles Re-

visited

As we have now seen repeatedly from Chapter J6 on, in a source free region

of space, harmonic electromagnetic fields are divergenceless and have curls

given by:

∇ × E = iωB = ikcB (12.23)

∇ × B = −ik
c
E. (12.24)

By massaging these a little bit (recall ∇ × (∇ × X) = ∇(∇ · X) − ∇2X

and ∇ ·X = 0 for X = E,B) we can easily show that both E and B must

be divergenceless solutions to the HHE:

(∇2 + k2)X = 0 (12.25)

If we know a solution to this equation for X = E we can obtain B from its

curl from the equation above:

B = − i

ω
∇ × E (12.26)

and vice versa. However, this is annoying to treat directly, because of the

vector charactor of E and B which complicate the description (as we have

seen – transverse electric fields are related to magnetic multipoles and vice

versa). Let’s eliminate it.

By considering the action of the Laplacian on the scalar product of r

with a well–behaved vector field X,

∇2(r · X) = r · (∇2X) + 2∇ · X (12.27)



and using the divergenceless of E and B, we see that the scalars (r ·E) and

(r · B) also satisfy the HHE:

(∇2 + k2)(r · E) = 0 (12.28)

(∇2 + k2)(r · B) = 0 (12.29)

We already know how to write a general solution to either of these equa-

tions in terms of the spherical bessel, neumann, and hankel functions times

spherical harmonics.

Recall, that when we played around with multipole fields, I kept empha-

sizing that electric n-pole fields were transverse magnetic and vice versa?

Well, transverse electric fields have (r ·E) = 0 by definition, right? So now

we define a magnetic multipole field of order L by

r · B(M)
L =

ℓ(ℓ+ 1)

k
gℓ(kr)YL(r̂) (12.30)

r · E(M)
L = 0. (12.31)

Similarly, a electric multipole field of order L (which must be transverse

magnetic) is any solution such that

r · E(E)
L = −ℓ(ℓ+ 1)

k
fℓ(kr)YL(r̂) (12.32)

r · B(E)
L = 0. (12.33)

In these two definitions, gℓ(kr) and fℓ(kr) are arbitrary linear combinations

of spherical bessel functions1, two at a time. Jackson uses the two hankel

functions in (J9.113)k, but this is not necessary.

Now, a little trickery. Using the curl equation for B we get:

k(r · B(M)
L ) =

1

i
r · (∇ × E

(M)
L ) =

1

i
(r × ∇) · E(M)

L = L · E(M)
L (12.34)

so that L · E(
LM) is a scalar solution to the HHE for magnetic multipolar

fields. Ditto for L · B(E)
L in the case of electric multipolar fields. Thus,

L · E(M)
L = ℓ(ℓ+ 1)gℓ(kr)YL(r̂) (12.35)

etc. for L · B(E)
L .

1From now on, this term is generic unless clearly otherwise in context.



Now we get really clever. Remember that r · L = 0. Also, L2 = L · L.

We have arranged things just so that if we write:

E
(M)
L = gℓ(kr)LYL(r̂) (12.36)

B
(M)
L = − i

ω
∇ × E

(M)
L (12.37)

we exactly reconstruct the solutions above. Neato! This gives us a com-

pletely general TE, MM EMF. A TM, EM EMF follows similarly with g → f

and E ↔ B (and a minus sign in the second equation).

This is good news and bad news. The good news is that this is a hell of a

lot simpler than screwing around with symmetric and antisymmetric vector

decompositions and integrations by parts ad nauseam. The radial part of

the solutions is straightforward, and the angular part is written in a concise

notation. The bad news is we have never seen that notation, good or bad,

ever before. We have two choices. Either we can laboriously crank out the

operator products and curls for each problem as we need to (which is really

just as bad as what we have been doing) or we have to work out the algebra

of these new objects once and for all so we can plug and chug out the most

difficult of answers with comparative ease.

Guess which one we’re about to do.

12.3 Vector Spherical Harmonics and Multi-

poles

Recall that

L = −ir × ∇. (12.38)

This is an “orbital” rotation operator. In systems with spin it is more

convenient in many cases to define a “total” rotation operator that adds

the orbital rotation operator to a “spin” rotation operator (defined below).

Since total angular momentum (as opposed to orbital angular momentum)

is a relativistically invariant quantity that appears “naturally” in covariant

kinematics, we are inspired to find a representation that is

1. A vector function of its coordinates.



2. Simultaneous eigenfunctions of J2, L2, and Jz.

3. Possessed of certain desirable properties we will derive.

Actually, figuring out something like this the first time is not quite so

easy; it is full of false starts and exploring alternatives. After the fact,

however, it is clear that this is the correct choice. It is also extremely useful

in quantum theory.

The total rotation operator is

J = L + S (12.39)

where

S = iI × (12.40)

is the “spin” operator.

Aside: The Spin Operator

S in this expression is a tensor operator. It (like all operators) has no

meaning by itself. It is, however, quite different from the scalar operators

you are used to. Among other things, when S operates on a vector A, it

generates a new vector that points in a different direction. Let us see this.

In the definition of S, I is the identity tensor (unit diagonal matrix) and

it is crossed into whatever sits on its right. To understand its action, let us

evaluate its cartesian components acting on some vector A:

SxA = iIx ×A = ix̂× A (12.41)

SyA = iŷ × A (12.42)

SxA = iẑ ×A (12.43)

or (e. g.)

SzA = i(Axŷ − Ayx̂). (12.44)

Note that the action of a component of S on a vector A shifts the direction

of A to a direction perpendicular to both S and the component. Only by

considering the action of all the components can the total vector action of

S on A in a given direction be evaluated.

There are several important properties of S. The first is to note that it

has the form of an angular momentum operator with a special action on



vectors. If we form S2 and evaluate its action on A:

S2A = −
{

x̂× (x̂× A) + ŷ × (ŷ × A) + ẑ × (ẑ × A)
}

= −{A − 3A}
= 2A = s(s+ 1)A (12.45)

for s = 1. S2 acting on any vector produces 2 times the same vector,

telling us that a vector has “spin angular momentum” of 1. Note that this

connection is universal. In field theory a “vector boson” has spin 1. In

electrodynamics (quantum or classical) the “vector radiation field” has spin

one.

The spin operator thus formed is more general, because its action can be

extended to higher rank tensors. (2nd rank tensor) gravitational fields have

spin 2. Scalar (0th rank tensor) fields have spin 0. To treat more general

cases, however, we have to work with tensor indices explicitly and you’ll see

enough of that in the section on relativity. Feel free to study this matter

further. Louck and Biedenharn’s book (Encycl. of Math Phys., see me for

ref.) contains a much deeper discussion of this entire subject.

It may seem that with such a peculiar structure, Sz can have no eigen-

vectors. This is not the case. You should verify that

χ1
1 = − 1√

2
(x̂+ iŷ) (12.46)

χ0
1 = ẑ (12.47)

χ−1
1 =

1√
2
(x̂− iŷ) (12.48)

are eigenvectors such that

Szχ
ms

1 = msχ
ms

1 (12.49)

for ms = −1, 0, 1 and

S2χms

1 = s(s+ 1)χms

1 (12.50)

for s = 1. You should also verify the commutation relations for the compo-

nents of S, that is, show that

S× S = iS (12.51)

making it a “true” rotation/angular momentum operator.



In addition, we will need to use the operators

J2 = JxJx + JyJy + JzJz, (12.52)

Jz = Lz + Sz (12.53)

(etc.) and

L2 = LxLx + LyLy + LzLz (12.54)

so that

J2 = L2 + 2 + 2iL× (12.55)

which can be proven as follows.

Consider its action on A (as usual):

J2A = {L2 + S2 + 2L · S}A
= {L2 + 2 + 2i[Lx(x̂× ) + Ly(ŷ × ) + Lz(ẑ × )]}A
= {L2 + S2 + 2i(L × )}A (12.56)

where the meaning of the latter expression is hopefully now clear.

Then we define the vector spherical harmonics Ym
j,ℓ by:

J2Y m
j,ℓ = j(j + 1)Y m

j,ℓ (12.57)

L2Y m
j,ℓ = ℓ(ℓ+ 1)Y m

j,ℓ (12.58)

JzY
m
j,ℓ = mY m

j,ℓ. (12.59)

Note that in order for the latter expression to be true, we might reasonably

expect the vector spherical harmonics to be constructed out of sums of prod-

ucts of spherical harmonics and the eigenvectors of the operator Sz defined

above. This is the vector analogue of constructing a spinor wavefunction in

quantum theory.

In addition, we normalize these orthogonal functions so that they are

orthonormal as a dot product. This will allow us to use them to construct

projections.
∫

Y m∗
j,ℓ (θ, φ) · Y m′

j′,ℓ′(θ, φ)dΩ = δjj′δℓℓ′δmm
′ (12.60)

We now need to derive the properties of these functions. We begin by

applying J2 to Y m
j,ℓ

J2Y m
j,ℓ =

{

L2 + 2 + 2iL×
}

Y m
j,ℓ (12.61)



so that we get

2iL× Y m
j,ℓ = {j(j + 1) − ℓ(ℓ+ 1) − 2}Y m

j,ℓ. (12.62)

Most of the later results will be based on this one, so understand it com-

pletely.

If we take L· of both sides of (12.62), use a vector identity and recall

that L × L = iL we get:

[j(j + 1) − ℓ(ℓ+ 1)]L · Y m
j,ℓ = 0. (12.63)

Similarly, we form the vector product of L with both sides of (12.62):

{j(j + 1) − ℓ(ℓ+ 1) − 2}L× Y m
j,ℓ = 2iL × (L × Y m

j,ℓ). (12.64)

To reduce this further, we must use the operator vector identity (which you

should prove)

L× (L× V) = L(L · V) + iL × V − L2V (12.65)

and eliminate the L × Y using (12.62). One gets:

[j(j + 1) − ℓ(ℓ+ 1)] [j(j + 1) − ℓ(ℓ+ 1) − 2]Y m
j,ℓ =

4ℓ(ℓ+ 1)Y m
j,ℓ − 4L(L · Y m

j,ℓ.(12.66)

If we eliminate the L·Y (using the result above) we get the characteristic

equation that is a constraint on the possible values of j and ℓ:

x3 − 2x2 − 4ℓ(ℓ+ 1)x = 0 (12.67)

where

x = j(j + 1) − ℓ(ℓ+ 1) (12.68)

by definition. The solutions to this factorizable cubic are:

j = ℓ, ℓ+ 1, ℓ− 1,−ℓ− 1,−ℓ− 2,−ℓ.

We only need to consider the solutions with positive j in this problem as the

others are not independent in this case. Since ℓ ≥ 0 we only need consider

the first three possibilities.



Solutions with j = ℓ

Then x = 0 and

j(j + 1)Y m
jj = L(L · Y m

jj) (12.69)

from the third equation above. If we take the dot product of L with this

relation, we get

L2(L · Y m
jj) = j(j + 1)(L · Y m

jj) (12.70)

and we thus see that L · Y m
jj ∝ Yj,m and so:

Y m
jj =

1
√

j(j + 1)
LYj,m (12.71)

(!) where we have normalized the result.

We have at last found something recognizable. This is precisely the

combination of spherical harmonics and L we found in our brief excursion

into multipoles! We see that we could have written the (e. g.) magnetic

solution as

E
(M)
L = gℓ(kr)

√

ℓ(ℓ+ 1)Y m
ℓℓ (12.72)

B
(M)
L = − i

ω
∇ × E

(M)
L . (12.73)

With just a little more work (later) we will be able to obtain the curl

part as a general result, which will really simplify life for us. It is a trivial

exercise (left for the reader) to verify that

JzY
m
jj = mY m

jj. (12.74)

One simply plugs in the explicit form of Jz and commutes the resultant Lz

with L to cancel the “spin” part.

Solutions with j 6= ℓ

If j 6= ℓ, we see from the equation after (12.62) that L · Y = 0. To

go further we have to go back to (12.62) and follow a different line. If we

multiply both sides by r̂· and r̂×,

[j(j + 1) − ℓ(ℓ+ 1) − 2] r̂ · Y m
jℓ = 2ir̂ · L × Y m

jℓ (12.75)

and

[j(j + 1) − ℓ(ℓ+ 1) − 2] r̂ × Y m
jℓ = 2ir̂ × (L × Y m

jℓ) (12.76)



We can reduce these with the vector identities

r̂ · (L ×A) = 2ir̂ · A − L · (r̂ × A) (12.77)

and

r̂ × (L× A) = L(r̂ · A) + ir̂ ×A. (12.78)

You should get

[j(j + 1) − ℓ(ℓ+ 1) + 2] r̂ · Y m
jℓ = −2iL · (r̂ × Y m

jℓ) (12.79)

and

[j(j + 1) − ℓ(ℓ+ 1)] r̂ × Y m
jℓ = 2iL(r̂ · Y m

jℓ). (12.80)

Finally, if we plug the second of these into the first and eliminate the cross

product, we get the scalar equation:

1

4
[j(j + 1) − ℓ(ℓ+ 1)] [j(j + 1) − ℓ(ℓ+ 1) + 2] (r̂ · Y m

jℓ) = L2(r̂ · Y m
jℓ).

(12.81)

This implies that (r̂ · Y m
jℓ) is a spherical harmonic: that is a constant

×Yk,m. What? This is not obvious to you? Well, just this once:

[

j(j + 1) − ℓ(ℓ+ 1)

2

] [

j(j + 1) − ℓ(ℓ+ 1)

2
+ 1

]

= k(k + 1) (12.82)

This has the solutions

1. k =
[

j(j+1)−ℓ(ℓ+1)
2

]

2. k =
[

j(j+1)−ℓ(ℓ+1)
2

]

− 1.

Since we already know that j = ℓ±1, we can investigate these two cases

explicitly. The positive solutions (in both cases) are easily seen to be k = j.

We can then construct the complete solutions, since

Y m
j,ℓ = r̂(r̂ · Y m

j,ℓ) − r̂ × (r̂ × Y m
j,ℓ) (12.83)

is an identity (related to the symmetric/antisymmetric decomposition and

hence worth proving) and since we have already shown that

r̂ × Y m
j,ℓ = 2i [j(j + 1) − ℓ(ℓ+ 1)]−1 L(r̂ · Y m

j,ℓ) (12.84)



with (r̂ · Y m
j,ℓ) a constant times Yℓ,m. We get:

Y m
j,ℓ = (constant)

{

r̂ − 2i[j(j + 1) − ℓ(ℓ+ 1)]−1(r̂ × L)
}

Yℓ,m. (12.85)

An exercise will be to verify the normalization of the final solutions:

Y m
j,j−1 = − 1

√

j(2j + 1)
[−jr̂ + ir̂ × L]Yℓ,m (12.86)

Y m
j,j+1 = − 1

√

(j + 1)(2j + 1)
[(j + 1)r̂ + ir̂ × L]Yℓ,m. (12.87)

You must also verify that they satisfy the equation for Jz.

Finally, you are probably wondering why we have bothered to learn all

of this about the j 6= ℓ cases in the first place. It is because

i∇ × (Y m
jjf(r)) =

√

j + 1

2j + 1

[

(j + 1)
f

r
+
df

dr

]

Y m
j,j−1

+

√

j

2j + 1

[

− j
f

r
+
df

dr

]

Y m
j,j+1. (12.88)

The action of the curl mixes the vector spherical harmonics. In fact, it acts

to shift j by one in any permitted direction (see handout sheet). Therefore,

in order to evaluate the entire EM field and express it compactly, one must

use the notation of the vector spherical harmonics. You should prove this,

and at leat one of the divergence equations for homework. You will need to

get the components of the v.s.h. along and transverse to r̂ in order to do

the vector algebra.

This is not too bad, but (as we shall see) it is not the best we can do.

By carefully defining a particular set of multipolar solutions, we can make

our notation itself do almost all the work of doing the curls, etc. so that all

we have to do at either end is translate a paticular problem into and out of

the notation with the formal solution in hand. Next time we will do just

that as we develop the Hansen Multipolar Solutions.





Chapter 13

The Hansen Multipoles

We have already seen how if we let E or B be given by

E or B =
1

√

ℓ(ℓ+ 1)
fℓ(kr)LYL(r̂) (13.1)

then

1. Both the fields given above and their partner fields (given by the curl)

have zero divergence.

2. The fields given above are completely transverse, since r̂ · L = 0 (op-

erator).

3. The partner fields given by the curl are not purely transverse.

4. In order to be consistent, the fields above are also the curls of the part-

ner fields. In fact, this follows from vector identities for divergenceless

fields.

It is therefore sensible to define, once and for all, a set of multipoles

that embody these properties. In addition, anticipating a need to treat lon-

gitudinal fields as well as transverse fields, we will define a third kind of

multipoles with zero curl but non–zero divergence. These will necessarily be

“connected” to sources (why?). We will call these “pre-computed” combi-

nations of bessel functions, vector spherical harmonics, and their curls the

Hansen Multipoles (following unpublished notes from L. C. Biedenharn as

I have been unable to determine his original reference):
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13.1 The Hansen Multipoles

13.1.1 The Basic Solutions

The Hansen solutions to the vector HHE (that can expand the free space

solutions for the vector potential or vector fields) are as follows. ML is

the (normalized) elementary solution consisting of a bessel function times

LYL = Y m
ll . It is (by construction) purely transverse: r̂ ·ML = 0. NL is the

solution constructed by the taking the curl of ML. LL is the “longitudinal”

solution constructed by taking the gradient of the scalar solution – it is left

as an exercise to show that this still satisfies the HHE. The three of these

pieces span the range of possible solutions and reconstruct an identity tensor

that can be used to construct a vector harmonic Green’s function expansion.

This is summarized, with correction for factors of k introduced by the

derivatives, here:

ML =
1

√

ℓ(ℓ+ 1)
L (fℓ(kr)YL(r̂)) =

1
√

ℓ(ℓ+ 1)
fℓ(kr)Y

m
ll (r̂) (13.2)

NL =
i

k
∇ × ML (13.3)

LL = − i

k
∇(fℓ(kr)YL(r̂)) (13.4)

13.1.2 Their Significant Properties

The virtue of the Hansen solutions is that they “automatically” work to

decompose field components into parts that are mutual curls (as required

by Faraday/Ampere’s laws for the fields) or divergences (as required by

Gauss’s laws for the fields):

∇ · ML = 0 (13.5)

∇ · NL = 0 (13.6)

∇ · LL = ikfℓ(kr)YL(r̂) (13.7)

Hence ML and NL are divergenceless, while the divergence of LL is a scalar

solution to the HHE! LL is related to the scalar field and the gauge invariance



of the theory in an interesting way we will develop. Also:

∇ × ML = −ikNL (13.8)

∇ × NL = ikML (13.9)

∇ × LL = 0 (13.10)

which shows how ML and NL are now ideally suited to form the components

of electric and magnetic multipole fields mutually linked by Ampere’s and

Faraday’s law.

13.1.3 Explicit Forms

The beauty of the definitions above is that they permit us to do algebra

that initially skips the following fully expanded forms in terms of the vector

spherical harmonics. However ultimately one has to do computations, of

course – there are no free lunches. The following results come from actually

working out the gradients, divergences, and curls in the definitions:

ML = fℓ(kr)Y
m
ℓℓ (13.11)

NL =

√

ℓ+ 1

2ℓ+ 1
fℓ−1(kr)Y

m
ℓ,ℓ−1 −

√

ℓ

2ℓ+ 1
fℓ+1(kr)Y

m
ℓ,ℓ+1 (13.12)

LL =

√

ℓ

2ℓ+ 1
fℓ−1(kr)Y

m
ℓ,ℓ−1 +

√

ℓ + 1

2ℓ+ 1
fℓ+1(kr)Y

m
ℓ,ℓ+1 (13.13)

or (in differential form)

ML = fℓ(kr)Y
m
ℓℓ (13.14)

NL =
1

kr

{

d

d(kr)
(krfℓ)(ir̂ × Y m

ℓℓ) − r̂
√

ℓ(ℓ+ 1)fℓYL

}

(13.15)

LL =
√

ℓ(ℓ+ 1)
1

kr
(ir̂ × fℓY

m
ℓℓ) − r̂

[

d

d(kr)
fℓ

]

YL (13.16)

As we will see, these relations allow us to construct the completely general

solution to the EM field equations in a way that is intuitive, reasonable, and

mathematically and numerically tractible. In other words, we’re (mostly)

done with the grunt work and can begin to reap the rewards.



What grunt work remains, you might ask? Well, there are a slew of

identities and evaluations and relations developed from the definitions of

the spherical harmonics themselves, the spherical bessel/neumann/hankel

functions themselves, and the vector spherical harmonics and Hansen solu-

tions that can be worked out and assembled in a table of sorts to simplify

the actual process of doing algebra or computations using them.

Such a table is presented at the end of this chapter, and proving relations

on that table constitute most of the homework related to the chapter, since

once this work is done doing actual computations for specific charge/current

densities is reduced to quadratures (another way of saying “expressible as a

bunch of definite integrals” that can either be done analytically if they are

relatively simple or numerically if not).

Those rewards are most readily apparent when we construct the vector

Green’s function for the vector IHE.

13.2 Green’s Functions for the Vector Helmholtz

Equation

The correct form for the Green’s function for the vector Helmholtz equation

is
⇔
G± (r, r′) =

⇔
I G±(r, r′) (13.17)

(where G±(r, r′) is a Green’s function for the scalar IHE, that is:

G±(r, r′) = −e
±ikR

4πR
(13.18)

for R =| r − r′ |. The identity tensor transforms a vector on the right into

the same vector, so this seems like a trivial definition. However, the point is

that we can now expand the identity tensor times the scalar Green’s function

in vector spherical harmonics or Hansen functions directly!

We get:

⇔
G± (r, r′) = ∓ik

∑

j,ℓ,m

h±ℓ (kr>)jℓ(kr<)Y m
jℓ(r̂)Y

m∗
jℓ (r̂′)

= ∓ik
∑

L

{

M+
L(r>)M0 ∗

L (r<) + N+
L(r>)N0 ∗

L (r<) +



L+
L(r>)L0 ∗

L (r<)
}

(13.19)

In all cases the “*”s are to be considered sliding, able to apply to the Y m
jl (r̂)

only of either term under an integral.

I do not intend to prove a key element of this assertion (that the products

of the Y m
jl (r̂) involved reduce to Legendre polynomials in the angle between

the arguments times the identity tensor) in class. Instead, I leave it as an

exercise. To get you started, consider how similar completeness/addition

theorems are proven for the spherical harmonics themselves from the given

orthonormality relation.

With these relations in hand, we end our mathematical digression into

vector spherical harmonics and the Hansen solutions and return to the land

of multipolar radiation.

13.3 Multipolar Radiation, revisited

We will now, at long last, study the complete radiation field including the

scalar, longitudinal, and transverse parts. Recall that we wish to solve the

two equations (in the Lorentz gauge):

{∇2 + k2}Φ(x) = − ρ

ǫ0
(r) (13.20)

{∇2 + k2}A(x) = −µ0J(x) (13.21)

with the Lorentz condition:

∇ · A +
1

c2
∂Φ

∂t
= 0 (13.22)

which is connected (as we shall see) to the continuity equation for charge

and current.

E and B are now (as usual) determined from the vector potential by the

full relations, i. e. – we make no assumption that we are outside the region

of sources:

E = −∇Φ − ∂A

∂t
(13.23)

B = ∇ × A, (13.24)



Using the methods discussed before (writing the solution as an integral

equation, breaking the integral up into the interior and exterior of the sphere

of radius r, and using the correct order of the multipolar expansion of the

Green’s function in the interior and exterior regions) we can easily show that

the general solution to the IHE’s above is:

Φ(r) = ik
∑

L

{

pext
L (r)JL(r) + pint

L (r)H+
L (r)

}

(13.25)

where

pext
L (r) =

∫ ∞

r
h+

ℓ (kr′)Y ∗
L (r̂′)ρ(r′)d3r′ (13.26)

pint
L (r) =

∫ r

0
jℓ(kr

′)Y ∗
L (r̂′)ρ(r′)d3r′ (13.27)

Outside the (bounding sphere of the) source, the exterior coefficient is

zero and the interior coefficient is the scalar multipole moment pL = pint
L (∞)

of the charge source distribution, so that:

Φ(r) =
ik

ǫ0

∑

L

pLH
+
L (r) (13.28)

This is an important relation and will play an significant role in the imple-

mentation of the gauge condition below.

Similarly we can write the interior and exterior multipolar moments of

the current in terms of integrals over the various Hansen functions to obtain

a completely general expression for the vector potential A(r). To simplify

matters, I am going to only write down the solution obtained outside the

current density distribution, although the integration volume can easily be

split into r< and r> pieces as above and an exact solution obtained on all

space including inside the charge distribution. It is:

A(r) = ikµ0

∑

L

{

mLM+
L(r) + nLN+

L(r) + lLLL(r)
}

(13.29)

where

mL =
∫

J(r′) · M 0
L(r′)∗d3r′ (13.30)

nL =
∫

J(r′) · N 0
L(r′)∗d3r′ (13.31)

lL =
∫

J(r′) · L0
L(r′)∗d3r′ (13.32)



Note well that the action of the dot product within the dyadic form for the

Green’s function (expanded in Hansen solutions) reduces the dyadic tensor

to a vector again.

It turns out that these four sets of numbers: pL, mL, nL, lL are not inde-

pendent. They are related by the requirement that the solutions satisfy the

Lorentz gauge condition, which is a constraint on the admissible solutions. If

we substitute these forms into the gauge condition itself and use the differ-

ential relations given above for the Hansen functions to simplify the results,

we obtain:

∇ · A +
1

c2
∂Φ

∂t
= 0

ik
∑

L

{

µ0lL∇ · L+
L − iω

c2ǫ0
pLH

+
L

}

= 0

ik
∑

L

{

lL∇ · L+
L − ikcpLH

+
L

}

= 0

−k2
∑

L

{lL − cpL}H+
L = 0 (13.33)

where we used ∇ · L+
L = ikH+

L in the last step. If we multiply from the left

by Y ∗
ℓ′,m′ and use the fact that the YL form a complete orthonormal set, we

find the relation:

lL − cpL = 0 (13.34)

or

lL = cpL (13.35)

This tells us that the effect of the scalar moments and the longitudinal

moments are connected by the gauge condition. Instead of four relevant

moments we have at most three. In fact, as we will see below, we have only

two!

Recall that the potentials are not unique – they can and do vary according

to the gauge chosen. The fields, however, must be unique or we’d get different

experimental results in different gauges. This would obviously be a problem!

Let us therefore calculate the fields. There are two ways to proceed. We

can compute B directly from vA:

B = ∇ × A

= ikµ0

∑

L

{

ml(∇ × M+
L ) + nl(∇ × N+

L) + ll(∇ × L+
L)
}



= ikµ0

∑

L

{

ml(−ikN+
L) + nl(ikM

+
L)
}

= k2µ0

∑

L

{

mLN+
L − nLM+

L

}

(13.36)

and use Ampere’s Law, ∇ × B = µ0ǫ0
∂E
∂t

= −iωµ0ǫ0E to find E:

E =
ic2

kc
∇ × B

= ikcµ0

∑

L

{

mL(∇ × N+
L) − nL(∇ × M+

L)
}

= ik

√

1

µ0ǫ0
µ0

∑

L

{

mL(ikM+
L) − nL(−ikN+

L)
}

= −k2

√

µ0

ǫ0

∑

L

{

mLM+
L + nLN+

L

}

= −k2Z0

∑

L

{

mLM+
L + nLN+

L

}

. (13.37)

where Z0 =
√

µ0

ǫ0
is the usual impedance of free space, around 377 ohms.

Wow! Recall that the M waves are transverse, so the mL and nL are the

magnetic (transverse electric) and electric (transverse magnetic) multipole

moments respectively. The field outside of the source is a pure expansion

in elementary transverse multipoles. (Later we will show that the (approxi-

mate) definitions we have used to date as ”multipoles” are the limiting forms

of these exact definitions.)

Note well that the actual fields require only two of the basic hansen

solutions – the two that are mutually transverse. Something happened to

the longitudinal part and the dependence of the field on the scalar potential.

To see just what, let us re-evaluate the electric field from:

E = −∇Φ − ∂A

∂t

= −∇

(

ik

ǫ0

∑

L

pLH
+
L

)

+ iω

(

ikµ0

∑

L

{

mLM+
L(r) + nLN+

L(r) + lLLL(r)
}

)

= −ik
ǫ0

∑

L

{

pL(∇H+
L ) − ikcµ0ǫ0

∑

L

lLL+
L

}

− k2µ0c
∑

L

{

mlM
+
L + nLN+

L

}

=
k2

ǫ0

∑

L

{

pL − 1

c
lL

}

L+
L − k2Z0

∑

L

{

mlM
+
L + nLN+

L

}

(13.38)



(Note that we used ω = kc and ∇H+
L = ikL+

L .) From this we see that if the

gauge condition:

lL = cpL (13.39)

is satisfied, the scalar and longitudinal vector parts of the electric field cancel

exactly! All that survives are the transverse parts:

E = −k2Z0

∑

L

{

mLM+
L + nLN+

L

}

(13.40)

as before. The Lorentz gauge condition is thus intimately connected to the

vanishing of a scalar or longitudinal contribution to the E field! Also note

that the magnitude of E is greater than that of B by c, the velocity of light.

Now, we are interested (as usual) mostly in obtaining the fields in the far

zone, where this already simple expression attains a clean asymptotic form.

Using the kr → ∞ form of the hankel function,

lim
kr→∞

h+
ℓ (kr) =

eikr−(ℓ+1) iπ
2

kr
(13.41)

we obtain the limiting forms (for kr → ∞):

M+
L ∼ eikr−(ℓ+1) iπ

2

kr
Y m

ℓℓ = (−i)ℓ+1 e
ikr

kr
Y m

ℓℓ (13.42)

N+
L ∼ eikr−ℓ iπ

2

kr





√

ℓ+ 1

2ℓ+ 1
Y m

ℓ,ℓ−1 +

√

ℓ

2ℓ+ 1
Y m

ℓ,ℓ+1



 (13.43)

The bracket in the second equation can be simplified, using the results

of the table I handed out previously. Note that




√

ℓ+ 1

2ℓ+ 1
Y m

ℓ,ℓ−1 +

√

ℓ

2ℓ+ 1
Y m

ℓ,ℓ+1



 = i(r̂×Y m
ℓℓ) = −e−i π

2 (r̂×Y m
ℓℓ) (13.44)

so that (still in the far zone limit)

N+
L ∼ −e

ikr−(ℓ+1) iπ
2

kr
(r̂ × Y m

ℓℓ) = −(−i)ℓ+1 e
ikr

kr
(r̂ × Y m

ℓℓ). (13.45)

Let us pause to admire this result before moseying on. This is just

B = −k2µ0
eikr

kr

∑

L

(−i)ℓ+1 {mL (r̂ × Y m
ℓℓ) + nLY m

ℓℓ}



= −kµ0
eikr

r

∑

L

(−i)ℓ+1 {mL (r̂ × Y m
ℓℓ) + nLY m

ℓℓ} (13.46)

E = −k2Z0
eikr

kr

∑

L

(−i)ℓ+1 {mLY m
ℓℓ − nL (r̂ × Y m

ℓℓ)}

= −kZ0
eikr

r

∑

L

(−i)ℓ+1 {mLY m
ℓℓ − nL (r̂ × Y m

ℓℓ)} . (13.47)

If I have made a small error at this point, forgive me. Correct me, too.

This is a purely transverse outgoing spherical wave whose vector character

is finally translucent, if not transparent.

The power flux in the outgoing wave is still not too easy to express, but

it is a damn sight easier than it was before. At least we have the satisfaction

of knowing that we can express it as a general result. Recalling (as usual)

S =
1

2
Re(E × H∗) (13.48)

and that the power distribution is related to the flux of the Poynting vector

through a surface at distance r in a differential solid angle dΩ:

dP

dΩ
=

1

2
Re[r2n̂ · (E × H∗)] (13.49)

we get

S =
k2

2r2
Z0Re

[

∑

L

∑

L′

iℓ
′−ℓ {mLY m

ℓℓ − nL (r̂ × Y m
ℓℓ)}

×
{

m∗
L′

(

r̂ × Y m′∗
ℓ′ℓ′

)

+ n∗
L′Y

m′∗
ℓ′ℓ′

}]

(13.50)

(Note: Units here need to be rechecked, but they appear to be consistent at

first glance).

This is an extremely complicated result, but it has to be, since it ex-

presses the most general possible angular distribution of radiation (in the far

zone). The power distribution follows trivially. We can, however, evaluate

the total power radiated, which is a very useful number. This will be an

exercise. You will need the results
∫

d2Ωr̂ · Y m
ℓℓ ×

(

r̂ × Y m′∗
ℓ′ℓ′

)

=
∫

d2ΩY m
ℓℓ · Y m′∗

ℓ′ℓ′

= δℓℓ′δmm′ (13.51)



and
∫

d2Ωr̂ ·
(

Y m
ℓℓ × Y m′∗

ℓ′ℓ′

)

= 0 (13.52)

to evaluate typical terms. Using these relations, it is not too difficult to

show that

P =
k2

2
Z0

∑

L

{

| mL |2 + | nL |2
}

(13.53)

which is the sum of the power emitted from all the individual multipoles

(there is no interference between multipoles!).

Let us examine e.g. the electric multipolar moment nL to see how it

compares to the usual static results. Static results are obtained in the k → 0

(long wavelength) limit. In this limit e.g. jℓ(kr) ∼ kℓrℓ and:

nL ≈ ic

√

ℓ+ 1

ℓ

kℓ

(2ℓ+ 1)!

∫

ρ(r)rℓYℓ,m(r̂)d3r (13.54)

The dipole term comes from ℓ = 1. For a simple dipole:

n1,m ≈ ic

√
2

3
k
∫

ρrY1,md
3r

≈ i
kc
√

2

3

√

3

4π
e < r >

≈ i
kc
√

6

36π
e < r >

≈ − ie√
6πω

< r̈ > (13.55)

where we use < r̈ >= −ω2 < r >.

In terms of this the average power radiated by a single electron dipole

is:

P =
1

2

(

e2

6πǫ0c3

)

|r̈|2 (13.56)

which compares well with the Larmor Formula:

P =
2

3

(

e2

4πǫ0c3

)

|r̈|2 (13.57)

The latter is the formula for the instantaneous power radiated from a point

charge as it is accelerated. Either flavor is the death knell of classical me-

chanics – it is very difficult to build a model for a stable atom based on



classical trajectories of an electron around a nucleus that does not involve

acceleration of the electron in question.

While it is not easy to see, the results above are essentially those ob-

tained in Jackson (J9.155) except that (comparing e.g. J9.119, J9.122, and

J91.165 to related results above) Jackson’s aE,M(ℓ,m) moments differ from

the Hansen multipolar moments by factors of several powers of k. If one

works hard enough, though, one can show that the results are identical, and

even though Jackson’s algebra is more than a bit Evil it is worthwhile to do

this if only to validate the results above (where recall there has been a unit

conversion and hence they do need validation).

Another useful exercise is to recover our old friends, the dipole and

quadrupole radiation terms of J9 from the exact definition of their respec-

tive moments. One must make the long wavelength approximation under

the integral in the definition of the multipole moments, integrate by parts

liberally, and use the continuity equation. This is quite difficult, as it turns

out, unless you have seen it before, so let us look at an example. Let us

apply the methods we have developed above to obtain the radiation pattern

of a dipole antenna, this time without assuming that it’s length is small

w.r.t. a wavelength. Jackson solves more or less the same problem in his

section 9.12, so this will permit the direct comparison of the coefficients and

constants in the final expressions for total radiated power or the angular

distribution of power.

13.4 A Linear Center-Fed Half-Wave Antenna

Suppose we are given a center-fed dipole antenna with length λ/2 (half-wave

antenna). We will assume further that the antenna is aligned with the z axis

and centered on the origin, with a current given by:

I = I0 cos(ωt) cos
(

2πz

λ

)

(13.58)

Note that in “real life” it is not easy to arrange for a given current because

the current instantaneously depends on the “resistance” which is a function

of the radiation field itself. The current itself thus comes out of the solution

of an extremely complicated boundary value problem. For atomic or



nuclear radiation, however, the “currents” are generally matrix elements

associated with transitions and hence are known.

In any event, the current density corresponding to this current is

J = ẑI0 cos
(

2πr

λ

)

δ(1 − |cos θ|)
2πr2 sin θ

(13.59)

for r ≤ λ/4 and

J = 0 (13.60)

for r > λ/4.

When we use the Hansen multipoles, there is little incentive to convert

this into a form where we integrate against the charge density in the antenna.

Instead we can easily and directly calculate the multipole moments. The

magnetic moment is

mL =
∫

J · M 0∗
L d

3r

=
I0
2π

∫ 2π

0

∫ λ/4

0
cos(kr)jℓ(kr) {ẑ · Y m∗

ℓℓ (0, φ) + ẑ · Y m∗
ℓℓ (π, φ)} dφ dr(13.61)

(where we have done the integral over θ). Now,

ẑ · Y m
ℓℓ =

1
√

ℓ(ℓ+ 1)
mYL (13.62)

(Why? Consider (ẑ · L)YL)...) and yet

YL(0, φ) = δm0

[

2ℓ+ 1

4π

]1/2

(13.63)

YL(π, φ) = (−1)ℓδm0

[

2ℓ+ 1

4π

]1/2

. (13.64)

Consequently, we can conclude (mδm0 = 0) that

mL = 0. (13.65)

All magnetic multipole moments of this linear dipole vanish. Since the

magnetic multipoles should be connected to the rotational part of the current

density (which is zero for linear flow) this should not surprise you.



The electric moments are

nL =
∫

J · N 0∗
L d

3r

=
I0
2π

∫ 2π

0

∫ λ/4

0
cos(kr)







√

ℓ+ 1

2ℓ+ 1
jℓ−1(kr)

[

ẑ · Y m∗
ℓ,ℓ−1(0, φ) + ẑ · Y m∗

ℓ,ℓ+1(π, φ)
]

dφ dr

−
√

ℓ

2ℓ+ 1
jℓ+1(kr)

[

ẑ · Y m∗
ℓ,ℓ+1(0, φ) + ẑ · Y m∗

ℓ,ℓ−1(π, φ)
]







. (13.66)

If we look up the definition of the v.s.h.’s on the handout table, the z com-

ponents are given by:

ẑ · Y m∗
ℓ,ℓ−1(0, φ) = δm0

√

ℓ

4π
(13.67)

ẑ · Y m∗
ℓ,ℓ−1(π, φ) = (−1)ℓ−1δm0

√

ℓ

4π
(13.68)

ẑ · Y m∗
ℓ,ℓ+1(0, φ) = −δm0

√

ℓ + 1

4π
(13.69)

ẑ · Y m∗
ℓ,ℓ+1(π, φ) = −(−1)ℓ−1δm0

√

ℓ+ 1

4π
(13.70)

so the electric multipole moments vanish for m 6= 0, and

nℓ,0 = I0δm0

√

√

√

√

ℓ(ℓ+ 1)

4π(2ℓ+ 1)

(

1 + (−1)ℓ+1
)

∫ λ/4

0
cos(kr)

[

jℓ−1(kr) + jℓ+1(kr)
]

dr.

(13.71)

Examining this equation, we see that all the even ℓ terms vanish! How-

ever, all the odd ℓ, m = 0 terms do not vanish, so we can’t quit yet. We use

the following relations:

jℓ−1 + jℓ+1 =
2ℓ+ 1

kr
jℓ (13.72)

(the fundamental recursion relation),

n0(kr) = −cos(kr)

kr
(13.73)

(true fact) and

∫

dz fℓ(z)gℓ′(z) =
z2

[ℓ′(ℓ′ + 1) − ℓ(ℓ+ 1)]

(

f ′
ℓgℓ′ − fℓg

′
ℓ′

)

(13.74)



for any two spherical bessel type functions (a valuable thing to know that

follows from integration by parts and the recursion relation). From these we

get

nℓ,0 =
πI0
2k

δm0

√

2ℓ+ 1

4πℓ(ℓ+ 1)

(

1 + (−1)ℓ+1
)

jℓ(π/2). (13.75)

Naturally, there is a wee tad of algebra involved here that I have skipped.

You shouldn’t. Now, let’s figure out the power radiated from this source.

Recall from above that:

P =
k2

2

√

µ0

ǫ0

∑

L

{

| mL |2 + | nL |2
}

=
k2

2

√

µ0

ǫ0

∑

ℓ odd

|nℓ,0|2

=
πI2

0

8

√

µ0

ǫ0

∑

ℓ odd

(

2ℓ+ 1

ℓ(ℓ+ 1)

)

[jℓ(π/2)]2 (13.76)

Now this also equals (recall) 1
2
I2
0Rrad, from which we can find the radia-

tion resistance of the half wave antenna:

Rrad =
π

4

√

µ0

ǫ0

∑

ℓ odd

(

2ℓ+ 1

ℓ(ℓ+ 1)

)

[jℓ(π/2)]2 . (13.77)

We are blessed by this having manifest units of resistance, as we recognize

our old friend Z0 =
√

µ0

ǫ0
≈ 377Ω (the impedance of free space) and a bunch

of dimensionless numbers! In terms of this:

Rrad = Z0

(

π

4

∑

ℓ odd

(

2ℓ+ 1

ℓ(ℓ+ 1)

)

[jℓ(π/2)]2
)

. (13.78)

We can obtain a good estimate of the magnitude by evaluating the first

few terms. Noting that

j1(π/2) =
(

2

π

)2

(13.79)

j3(π/2) =
(

2

π

)2 [60

π2
− 6

]

(13.80)

and doing some arithmetic, you should be able to show that Rrad = 73.1Ω.



Note that the ratio of the first (dipole) term to the third (octupole) term

is
∣

∣

∣

∣

n3

n1

∣

∣

∣

∣

2

=
7

12

2

3

[

60

π2
− 6

]2

=
7

18

[

60

π2
− 6

]2

≈ 0.00244

That means that this is likely to be a good approximation (the answer is very

nearly unchanged by the inclusion of the extra term). Even if the length of

the antenna is on the order of λ, the multipole expansion is an extremely

accurate and rapidly converging approximation. That is, after all, why we

use it so much in all kinds of localized source wave theory.

However, if we plug in the “long wavelength” approximation we previ-

ously obtained for a short dipole antenna (with d = λ/2) we get:

Rrad =
(kd)2

24π

√

µ0

ǫ0
≈ 48Ω (13.81)

which is off by close to a factor of 50%. This is not such a good result. Using

this formula with a long wavelength approximation for the dipole moment

(only) of

n1,0 ≈
I0
k

√

2

3π
(13.82)

yields Rrad ≈ 80Ω, still off by 11%.

13.5 Connection to Old (Approximate) Mul-

tipole Moments

To conclude our discussion of multipole fields, let us relate the multipole

moments defined and used above (which are exact) to the “usual” static,

long wavelength moments we deduced in our earlier studies. Well,

nL =
∫

J · N0∗
L d

3r (13.83)

and

NL =
1

√

ℓ(ℓ+ 1)

1

k
∇ × (r × ∇)(fℓ(kr)YL(r̂))



=
1

√

ℓ(ℓ+ 1)

1

k

[

r∇2 − ∇

(

r
∂

∂r
+ 1

)]

(fℓ(kr)YL(r̂)) (13.84)

(using the vector identity

∇ × L = i

[

r∇2 − ∇

(

r
∂

∂r
+ 1

)]

(13.85)

to simplify). Then

nL =
−1

k
√

ℓ(ℓ+ 1)

{

k2
∫

(r · J)jℓ(kr)Y
∗
L (r̂)d3r +

∫

(J · ∇)

[

Y ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

d3r

}

(13.86)

Now, (from the continuity equation)

∇ · J = iωρ (13.87)

so when we (sigh) integrate the second term by parts, (by using

∇ · (aB) = B · ∇a + a∇ · B (13.88)

so that

(J ·∇)

[

Y ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

= ∇·
[

JY ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

−Y ∗
L (r̂)

∂

∂r
(rjℓ(kr)) [∇ · J ]

(13.89)

and the divergence theorem on the first term,
∫

V
∇ ·

[

JY ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

dV =
∫

∂V →∞
n̂ ·
[

JY ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

dA

= 0 (13.90)

for sources with compact support to do the integration) we get

nL =
−1

k
√

ℓ(ℓ+ 1)

{

k2
∫

(r · J)jℓ(kr)Y
∗
L (r̂)d3r −

∫

(iωρ(r))

[

Y ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

d3r

}

=
ic

√

ℓ(ℓ+ 1)

∫

ρ(r)

[

Y ∗
L (r̂)

∂

∂r
(rjℓ(kr))

]

d3r

− k
√

ℓ(ℓ+ 1)

∫

(r · J)jℓ(kr)Y
∗
L (r̂)d3r (13.91)



The electric multipole moment thus consists of two terms. The first term

appears to arise from oscillations of the charge density itself, and might be

expected to correspond to our usual definition. The second term is the con-

tribution to the radiation from the radial oscillation of the current density.

(Note that it is the axial or transverse current density oscillations that

give rise to the magnetic multipoles.)

Only if the wavelength is much larger than the source is the second term

of lesser order (by a factor of ik
c
). In that case we can write

nL ≈ ic
√

ℓ(ℓ+ 1)

∫

ρY ∗
L

∂

∂r
(rjℓ(kr))d

3r. (13.92)

Finally, using the long wavelength approximation on the bessel functions,

nL ≈ ic

(2ℓ+ 1)!!

√

ℓ+ 1

ℓ
kℓ
∫

ρrℓY ∗
Ld

3r (13.93)

≈ ic

(2ℓ+ 1)!!

√

ℓ+ 1

ℓ
kℓqℓ,m (13.94)

and the connection with the static electric multipole moments qℓ,m is com-

plete. In a similar manner one can establish the long wavelength connection

between the mL and the magnetic moments of earlier chapters. Also note

well that the relationship is not equality. The “approximate” multipoles

need to be renormalized in order to fit together properly with the Hansen

functions to reconstruct the EM field.

13.6 Angular Momentum Flux

Let us consider the angular momentum radiated away with the electromag-

netic field. The angular momentum flux density is basically vr crossed into

the momentum density S/c or:

L =
1

2
Re

{

r × (E × H∗)

c

}

(13.95)

Into this expression we must substitute our expressions for E and H :

E = −k2Z0

∑

L

{

mLM+
L + nLN+

L

}

(13.96)

H = k2
∑

L

{

mLN+
L − nLM+

L

}

. (13.97)



If we try to use the asymptotic far field results:

E = −kZ0
eikr

r

∑

L

(−i)ℓ+1 {mLY m
ℓℓ − nL (r̂ × Y m

ℓℓ)} (13.98)

H = −ke
ikr

r

∑

L

(−i)ℓ+1 {mL (r̂ × Y m
ℓℓ) + nLY m

ℓℓ} (13.99)

we get:

E × H∗ =
k2Z0

r2

∑

L

∑

L′

iℓ−ℓ′ {mLY m
ℓℓ(r̂) − nL (r̂ × Y m

ℓℓ(r̂))} ×
{

m∗
L′

(

r̂ × Y m′∗
ℓ′ℓ′ (r̂)

)

+ n∗
L′Y

m′∗
ℓ′ℓ′ (r̂)

}

=
k2Z0

r2

∑

L

∑

L′

iℓ−ℓ′
{

mLm
∗
L′Y

m
ℓℓ(r̂) ×

(

r̂ × Y m′∗
ℓ′ℓ′ (r̂)

)

+ mLn
∗
L′Y

m
ℓℓ(r̂) × Y m′∗

ℓ′ℓ′ (r̂)

− nLm
∗
L′ (r̂ × Y m

ℓℓ(r̂)) ×
(

r̂ × Y m′∗
ℓ′ℓ′ (r̂)

)

− nLn
∗
L′ (r̂ × Y m

ℓℓ(r̂)) × Y m′∗
ℓ′ℓ′ (r̂)

}

. (13.100)

With some effort this can be shown to be a radial result – the Poynting

vector points directly away from the source in the far field to leading order.

Consequently, this leading order behavior contributes nothing to the angular

momentum flux. We must keep at least the leading correction term to the

asymptotic result.

It is convenient to use a radial/tangential decomposition of the Hansen

solutions. The ML are completely tangential (recall r · ML = 0). For the

NL we have:

NL(r) =
1

kr

d

dr
(rfℓ(kr)) (ir̂×Y m

ℓℓ(r̂))−r̂

√

ℓ(ℓ+ 1)

kr
fell(kr)YL(r̂) (13.101)

Using our full expressions for E and H∗:

E = −k2Z0

∑

L

{

mLM+
L + nLN+

L

}

(13.102)

H = k2
∑

L

{

mLN+
L − nLM+

L

}

(13.103)

with this form substituted for NL and the usual form for ML we get:

L =
1

2
Re

{

r × (E × H∗)

c

}



= −k
4Z0

2c
Re
∑

L

∑

L′

r ×
{

mLh
+
ℓ (kr)Y m

ℓℓ(r̂)

+nL

[

1

kr

d(rh+
ℓ (kr))

dr
(ir̂ × Y m

ℓℓ(r̂)) − r̂
√

ℓ(ℓ+ 1)
h+

ℓ (kr)

kr
YL(r̂)

]

}

×
{

m∗
L′

[

1

kr

d(rh−ℓ′(kr))

dr
(−ir̂ × Y m′∗

ℓ′ℓ′ (r̂)) − r̂
√

ℓ(ℓ+ 1)
h−ℓ′ (kr)

kr
Y ∗

L′(r̂)

]

+n∗
L′h−ℓ′ (kr)Y

m′∗
ℓ′ℓ′ (r̂)

}

(13.104)

All the purely radial terms in the outermost
{}

under the sum do not

contribute to the angular momentum flux density. The surviving terms

are:

L = −k
4Z0

2c
Re
∑

L

∑

L′

r ×
{

mLm
∗
L′h+

ℓ (kr)
√

ℓ′(ℓ′ + 1)
h−ℓ′ (kr)

kr
(Y m

ℓℓ(r̂) × r̂)Y ∗
L′(r̂)

+nLm
∗
L′

1

kr

d(rh+
ℓ (kr))

dr
((ir̂ × Y m

ℓℓ(r̂) × r̂)
√

ℓ′(ℓ′ + 1)
h−ℓ′ (kr)

kr
Y ∗

L′(r̂)

−nLm
∗
L′

h+
ℓ (kr)

kr

√

ℓ(ℓ+ 1)
1

kr

d(rh−ℓ′ (kr))

dr

(

ir̂ × (r̂ × Y m′∗
ℓ′ℓ′ (r̂))

)

−nLn
∗
L′

h+
ℓ (kr)

kr

√

ℓ(ℓ+ 1)h−ℓ′ (kr)(r̂ × Y m′∗
ℓ′ℓ′ (r̂)

}

(13.105)

The lowest order term in the asymptotic form for the spherical bessel

functions makes a contribution in the above expressions. After untangling

the cross products and substituting the asymptotic forms, we get:

L =
kµ0

2r2
Re

∑

L

∑

L′

{

mLmL′

√

ℓ′(ℓ′ + 1)iℓ
′−ℓY ∗

L′(r̂)Y m
ℓℓ(r̂)

−nLm
∗
L′

√

ℓ(ℓ+ 1)iℓ
′−ℓY ∗

L′(r̂) (r̂ × Y m
ℓℓ(r̂))

+nLm
∗
L′

√

ℓ(ℓ+ 1)iℓ
′−ℓYL(r̂)

(

r̂ × Y m′∗
ℓ′ℓ′ (r̂)

)

+nLn
∗
L′

√

ℓ(ℓ+ 1)iℓ
′−ℓYL(r̂)Y m′∗

ℓ′ℓ′ (r̂)
}

(13.106)

The angular momentum about a given axis emitted per unit time is

obtained by selecting a particular component of this and integrating its flux

through a distant spherical surface. For example, for the z-component we

find (noting that r2 cancels as it should):

dLz

dt
=
kµ0

2
Re
∑

L

∑

L′

∫

ẑ ·
{

...
}

sin(θ)dθdφ (13.107)



where the brackets indicate the expression above. We look up the compo-

nents of the vector harmonics to let us do the dot product and find:

ẑ · Y m
ℓℓ =

m
√

ℓ(ℓ+ 1)
Yℓ,m (13.108)

ẑ · (r̂ × Y m
ℓℓ) = −i





√

ℓ+ 1

2ℓ+ 1
ẑ · Y m

ℓ,ℓ−1 +

√

ℓ

2ℓ+ 1
ẑ · Y m

ℓℓ+1





= −i




√

√

√

√

(ℓ+ 1)(ℓ2 −m2)

ℓ(2ℓ− 1)(2ℓ+ 1)
Yℓ−1,m −

√

√

√

√

[(ℓ+ 1)2 −m2]ℓ

(2ℓ+ 1)(2ℓ+ 3)(ℓ+ 1)
Yℓ+1,m





(13.109)

Doing the integral is now simple, using the orthonormality of the spher-

ical harmonics. One obtains (after still more work, of course):

dLz

dt
=
kµ0

2

∑

L

m
(

|mL|2 + |nL|2
)

(13.110)

Compare this to:

P =
k2

2
Z0

∑

L

{

| mL |2 + | nL |2
}

(13.111)

term by term. For example:

dLz(mL)

dt
=

kµ0m

2

{

2

k2µ0c
P (mL) = |mL|2

}

=
m

ω
P (mL) (13.112)

(where m in the fraction is the spherical harmonic m, not the multipole mL).

In other words, for a pure multipole the rate of angular momentum about

any given axis transferred is m/ω times the rate of energy transferred, where

m is the angular momentum aligned with that axis. (Note that if we chose

some other axis we could, with enough work, find an answer, but the algebra

is only simple along the z-axis as the multipoles were originally defined with

their m-index referred to this axis. Alternatively we could rotate frames to

align with the new direction and do the entire computation over.)

This is quite profound. If we insist, for example, that energy be trans-

ferred in units of h̄ω, then angular momentum is also transferred in units of

mh̄!



13.7 Concluding Remarks About Multipoles

There are still many, many things we could study concerning multipoles

and radiation. For example, we have not yet done a magnetic loop antenna,

but doing one should now be straightforward (to obtain a magnetic dipole

radiation field to leading order). Hmmm, sounds like a homework or exam

problem to me...

Still, I hope that this has left you with enough fundamentals that you:

1. Understand bessel functions;

2. Understand spherical harmonics;

3. Understand at least something about vector spherical harmonics;

4. Know what a “multipolar expansion” is;

5. Know how to expand a variety of important Green’s functions for vec-

tor and scalar Helmholtz equations (including the Poisson equation).

6. Know how to formulate an integral equation solution to these differ-

ential equations based on the Green’s function, and at least formally

solve it by partitioning the integral into domains of convergence.

7. Know how to describe the electromagnetic field at a variety of levels.

These levels had better include the elementary description of the E1,

E2, and M1 “static” levels as well as enough knowledge to be able

to do it correctly for extended sources or sources where higher order

moments are important, at least if your life or job or next paper depend

on it.

8. Can pass prelims.

If you feel deficient in any of these areas, I recommend that you take the

time to review and learn the material again, carefully. This has been the

most important part of the course and is the one thing you should not fail

to take out of here with you.

I hope you have enjoyed it.



13.8 Table of Properties of Vector Harmon-

ics

1. Basic Definitions

Y m
ℓℓ =

1
√

ℓ(ℓ+ 1)
LYℓ,m

Y m
ℓℓ−1 = − 1

√

ℓ(2ℓ+ 1)
[−ℓr̂ + ir̂ × L]Yℓ,m

Y m
ℓℓ+1 = − 1

√

(ℓ+ 1)(2ℓ+ 1)
[(ℓ+ 1)r̂ + ir̂ × L]Yℓ,m

2. Eigenvalues (j, ℓ,m are integral):

J2Y m
jℓ = j(j + 1)Y m

jℓ

L2Y m
jℓ = ℓ(ℓ+ 1)Y m

jℓ

JzY
m
jℓ = mY m

jℓ

3. Projective Orthonormality:
∫

Y m
jℓ · Y m′∗

j′ℓ′ dΩ = δjj′δℓℓ′δmm′

4. Complex Conjugation:

Y m∗
jℓ = (−1)ℓ+1−j(−1)mY −m

jℓ

5. Addition Theorem (LCB notes corrupt – this needs to be checked):

Y m∗
jℓ · Y m′

j′ℓ′ =
∑

n

(−1)m+1

√

√

√

√

(2ℓ+ 1)(2ℓ′ + 1)(2j′ + 1)(2j + 1)

4π(2n+ 1)
×

Cℓℓ′n
000 C

jj′n
0,−m,m′W (jℓj′ℓ′;n)Yn,(m′−m)

6. For F any function of r only:

∇ · (Y m
ℓℓF ) = 0

∇ · (Y m
ℓℓ−1F ) =

√

ℓ

2ℓ+ 1

[

(ℓ− 1)
F

r
− dF

dr

]

Yℓ,m

∇ · (Y m
ℓℓ+1F ) =

√

ℓ+ 1

2ℓ+ 1

[

(ℓ+ 2)
F

r
− dF

dr

]

Yℓ,m



7. Ditto:

i∇ × (Y m
ℓℓF ) =

√

ℓ+ 1

2ℓ+ 1

[

(ℓ+ 1)
F

r
+
dF

dr

]

Y m
ℓℓ−1 +

√

ℓ

2ℓ+ 1

[

−ℓF
r

+
dF

dr

]

Y m
ℓℓ+1

i∇ × (Y m
ℓℓ−1F ) = −

√

ℓ+ 1

2ℓ+ 1

[

(ℓ− 1)
F

r
− dF

dr

]

Y m
ℓℓ

i∇ × (Y m
ℓℓ+1F ) =

√

ℓ

2ℓ+ 1

[

(ℓ+ 2)
F

r
− dF

dr

]

Y m
ℓℓ

8. This puts the VSHs into vector form:

Y m
ℓℓ =



























−
√

(ℓ+m)(ℓ−m+1)
2ℓ(ℓ+1)

Yℓ,m−1

m√
ℓ(ℓ+1)

Yℓ,m

√

(ℓ−m)(ℓ+m+1)
2ℓ(ℓ+1)

Yℓ,m+1



























Y m
ℓℓ−1 =



























√

(ℓ+m−1)(ℓ+m)
2ℓ(2ℓ−1)

Yℓ−1,m−1

√

(ℓ−m)(ℓ+m)
ℓ(2ℓ−1)

Yℓ−1,m

√

(ℓ−m−1)(ℓ−m)
2ℓ(2ℓ−1)

Yℓ−1,m+1



























Y m
ℓℓ+1 =



























√

(ℓ−m+1)(ℓ−m+2)
2(ℓ+1)(2ℓ+3)

Yℓ+1,m−1

√

(ℓ−m+1)(ℓ+m+1)
(ℓ+1)(2ℓ+3)

Yℓ+1,m

√

(ℓ+m+2)(ℓ+m+1)
2(ℓ+1)(2ℓ+3)

Yℓ+1,m+1



























9. Hansen Multipole Properties

∇ · ML = 0

∇ · NL = 0

∇ · LL = ikfℓ(kr)YL(r̂)



∇ × ML = −ikNL

∇ × NL = ikML

∇ × LL = 0

10. Hansen Multipole Explicit Forms

ML = fℓ(kr)Y
m
ℓℓ

NL =

√

ℓ+ 1

2ℓ+ 1
fℓ−1(kr)Y

m
ℓ,ℓ−1 −

√

ℓ

2ℓ+ 1
fℓ+1(kr)Y

m
ℓ,ℓ+1

LL =

√

ℓ

2ℓ+ 1
fℓ−1(kr)Y

m
ℓ,ℓ−1 +

√

ℓ+ 1

2ℓ+ 1
fℓ+1(kr)Y

m
ℓ,ℓ+1

ML = fℓ(kr)Y
m
ℓℓ

NL =
1

kr

{

d

d(kr)
(krfℓ)(ir̂ × Y m

ℓℓ) − r̂
√

ℓ(ℓ+ 1)fℓYL

}

LL =
√

ℓ(ℓ+ 1)
1

kr
(ir̂ × fℓY

m
ℓℓ) − r̂

[

d

d(kr)
fℓ

]

YL





Chapter 14

Optical Scattering

14.1 Radiation Reaction of a Polarizable Medium

Usually, when we consider optical scattering, we imagine that we have a

monochromatic plane wave incident upon a polarizable medium em-

bedded in (for the sake of argument) free space. The target we imagine is a

“particle” of some shape and hence is mathematically a (simply) connected

domain with compact support. The picture we must describe is thus

The incident wave (in the absence of the target) is thus a pure plane
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wave:

Einc = ǫ̂0E0e
ikn̂0·r (14.1)

H inc = n̂0 × Einc/Z0. (14.2)

The incident wave induces a time dependent polarization density into the

medium. If we imagine (not unreasonably) that the target is a particle

or atom much smaller than a wavelength, then we can describe the field

radiated from its induced dipole moment in the far zone and dipole ap-

proximation (see e.g. 4.122):

Esc =
1

4πǫ0
k2 e

ikr

r
{(n̂ × p) × n̂ − n̂ × m/c} (14.3)

Hsc = n̂ × Esc/Z0. (14.4)

In these expressions, n̂0 = k0

k0
and n̂ = k

k
, while ǫ̂0, ǫ̂ are the polarization

of the incident and scattered waves, respectively.

We are interested in the relative power distribution in the scattered

field (which should be proportional to the incident field in a way that can

be made independent of its magnitude in a linear response/susceptibility

approximation). The power radiated in direction n̂ with polarization ǫ̂ is

needed per unit intensity in the incident wave with n̂0, ǫ̂0. This quantity is

expressed as

dσ

dΩ
(n̂, ǫ̂, n̂0, ǫ̂0) = r2

1
2Z0

|ǫ̂∗ · Esc|2
1

2Z0

|ǫ̂∗0 · E inc|2
(14.5)

[One gets this by considering the power distribution:

dP

dΩ
=

1

2
Re

{

r2n̂ · (E × H∗)
}

=
1

2Z0
|E × (n̂ × E)|

=
1

2Z0

|E|2 (14.6)

as usual, where the latter relation steps hold for transverse EM fields 7.1

and 7.2 only and where we’ve projected out a single polarization from the

incident and scattered waves so we can discuss polarization later.]

This quantity has the units of area (r2) and is called the differential

cross–section:
dσ

dΩ
=

dP/dΩ

dP0/dA
∝ dA

dΩ
∼ A. (14.7)



In quantum theory a scattering cross–section one would substitute “in-

tensity” (number of particles/second) for “power” in this definition but it

still holds. Since the units of angles, solid or not, are dimensionless, a cross–

section always has the units of area. If one integrates the cross–section

around the 4π solid angle, the resulting area is the “effective” cross–sectional

area of the scatterer, that is, the integrated are of its effective “shadow”.

This is the basis of the optical theorem, which I will mention but we will

not study (derive) for lack of time.

The point in defining it is that it is generally a property of the scattering

target that linearly determines the scattered power:

dP

dΩ
=
dσ

dΩ
× I0 (14.8)

where the last quantity is the intensity of the incident plane wave beam. The

cross-section is independent (within reason) of the incident intensity and can

be calculated or measured “once and for all” and then used to predict the

power distribution for a given beam intensity.

We need to use the apparatus of chapter 7 to handle the vector polar-

ization correctly. That is, technically we need to use the Stokes parameters

or something similar to help us project out of E a particular polarization

component. Then (as can easily be shown by meditating on:

ǫ̂∗ · Esc =
1

4πǫ0
k2 e

ikr

r
{ǫ̂∗ · {(n̂ × p) × n̂ − n̂ × m/c}} (14.9)

for a transverse field):

dσ

dΩ
= r2

1
2Z0

|ǫ̂∗ · Esc|2
1

2Z0

|ǫ̂∗0 · Einc|2
=

k4

(4πǫ0E0)2
|ǫ̂∗ · p + (n̂ × ǫ̂∗) × m/c|2 . (14.10)

To get this result, we had to evaluate (using vector identities)

ǫ̂∗ · (n̂ × p) × n̂ = ǫ̂∗ · p (14.11)

and

ǫ̂∗ · (n̂ × m/c) = −m · (n̂ × ǫ̂∗). (14.12)

From this we immediately see one important result:

dσ

dΩ
∝ k4 ∝ 1

λ4
. (14.13)



This is called Rayleigh’s Law; the scattering cross-section (and hence pro-

portion of the power scattered from a given incident beam) by a polarizable

medium is proportional to the inverse fourth power of the wavelength. Or, if

you prefer, short wavelengths (still long with respect to the size of the scat-

terer and only if the dipole term in the scattering dominates) are scattered

more strongly than long wavelengths. This is the original “blue sky” theory

and probably the origin of the phrase!

To go further in our understanding, and to gain some useful practice

against the day you have to use this theory or teach it to someone who

might use it, we must consider some specific cases.

14.2 Scattering from a Small Dielectric Sphere

This is a relatively simple, and hence very standard problem.

Now, we have no desire to “reinvent the sphere”1 but it is important that

you understand where our results come from. First of all, let us introduce

dimensionless, scaled versions of the relative permeability and permittivity

(a step that Jackson apparently performs in J10 but does not document or

1Hyuk, hyuk, hyuk...



explain):

ǫr = ǫ(ω)/ǫ0 (14.14)

µr = µ(ω)/µ0 ≈ 1 (14.15)

where we assume that we are not at a resonance so that the spheres have

normal dispersion and that these numbers are basically real. The latter

is a good approximation for non-magnetic, non-conducting scatterers e.g.

oxygen or nitrogen molecules.

If you refer back to J4.4, equation J4.56 and the surrounding text, you

will see that the induced dipole moment in a dielectric sphere in terms of

the relative permittivity is:

p = 4πǫ0

(

ǫr − 1

ǫr + 2

)

a3Einc (14.16)

To recapitulate the derivation (useful since this is a common question

on qualifiers and the like) we note that the sphere has azimuthal symmetry

around the direction of E, so we can express the scalar potential inside and

outside the sphere as

φin =
∑

ℓ

Aℓr
ℓPℓ(cos θ) (14.17)

φout =
∑

ℓ

{

Bℓr
ℓ + Cℓ

1

rℓ+1

}

Pℓ(cos θ). (14.18)

We need to evaluate this. At infinity we know that the field should be

(to lowest order) undisturbed, so the potential must asymptotically go over

to

lim
r→∞φout = −E0z = −E0r cos θ = −E0rP1(cos θ) (14.19)

so we conclude that B1 = −E0 and all other Bℓ>1 = 0. To proceed further,

we must use the matching conditions of the tangential and normal fields

at the surface of the sphere:

− 1

a

∂φin

∂θ

∣

∣

∣

∣

∣

r=a

= −1

a

∂φout

∂θ

∣

∣

∣

∣

∣

r=a

(14.20)

(tangential component) and

− ǫ
∂φin

∂r

∣

∣

∣

∣

∣

r=a

= − ǫ0
∂φout

∂r

∣

∣

∣

∣

∣

r=a

(14.21)



(normal D onto E).

Since this is the surface of a sphere (!) we can project out each spherical

component if we wish and cause these equations to be satisfied term by term.

From the first (tangential) equation we just match φ itself:

1

a
(Aℓa

ℓ) =
1

a

(

Bℓa
ℓ + Cℓ

1

aℓ+1

)

(14.22)

or (using our knowledge of Bℓ)

A1 = −E0 +
C1

a3
ℓ = 1 (14.23)

Aℓ =
Cℓ

a2ℓ+1
else (14.24)

From the second (normal) equation we get

ǫrA1 = −E0 − 2
C1

a3
ℓ = 1 (14.25)

ǫrAℓ = −(ℓ + 1)Cℓ

a2ℓ+1
else. (14.26)

The second equation of each pair are incompatible and have only the

trivial

Aℓ = Cℓ = 0 ℓ 6= 1. (14.27)

Only the ℓ = 1 term survives. With a little work one can show that

A1 = − 3E0

2 + ǫr
(14.28)

C1 =
(

ǫr − 1

ǫr + 2

)

a3E0 (14.29)

so that

φin = −
(

3

ǫr + 2

)

E0r cos θ (14.30)

φout = −E0r cos θ +
(

ǫr − 1

ǫr + 2

)

E0
a3

r2
cos θ. (14.31)

When we identify the second term of the external field with the dipole

potential and compare with the expansion of the dipole potential

φ(r) =
1

4πǫ0

p · r
r3

(14.32)



we conclude that the induced dipole moment is:

p = 4πǫ0

(

ǫr − 1

ǫr + 2

)

a3E0ẑ. (14.33)

as given above.

There is no magnetic dipole moment, because µr = 1 and therefore

the sphere behaves like a “dipole antenna”. Thus m = 0 and there is

no magnetic scattering of radiation from this system. This one equation,

therefore, (together with our original definitions of the fields) is sufficient to

determine the differential cross–section:

dσ

dΩ
= k4a6

∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2

|ǫ̂∗ · ǫ̂0|2 (14.34)

where remember that ǫr(ω) (for dispersion) and hopefully everybody notes

the difference between dielectric ǫ and polarization ǫ̂ (sigh – we need more

symbols). This equation can be used to find the explicit differential cross–

sections given (n̂, n̂0, ǫ̂, ǫ̂0), as desired.

However, the light incident on the sphere will generally be unpolarized.

Then the question naturally arises of whether the various independent po-

larizations of the incident light beam will be scattered identically. Or, to

put it another way, what is the angular distribution function of radiation

with a definite polarization? To answer this, we need to consider a suitable

decomposition of the possible polarization directions.

This decomposition is apparent from considering the following picture of

the general geometry:

Let n̂, n̂0 define the plane of scattering. We have to fix ǫ̂(1) and ǫ̂(2)

relative to this scattering plane and average over the polarizations in the



incident light, ǫ̂
(1)
0 and ǫ̂

(2)
0 (also fixed relative to this plane). We can always

choose the directions of polarization such that ǫ̂(2) = ǫ̂
(2)
0 is perpendicular

to the scattering plane and ǫ̂(1) = ǫ̂
(1)
0 are in it, and perpendicular to the

directions n̂ and n̂0 respectively. The dot products are thus

ǫ̂(1)∗ · ǫ̂(1)
0 = n̂ · n̂0 = cos θ (14.35)

ǫ̂(2)∗ · ǫ̂(2)
0 = 1. (14.36)

We need the average of the squares of these quantities. This is essentially

averaging sin2 φ and cos2 φ over φ ∈ (0, 2π). Alternatively, we can meditate

upon symmetry and conclude that the average is just 1
2
. Thus (for the

polarization in the plane (‖) and perpendicular to the plane (⊥) of scattering,

respectively) we have:

dσ‖
dΩ

= k4a6

∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2 cos2 θ

2
(14.37)

dσ⊥
dΩ

= k4a6
∣

∣

∣

∣

ǫr − 1

ǫr + 2

∣

∣

∣

∣

2 1

2
(14.38)

We see that light polarized perpendicular to the plane of scattering has no

θ dependence, while light polarized in that plane is not scattered parallel to

the direction of propagation at all (along θ = 0 or π). We will invert this

statement in a moment so that it makes more sense. See the diagram below.

Unfortunately, everything thus far is expressed with respect to the plane

of scattering, which varies with the direction of the scattered light. If we

define the polarization Π(θ) of the scattered radiation to be

Π(θ) =
dσ⊥

dΩ
− dσ‖

dΩ
dσ⊥

dΩ
+

σ‖

dΩ

=
sin2 θ

1 + cos2 θ
(14.39)

then we obtain a quantity that is in accord with our intuition. Π(θ) is

maximum at θ = π/2. The radiation scattered through an angle of 90

degrees is completely polarized in a plane perpendicular to the plane of

scattering.



Finally, we can add the two pieces of the differential cross–section to-

gether:

dσ

dΩ
= k4a6

(

ǫ− 1

ǫ+ 2

)2 1

2
(1 + cos2 θ) (14.40)

which is strongly and symmetrically peaked forward and backward. Finally,

this is easy to integrate to obtain the total cross–section:

σ =
8π

3
k4a6

(

ǫr − 1

ǫr + 2

)2

. (14.41)

At last, we can put it all together. Molecules in the atmosphere be-

have, far from resonance, like itty–bitty dielectric spheres to a remarkable

approximation. Since blue light is scattered more strongly than red, light

seen away from its direction of incidence (the sky and not the sun) is shifted

in color from white to blue. When Mr. Sun is examined directly through a

thick layer of atmosphere (at sunset) the blue is all scattered out and the

remaining light looks red. Finally, light from directly overhead at sunup or

sundown is polarized in a north–south direction; at noon the light from the

horizon is polarized parallel to the horizon (and hence is filtered by verti-

cal transmission axis polarized sunglasses. You should verify this at your

next opportunity outdoors with a pair of polarized sunglasses, as this whole

discussion is taught in elementary terms in second semester introductory

physics courses.

Don’t say I never taught you anything2.

The last remarks I would make concern the total cross–section. Note

that if we factor out a 4πa2 we get the “area” of the sphere times a pure

(dimensionless) number (ka)4 associated with the relative size of the sphere

radius and the wavelength and a second pure number involving only the

dielectric properties of the medium:

σ = (4πa2)(ka)4

{

2

3

(

ǫr − 1

ǫr + 2

)2
}

. (14.42)

This expression isn’t any more useful than the one above, but it does make

the role of the different terms that contribute to the total scattering cross-

section more clear.

2Even if it’s true . . .



14.3 Scattering from a Small Conducting Sphere

Perfect conductors are not just dielectrics where the electric field is com-

pletely zero inside. The electric field is exactly cancelled on the interior by

the induced surface charge. As we have seen, this cancellation occurs close

to the surface (within a few times the skin depth). However, the induced

currents also tend to expel the time dependent magnetic field. We therefore

have two modification of our results from the previous section. The electric

polarization will have a different form, and there will be a contribution from

the induced magnetic moment of the sphere as well.

Recall (from J2.5) that the induced dipole moment on a conducting

sphere is

p = 4πǫ0a
3Einc. (14.43)

This is indeed the generalization of the result for p last time, as you should

be able to derive in a few minutes of work. Either review that section or

solve the boundary value problem where E⊥ is discontinuous at the surface

and E|| = 0 on the surface to obtain:

φ = −E0

(

r − a3

r2

)

cos θ (14.44)

from which we can easily extract this p.



But, the magnetic field is also varying, and it induces an EMF that runs

in loops around the magnetic field lines and opposes the change in magnetic

flux. Assuming that no field lines were trapped in the sphere initially, the

induced currents act to cancel component of the magnetic field normal to

the surface. The sphere thus behaves like a magnetically permeable sphere

(see e.g. section J5.10 and J5.11, equations J5.106, J5.107, J5.115):

M =
m

4πa3/3
= 3

(

µ− µ0

µ+ 2µ0

)

H inc (14.45)

with µr = µ/µ0 = 0 so that:

m = −2πa3H inc. (14.46)

The derivation is again very similar to the derivation we performed last time,

with suitably chosen boundary conditions on B and H .

If we then repeat the reasoning and algebra for this case of the conducting

sphere (substituting this p and m into the expression we derived for the

differential cross–section), we get:

dσ

dΩ
= k4a6

∣

∣

∣

∣

ǫ̂∗ · ǫ̂0 −
1

2
(n̂ × ǫ̂∗) · (n̂0 × ǫ̂0)

∣

∣

∣

∣

2

. (14.47)

After much tedious but straightforward work, we can show (or rather

you can show for homework) that:

dσ‖
dΩ

=
k4a6

2

∣

∣

∣

∣

cos θ − 1

2

∣

∣

∣

∣

2

(14.48)

dσ⊥
dΩ

=
k4a6

2

∣

∣

∣

∣

1 − 1

2
cos θ

∣

∣

∣

∣

2

(14.49)

so that the total differential cross section is:

dσ

dΩ
= k4a6

{

5

8
(1 + cos2 θ) − cos θ)

}

(14.50)

and the polarization is:

Π(θ) =
3 sin2 θ

5(1 + cos2 θ) − 8 cos θ
(14.51)

Finally, integrating the differential cross section yields the total cross-section:

σ =
10πk4a6

3
= (4πa2)(ka)4 2.5

3
∼ σdielectric (14.52)



Figure 14.1: Differential cross–section and polarization of a small conducting

sphere.

for ǫr >> 1 curiously enough.

What do these equations tell us? The cross–section is strongly peaked

backwards. Waves are reflected backwards more than forwards (the sphere

actually casts a “shadow”. The scattered radiation is polarized qualitatively

alike the radiation scattered from the dielectric sphere, but with a somewhat

different angular distribution. It is completely polarized perpendicular to

the scattering plane when scattered through an angle of 60◦, not 90◦.

We see that dipole scattering will always have a characteristic k4 depen-

dence. By know you should readily understand me when I say that this is

the result of performing a multipolar expansion of the reaction field (essen-

tially an expansion in powers of kd where d is the characteristic maximum

extent of the system) and keeping the first (dipole) term.

If one wishes to consider scattering from objects where kd ∼ 1 or greater,

one simply has to consider higher order multipoles (and one must consider

the proper multipoles instead of simple expansions in powers of kd). If

kd >> 1 (which is the case for light scattering from macroscopic objects,



radar scattering from airplanes and incoming nuclear missiles, etc) then a

whole different apparatus must be brought to bear. I could spend a semester

(or a least a couple of weeks) just lecturing on the scattering of electromag-

netic waves from spheres, let alone other shapes.

However, no useful purpose would be so served, so I won’t. If you ever

need to figure it out, you have the tools and can find and understand the

necessary references.

14.4 Many Scatterers

It is, however, worthwhile to spend a moment considering a collections of

identical scatterers at fixed spatial positions. Each scatterer then acts iden-

tically, but is scattering an electromagnetic field with its own (spatially

dependent) phase at a given moment of time. The scattered fields then

propagate freely, recombine, and form a total EM field that is measured

by the detector. In order to evaluate the total differential cross–section we

must sum the field amplitudes times the appropriate phases, project out the

desired polarization moments, and then square.

A moment of quiet reflection3 will convince you that in general:

dσ

dΩ
=

k4

(4πǫ0E0)2

∣

∣

∣

∣

∣

∣

∑

j

{

ǫ̂∗ · pj + (n̂ × ǫ̂∗) · mj/c
}

eiq·xj

∣

∣

∣

∣

∣

∣

2

(14.53)

where

q = k0 − k. (14.54)

accomodates the relative phase difference between the field emitted by the

scatterers at different locations. The geometry of this situation is pictured

below.

In all directions but the forward direction, this depends on the distri-

bution of scatterers and the nature of each scatterer. If we imagine all the

scatterers to be alike (and assume that we are far from the collection) then

this expression simplifies:
dσ

dΩ
=
dσ0

dΩ
F(q) (14.55)

3Sorry...



Figure 14.2: Geometry of multiple scatterers. The relative phase of two

sources depends on the projection of the difference in wave vectors onto the

vector connecting the scatterers.



where dσ0

dΩ
is the scattering cross-section of a single scatterer and the F(q)

is called a “structure factor”:

F(q) =

∣

∣

∣

∣

∣

∣

∑

j

eiq·xj

∣

∣

∣

∣

∣

∣

2

(14.56)

=
∑

i,j

eiq·(xj−xi). (14.57)

This last expression is 1 on the diagonal i = j. If the (e.g.) atoms are uni-

formly but randomly distributed, the sum of the off-diagonal terms averages

to zero and the total sum goes to N (the number of atoms). This is an

incoherent superposition and the scattered intensitities add with negligible

interference.

If the atoms are instead on a regular lattice, then “Bragg” scattering

results. There will exist certain values of q that match the spacing between

planes in such a way that whole rows of the matrix are 1. In those direc-

tion/wavelength combinations, the scattered intensity is of order N2 and

hence is much brighter. The scattered power distribution thus has bright

spots in is corresponding to these directions, where constructive interference

in the scattered waves occurs.

Structure factor sums occur in many branches of physics. If you think

about it for a moment, you can easily see that it is possible to do a struc-

ture factor sum using the Green’s function expansions you have studied. In

electrodynamics and quantum multiple scattering theory these sums appear

frequently in association with spatially fixed structures (like crystal lattices

or molecules). In field theory, lattice sums are sometimes used as a dis-

cretized approximation for the continuum, and “lattice gauge” type field

theories result. In these theories, our ability to do the structure factor sums

is used to construct the Green’s functions rather than the other way around.

Either way, you should be familiar with the term and should think about

the ways you might approach evaluating such a sum.

We are now done with our discussion of scattering from objects per se.

It is well worth your while to read J10.2 on your own. I have given you

the semi–quantitative argument for the blue sky; this section puts our sim-

ple treatment on firmer ground. It also derives the perturbation theory of

scattering (using the Born approximation), and discusses a number of inter-

esting current research topics (such as critical opalescence). I will probably



assign one problem out of this section to help you out. However, perturba-

tive scattering is easier to understand, and more useful, in the context of

(scalar) quantum theory and so I will skip this section, expecting that you

will see enough of it there.

You should also read J10.3. This presents one way to derive the Rayleigh

expansion for a (scalar) plane wave in terms of free spherical waves (there are

several). However, it goes further and addresses expansions of e.g. circularly

polarized plane waves in terms of vector spherical harmonics! Lord knows

why this is stuck off in this one section all by itself – I need to put the

equivalent result for expansion in terms of Hansen solutions (which of course

will be much more natural and will precompute most of the annoying parts

of the algebra for us) in the sections on the Hansen functions and VSHs

where it belongs, as it will actually be much simpler to understand there.

J10.4 redoes scattering from a sphere “right” in terms of VSHs, and

again, if we wished to pursue this we would need to redo this in terms of

Hansen functions to keep it simple. The primary advantage of reading this

chapter is that it defines the partial wave phase shifts of scattering from a

sphere, quantities that are in use in precisely the same context in quantum

scattering theory in e.g. nuclear physics. SO, if you plan to go into nuclear

physics you are well advised to read this chapter as well and work through

it.

However, we cannot do this at this time because we had to go back and

redo J7 and J8. Besides, we’re doubtless a bit bored with multipoles and

want to become excited again. We will therefore now move on to one of my

favorite topics, relativity theory.
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Chapter 15

Special Relativity

15.1 Einstein’s Postulates

By this time I certainly hope that you are familiar with the two postulates,

due to Einstein, that lead to the theory of special relativity. They are:

1. The laws of nature are invariant with respect to the uniform translation

of the coordinate system in which they are measured.

2. The speed of light is independent of the motion of the source.

Properly speaking, the second postulate is a consequence of the first,

since if the speed of light depended on the motion of its source the laws of

electrodynamics (which determine the speed of freely propagating electro-

magnetic waves) would depend on the inertial frame of the source, which

contradicts the first postulate. For what it is worth, the first is not as obvi-

ously a consequence of the second: it seems entirely possible for some laws

to depend on the velocity of the source and not contradict the second postu-

late, as long as they are not electrodynamical in nature. This has been the

subject of considerable discussion, and I hesitate to state a religious view

upon it.

I will, however, point out that in the opinion of Dirac, at least — the

discovery of the uniform 3◦K blackbody background explicitly contradicted

the first postulate but not the second. You might amuse yourself, some

quiet evening, by considering experiments that would measure your absolute
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velocity relative to the “rest” frame of this radiation. The second postulate

(which is all we need) thus seems to be the safer of the two upon which to

base our reasoning.

I strongly recommend that you read J11.1 — J11.2 on your own. They

are “true facts” that will come in handy some day, and should astound and

amaze you. Yes, Virginia, special relativity really really works.

For our purposes, we will begin with a brief review of the basic Lorentz

transformation and an introduction to four vectors. Because we will do it

again (correctly) in a week or so we won’t take long now. We will also study

four–velocity and four–momentum. This will suffice to give us the “flavor”

of the theory and establish the geometricaly grounds for the matrix theory

we will then derive.

As an application of this, we will study Thomas precession briefly and

then go on to perform a detailed application of the theory to the dynamics

of interacting charged particles and fields. We will spend the rest of the

semester on this subject, in one form or another.

15.2 The Elementary Lorentz Transformation

To motivate the Lorentz transformation, recall the Galilean transforma-

tion between moving coordinate systems:

x′1 = x1 − vt (15.1)

x′2 = x2 (15.2)

x′3 = x3 (15.3)

t′ = t (15.4)



(where K is fixed and K ′ is moving in the 1–direction at speed v).

Then

Fj = mẍj = mẍ′j = F ′
j (15.5)

or Newton’s Laws are covariant with respect to the Gallilean trans-

formation.

But
∂

∂x1
=

∂

∂x′1
+

1

v

∂

∂t′
(15.6)

and so

∂2

∂x2
1

=
∂2

∂x′21
+

1

v2

∂2

∂t′2
+

2

v

∂2

∂x′1∂t
′ (15.7)

∂2

∂x2
2

=
∂2

∂x′22
(15.8)

∂2

∂x2
3

=
∂2

∂x′23
(15.9)

∂2

∂t2
=

∂2

∂t′2
. (15.10)

Thus if
{

∇2 − 1

c2
∂2

∂t2

}

ψ = 0 (15.11)

then
{

∇′2 − 1

c2
∂2

∂t′2

}

ψ =
−1

v2

∂2ψ

∂t′2
− 2

v

∂2ψ

∂x′1∂t
′ 6= 0 (15.12)

(!) so that the wave equation, and hence Maxwell’s equations which lead

directly to the wave equation in free space, are not covariant with re-

spect to the Gallilean transformation! They already determine the



permitted velocity of a light wave, and do not allow that velocity to depend

on anything but the properties of the medium through which the wave is

transmitted.

The simplest linear transformation of coordinates is that preserves the

form of the wave equation is easy to determine. It is one that keeps the speed

of the (light) wave equal in both the K and the K ′ frames. Geometrically,

if a flash of light is emitted from the (coincident) origins at time t = t′ = 0,

it will appear to expand like a sphere out from both coordinate origins, each

in its own frame:

(ct)2 − (x2 + y2 + z2) = 0 (15.13)

and

(ct′)2 − (x′2 + y′2 + z′2) = 0 (15.14)

are simultaneous constraints on the equations. Most generally,

(ct)2 − (x2 + y2 + z2) = λ2
[

(ct′)2 − (x′2 + y′2 + z′2)
]

(15.15)

where, λ(v) describes a possible change of scale between the frames. If we

insist that the coordinate transformation be homogeneous and symmetric

between the frames1, then

λ = 1. (15.16)

Let us define

x0 = ct (15.17)

x1 = x (15.18)

x2 = y (15.19)

x3 = z (15.20)

(x4 = ict Minkowski metric) (15.21)

Then we need a linear transformation of the coordinates that mixes

x and (ct) in the direction of v in such a way that the length

∆s2 = (x0)
2 − (x2

1 + x2
2 + x2

3) (15.22)

1If we relax this requirement and allow for uniform expansions and/or contractions of

the coordinate system, a more general group structure, the conformal group, results



is conserved and that goes into the Gallilean transformation as v → 0. If we

continue to assume that v is in the 1 direction, this leads to the Lorentz

transformation:

x′0 = γ(x0 − βx1) (15.23)

x′1 = γ(x1 − βx0) (15.24)

x′2 = x2 (15.25)

x′3 = x3 (15.26)

where at x′1 = 0,

x1 = vt→ β =
v

c
. (15.27)

Then

∆s2 = ∆s′2 (15.28)

leads to

x2
0 − x2

1 = γ2(x2
0 − x2

1) + γ2β2(x2
1 − x2

0) (15.29)

or

γ2(1 − β2) = 1 (15.30)

so

γ =
±1√
1 − β2

(15.31)

where we choose the + sign by convention. This makes γ(0) = +1. Finally,

γ(v) =
1

√

1 − v2

c2

(15.32)

as we all know and love.

Now, let me remind you that when v << c,

γ(v) = 1 +
1

2

v2

c2
+ . . . (15.33)

to lowest surviving order in v
c
. As we shall see, this is why “kinetic energy”

in non–relativistic systems (being defined as the total energy minus the

potential energy and the rest mass energy) is the usual 1
2
mv2.

The inverse transformation (from K ′ to K) is also of some interest.

x0 = γ(x′0 + βx′1) (15.34)

x1 = γ(x′1 + βx′0) (15.35)

x2 = x′2 (15.36)

x3 = x′3 (15.37)



which is perfectly symmetric, with v → −v. It appears that which frame

is at “rest” and which is moving is mathematically, at least, a matter of

perspective.

Finally, if we let
~β =

v

c
(15.38)

(in an arbitrary direction) then we have but to use dot products to align the

vector transformation equations with this direction:

x′0 = γ(x0 − ~β · x) (15.39)

x′ = x +
γ − 1

β2
(~β · x)~β − γ~βx0 (15.40)

I think that you should prove that this is correct as an exercise. Since the

direction of ~β is arbitrary, it should suffice to show that this reduces the the

form above for that direction and an arbitrary transverse direction.

Solution: Note that

x‖ =
(~β · x)~β

β2
(15.41)

Lorentz transform it according to this rule and one gets (by inspection)

x′
‖ = γ(x‖ − ~βx0) (15.42)

as one should. The x′0 transform is obvious. Finally, the other two (⊥)

components do not get a contribution from γ. That is,

x′ = (x⊥ + x‖) + γx‖ − x‖ − γ~βx0 (15.43)

(reconstructing the result above directly) QED.

This is not the most general or convenient way to write the final trans-

form. This is because γ and β are both related functions; it should not be

necessary to use two parameters that are not independent. Also, the limiting

structure of the transformation is not at all apparent without considering

the functional forms in detail.

It is easy to see from the definition above that

(γ2 − γ2β2) = 1. (15.44)



The range of β is determined by the requirement that the transformation

be non–singular and its symmetry:

0 ≤ β < 1 so that 1 ≤ γ <∞. (15.45)

If we think about functions that “naturally” parameterize these ranges, they

are:

cosh2 ξ − sinh2 ξ = 1 (15.46)

where

β = tanh ξ =
e−ξ − eξ

e−ξ + eξ
∈ [0, 1) (15.47)

γ = cosh ξ =
1

2
(e−ξ + eξ) ∈ [1,∞) (15.48)

γβ = sinh ξ =
1

2
(e−ξ − eξ) ∈ [0,∞). (15.49)

The parameter ξ is called the boost parameter or rapidity. You will

see this used frequently in the description of relativistic problems. You

will also hear about “boosting” between frames, which essentially means

performing a Lorentz transformation (a “boost”) to the new frame. This will

become clearer later when we generalize these results further. To give you

something to meditate upon, consider in your minds the formal similarity

between a “boost” and a “rotation” between the x‖ and x0 coordinates where

the rotation is through an imaginary angle iξ. Hmmmm.

To elucidate this remark a wee tad more, note that in this parameteri-

zation,

x′0 = x0 cosh ξ − x‖ sinh ξ (15.50)

x′‖ = −x0 sinh ξ + x‖ cosh ξ (15.51)

x′
⊥ = x⊥. (15.52)

What is the 4×4 transformation matrix (in four dimensions) for this result?

Does it look like a “hyperbolic rotation”2 or what?

We have just determined that the (vector) coordinate system transforms

a certain way. What, then, of vector fields, or any other vector quantity?

2 “Hyperbolic” because of the relative minus sign between x2 and ct2. More on this

later.



How do general vectors transform under a boost? This depends on the na-

ture of the vectors. Many vectors, if not most, transform like the underlying

coordinate description of the vectors. This includes the ones of greatest in-

terest in physics. To make this obvious, we will have to generalize a vector

quantity to four dimensions.

15.3 4-Vectors

Note well that we are not YET introducing proper notation for co- and

contravariant tensors as we don’t know what that means. Actually the no-

tation for ordinary coordinates should be x0, x1, x2, x3 and we will have to

determine whether any given 4-vector quantity that is a function of the coor-

dinates transforms like the coordinate or like a differential of the coordinate

in order to determine if it is co- or contravariant. Similarly, we have not yet

discussed how to form the various dyadic products of co- and contravariant

vectors – some will form scalars, some vectors, some second rank tensors.

In other words, the results below are all correct, but the notation sucks and

this suckiness will make certain parts of doing the algebra more difficult

than it needs to be.

I may rewrite this whole combined multichapter stretch, as I’m not cer-

tain of the pegagogical value of presenting things incorrectly or in an ele-

mentary form and then correctly in an elegant form as Jackson does. In the

meantime, please bear with the notation below allowing for the fact that

much of it is just wrong.

Coordinate 4–vectors are (x0, x1, x2, x3).

Arbitrary 4–vectors are (A0, A1, A2, A3).

If the “arbitrary” vector transforms like the coordinates, then

A′
0 = γ(A0 − ~β · A) (15.53)

A′
‖ = γ(A‖ − βA0) (15.54)

A′
⊥ = A⊥ (15.55)

and

∆A2 = A2
0 − (A2

1 + A2
2 + A2

3)

= A2
0 −A · A (15.56)



Figure 15.1: The Light Cone: Past, now, future, and elsewhere. Events.

The world line.

is an invariant of the transformation. Note: whenever I boldface a vector

quantity, I mean the 3D euclidean (cartesian) vector in ordinary space. In

that case I will write the time (0) component explicitly. When I want to

refer to a 4–vector generically, I will not boldface it (e. g. — A vs A).

Kids! Amaze your friends! Astound your neighbors! Show that

A′
0B

′
0 − A′ · B′ = A0B0 − A · B (15.57)

is an invariant of the Lorentz transformation for arbitrary 4–vectors A,B.

This is (or will be) homework.

Now, we have a few definitions of “new words” to learn. Most of you

probably already know them from one context or another, but we all need

to agree at this point to talk a common language, so we will review the

definitions carefully and avoid confusion.

Electromagnetic signals (and anything else travelling at speed c) travel

on the light cone. An event is a coordinate x = (x0,x). We are usually

interested in causally connected events on a world line. This might be,

for example, the trajectory of a massive particle (like one on the tip of your

nose) with v < c. Causally connected world line trajectories must live inside

the light cone of each event that lies upon them.



Consider two events. If we define the invariant interval

S2
12 = c2(t1 − t2)

2 − |x1 − x2|2 (15.58)

then we have a

timelike separation S2
12 > 0 ⇒ c2(t1 − t2)

2 > |x1 − x2|2.
Both events are inside each other’s light cone. These events can be

“causally connected”, because a light signal given off by one can reach

the other from the “inside”. In this case, a suitable Lorentz transfor-

mation can make x′
1 = x′

2, but t′1 6= t′2 always.

spacelike separation S2
12 < 0 ⇒ c2(t1 − t2)

2 < |x1 − x2|2.
Both events are outside each other’s light cone. These events are

“causally disconnected”, because a light signal given off by one can not

reach the other. If nothing goes faster than light, then those particular

events did not speak to one another. Note that this does not mean

that earlier (and later) events on each world line to not connect. The

events are disconnected, not the world lines themselves.



In this case, a suitable Lorentz transformation can make t′1 = t′2, but

x′
1 6= x′

2 always.

lightlike separation S2
12 = 0 ⇒ c2(t1 − t2)

2 = |x1 − x2|2.
Both events are on each other’s light cone. These events are “causally

connected” by electromagnetic radiation. The field produced by charges

at one event are directly interacting with charges at the other event,

and vice versa.

Note well that the event pairs considered above can be made spatially

coincident, temporally coincident, or both, by suitably boosting the frame.

Events with a timelike separation can be made spatially coincident. Events

with a spacelike separation can be made to occur at the same time, or in

either order. Events with a lightlike separation will always have a lightlike

separation in all frames.

We are about to run into a profound philosophical difficulty. Physics is

dedicated to dynamics – typically solving initial value problems and hence

predicting the dynamical evolution of systems in time. Unfortunately, we

just eliminated time as an independent variable. By making it a part of our

geometry, it is no longer available as an independent parameter that we can

use to write traditional equations of motion.

There are likely to other significant consequences of this decision, as

many of the quantities studied in physics are tensor forms defined with re-

spect to spatial geometry. That is, when I compute “charge” or “momentum”

or “electric field” or a “rotation matrix”, I’m computing 0th, 1st or 2nd rank

tensors that inherit their directional character (or lack of it) from the un-

derlying spatial coordinate system. Well, we’ve just made that underlying

coordinate system four dimensional and so quantities like “momentum” and



“electric field” will have to be reconsidered. We may need to find new

“timelike” coordinates to associate with some of these, and perhaps reclas-

sify others as different sorts of tensors.

Finally, we need to recover a “time” that can be used to write down

some sort of equations of motion or we can’t make a “physics”. This will

prove to be very difficult. For one thing, we can no longer expect to be

able to solve initial value problems, as time is now a symmetric coordinate.

The trajectories of particles are determined by their relativistic interaction

connections and differential “equations of motion” with boundary conditions

on a closed four dimensional hypersurface at four–infinity! That means

that it is impossible in principle to predict future trajectories from only a

knowledge of those trajectories in the past. It is amazing how few people in

physics are willing to internally acknowledge that fact. Accept it. It is true.

You will be happier for it.

Anyway, there are at least two ways around this (mathematical) diffi-

culty. One is to introduce a “hypertime” – yet another dimension containing

a parameter that can serve us as time has served in the past3. This, however,

introduces a fifth dimension which we need (currently) like a fifth wheel.

Maybe God lives in hypertime, but there are infinite difficulties associated

with our trying to implement it in the complete absence of physical probes.

Say hello to Plane Joe from Flatland. Leave it to masochistic theorists to

play games with 10, 26, or even 4096 dimensional projective manifolds at

least until you are ready to become one of them.

The second way is to introduce the proper time. This is the time

measured in the “rest frame” of a particle as it moves along its

world line. As such, it is still not an “absolute” time like we are used to

but it is the closest that we can come to it.

Note well that proper time does not really solve our philosophical prob-

lems, because one must still ask how the “particle” measures time. If it

carries with it a little “clock”, that clock must have moving parts and some

sort of associated period, and those parts have in turn their own proper

time. If it is a point particle, its clock must either be in internal degrees of

freedom – you begin to see why those theorists mentioned above work their

3Don’t think too hard about this sentence or you’ll start to go slightly nuts because

it is self-referential and hence Gödelian.



way up to higher dimensional spaces – or else the particle infers the passage

of time from what it “sees” of the rest of the Universe via its interaction

connections and doesn’t really have a proper time at all because it cannot

have its own proper clock.

It does, however, solve our immediate mathematical problem (that of

finding a suitable parameter in terms of which to describe the evolution of

a system) so we’ll go with it anyway.

15.4 Proper Time and Time Dilation

Suppose we have a particle moving with a velocity v in a given coordinate

system K. In a time dt (in that system) it moves dx = vdt. Then its

invariant infinitesimal interval is

(ds)2 = (cdt)2 − |dx|2 = c2dt2(1 − β2). (15.59)

In the particular frame where the particle is at rest (dx′ = 0) we define the

proper time to be

dτ = dt′ (15.60)

so that

(ds)2 = c2(dτ)2. (15.61)

Thus the proper time is just the time experienced by the particle in its own

rest frame.

From the relations above, it is easy to see that

dτ = dt
√

1 − β2(t) =
dt

γ(t)
(15.62)

and to find the interval between two events on some world line it is necessary

to integrate:

t2 − t1 =
∫ τ2

τ1

dτ
√

1 − β2(τ)

=
∫ τ2

τ1
γ(τ)dτ. (15.63)

If β is constant (so the frames are inertial) then we get the usual time

dilation

∆t = γ∆τ (15.64)



or

∆τ =
∆t

γ
(15.65)

but this is not true if the particle is accelerating. Applying it without

thought leads to the “twin paradox”. However, the full integral relations

will be valid even if the two particles are accelerating (so that β(τ)). You

will need to evaluate these relations to solve the twin paradox for one of

your homework problems.

Finally, I want to note (without discussing it further at this time) that

proper time dilation leads to a relativistic correction to the usual doppler

shift. Or should I say that the non–relativistic doppler shift is just a low

velocity limit of the correct, time dilated result.

Now that we have some notion of what an infinitesimal time interval

is, we could go ahead and try to defince 4–dimensional generalizations of

momentum and energy. First, however, we will learn how velocities Lorentz

transform.

15.5 Addition of Velocities

If we form the infinitesimal version of the Lorentz transformation of coordi-

nates:

dx0 = γ(dx′0 + βdx′1) (15.66)

dx1 = γ(dx′1 + βdx′0) (15.67)

dx2 = dx′2 (15.68)

dx3 = dx′3 (15.69)

Point P is moving at velocity u′ in frame K ′, which is in turn moving at

velocity v = v1̂ with respect to the “rest” frame K. We need to determine

u (the velocity of P in K). We will express the problem, as usual, in coordi-

nates ‖ and ⊥ to the direction of motion, exploiting the obvious azimuthal

symmetry of the transformation about the 1̂ direction.

Note that

ui = c
dxi

dx0
(15.70)



Figure 15.2: P has u′ = (u′, θ′, φ′) in K ′ frame. K ′ is moving in the 1

direction at v = cβ. γ(v) changes frames. We want u(u, θ, φ).

for i = 0 . . . 3. Then

u‖ = c
γ(dx′1 + βdx′0)

γ(dx′0 + βdx′1)

= c

{

dx′
1

dx′
0

+ β
}

{

1 + β
dx′

1

dx′
0

}

=
u‖ + v

1 + u′·v
c2

. (15.71)

Similarly, u⊥ (e.g. — u2) is given by

u2 =
cdx′2

γ(dx′0 + βdx′1)

=
u′2

γ(1 + u′·v
c2

(15.72)

or

u⊥ =
u⊥

γ
{

1 + u′·v
c2

} . (15.73)

We see, then, that the velocity changes in both the ‖ and the ⊥ directions.

Note also that if |u′| and |v| << c, then

u′ · v
c2

<< 1 (15.74)



and

γ ≈ 1 (15.75)

so that we recover the Gallilean result,

u‖ = u′
‖ + v (15.76)

u⊥ = u′
⊥. (15.77)

What about the other limit? If |u′| = c, then

|u| = c (15.78)

as you should verify on your own. This is Einstein’s second postulate! We

have thus proven explicitly that the speed of light (and the speed of anything

else travelling at the speed of light) is invariant under Lorentz coordinate

transformations. This is their entire motivation.

We observe that the three spatial components of “velocity” do not seem

to transform like a four vector. Both the ‖ and the ⊥ components are mixed

by a boost. We can, however, make the velocity into a four vector that does.

We define

U0 =
dx0

dτ
=
dx0

dt

dt

dτ
= cγ(u) (15.79)

U =
dx

dτ
=
dx

dt

dt

dτ
= uγ(u) (15.80)

where γ(u) is evaluated using the magnitude of u. It is an exercise to show

that this transforms like the coordinate 4–vector x.

Now we can “guess” that the 4–momentum of a particle will be ∼ mU .

To prepare us for this, observe that

U = (U0,U) = (γuc, γuu) (15.81)

are just the γu–scaled “velocities” of the particle:



Figure 15.3: Note that γu ≥ 1 so that each component of the 4–velocity

is always “larger” than associated Cartesian components, even though (as

usual) the length of the four velocity is invariant. What is its invariant

length?

15.6 Relativistic Energy and Momentum

We seek a relativistic generalization of momentum (a vector quantity) and

energy. We know that in the low speed limit, v << c,

p = mu (15.82)

E = E(0) +
1

2
mu2 (15.83)

where E(0) is a constant allowed by Newton’s laws (since forces depend only

on energy differences).

The only possible form for this generalization of these equations consis-

tent with our requirement that the laws of nature remain invariant are:

p = M(u)u (15.84)

E = E(u), (15.85)

that is, the mass and the energy must become functions of the speed only,

and leave the vector character of the velocity alone. A boost cannot change

the direction of the momentum of a particle, and any (scalar) functional

variation in its magnitude can be thrown into the “mass” term.



This immediately yields the limiting forms:

M(0) = m (15.86)

∂E
∂u2

(0) =
m

2
(15.87)

where we have assumed that there is no pathology in the functions at the

origin.

There are several possible ways to evaluate the full forms of these func-

tions. Jackson’s (based on scattering theory) is tedious and conceals the

structure of the result. Furthermore, after telling us that selecting clever

initial directions with an eye to simplifying the algebra “lacks motivation”

he derives a result by selecting particular initial directions. The guy loves

algebra, what can I say. Feel free to study his approach. It works.

I, on the other hand, am too lazy to spend most of a period deriving

a result that is “obvious” in the correct notation. I am therefore going

to “give” you the result and motivate it, and then verify it trivially be

expressing it as a four–vector. This works nearly as well and is not anywhere

near as painful.

We begin by considering elastic scattering theory. An elastic collision of

two identical particles must conserve momentum and energy in all inertial

frames. In the center of mass frame (which we will consider to be K ′)

p′
ia + p′

ib = p′
fa + p′

fb (15.88)

E ′
ia + E ′

ib = E ′
fa + E ′

fb (15.89)

relate the intial and final momenta and energy of the two identical particles.

Now,

u′
ia = v = −u′

ib (15.90)

and

ufa = v′ = u′
fb (15.91)

by definition in the center of mass system.

A moments quiet reflection (egad, another pun!) should convince you

that in terms of the general transformation:

M(v)v −M(v)v = M(v′)v′ −M(v′)v′ (15.92)



Figure 15.4: θ′ = 30◦ and β2 = 1
3
. The dashed lines are the results of a

Gallilean transformation from K ′ to K. Note that the scattering is more

forward than expected because of the Lorentz contraction of the longitudinal

distances seen by the particles.

E(v) + E(v) = E(v′) + E(v′). (15.93)

For what it is worth, if the collision is elastic and the particles are identical

before and after the collision, v = v′ and all the mass terms are the same.

We will denote the scattering angle in K ′ as θ′.

We thus begin with

M(v)v −M(v)v = M(v)v −M(v)v (15.94)

E(v) + E(v) = E(v) + E(v) (15.95)

where v is the speed of the incoming and outgoing particles. Now, M(v)

must be a scalar function of v, and in the limit v → 0 must turn into

lim
v→0

M(v) = m. (15.96)

The only scalar function of v we have encountered so far with this behavior

is γ(v), so we should sensibly guess

M(v) = γ(v)m (15.97)

which has the exactly correct limiting behavior.



Thus

p = γmu (15.98)

is a reasonable guess to be the generalization of momentum we seek. It is

easy to verify that this is a consistent choice, and that it indeed results in

conservation of momentum in all inertial frames.

To get the energy equation, we use the same approach. Recall that a

binomial expansion of γ is given by

lim
v→0

γ(v) =

(

1 − v2

c2

)−1/2

= 1 +
1

2

v2

c2
+ . . . (15.99)

We need to keep the first non–constant term because we recall that physics

is always “independent” of absolute energy scale. Then it should be clear

that

lim
v→0

E(v) = γ(v)E(0) ≈ E(0) +
1

2
E(0)

v2

c2
≈ E(0) +

1

2
mv2 (15.100)

as it must in order to yield the low velocity limit of kinetic energy if and

only if

E(0) = mc2. (15.101)

There are several questions to be answered at this point, some experi-

mentally and some theoretically. We need to measure the rest masses and

theoretically verify that only this transformation correctly preserves the en-

ergy momentum conservation laws in elastic collisions as required. Beyond

that, there are still some uncertainties. For example, there could in princi-

pal be an additional constant energy added to the energy term that was not

scaled by γ and the laws of physics would still be expressible, since they are

not sensitive to absolute energy scale. We will take advantage of that free-

dom in several instances to add or subtract an infinite theoretical constant

in order to make the rest mass come out to the observed experimental mass

m. This is called renormalization.

To obtain the same result a different way, we turn to the notation of

4–vectors. We observe that the common factor of γ above in both E and

p also occurs when one makes velocity into a four vector. This suggests

that energy and momentum can similarly be made into four vectors that



transform like the coordinates under a boost. If we try the combination

p0 = mcU0 =
E

c
(15.102)

p = mU (15.103)

we see that it works exactly. It results in an invariant

p2
0 − p · p = (mc)

2. (15.104)

It is easy to see the value of the invariant when v = 0; you should verify

explicitly that it holds when v 6= 0 as well. Practically speaking, it suffices

to show that this length is invariant when one wishes to show that its com-

ponents transform like the coordinates under the action of a boost (why is

that?).

The total energy can thus be expressed in terms of the three momentum

as

E =
√

c2p2 +m2c4. (15.105)

Finally, it is sometimes convenient to be able to get the velocity of the

particle in terms of its energy and momentum

u =
c2p

E
(15.106)

which follows directly from the definitions.

This completes our review of “elementary relativity theory”. We shall

now proceed to develop the theory in a new, geometric language which is

suitable to our much more sophisticated needs. To do this, we will need to

begin by generalizing the notion of a four dimensional vector space with a set

of transformations that leave an appropriately defined “length” invariant.





Chapter 16

The Lorentz Group

16.1 The Geometry of Space–Time

Recall that a great deal of simplification of the kinematics of classical non–

relativistic mechanics occurs when one considers the group structure of trans-

formations with respect to the underlying coordinates. Specifically, the

group of inversions, translations and rotations of a given coordinate

system leave the norm (length) of a given vector invariant. These transfor-

mations form the Euclidean group in three dimensions, E3.

For those of you who led deprived childhoods, a group G is a set of math-

ematical objects (a, b, c . . .) with a rule of composition, or group product,

(a ◦ b) such that:

1. Every product of a pair of elements in the group is also in the group.

That is, if a, b ∈ G then c = a◦b ∈ G). This property is called closure.

2. The group must contain a special element called the identity I ∈ G
such that a ◦ I = a for all a ∈ G.

3. Every element of the group G must have an inverse, also in G. If

a ∈ G then ∃a−1 ∈ G such that a ◦ a−1 = I.

4. The group product must be associative. That is, a◦ (b◦ c) = (a◦ b) ◦
c, ∀a, b, c ∈ G.
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If the group product commutes (a ◦ b = b ◦ a) the group is said to

be Abelian1 otherwise the group is said to be non–Abelian, which is

sensible enough. A Lie group is a continuous group2 such as the group

of infinitesimal transformations. It necessarily has an uncountable infinity

of elements. There are also discrete (but countably infinite) groups, finite

groups, and everything in between. There are also “semi–groups” (which

do not, for example, contain an inverse). Finally, one can construct “non–

associative” structures like groups from non–associative algebras like the

octonions. Multiplication over the reals forms a continuous Abelian group.

Rotations form a non–Abelian Lie group. Multiplication over rational num-

bers forms a countably infinite group. The set of rotations and inversions

that leave a square invariant form a finite (point) group. The “renormaliza-

tion group” you will hear much about over the years is not a group but a

semi–group — it lacks an inverse.

However, our purpose here is not, however, to study group theory per se.

One could study group theory for four years straight and still only scratch

the surface. It is somewhat surprising that, given the importance of group

theory in physics, we don’t offer a single course in it, but then again, it’s

not that surprising...

With that in mind, we can decide what we are looking for. We seek

initially the set of transformations in four dimensions that will leave

s2 = x2
0 − (x · x) (16.1)

invariant for a single event x with respect to a particular coordinate origin.

These transformations form a group called the homogeneous Lorentz

group. It consists of ordinary rotations in the spatial part, the Lorentz

transformations we have just learned that mix space and time, and several

discrete transformations such as space inversion(s) and time inversion.

The set of transformations that leave the quantity

s2(x, y) = (x0 − y0)
2 −

{

(x1 − y1)
2 + (x2 − y2)

2 + (x3 − y3)
2)
}

(16.2)

invariant form the inhomogeneous Lorentz3 or Poincaré group. It con-

sists of the homogeneous group (including the “improper” transformations

1Wikipedia: http://www.wikipedia.org/wiki/Abelian group. ;
2Wikipedia: http://www.wikipedia.org/wiki/Lie group. ,
3Wikipedia: http://www.wikipedia.org/wiki/Lorentz group. ,

http://www.wikipedia.org/wiki/Abelian group
http://www.wikipedia.org/wiki/Lie group
http://www.wikipedia.org/wiki/Lorentz group


that include spatial reflection and time reversal) and uniform translations of

the origin. If anyone cares, the Lorentz group is the generalized orthogonal

group O(1,3). The proper subgroup of the Lorentz group (the one that is

simply connected spatially (no odd inversions) and contains the identity) is

SO(1,3) the special orthogonal group. If time’s direction is also preserved we

add a +, SO+(1,3). This nomenclature is defined here for your convenience

but of course the wikinote reference contains active links to a lot of this in

detail.

We will define s(x, y) to be the norm of relativistic space–time. This

quantity may be considered to be the invariant “distance” (squared) be-

tween two events, x and y, and of course is one of the fundamental objects

associated with the construction of differentials. Since quantities that are

unchanged by a geometric transformation are called scalars it is evident that

s(x, y) is a 4–scalar. Since the first postulate states that the laws of physics

must be invariant under homogeneous (at least) Lorentz transformations,

they must ultimately be based on Lorentz scalars. Indeed, the Lagrangian

densities upon which field theories are based are generally constructed to be

Lorentz scalars. This is a strong constraint on allowed theories.

These scalars are, however, formed out of 4–vectors (as we see above)

or, more generally, the contraction of 4–tensors. We must, therefore, deter-

mine the general transformation properties of a tensor of arbitrary rank to

completely determine a theory. In the part of this book devoted to mathe-

matical physics is an entire chapter that discusses tensors, in particular the

definitions of covariant and contravariant tensors, how to contract (Einstein

sum) pairs of tensors to form tensors of lower rank, and the role of the metric

tensor in defining tensor coordinate frames and transformations thereupon.

We will not repeat this review or introduction (depending on the student)

and urge students to at this time spend an hour or so working through this

chapter before continuing (even if you’ve seen it before).



16.2 Tensors in 4 Dimensions

Let us now consider the specific nature of tensors on four-dimensional space-

time. Tensors of rank k4 are categorized (for each coordinate index) by

their transformation properties relative to a transformation of the underlying

coordinate system x → x′ as defined above. This transformation is implicit

in all the discussion below.

A scalar (tensor of rank zero) is unchanged by such a transformation.

This is not a trivial statement! It is trivial for scalar numbers like π, no

doubt, but in physics the interesting part of this requirement occurs when

discussing the scalars that result algebraically from fully contracting prod-

ucts of tensors over all of their indices using the metric tensor. This will be

made quite clear below.

For a vector (tensor of rank one) we have two possibilities. Either it

transforms like the coordinate itself and we have a

contravariant vector (A0, A1, A2, A3) such that

Aα =
∂x̄α

∂xβ
Aβ (16.3)

(noting that all the indices are on top, along with the new primed coordi-

nate). This makes the differential transformation relationship to the un-

derlying ordinary (contravariant) coordinates explicit and is obviously an

identity for those coordinates.

Alternatively, we have a

covariant vector (B0, B1, B2, B3) such that

Bα =
∂xβ

∂x̄α
Bβ (16.4)

(with the coordinate indices on top and the new primed coordinate on the

bottom). Again, note that this is precisely what we expect – the transfor-

mation is in the opposite sense of that of the underlying coordinates. We

need in both cases, of course, to figure out the matrix of e.g. ∂xβ

∂xα explicitly.

4The rank of a tensor is determined by the number of indices it has. Scalars are 0th

rank, vectors are 1st rank, 2D matrices are 2nd rank, and our old friend ǫijk is a third

rank fully antisymmetric tensor.



In a moment we will see explicitly what exactly the difference is between

these two types of first rank tensors. First, however, we should note that

contravariant tensors of rank 2 transform like

F αβ =
∂x̄α

∂xγ

∂x̄β

∂xδ
F γδ. (16.5)

Similarly, we have

covariant tensors of rank 2

Gαβ =
∂xγ

∂x̄α

∂xδ

∂x̄β
Gγδ (16.6)

and

mixed tensors of rank 2

Hα
β =

∂x̄α

∂xγ

∂xδ

∂x̄β
Hγ

δ . (16.7)

It is clearly a trivial exercise to determine the co/contra variant transfor-

mation properties of higher rank tensors. We can form higher rank tensors

by means of an outer (dyadic) product, where we simply take two tensors

of some rank and multiply them out componentwise, preserving products of

any underlying basis vectors as they occur. For example we can construct a

second rank tensor by:

F αβ = AαBβ (16.8)

where α and β run over the full range of index values. Note well that this

defines a square matrix in this case of basis vector dyads as objects such as

x̂x̂, x̂ŷ, ... occur.

One important question is whether all e.g. second rank tensors can be

written as products of first rank tensors. It is not the general case that

this is possible, but in many of our uses of these ideas in physics it will

be. In this case the generalized product forms a division algebra where

we can factor e.g. second rank tensors into first rank tensors in various

ways. Division algebras are discussed in the Mathematical Physics section

as well, and interested students should return there to read about geometric



algebras, the result of fully generalizing the notion of complex numbers to

complex spaces of arbitrary dimension while preserving the factorizability

of the algebraic objects.

In addition to extending the rank of tensor objects by forming dyadic,

triadic, or n-adic products of tensors, we can reduce the rank of tensors

by means of a process called contraction. A contraction of two tensors is

the result of setting two of the indices (typically they must be a covari-

ant/contravariant pair) to be equal and performing the Einstein summation

over the shared range. This reduces the rank of the expression by one rela-

tive to that of its constituents, hence the term “contraction”. An expression

can be contracted over several components at a time when doing algebra so

second rank tensors can be contracted to form a 4-scalar, for example, or

third rank tensors can be contracted to first.

Our familiar notion of multiplying a vector by a matrix to produce a

vector in proper tensor language is to form the outer product of the matrix

(second rank tensor) and the vector (first rank tensor), set the rightmost

indices to be equal and sum over that index to produce the resulting first

rank tensor.

Hence we define our scalar product to be the contraction of a covari-

ant and contravariant vector.

B ·A = BαA
α (16.9)

Note that I’ve introduced a sort of “sloppy” convention that a single quantity

like B or A can be a four-vector in context. Clearly the expression on the

right side is less ambiguous!

Then:

B′ · A′ =
∂xγ

∂x̄α
Bγ

∂x̄α

∂xδ
Aδ

=
∂xγ

∂xδ
BγA

δ

= δγδBγA
δ

= BδA
δ = B ·A (16.10)

and the desired invariance property is proved. Hmmm, that was pretty easy!

Maybe there is something to this notation thing after all!



16.3 The Metric Tensor

The section above is still very generic and little of it depends on whether

the tensors are three or four or ten dimensional. We now need to make

them work for the specific geometry we are interested in, which is one where

we will ultimately be seeking transformations that preserve the invariant

interval:

(ds)2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 (16.11)

as this is the one that directly encodes an invariant speed of light.

From this point on, we must be careful not to confuse x · x = x2 and

x2 = y, etc. Contravariant indices should be clear from context, as should be

powers. To simplify life, algebraically indices are always greek (4–vector) or

roman italic (3–vector) while powers are still powers and hence are generally

integers.

Let us write this in terms of only contravariant pieces dxµ. This requires

that we introduce a relative minus sign when contracting out the components

of the spatial part of the differential only. We can most easily encode this

requirement into a special matrix (tensor) called the metric tensor as:

(ds)2 = gαβ dx
αdxβ (16.12)

The tensor g obviously satisfies the following property:

gαβ = gβα (16.13)

(that is, it is symmetric) because the multiplication in the Einstein sum-

mation is ordinary multiplication and hence commutative. It is called the

metric tensor because it defines the way length is measured.

At this point if we were going to discuss general relativity we would

have to learn what a manifold5 s. Technically, a manifold is a coordinate

system that may be curved but which is locally flat. By locally flat I mean

very specifically that one can cover the entire space with “patches” in the

neighborhood of points where the coordinate system is locally Euclidean

(e.g. Cartesian). An example of a curved space manifold is the surface

of a sphere (think the surface of the earth). When we look down at the

5Wikipedia: http://www.wikipedia.org/wiki/Manifold. i

http://www.wikipedia.org/wiki/Manifold


ground beneath our feet, it looks quite flat and we can draw triangles on it

that appear to have interior angles that sum to π and we can draw a map

of (say) our county that more or less accurately encodes distances on the

ground in terms of distances measured on the map. However, if we take

too big a patch all of this breaks down. The angles in a triangle sum to

strictly more than π radians. Maps have to be distorted and chopped into

pieces to correctly represent distances on the ground as distances on the flat

2-dimensional map. This is how a manifold works – we can work with it in

the local neighborhood of any point as if it is flat, but if we go too far we have

to work harder and correct for its curvature, where “too far” is obviously

defined in terms of the scale of its curvature and some common sense.

General relativity introduces the hypothesis that gravitational fields bend

space-time. However, this bending is very, very slight unless one is in a very

strong gravitational field, and this bending preserves a local smoothness of

space-time so that space-time, although it is no longer strictly Euclidean, is

still a manifold and we can do all sorts of transformations in a very general

way as long as we restrict the results to a locally flat patch.

In our discussion of special relativity we will assume from the beginning

that our space–time is flat and not bent by strong gravitational fields. In

this case the metric tensor can be expressed in a very simple form. We

will use the Lorentz metric (as opposed to the Minkowski metric that uses

x4 = ict instead of x0). Using our definitions of the µ = 0, 1, 2, 3 coordinates,

g in the differentials above is just:

g00 = 1, g11 = g22 = g33 = −1 (16.14)

and we see that it is not just symmetric, it is diagonal.

The contravariant and mixed metric tensors for flat space–time are the

same (this follows by considering the ∂xα

∂xβ coordinate transformation matrices

that define co- and contra-variance):

gαβ = gβ
α = gαβ. (16.15)

Finally, the contraction of any two metric tensors is the “identity” tensor,

gαγg
γβ = δβ

α = δαβ = δαβ. (16.16)

Since we want (ds)2 to be (to contract to) a scalar, it is clear that:

xα = gαβx
β (16.17)



xα = gαβxβ (16.18)

or the metric tensor can be used to raise or lower arbitrary indices, converting

covariant indices to contravariant and vice–versa:

F µαν = gαβF µν
β (16.19)

This is an important trick! Note well that in order to perform a contraction

that reduces the rank of the expression by one, the indices being summed

must occur as a co/contra pair (in either order). If both are covariant,

or both are contravariant, one or the other must be raised or lowered by

contracting it with the metric tensor before contracting the overall pair! We

use this repeatedly in the algebra in sections below.

Finally we are in a position to see how covariant and contravariant vectors

differ (in this metric). We have already seen that “ordinary” vectors must

linearly transform like contravariant vectors. Given a contravariant vector

(A0, A1, A2, A3) we thus see that

A0 = A0, A1 = −A1, A2 = −A2, A3 = −A3 (16.20)

or

Aα = (A0,A), Aα = (A0,−A). (16.21)

Covariant vectors are just spatially inverted contravariant vectors. Note that

this definition, together with our definition of the general scalar product,

reconstructs the desired invariant:

B ·A = BαA
α = (B0A0 − B · A) (16.22)

This tells us how ordinary quantities transform. However, we are also

interested in how tensor differentials transform, since these are involved in

the construction of a dynamical system. By considering the chain rule we

see that
∂

∂x̄α
=
∂xβ

∂x̄α

∂

∂xβ
(16.23)

or, differentiation by a contravariant coordinate transforms like a covari-

ant vector operator. This is more or less the definition of covariant, in

fact. Similarly, differentiation with respect to a covariant vector coordinate



transforms like a contravariant vector operator. This also follows from

the above by using the metric tensor,

∂

∂xα
= gαβ

∂

∂xβ
. (16.24)

It is tedious to write out all of the pieces of partial derivatives w.r.t. vari-

ous components, so we (as usual, being the lazy sorts that we are) introduce

a “simplifying” notation. It does, too, after you get used to it.

∂α =
∂

∂xα
= (

∂

∂x0
,−∇) (16.25)

∂α =
∂

∂xα
= (

∂

∂x0
,+∇). (16.26)

Note that we have cleverly indicated the co/contra nature of the vector

operators by the placement of the index on the bare partial.

We cannot resist writing down the 4–divergence of a 4–vector:

∂αAα = ∂αA
α =

∂A0

∂x0
+ ∇ · A =

1

c

∂A0

∂t
+ ∇ · A (16.27)

which looks a lot like a continuity equation or a certain well–known gauge

condition. (Medidate on just what Aµ would need to be for either of these

equations to be realized as a four-scalar). Hmmmmmm, I say.

Even more entertaining is the 4–Laplacian, called the D’Lambertian op-

erator:

2 = ∂α∂
α =

∂2

∂x02
−∇2 (16.28)

=
1

c2
∂2

∂t2
−∇2 (16.29)

which just happens to be the (negative of the) wave operator! Hmmm-

mmmmm! By strange coincidence, certain objects of great importance in

electrodynamics “just happen” to be Lorentz scalars! Remember that I did

say above that part of the point of introducing this lovely tensor notation

was to make the various transformational symmetries of physical quantities

manifest, and this appears to be true with a vengeance!

That was the “easy” part. It was all geometry. Now we have to do the

messy part and derive the infinitesimal transformations that leave scalars in

this metric invariant.



16.4 Generators of the Lorentz Group

Let

x =













x0

x1

x2

x3













(16.30)

be a column vector. Note that we no longer indicate a vector by using a

vector arrow and/or boldface – those are reserved for the spatial part of the

four-vector only. Then a “matrix” scalar product is formed in the usual way

by

(a, b) = ãb (16.31)

where ã is the (row vector) transpose of a. The metrix tensor is just a

matrix:

g =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













(16.32)

and g2 =
⇔
I . Finally,

gx =













x0

−x1

−x2

−x3













=













x0

x1

x2

x3













. (16.33)

In this compact notation we define the scalar product in this metric to

be

a · b = (a, gb) = (ga, b) = ãgb = aαgαβb
β = aαbα. (16.34)

We seek the set (group, we hope) of linear transformations that leaves

(x, gx) = x · x invariant. Since this is the “norm” (squared) of a four vec-

tor, these are “length preserving” transformations in this four dimensional

metric. That is, we want all matrices A such that

x′ = Ax (16.35)

leaves the norm of x invariant,

x′ · x′ = x̃′gx′ = x̃gx = x · x (16.36)



or

x̃ÃgAx = x̃gx (16.37)

or

ÃgA = g. (16.38)

Clearly this last condition is sufficient to ensure this property in A.

Now,

det
∣

∣

∣ÃgA
∣

∣

∣ = det |g| (det |A|)2 = det |g| (16.39)

where the last equality is required. But det |g| = −1 6= 0, so

det |A| = ±1 (16.40)

is a constraint on the allowed matrices (transformations) A. There are

thus two classes of transformations we can consider. The

proper Lorentz transformations with det |A| = +1; and

improper Lorentz transformations with det |A| = ±1.

Proper L. T.’s contain the identity (and thus can form a group by them-

selves), but improper L. T.’s can have either sign of the determinant. This

is a signal that the metric we are using is “indefinite”. Two examples of im-

proper transformations that illustrate this point are spatial inversions (with

det |A| = −1) and A = −I (space and time inversion, with det |A| = +1).

In very general terms, the proper transformations are the continuously

connected ones that form a Lie group, the improper ones include one or

more inversions and are not equal to the product of any two proper trans-

formations. The proper transformations are a subgroup of the full group —

this is not true of the improper ones, which, among other things, lack the

identity. With this in mind, let us review the properties of infinitesimal lin-

ear transformations, preparatory to deducing the particular ones that form

the homogeneous Lorentz group.

16.4.1 Infinitesimal Transformations

We seek (Lie) groups of continous linear transformations,

x′ = Tax (16.41)



or

x′µ = fµ(x; a) (16.42)

for µ = 1, 2, . . . n. We require that the a = a1, . . . , ar are r real numbers

(parameters) that characterize the transformation. r must be minimal

(“essential”).

Examples of transformations of importance in physics (that you should

already be familiar with) include

x′ = Tdx

= x+ d (16.43)

where d = (d1, . . . , dn). This is the (n parameter) translation group in n

dimensions. Also,

x′i = Rijx
j (16.44)

where

RR̃ = I, det |R| > 0, i = 1, 2, 3 (16.45)

is the (three parameter) rotation group.

An infinitesimal transformation in one of the parameters is defined

by

Ta(0)+ǫ = Iǫ + O(ǫ2). (16.46)

In this definition, a(0) are the (r–parameter) values associated with the iden-

tity transformation I. These can be chosen to be zero by suitably choosing

the parameter coordinates. The infinitesimal parameters ǫu are taken to

zero, so that ǫ2 = ǫuǫu (summed) is neglible. Thus

Iǫ = I + ǫuQu (16.47)

where

Qu = fµu(x)
∂

∂xµ
(16.48)

and

fµu(x) =
∂fµ(x, a)

∂au

∣

∣

∣

∣

∣

a=a(0)

. (16.49)

Putting this all together,

x′ = (Ta(0)+ǫ)x = (I + ǫuQu)x

= Ix+ ǫuQux

= x+ ǫu
∂fµ(x, a)

∂au

∣

∣

∣

∣

∣

a=a(0)

∂x

∂xµ
(16.50)



(summed over µ = 0, . . . , 3 in four dimensional space–time and u = 0, . . . , r).

Thus (unsurprisingly)

x′µ = xνδµ
ν + ǫu

∂f ν

∂au

∣

∣

∣

∣

∣

a=a(0)

gµ
ν (16.51)

which has the form of the first two terms of a Taylor series. This is charac-

teristic of infinitesimal linear transformations.

One can easily verify that

IǫIǫ′ = Iǫ′Iǫ (16.52)

(infinitesimal transformations commute) and that

I−1
ǫ = I−ǫ (16.53)

(to order ǫ2). They thus have an identity, an inverse, and can be shown to

be associative.

The continuous transformation group (mentioned above) follows imme-

diately from making du (the displacement of coordinates) infinitesimal and

finding finite displacements by integration. The rotation group (matrices)

are a little trickier. They are

Iǫ = I + gS (16.54)

where

S̃ = −S, Sij = ǫk
∂Rij

∂ak

∣

∣

∣

∣

∣

a(0

. (16.55)

The infinitesimal S are antisymmetric and traceless (in 3D), so they have

only three independent parameters (that are thus “essential”). We can write

them generally as

Sij = ǫijk dωk (16.56)

where the dωk is the infinitesimal parameter and where ǫijk is the antisym-

metric unit tensor. Thus, if

dxi = x′i − xi = Sijxj = ǫijk xj dωk (16.57)

we see that

dx = x × dω (16.58)



A moment of thought should convince you that dω is the infinitesimal (vec-

tor) rotation angle, with direction that points along the axis of rotation.

To obtain the rotation group we must show that every rotation can be

obtained by integrating Idω. This follows by writing an arbitrary rotation or

product of rotations as a single rotation about a fixed axis. For dω parallel

to this axis Ω, this is obviously true, as I show next. Since any rotation can

be written this way, the rotations indeed form a group.

The integration proceeds like:

RΩ = lim
∆ω→0

(R∆ω)Ω/∆ω (16.59)

where ∆ω = |∆ω| and Ω = |Ω|. We can parameterize this as

RΩ = lim
m→∞

(I +
1

m
ΩS0)

m = eΩS0 (16.60)

where

(S0)ij = ǫijk
∆ωk

∆ω
. (16.61)

Believe it or not, this was one of the primary things we wanted to show

in this aside. What it shows is that rotations about an arbitrary axis can

be written as an exponential that can be thought of as the infinite product

of a series of infinitesimal transformations where each transformation has

various nice properties.

With these known results from simpler days recalled to mind, we return

to the homogeneous, proper Lorentz group. Here we seek the infinitesimal

linear transformations, etc. in four dimensions. Algebraically one proceeds

almost identically to the case of rotation, but now in four dimensions and

with the goal of preserving length in a different metric. A general infinites-

imal transformation can be written compactly as:

Iǫ = I + gL (16.62)

where (as before) g̃L = −gL (and hence gL is traceless), L is infinitesimal,

and where g is the usual metric tensor (that follows from all the annoying

derivatives with respect to the parameters and coordinates).

Thus

A = lim
m→∞

(

I +
1

m
L
)m

= eL (16.63)



defines the form of a general transformation matrix associated with a given

“direction” in the parameter space constructed from an infinite product of

infinitesimal transformations, each of which is basically the leading term

of a Taylor series of the underlying coordinate function transformation in

terms of the parameters. This justifies the “ansatz” made by Jackson. The

matrices L are called the generators of the linear transformation.

Thus, whenever we write

A = eL (16.64)

where the L’s are (to be) the generators of the Lorentz group transformations

we should remember what it stands for. Let’s find the distinct L. Each one

is a 4×4 real, traceless matrix that is (as we shall see) antisymmetric in the

spatial part (since gL is antisymmetric from the above).

To construct A (and find the distinct components of L) we make use of

its properties. Its determinant is

det |A| = det
∣

∣

∣(eL)
∣

∣

∣ = eTr L = ±1 (16.65)

(This follows from doing a similarity transformation to put A in diagonal

form. L is necessarily then diagonal. Similarity transformations do not alter

the determinant, because

det
∣

∣

∣S−1MS
∣

∣

∣ = det
∣

∣

∣S−1
∣

∣

∣ det |M | det |S| = det |M | . (16.66)

If L is diagonal, then the last equation follows from the usual properties of

the exponential and the definition of the exponential of a matrix.)

If L is real then det |A| = −1 is excluded by this result. If L is traceless

(and only if, given that it is real), then

det |A| = +1 (16.67)

which is required to be true for proper Lorentz transformations (recall from

last time). Making L a traceless 4x4 matrix therefore suffices to ensure that

we will find only proper Lorentz transformations.

Think back to the requirement that:

ÃgA = g (16.68)



in order to preserve the invariant interval where

g =













1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1













(16.69)

and L is a real, traceless, 4 × 4 matrix.

If we multiply from the right by A−1 and the left by g, this equation is

equivalent also to

gÃg = A−1. (16.70)

Since Ã = eL̃, A−1 = e−L, and I = g2:

gÃg = eg2L̃ = egL̃g = e−L (16.71)

or

gL̃g = −L. (16.72)

(This can also easily be proven by considering the “power series” or product

expansions of the exponentials of the associated matrices above, changing

the sign/direction of the infinitesimal series.)

Finally, if we multiply both sides from the left by g and express the left

hand side as a transpose, we get

g̃L = −gL. (16.73)

From this we see that the matrix gL is traceless and antisymmetric as

noted/expected from above. If we mentally factor out the g, we can without

loss of generality write L as:

L =













0 L01 L02 L03

L01 0 L12 L13

L02 −L12 0 L23

L04 −L13 −L23 0













. (16.74)

This matrix form satisfies all the constraints we deduced above for the gen-

erators. Any L of this form will make an A that preserves the invariant

interval (length) of a four vector. There are exactly six essential param-

eters as expected. Finally, if we use our intuition, we would expect that



the Lij for i, j = 1, 2, 3 form the rotation subgroup and describe physical

rotations.

So this is just great. Let us now separate out the individual couplings

for our appreciation and easy manipulation. To do that we define six fun-

damental matrices (called the generators of the group from which we can

construct an arbitrary L and hence A. They are basically the individual

matrices with unit or zero components that can be scaled by the six param-

eters Lµν . The particular choices for the signs make certain relations work

out nicely:

S1 =













0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0













(16.75)

S2 =













0 0 0 0

0 0 0 1

0 0 0 0

0 −1 0 0













(16.76)

S3 =













0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0













(16.77)

K1 =













0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0













(16.78)

K2 =













0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0













(16.79)

K3 =













0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0













. (16.80)



The matrices Si generate rotations in the spatial part and the matrices Ki

generate boosts. Note that the squares of these matrices are diagonal and

either +1 or −1 in the submatrix involved:

S2
1 =













0 0 0 0

0 0 0 0

0 0 −1 0

0 0 0 −1













(16.81)

and

K2
1 =













1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0













, (16.82)

etc. From this we can deduce that

S3
i = −Si (16.83)

K3
i = Ki. (16.84)

Note that these relations are very similar to the multiplication rules for unit

pure complex or pure real numbers.

The reason this is important is that if we form the dot product of a

vector of these generators with a spatial vector (effectively decomposing a

vector parameter in terms of these matrices) in the exponential expansion,

the following relations can be used to reduce powers of the generators.

(ǫ̂ · S)3 = −ǫ̂ · S (16.85)

and

(ǫ̂ · K)3 = ǫ̂ · K (16.86)

In these expressions, ǫ̂ an arbitrary unit vector, and these expressions effec-

tively match up the generator axes (which were arbitrary) with the direction

of the parameter vector for rotation or boost respectively. After the reduc-

tion (as we shall see below) the exponential is, in fact, a well-behaved and

easily understood matrix!

It is easy (and important!) to determine the commutation relations of

these generators. They are:

[Si, Sj ] = ǫijkSk (16.87)

[Si, Kj ] = ǫijkKk (16.88)

[Ki, Kj ] = −ǫijkSk. (16.89)



The first set are immediately recognizable. They tells us that “two rotations

performed in both orders differ by a rotation”. The second and third show

that “a boost and a rotation differ by a boost” and “two boosts differ by a

rotation”, respectively. In quotes because that is somewhat oversimplified,

but it gets some of the idea across.

These are the generators for the groups SL(2, C) or O(1, 3). The latter

is the group of relativity as we are currently studying it.

A question that has been brought up in class is “where is the factor

i in the generators of rotation” so that S × S = iS as we might expect

from considering spin and angular momentum in other contexts. It is there,

but subtly hidden, in the fact that S2
i = −Ii in the projective block of the

rotation matrices only. Matrices appear to be a way to represent geometric

algebras, as most readers of this text should already know from their study

of the (quaternionic) Pauli spin matrices. We won’t dwell on this here, but

note well that the Pauli matrices I, σ1, σ2, σ3 are isomorphic to the unit

quaternions 1, i, j, k via the mapping I → 1, σ1σ2 → i, σ3σ1 → j, σ2σ3 → k

as the reader can easily verify6 Note well that:

σ3σ1 =

(

0 1

−1 0

)

(16.90)

is both real and, not at all coincidentally, the structure of an S sub-block.

With these definitions in hand, we can easily decompose L in terms of

the S and the K matrices. We get:

L = −ω · S − ξ · K (16.91)

where ω is a (finite) rotation around an axis in direction ω̂ and where ξ is

a (finite) boost in direction ξ̂. Thus the completely general form of A is

A = e−ω·S−ξ·K . (16.92)

The (cartesian) components of ω and ξ are now the six free parameters of

the transformation.

6And should! That’s right, you students, you know who I’m talking to. So here’s

a question for you: Are I, σ3σ1 a real isomorphism to complex numbers? What would

the various results of the introduction to complex numbers look like expressed in terms

of these two matrices? What in particular does multiplying by a unimodular “complex

number” such as cos(θ)I + sin(θ)σ3σ1 look like? Hmmm... veeeery interesting.



Let us see that these are indeed the familiar boosts and rotations we are

used to. After all, this exponential notation is not transparent. Suppose

that ω = 0 and ξ = ξx̂. Then L = −ξK1 and

A = eL = I − ξK1 +
1

2!
(ξK1)

2 − 1

3!
(ξK1)

3 + . . .

= (I −K2
1) −K1(ξ +

1

3!
ξ3 + . . .) +K2

1 (I +
1

2!
ξ2 + . . .)

= (I −K2
1) −K1 sinh(ξ) +K2

1 cosh(ξ) (16.93)

or (in matrix form)

A =













cosh(ξ) − sinh(ξ) 0 0

− sinh(ξ) cosh(ξ) 0 0

0 0 0 0

0 0 0 0













. (16.94)

which (ohmygosh!) is our old friend the Lorentz transformation, just like

we derived it a la kiddy–physics–wise. As an exercise, show that the ω =

ωx̂, ξ = 0 result is a rotation around the x axis. Note that the step of

“adding and subtracting” S2
1 is essential to reconstructing the series of the

sine and cosine, just like the K1 was above for cosh and sinh.

Now, a boost in an arbitrary direction is just

A = e−ξ·K . (16.95)

We can certainly parameterize it by

ξ = β̂ tanh−1 β (16.96)

(since we know that β = ξ̂ tanh ξ, inverting our former reasoning for |β| ∈
[0, 1]. Then

A(β) = e−β̂·K tanh−1 β. (16.97)

I can do no better than quote Jackson on the remainder:

“It is left as an exercise to verify that . . . ”

A(β) =















γ −γβ1 −γβ2 −γβ3

−γβ1 1 +
(γ−1)β2

1

β2

(γ−1)β1β2

β2 ·
· − (γ−1)β1β2

β2 · ·
· · · ·















(16.98)



(etc.) which is just the explicit full matrix form of

x0′ = γ(x0 − β · x) (16.99)

x′ = x +
(γ − 1)

β2
(β · x)β − γβx0 (16.100)

from before.

Now, we have enough information to construct the exact form of a simul-

taneous boost and rotation, but this presents a dual problem. When we go

to factorize the results (like before) the components of independent boosts

and rotations do not commute! If you like,

A(β, 0)A(0,ω) 6= A(0,ω)A(β, 0) (16.101)

and we cannot say anything trivial like

A(β,ω) = A(β, 0)A(0,ω) (16.102)

since it depends on the order they were performed in! Even worse, the

product of two boosts is equal to a single boost and a rotation (if the boosts

are not in the same direction)!

The worst part, of course, is the algebra itself. A useful exercise for the

algebraically inclined might be for someone to construct the general solution

using, e.g. – mathematica.

This suggests that for rotating relativistic systems (such as atoms or

orbits around neutron stars) we may need a kinematic correction to account

for the successive frame changes as the system rotates.

The atom perceives itself as being “elliptically deformed”. The conse-

quences of this are observable. This is known as “Thomas precession”.

16.5 Thomas Precession

We must begin our discussion by noting that the magnetic moment of an

electron is (according to the “Uhlenbeck-Goudsmit hypothesis”)

µ =
ge

2mc
s (16.103)



where s is the (half integer) spin of the electron in units of h̄ and where g is

the “g–factor” introduced to accomodate two distinct results. The splitting

of the observed spectra in an applied magnetic field B via the anomalous

Zeeman interaction:

UAZ = − ge

2mc
s · B (16.104)

was correctly predicted only if g = 2. On the other hand (as we shall see),

the simple classical argument that led to this result also led to a spin orbit

interaction

USO =
g

2m2c2
(s · L)

1

r

dV

dr
(16.105)

(where L = m(r×v) is the orbital angular momentum of the electron) that

was a factor of, curiously enough, 2 too large. That is, the fine–structure

intervals observed in nature were only half the theoretically predicted values.

If g = 1 was chosen instead, the splittings were correct but the Zeeman effect

was then normal (instead of anomalous, as observed).

I don’t have the time to go into more detail on, for example, what the

Zeeman effect (splitting of energy levels in an applied magnetic field) is. In

any event, it is strictly a quantum effect, and you should study it soon in

elementary quantum theory, if you haven’t already.

Thomas (who taught for years over at NC State) showed in 1927 that

the discrepancy is due to a relativistic kinematic correction like that we

previously considered. In a nutshell, the rest frame of the electron rotates

as well as translates (boosts) and we must therefore take into account both

kinematical effects. This results in an additional (Thomas) “precession” of

the frames. When Thomas precession is taken into account, not only are

both the fine structure and anomalous Zeeman effect in atoms accomodated,

but a deeper understanding of the spin–orbit interaction in nuclear physics

(and rotating frames in general) also results.

Let us begin by (náıvely) deriving the spin–interaction energy. Suppose

the electron moves with velocity v in external fields E and B. Then the

torque on the electron in its rest frame is just

(

ds

dt

)

rest frame

= µ × B′ (16.106)

where B′ is the magnetic field in that frame.



As we will show very soon, the magnetic field transforms like

B′ =
(

B − v

c
×E

)

(16.107)

to order v2/c2. Then
(

ds

dt

)

rest frame

= µ ×
(

B− v

c
×E

)

. (16.108)

Associated with this torque there is an interaction energy

U ′ = −µ ·
(

B − v

c
× E

)

. (16.109)

The electric force eE is very nearly the negative gradient of a spherically

averaged potential energy V (r). For one electron atoms this is exact; it is a

good approximation for all the others. Thus we will try using

eE = −r

r

dV

dr
(16.110)

in the equation for the spin interaction energy:

U ′ = − ge

2mc
s · B +

g

2m2c2
(s · L)

1

r

dV

dr
(16.111)

(where L = m(r × v) for the orbiting electron). This gives the anoma-

lous Zeeman effect correctly (from the first term) but the spin orbit (fine

structure) splitting is a factor of two too large. Too bad!

The error is, in a nutshell, that we have assumed the electron to be in a

“rest” frame (that is, a frame travelling in a straight line) when that frame

is, in fact, rotating. There is an additional correction to vector quantities

that arises from the rotation of the frame. This correction, in macroscopic

systems, gives rise to things like coriolis force.

Let us recall (from classical mechanics) that if a coordinate system ro-

tates at some angular velocity ω, the total rate of change of any vector

quantity is given by
(

dG

dt

)

non−rot

=

(

dG

dt

)

rest frame

+ ω ×G. (16.112)

This is a geometric relation that says that a vector in a non–rotating frame

is related to the same vector expressed in a (rotating) “rest” frame by adding



its time rate of change in direction resulting from the rotation of the frame.

A moment of quiet reflection should convince you that this should have the

magnitude

G
dθ

dt
and should be perpendicular to ω and G. This just adds the rotation of the

frame to the vector in the frame to get the vector in a non–rotated frame.

Well, as I noted above, the expression we have given above for the time

rate of change of the spin was correct for the field and moment expressed

in the rest frame of the electron. In the lab (non–rotating) frame, which is

where we measure its energy, we therefore should have:
(

ds

dt

)

non−rot

= s×
(

geB′

2mc
− ωT

)

(16.113)

where ωT is the angular velocity of the precession of the frames. This adds

a (s · ωT ) correction to the interaction energy:

U = − ge

2mc
s · B +

g

2m2c2
(s · L)

1

r

dV

dr
+ (s · ωT ). (16.114)

U is thus the laboratory potential energy of interaction. What, then, is the

correct value of ωT ?

To answer that we must consider carefully what defines the “rest” frame

of the accelerating electron. We will do so by chopping the motion of the

electron into infinitesimal segments. If the electron is moving at velocity

v(t) = cβ at any instant of time t, then at t+ δt the electron is moving at

v(t) = c(β + δβ). To get from the lab frame (x) to the instantaneous rest

frame of the electron (x′) we must therefore boost:

x′ = A(β)x (16.115)

(at t) or

x′′ = A(β + δβ)x (16.116)

(at t+ δt). Note that for each of these transformations, there is no rotation,

just the boost.

The coordinate frame precession is going to be determined by the Lorentz

transformation between these two (infinitesimally separated) results:

x′′ = ATx
′ (16.117)



where (as I hope is obvious)

AT = A(β + δβ)A−1(β) = A(β + δβ)A(−β). (16.118)

To evaluate this (in the limit of vanishing δt) we will pick an initial β along

the 1 direction and add to it δβ in the 1–2 plane. Clearly this is general,

for a suitable initial orientation of the coordinate system.

Then

A(−β) =













γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1













(16.119)

and (keeping only first order terms in δβ)

A(β + δβ) =















γ + γ3βδβ1 −(γβ + γ3δβ1) −γδβ2 0

−(γβ + γ3δβ1) γ + γ3βδβ1
(γ−1)

β
δβ2 0

−γδβ2
(γ−1)

β
δβ2 1 0

0 0 0 1















. (16.120)

We multiply these matrices together to obtain:

A(β + δβ) =















1 −γ2δβ1 −γδβ2 0

−γ2δβ1 1 (γ−1)
β
δβ2 0

−γδβ2
(γ−1)

β
δβ2 1 0

0 0 0 1















. (16.121)

(Note that the action of A(−β) is only in the upper left corner). Finally, if

we decompose this in terms of the S and K matrices, we get:

AT = I −
(

γ − 1

β2

)

(β × δβ) · S− (γ2δβ‖ + γδβ⊥) · K (16.122)

where δβ‖ and δβ⊥ are the components of δβ parallel to and perpendicular

to β, respectively.

To first order in δβ, we see that the total transformation AT is equivalent

to a boost and a rotation:

AT = A(∆β)R(∆Ω) (16.123)



which can be performed in either order (because they are “infinitesimal”

and hence commute to first order. In this expression,

A(∆β) = I − ∆β · K (16.124)

and

R(∆Ω) = I − ∆Ω · S. (16.125)

Obviously,

∆β = γ2δβ‖ + γδβ⊥ (16.126)

and

∆Ω =

(

γ − 1

β2

)

(β × δβ) =
γ2

γ + 1
β × δβ. (16.127)

Finally we see explicitly that at least for infinitesimal transformations,

a pure Lorentz boost A(β + δβ) is equivalent to a boost to an infinitesi-

mally differing frame A(β) followed by a simultaneous infinitesimal boost

and rotation.

Now comes the tricky part. The equation of motion for the spin that we

began with (in the “rest frame”) can be expected to hold provided that the

evolution of the rest frame is described by a series of infinitesimal boosts

alone (without rotations). In other words, we have to add the relativistic

equivalent of counterrotating the frames (like we did above with the ωT ×G

term). These “relativistically nonrotating coordinates” are related to the

instantaneous rest frame coordinates of the electron by the infinitesimal

boost

x′′′ = A(∆β) {A(β)x = x′} (16.128)

alone. In terms of the lab coordinates,

x′′′ = R(−∆Ω)A(β + δβ)x. (16.129)

Thus the “rest” system of coordinates of the electron are defined by x′′′.

They are rotated by −∆Ω relative to the boosted laboratory axes x′′. If a

physical vector G has a (proper) time rate of change of dG/dτ in the rest

frame, the precession of the rest frame axes with respect to the laboratory

makes the total time rate of change
(

dG

dt

)

non−rot

=

(

dG

dt

)

rest frame

+ ω × G (16.130)



as before with

ωT = lim
δt→0

∆Ω

δt
=

γ2

γ + 1

a × v

c2
(16.131)

(Recall that the connection to laboratory time is dG/dt = γ−1dG/dτ in the

rest frame itself).

The acceleration perpendicular to the instantaneous velocity appears in

this expression because it is this quantity that produces the “rotation” in the

infinitesimal transformation between frames that occured in the infinitesimal

time interval. Note that this is a purely kinematical effect, and has nothing

to do with the laws of nature, just like the non-relativistic “coriolis force” and

“centrifugal force”. If one wishes to relate the laws of nature as measured

in some accelerating frame to those measured in a non-accelerating frame,

then it is necessary to insert a fictitious “force” (or more properly interaction

“energy”) that is kinematic in origin.

In this case, curiously enough, the laws of nature are known in the ac-

celerating frame, and the fictitious force appears in the lab frame, where it

is not properly speaking fictitious. However, it is still kinematic. That is,

there is no actual energy associated with the fictitious interaction (whatever

that means); however, this interaction is necessary nonetheless if we wish

to obtain the equation of motion from the energy equation alone without

explicit consideration of the transformations of frames.

To conclude, for electrons the acceleration is caused by the (screened)

Coulomb force on the electron that keeps it bound. Thus

ωT =
−1

2c3
r × v

m

1

r

dV

dr
=

−1

2m2c2
L

1

r

dV

dr
. (16.132)

This has exactly the same form as the “rest frame” spin orbit interaction

with half the magnitude and the opposite sign. It beautifully cancels the

extra factor of 2. The final result is:

U ′ = − ge

2mc
s · B +

(g − 1)

2m2c2
(s · L)

1

r

dV

dr
. (16.133)

With g = 2, both the spin–orbit interaction and the anomalous Zeeman

effect are correctly predicted in accord with what is experimentally observed.

Relativistic effects, which are generally thought of as being “subtle”, are

not subtle at all when it comes to kinematics. The relativistic kinematic



correction is as large as the other quantities naturally present independent

of the particular orbit or speed of the electron.

This effect is even more pronounced in atomic nuclei. There the electro-

magnetic forces are much weaker than the binding nuclear forces, and can

be neglected to lowest order. However, even uncharged neutrons experience

a spin–orbit interaction

UrmN = − 1

2M2c2
s · L1

r

dVN

dr
(16.134)

that is now purely kinematic and has nothing whatsoever to do with the

electromagnetic force! There will be a small electromagnetic correction to

this for protons. This simple prediction is in reasonable agreement with

what is observed in many nucleii for simple models for VN. Unfortunately,

the system is actually so complicated that this simple minded, single particle

description itself is not really valid.

This is just a drop in the proverbial bucket of accelerated systems.

Clearly, accelerated, relativistic systems have a much more involved struc-

ture than that described by the Lorentz transformations alone. This be-

comes even more so when Einstein’s revered equivalence principal is invoked,

so that gravitational force and “real” acceleration are not (locally) distin-

guishable. But that is general relativity and far beyond the scope of this

course.

16.6 Covariant Formulation of Electrodynam-

ics

We are now ready to get serious about electrodynamics. We have developed

a beautiful, geometric system for describing the coordinates in terms of which

electrodynamics must be formulated for the speed of light to be an invariant.

We have developed a group of coordinate transformations that preserves that

invariance. Now we must face up to the fact that our original equations

of electrodynamics are not in a “covariant” formulation that makes these

constraints and transformation properties manifest. For example, we do not

yet know how the electric and magnetic fields themselves transform under

a LT!



Let us then reformulate our basic equations in 4–tensor form. We will

make the equations themselves 4–scalars, 4–vectors, or 4–tensors of higher

rank so that we can simply look at them and deduce their transformation

properties. In addition, we will simplify the notation when possible.

We begin at the beginning. All we really know about electromagnetic

fields is their (defined) action on a charged particle:

dp

dt
= q

(

E +
v

c
× B

)

(16.135)

(in 3–vector notation). Well, we know that the 3–vector momentum is just

part of a 4–vector momentum:

pα = (p0,p) = m(U0,U) (16.136)

(where p0 = E/c). Also, we don’t know what “t” is (since that depends on

the choice of frame) so we need to use “τ” instead in our definition.

Thus we can write

dp

dτ
=
q

c

(

U0E + U × B
)

. (16.137)

The left hand side tells us the rate of change of the (spatial) momentum,

which is just part of a four vector. The time component should tell us how

the energy changes with proper time:

dp0

dτ
=
q

c
U ·E. (16.138)

Now, if this energy–force 4–vector equation is to be covariant (so its

transformed form is still a 4–vector) then the right hand sides must form

a 4–vector too. Thus we must be able to express it (as a contraction of co

and contra variant tensors) so that this property is “manifest”. We know

(experimentally) that charge is a Lorentz scalar; that is, charge is invariant

under LT’s. (U0,U) forms a contravariant 4–vector.

From this we can deduce the 4–tensor form for the electromagnetic field!

Since the space parts U · E form the time component of a four vector, E

must be the time–space part of a tensor of rank two. That is,

E ·U = F 0βUβ. (16.139)



We could easily find B in a similar fashion and could eventually work out

the electromagnetic field strength tensor. However, it is more constructive

to keep on making four vectors, etc. out of the rest of the relations at hand.

For example, we already have observed that the continuity equation is a

covariant 4–scalar:
∂ρ

∂t
+ ∇ · J = 0. (16.140)

To make it’s covariance manifest, we define a 4–current

Jα = (cρ,J) (16.141)

so that

∂αJ
α = 0 (16.142)

is the continuity equation. Note that (as Jackson remarks) this only works

because electric charge is a Lorentz invariant and so is a four–dimensional

volume element (since detA = +1).

Next, consider the wave equations for the potentials in the Lorentz gauge

(note well that Jackson for no obvious reason I can see still uses Gaussian

units in this part of chapter 11, which is goiing to make this a pain to convert

below – bear with me):

1

c2
∂2φ

∂t2
−∇2φ =

ρ

ǫ0
=
J0

ǫ0c

= µ0
J0

µ0ǫ0c
= µ0(cJ

0) (16.143)

(16.144)

so that:

1

c2
∂2(φ/c)

∂t2
−∇2(φ/c) = µ0J

0 (16.145)

1

c2
∂2A

∂t2
−∇2A = µ0J (16.146)

Therefore, if we form the 4–vector potential

Aα = (
φ

c
,A) (16.147)

then we can write the various 4–relations:

∂αA
α =

1

c

∂A0

∂t
+ ∇ · A (16.148)



(which is the 4–scalar Lorentz gauge condition)

2Aα = ∂β∂
βAα = µ0J

α (16.149)

(the 4–vector inhomogeneous electromagnetic wave equation constructed

from the 4–scalar D’Lambertian wave operator – the set of four wave equa-

tions for φ and the components of A above).

Now we can construct the components of E and B from the covariant

4–vector potential. For example, we know that:

E = −∇φ− ∂A

∂t
(16.150)

where φ = cA0, so

Ex = −c ∂Ax

∂(ct)
− ∂cA0

∂x
= −c(∂0A1 − ∂1A0) (16.151)

and similarly, since B = ∇ × A:

Bx =
∂Az

∂y
− ∂Ay

∂z
= −(∂2A3 − ∂3A2) (16.152)

etc.

The components of the electric and magnetic fields (all six of them)

thus transform like the components of a second rank, antisymmetric,

traceless field strength tensor7 :

F αβ = ∂αAβ − ∂βAα. (16.153)

In explicit component form,

F αβ =













0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0













. (16.154)

7Wikipedia: http://www.wikipedia.org/wiki/Electromagnetic tensor. Note that I’m

not completely comfortable with the signs for the covariant form of the potential in the

Wikipedia article, although its main conclusions are sound enough.

http://www.wikipedia.org/wiki/Electromagnetic tensor


The tensor with two covariant indices (formed by two contractions with g)

is obtained by replacing E with −E.

Fαβ =













0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0













. (16.155)

Another important version of this tensor is the dual field strength

tensor Fαβ. In terms of the totally antisymmetric tensor of the fourth rank

and the normal field strength tensor it is given by:

Fαβ =
1

2
ǫαβγδFγδ =













0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0













. (16.156)

This is obtained from the basic contravariant field strength tensor by the

substitutions E → B,B → −E. Consideration of the section on magnetic

monopoles shows that this is indeed a particular duality transformation ob-

tained in free space with the “rotation” parameter equal to π/2 (in J6.151).

Finally, we must write Maxwell’s equations in covariant form. The inho-

mogeneous equations are (recall)

∇ · E =
ρ

ǫ0
(16.157)

∇ × B − 1

c2
∂E

∂t
= µ0J (16.158)

The quantity on the right is proportional to the four current. The quantity

on the left must therefore contract a 4–derivative with the field strength

tensor. You should verify that

∂αF
αβ = µ0J

β (16.159)

exactly reconstructs the inhomogeneous equation for each component of Jβ.

The homogeneous equations

∇ · B = 0 (16.160)

∇ × E +
∂B

∂t
= 0 (16.161)



also form a four vector (of zero’s) and must hence be the contraction of a field

strength tensor. But which one? Well, the second homogeneous equation

requires that B → −E and both require that E → B, so it must be the

dual:

∂αFαβ = 0. (16.162)

If we feel compelled to write everything in terms of the field strength tensor

itself, this can be done. The result is the four equations

∂αF βγ + ∂βF γα + ∂γF αβ = 0 (16.163)

where α, β, γ are any three of the four indices 0,1,2,3. However, this equation

is a third rank tensor on the left, and its reduction by symmetry to a tensor

of first rank is not manifest. It is ugly, if you will.

Now that we have written Maxwell’s equations (and the consequences of

ME) in four dimensional form (remarking all the while that they are unusu-

ally beautiful and concise in this notation) we are done. Before we go on to

deduce (from these results) how electric and magnetic fields LT, however, we

should complete the question with which we began the discussion, namely,

how does Newton’s law become covariant? The answer is (now that we know

what the field strength tensor is)

dpα

dτ
= m

dUα

dτ
=
q

c
F αβUβ. (16.164)

The time–component equation is just the work–energy theorem, and the

space equations are Newton’s law.

As a postscript to our discussion (recalling that sometimes the fields

propagate in some medium and not free space) we note that in this case the

homogeneous equation(s) remain unchanged, but the inhomgeneous equa-

tions are modified (by using H and D instead of B and E). The inhomo-

geneous equation is then

∂αG
αβ = µJβ (16.165)

where hopefully the definition of Gαβ is obvious (that is, substitute v =
√

1/ǫµ for c throughout in appropriate places, or if you prefer recapitulate

the entire derivation using H and D from the beginning).

Let us pause for a moment of religious silence and contemplate a great

wonder of nature. This is the scientist’s version of “prayer in school”.



16.7 The Transformation of Electromagnetic

Fields

Now that we have this in hand, we can easily see how to transform the

electric and magnetic fields when we boost a frame. Of course, that does

not guarantee that the result will be simple.

To convert F αβ from K to K ′, we must contract its indices with the

transformation tensors,

F ′αβ =
∂x′α

∂xγ

∂x′β

∂xδ
F γδ. (16.166)

Note that since A is a linear transformation:

Aα
γ =

∂x′α

∂xγ
(16.167)

(where I have deliberately inserted a space to differentiate the first index

from the second) we can write this in terms of the components of A as:

F ′αβ = Aα
γF

γδA β
δ

= Aα
γF

γδÃβ
δ (16.168)

or (in a compressed notation):

F ′ = AFÃ (16.169)

This is just a specific case of the general rule that A can be used in general

to transform any nth rank tensor by contracting it appropriately with each

index.

As we saw in our discussion of Thomas precession, we will have occasion

to use this result for the particular case of a pure boost in an arbitrary

direction that we can without loss of generality pick to be the 1 direction.

Let’s see how this goes. Recall that A for a pure boost in the one direction

is the matrix formed with a lower right quadrant identity and an upper left

quadrant 2× 2 with γ on the diagonal and −γβ on the corners). Thus: so:

F ′01 = A0
0F

01A 1
1 + A0

1F
10A 1

1

−E
′
1

c
= −γ2E1

c
− γ2β2E1

c
E ′

1 = (γ2 + γ2β2)E1

E ′
1 = E1 (16.170)



Note that we have extracted the ordinary cartesian components of E and B

from F after transforming it. I leave the rest of them to work out yourself.

You should be able to show that:

E ′
1 = E1 (16.171)

E ′
2 = γ(E2 − βB3) (16.172)

E ′
3 = γ(E3 + βB2) (16.173)

B′
1 = B1 (16.174)

B′
2 = γ(B2 + βE3) (16.175)

B′
3 = γ(B3 − βE2) (16.176)

The component of the fields in the direction of the boost is unchanged,

the perpendicular components of the field are mixed (almost as if they were

space–time pieces) by the boost. If you use instead the general form of A for

a boost and express the components in terms of dot products, you should

also show that the general transformation is given by:

E′ = γ(E + β × B) − γ2

γ + 1
β(β · E) (16.177)

B′ = γ(B − β ×E) − γ2

γ + 1
β(β · B). (16.178)

A purely electric or magnetic field in one frame will thus be a mixture

of electric and magnetic fields in another. We see that truly, there is little

reason to distinguish them. We have to be a little careful, of course. If there

is a monopolar (static) electric field in any frame, we cannot transform

it completely into a magnetostatic field in another, for example. Why?

Because the equations above will lead to some mixture for all β < 1, and

β < 1 in nature as a constraint.

I encourage you to review the example given in Jackson and medi-

tate upon the remarks therein. We will not spend valuable class time

on this, however. Instead we will end this, after all, purely mathemati-

cal/geometrical kinematical interlude (no Hamiltonians or Lagrangians =

no physics) and do some physics. Let us deduce the covariant dynamics of

relativistic particles in (assumed fixed) electromagnetic fields.



Chapter 17

Relativistic Dynamics

17.1 Covariant Field Theory

We are interested in deducing the dynamics of point charged particles in

“given” (i. e. — fixed) electromagnetic fields. We already “know” the

answer, it is given by the covariant form of Newton’s law, that is:

dpα

dτ
= m

dUα

dτ
=
q

c
F αβUβ. (17.1)

From this we can find the 4–acceleration,

dUα

dτ
=

q

mc
F αβUβ (17.2)

which we can integrate (in principle) to find the 4–trajectory of the particle

in question.

However, this is not useful to us. Real physicists don’t use Newton’s law

anymore. This is nothing against Newton, it is just that we need Hamilton’s

or Lagrange’s formulation of dynamics in order to construct a quantum

theory (or even an elegant classical theory). Our first chore, therefore, will

be to generalize the arguments that lead to the Euler–Lagrange or Hamilton

equations of motion to four dimensions.
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17.1.1 The Brute Force Way

Recall that the Lagrangian path to the dynamics of a particle (which is most

easily made covariant, since it uses (q(t), q̇(t), t) as its variables) is based on

the Action

A =
∫ t1

t0
L(q(t), q̇(t), t)dt. (17.3)

By requiring that A be an extremum as a functional of the system trajectory,

we obtain the Euler–Lagrange equations

d

dt

(

∂L

∂q̇i
− ∂L

∂qi

)

= 0. (17.4)

These are equivalent to Newton’s law for suitable definitions of L and the

force.

The simplest way to make this relativistic is to express it in terms of the

proper time and then require that the action A be extremal in all frames.

Then,

A =
∫ τ1

τ0
γLdτ (17.5)

is the action, since dt = γdτ . We now must remark

1. If the extremal condition is to be invariant with respect to LT’s, then

A must be invariant (and hence a 4–scalar);

2. Therefore (since dτ is invariant) γL must be invariant;

3. Finally, since γ is just a number, L must be a 4–scalar.

This final conclusion greatly constrains the possible forms of L.

Note well that it is not clear that this argument (from Jackson) is valid.

γ, while a number, is not invariant under boosts – indeed, it is parametri-

cally related to the boost parameter! It is also perfectly clear that the first

statement is false – while it is true that if A is a four-scalar with respect

to boosts that its extremums must be preserved, it is equally true that this

condition is not necessarily unique – all that is necessary is that a boost

monotonically scale the action in such a way that the extremal property is

preserved!

A weaker (but still sufficient) argument might then be:



If L is a 4-scalar, and γ is a monotonic function independent

of the 4-coordinates, 4-velocities, and τ , then the property of a

given trajectory resulting in an extremum of the action is pre-

served.

In my opinion this is clearer and still adequate for our purposes. L being

a 4-scalar (0th rank tensor in 4-space w.r.t. the Lorentz transformation)

is sufficient to produce an invariant extremum of the action A, even if the

numerical values of A vary under a boost. To prove that it is also necessary

very likely involves an exercise in the calculus of variations that distributes

the derivatives over γL – similar exercises are already in the homework for

this chapter in other contexts.

Either way, we will now assert that the Lagrangian of a free particle

must be a 4-scalar (and hence must be formed out of the full contraction of

tensors of higher rank), and will remain alert in the work below for any sort

of inconsistency that might be related to γ.

Obviously, we want it to reproduce the classical non–relativistic theory

in the appropriate limit, that is, a free particle should have constant energy

and momentum, or, equivalently, 4–velocity. The simplest (not “only” as

Jackson states) Lorentz invariant function of the 4–velocity is it’s quadratic

form:

UαUα = c2 (17.6)

Of course, any polynomial functional of this quadratic is also a possible

scalar, but they are not the thing to try first. Thus a reasonable guess for

the Lagrangian is

L = (constant)c2γ−1 = −mc2
√

1 − u2

c2
. (17.7)

If we now crunch through the Euler–Lagrange equation we find that this

choice for the constant leads to

d

dt
(γmu) = 0 (17.8)

which is indeed Newton’s law for a free particle, but with the relativistic

form of the three–momentum.

If one chooses a frame where the particle is initially at rest, a trajectory

where it remains at rest will yield the least action (you should check this).



This is because γ−1 is maximal when β = 0 (and the Lagrangian has a minus

sign).

Now, suppose that the charged particle is in a electromagnet potential.

If it were moving slowly in a scalar potential Φ only, its potential energy

would be V = qΦ. The non–relativistic Lagrangian in this case should be

just T − V (where T is the free particle Lagrangian). The interaction part

of the relativistic Lagrangian must therefore reduce to −qΦ in this non–

relativistic limit.

We must find a Lorentz invariant (scalar) form for γLint that reduces to

−qΦ for non–relativistic velocities. Since Φ is the time component of a four

vector potential, we can guess that the correct generalization must involve

the four vector potential Aα. Since it must be a scalar, it must involve the

scalar product of Aα with some four vector(s). The only ones avaliable are

xα and Uα.

The correct γLint depends only on the Uα. If it depended on the co-

ordinates as well, then the physics would not be translationally invariant

and the results of our calculation might well depend on where we chose the

origin. This does not seem reasonable. Once again, this does not uniquely

determine it, it only determines the simplest (linear) form to within a sign

and a constant:

γLint = −q
c
UαA

α (17.9)

or

Lint = −qΦ +
q

c
~u · ~A. (17.10)

There could be additional terms involving polynomials of this quantity, the

product AαAα (which is indeed present in some theories) and other scalar

reductions of field and charge/field tensor quantities. Linearity, in either the

vector potential or the velocity, is an axiom and not logically necessary.

The complete relativistic Lagrangian for a charged particle is thus

L = −mc2
√

1 − u2

c2
+
q

c
~u · ~A− qΦ. (17.11)

It should take you about one hour to show that this yields the correct rela-

tivistic Lorentz force law. The free particle part is obvious, the electric field

is obvious. You will have to work a bit, using

d

dt
=

(

∂

∂t
+ ~u · ∇

)

(17.12)



to squeeze −~u × (∇ × ~A) out of the remainder. I suggest that you simply

work out the terms by expanding them as far as they go and reassembling

the pieces, but some of you may know enough vector algebra to do it better

ways. This will be on the next assignment, so feel free to start.

The canonical momentum ~P conjugate to the position coordinates x is

obtained (as usual) from

Pi =
∂L

∂ui
= γmui +

q

c
Ai. (17.13)

This result,
~P = ~p+

q

c
~A (17.14)

(where ~p is the relativistic kinetic momentum of the particle) is extremely

important to remember, as it is a necessary ingredient in the construction of

either a quantum theory or an elegant classical theory. Placing the particle

in a field alters its canonical “momentum”.

We make the Hamiltonian out of the Lagrangian and the canonical mo-

mentum via

H = ~P · ~u− L (17.15)

The basic result here has too many variables. We must eliminate ~u in favor

of ~A and ~P . Note that

~u =
c ~P − q ~A

√

(

~P − q
c
~A
)2

+m2c2
(17.16)

(something that is a wee chore to prove, of course, but it is straightforward

algebra). With even more tedious algebra, you can show that the Hamilto-

nian is:

H =
√

(c ~P − q ~A)2 +m2c4 + qΦ = W. (17.17)

From this result, Hamilton’s equations of motion should reproduce the

Lorentz force law. See that it does (although the relationship between the

EL equations and Hamilton’s equations makes the result obvious). Note

that if we interpret the Hamiltonian (as usual) as the total energy W of the

particle, this result is related to the free particle energy by ~p → (~P − q
c
~A)

and the addition of the scalar potential energy qΦ. This is actually just a

single change in the four–vector momentum:

(W − qΦ)2 − (c ~P − q ~A)2 = m2c4 = pαpα (17.18)



(which has the usual form if

pα =
(

E

c
, ~p
)

=
(

1

c
(W − eΦ), ~P − q

c
~A
)

(17.19)

). This also makes the invariance properties of the Hamiltonian manifest.

It is really annoying to obtain the invariance properties of things after

the fact. It is also annoying (although perhaps useful) to have the three

vector coordinates ~x, ~u hanging around at this point. So let us rederive

these results using only four–vectors and suitable scalar reductions.

17.1.2 The Elegant Way

We can write the free particle Lagrangian using only scalar reductions of

suitable 4–vectors:

Lfree = −mc
γ

√

UαUα (17.20)

(which is still −mc2γ−1). The action is thus

A = −mc
∫ τ1

τ0

√

UαUαdτ. (17.21)

The variations on this action must be carried out subject to the constraint

UαU
α = c2 (17.22)

which severely limits the allowed solutions. We write this as

d(UαU
α)

dτ
= 0

dUα

dτ
Uα + Uα

dUα

dτ
= 0

dUα

dτ
gαβgβαU

α + Uα
dUα

dτ
= 0

Uβ
dUβ

dτ
+ Uα

dUα

dτ
= 0

2Uα
dUα

dτ
= 0

Uα
dUα

dτ
= 0 (17.23)



Now,
√

UαUαdτ =

√

dxα

dτ

dxα

dτ
dτ =

√

gαβdxαdxβ (17.24)

which is an infinitesimal length in four–space. The latter expression does

not explicitly contain dτ . We can thus parameterize the action in terms of

a path–parameter s that increases monotonically with τ but is otherwise

arbitrary. Then

A = −mc
∫ s1

s0

√

gαβ
dxα

ds

dxβ

ds
ds. (17.25)

We are clearly making progress. We have taken a perfectly good expression

and made in unrecognizable. To make you a little happier, note that this

has now got the form of

A =
∫

L̃ds (17.26)

where L̃ is a scalar “Lagrangian” written in terms of an independent free

parameter. This might be progress after all, since we have quashed the

annoying γ−1.

If we now do the calculus of variations thing and get the Euler-Lagrange

equations in four dimensions:

d

ds





dL̃

∂
(

dxα

ds

)



− ∂αL̃ = 0 (17.27)

(for α = 0, 4). Applying them to the Langrangian in this action, they turn

out to be:

mc
d

ds

∂
{

gδβ dxβ

ds
dxδ

ds

} 1

2

∂
(

dxα

ds

) = 0 (17.28)

mc

2

d

ds







dxα

ds
+ dxα

ds
√

dxβ

ds
dxβ

ds







= 0 (17.29)

mc
d

ds







dxα

ds
√

dxβ

ds
dxβ

ds







= 0. (17.30)

This still does not have the constraint above imposed on it. We impose

the constraint by identifying ds with dτ in such a way that the constraint



is simultaneously satisfied:

√

dxα

ds

dxα

ds
ds = cdτ

d

dτ
=

c
√

dxα

ds
dxα

ds

d

ds
(17.31)

(which requires both ds = dτ and UαU
α = c2). If you like, this constraint

picks out of all possible path parameterizations the one that follows the

proper time while keeping the four vector velocity scalar product Lorentz

invariant. For free particles this is a lot of work, but it is paid back when

we include an interaction.

If we multiply the Euler-Lagrange equation (in terms of s) from the left

by:
c

√

dxα

ds
dxα

ds

(17.32)

and use the constraint to convert to τ , the result (for the equation of motion)

is:

m
c

√

dxβ

ds
dxβ

ds

d

ds







c
√

dxβ

ds
dxβ

ds

d

ds
xα







= 0 (17.33)

or

m
d2xα

dτ 2
= 0 (17.34)

which certainly looks it has the right form.

We can include an interaction. Just as before, γLint must be a Lorentz

scalar. When we make a parameterized version of the Lagrangian, the part

under the integral must be a 4–scalar. The covariant form of the result is

(hopefully obviously)

A = −
∫ s1

s0







mc

√

gδβ
dδ

ds

dxβ

ds
+
q

c

dxβ

ds
Aβ







ds. (17.35)

The “four Lagrangian” in this equation is

L̃ = −






mc

√

gδβ
dδ

ds

dxβ

ds
+
q

c

dxβ

ds
Aβ







. (17.36)



As before we construct the Euler-Lagrange equation.

mc
d

ds







dxα

ds
√

dxβ

ds
dxβ

ds

+
q

c
Aα







− q

c

xβ

ds
∂αAβ = 0 (17.37)

(17.38)

Again we multiply through from the left by

c
√

dxα

ds
dxα

ds

(17.39)

and convert to τ to get:

m
d2xα

dτ 2
+
q

c

dAα

dτ
− q

c

dxβ

dτ
∂αAβ = 0 (17.40)

The derivative dAα/dτ is a bit jarring. However, if we express this total

derivative in terms of partials we observe that:

dAα

dτ
=
dxβ

dτ

∂

∂xβ

Aα =
dxβ

dτ
∂βAα (17.41)

Substituting, the equation of motion becomes:

d(mUα)

dτ
= m

d2xα

dτ 2
=
q

c
(∂αAβ − ∂βAα)

dxβ

dτ
=
q

c
F αβUβ . (17.42)

which is, as expected, the Lorentz force law in covariant form! How lovely!

To make a Hamiltonian in this notation, we must first make the canonical

momentum:

P α = − ∂L̃

∂
(

xα

ds

) = mUα +
q

c
Aα (17.43)

which is a covariant version of the complete set of interaction equations from

the previous section (it does both energy and 3–momentum).

There are several ways to make a Hamiltonian (recall that in general

there is what amounts to gauge freedom, minimally the ability to add an

arbitrary constant which naturally does not affect the resulting differential

equations). One is1:

H̃ = UαP
α + L̃ (17.44)

1Note that I’ve rearranged this slightly to avoid having to do lots of stuff with g

sandwiches below.



Again, we must eliminate:

Uα =
1

m

(

P α − q

c
Aα
)

(17.45)

in favor of P α, Aα. Thus:

L̃ = −mc
√

1

m2

(

Pα − q

c
Aα

)(

P α − q

c
Aα

)

− q

mc

(

Pα − q

c
Aα

)

Aα (17.46)

and

H̃ =
1

m

(

Pα − q

c
Aα

)

P α −mc

√

1

m2

(

Pα − q

c
Aα

)(

P α − q

c
Aα

)

− q

mc

(

Pα − q

c
Aα

)

Aα (17.47)

=
1

m

(

Pα − q

c
Aα

)(

P α − q

c
Aα
)

− c

√

(

Pα − q

c
Aα

)(

P α − q

c
Aα

)

(17.48)

This Hamiltonian in four dimensions is no longer an energy since it is

obviously a 4–scalar and energy transforms like the time–component of a

four vector. However, it works. Hamilton’s equations (in four dimensions)

lead again directly to the relativistic Lorentz force law:

dxα

dτ
=
∂H̃

∂Pα
=

1

m

(

P α − q

c
Aα
)

(17.49)

dP α

dτ
= − ∂H̃

∂xα
= −∂αH̃ =

q

mc

(

Pα − q

c
Aα

)

∂αAβ (17.50)

There is a bit of algebra involved in deriving this result. For example,

one has to recognize that:

pα = mUα = P α − q

c
Aα (17.51)

and pαp
α = m2c2 and apply this to eliminate unwanted terms judiciously,

that is after differentiation. If you apply it too early (for example at the

beginning) you observe the puzzling result that:

H̃ =
1

m
pαp

α − c
√
pαpα

=
1

m
m2c2 − c

√
m2c2

= mc2 −mc2

= 0 (17.52)



which leads one to the very Zen conclusion that the cause of all things is

Nothing (in four dimensions, yet)!

We are left with a rather mystified feeling that the algebraic hand is

quicker than the eye. Somehow an equation whose four-scalar value is zero

has a functional form, a structure, that leads to non–zero, covariant equa-

tions of motion. Also (as already remarked) this Hamiltonian is not unique.

Obviously one can add an arbitrary four-scalar constant to the equation and

get no contribution from the derivatives (just as one can in nonrelativistic

classical physics). There are other gauge freedoms – ultimately there several

other ways of writing the Hamiltonian associated with the given Lagrangian;

all of them yield a constant value that is not the energy when evaluated and

yield the correct equations of motion when processed.

Finally there exist what are called singular Lagrangians – Lagrangians for

which the generalized coordinates do not always map into generalized conju-

gate variables! Dirac was (unsurprisingly) the first to formally identify this

in the context of constrained systems (systems described by a Lagrangian

and constraints with Lagrange multipliers for which the Hesse determinant

vanishes); Bergmann (at Syracuse) also made major contributions to the

formal development of the concept. However the roots of the problem date

much further back to e.g. Noether’s theorem. I have a couple of papers on

this that I’ve collected from the web, although the idea is also discussed in

various monographs and textbooks on mechanics.

It is worth pointing out that there was at one point considerable work

being done here at Duke on the idea – N. Mukunda, Max Lohe, (both

friends of mine) worked on the idea with Larry Biedenharn (my advisor);

Biedenharn also published work with Louck on the subject, and of course

Mukunda and Sudarshan’s book on classical mechanics remains a “classic”.

Since Dirac’s time the notion that the “right” unified field theory will have

certain interesting properties related to this has been batted around.

This points out an ongoing problem in relativistic quantum theories.

These theories are generally based on a Hamiltonian, but manifestly covari-

ant Hamiltonians for a given system cannot in general be uniquely derived

from first principles as the mapping between velocities and momenta is not

always one-to-one. Thus even when a covariant Lagrangian density can be

constructed, the associated Hamiltonian is not obvious or necessarily unique.



This is just one (although it is one of the most fundamental) obstacles to

overcome when developing a relativistic quantum field theory.

17.2 Motion of a Point Charge in a Static

Magnetic Field

Now that we have obtained the various covariant forms of the Lorentz force

law, we can easily determine the trajectories of charged particles in various

fixed fields. In fact, we could have done this weeks ago (if not years) even

without knowing the covariant forms.

In a static magnetic field, the equations of motion are:

dE

dt
= 0 (17.53)

d~p

dt
=

q

c
~v × ~B (17.54)

for the energy and momentum, respectively (arranged like pieces of a four

vector for clarity). Clearly the speed of the particle is constant since the

force is perpendicular to the motion and does no work. γ is therefore also

constant. Thus
d~v

dt
= ~v × ~ωB (17.55)

where

~ωB =
q ~B

γmc
=
qc ~B

E
(17.56)

is the gyration or precession (cyclotron) frequency. The motion described by

this equation is a circular motion perpendicular to ~B coupled to a uniform

motion parallel to ~B.

This is too droll for words (and in fact you have probably already taught

it to your kids in kiddy physics) but it does yield one important result. The

magnitude of the momentum perpendicular to ~B is

cp⊥ = qBa (17.57)

where a is the radius of the circular helix. From this (in, for example, a

bubble chamber, where the track can be photographed) and a knowledge



(or guess) as the the charge, the transverse momentum can be measured.

Measuring other things (like the rate of change of the curvature of the track)

can yield the mass of the particle from a knowledge of its momentum. From

these humble traces the entire picture we currently have of the sub–atomic

zoo has been built up.

Sections 12.2-12.4 are too simple to waste time on. 12.5-12.6 are inter-

esting but important only to plasma people. 12.7 is redundant of things we

will do correctly later. Thus we skip to 12.8, leaving you to read any or all

of the intermediate material on your own. We will skip 12.9. Finally, we

will do 12.10–12.11 to complete chapter 12.

17.3 Building a Relativistic Field Theory

We have not quite finished the job of building a proper relativistic field

theory of electromagnetism. That is because we would like to be able to

obtain all of the equations of motion (that is, physics) describing the system

from a covariant action principle. We have done that for the particles in

the fields, but what about the fields themselves? In fact, since the particles

produce (and hence modify) the fields, we do not even have the correct

solutions for the particles alone, yet. Let us see if we can develop a suitable

Lagrangian for the fields that leads, ideally, to Maxwell’s equations.

The Rules for building a field theory Lagrangian are of interest in and

of themselves, since they are quite general. The rules are:

1. Take the position and velocity coordinates for continuous space time

and replace them with field variables.

2. Label the field variables with discrete (coordinate direction) labels and

with continuous (position) variables.

3. Replace the “velocity” with the 4–gradient.

4. Require the action to be stationary w.r.t. variations in the field vari-

ables themselves and their gradients.

That is,

i → xα, k (17.58)



qi → φk(x) (17.59)

q̇i → ∂αφk(x) (17.60)

L =
∑

i

Li(qi, q̇i) →
∫

L(φk, ∂
αφk)d

3x (17.61)

d

dt

(

∂L

∂q̇i

)

=
∂L

∂qi
→ ∂β ∂L

∂∂βφk

=
∂L
∂φk

. (17.62)

When we make an action integral, we integrate L over time, making the

total integral four dimensional. We therefore call L the Lagrangian density

in four dimensions. Note that the action will be covariant provided the La-

grangian density is a 4–scalar. This is what I have meant whenever I have

inadvertantly called the “Lagrangian” a scalar. Good, clean, relativistic the-

ories with or without particles are made out of scalar Lagrangian densities,

not Lagrangians per se:

A =
∫ ∫

Ld3xdt =
∫

Ld4x. (17.63)

We now do the usual dance. We know that L for the fields must be

a scalar. We also know that Maxwell’s equations relate the fields to the

currents that produce them, and also link the electric and magnetic fields.

We thus need to build a theory out of F αβ, Aα, Jα. Various ways we can do

this include

FαβF
αβ

JαA
α

FαβFαβ

and still messier pieces like

FαβJ
αAβ.

The first two terms are invariant under the transformations of the full

Lorentz group. The third is not a scalar under inversion, but a pseudoscalar

(odd under inversion). We reject it. The last is a mess. We reject it. We

want a term quadratic in the 4-gradients of the fields. This is the first term.

We want a source term to couple the fields and the particles. The second

term does that.

So, we try a Lagrangian density with just these two terms, with un-

known constants Q and R that have to be determined so that they correctly



reconstruct Maxwell’s equations in whatever system of units we like:

L = −QFαβF
αβ − RJαA

α. (17.64)

We need to take derivatives of L with respect to ∂βAα, so it is useful to

write this Lagrangian in the form:

L = −Qgλµgνσ(∂
µAσ − ∂σAµ)(∂λAν − ∂νAλ) − RJαA

α. (17.65)

When we form ∂L/∂(∂βAα) we get delta functions whenever α and β are

equal to a pair of the indices above. We therefore get four terms:

∂L
∂(∂βAα)

= −Qgλµgνσ

{

δµ
βδ

σ
αF

λν − δσ
βδ

µ
αF

λν + δλ
βδ

ν
αF

µσ − δν
βδ

λ
αF

µσ
}

(17.66)

where the first two terms come from delta functions formed from the first

term and the second two terms come from delta functions formed from the

second term.

gαβ is symmetric (in fact, diagonal). The F αβ is antisymmetric. When

we do the sums against the δ–functions, the four terms make identical con-

tributions:
∂L

∂(∂βAα)
= −4QFβα = 4QFαβ . (17.67)

The other part of the E–L equation (which corresponds in position space to

the “potential”, or “force” term) is

∂L
∂Aα

= −RJα. (17.68)

Therefore the equations of motion for the electromagnetic field can be writ-

ten

4Q∂βFβα = RJα. (17.69)

If one checks back in one’s notes, one sees that this is indeed the covariant

form of the inhomogeneous Maxwell’s equations if Q = 1/4 and R = µ0:

∂βFβα = µ0Jα (17.70)

follows from the Lagrangian density:

L = −1

4
FαβF

αβ − µ0JαA
α. (17.71)



Therefore the Lagrangian we have constructed yields the inhomogeneous

Maxwell equations, but not the homogeneous ones. That is okay, though,

because we have constructed the F αβ in terms of the Aα in such a way

that the homogeneous ones are satisfied automatically! To observe that this

miracle is true, we recall the covariant form of the homogeneous equations:

∂αFαβ = 0. (17.72)

Also,

Fαβ =
1

2
ǫαβγδFγδ. (17.73)

Thus

∂αFαβ =
1

2
∂αǫ

αβγδFγδ

= ∂αǫ
αβγδ∂γAδ

= ǫαβγδ∂α∂γAδ (17.74)

is the first term. But ∂α∂γ is symmetric, while ǫαβγδ is antisymmetric in the

same two indices, so the contraction on the two indices vanishes (work it

out term by term if you doubt it).

Thus the homogeneous equations are satisfied by our definition of Fαβ

quite independent of any dynamics. In four dimensions, all of the inhomo-

geneous source terms must appear in equations with the form of the inho-

mogeneous equation above, and only one of these equations can result from

the action principle. The similarity transformation to the fields we observe

is thus the “natural” form of the ME’s, and in four dimensions the homoge-

neous equations are really not independent as far as the action principle is

concerned. Note that this is fundamentally because our field strength tensor

derives from the definition of the magnetic field as the curl of the vector field
~A (which is divergenceless) which is built into the definition.

As a final quixotic note, observe that if we take the 4–divergence of both

sides of the inhomogeneous Maxwell equations:

∂α∂βFβα = µ0∂
αJα (17.75)

the left hand side vanishes because again, a symmetric differential operator

is contracted with a completely antisymmetric field strength tensor. Thus

∂αJα = 0, (17.76)



which, by some strange coincidence, is the charge–current conservation equa-

tion in four dimensions. Do you get the feeling that something very deep

is going on? This is what I love about physics. Beautiful things are really

beautiful!

We will now blow off the “proca” Lagrangian, which would be appropri-

ate if the photon had a mass. It doesn’t, but if it did you would need to read

this chapter. It might, of course, so you should probably read the chapter

anyway, but it currently (bad pun) doesn’t so I’m going to make light of it

(worse pun) and continue.

If we had one more month, we would now study the covariant forms of the

stress tensor. It is important, but it is also quite difficult, and necessitates

a broader discussion than we can now afford. To treat the subject properly,

we would need to treat parts of chapter 17 simultaneously, and we would

need to do a lot of algebra. This would mean that we would miss (in all

probability) being able to learn the Liénard–Wiechart potential, which is far

more important. We will therefore content ourselves with merely defining

the stress tensor, remarking on some of its properties without proof, and

moving on. You are responsible for working your way through this chapter,

according to your needs, inclinations, and abilities, on your own.

17.4 The Symmetric Stress Tensor

Imagine a big blob of jelly. Imagine poking it on a side. The whole thing

wiggles and distorts, as the force of your poke acts on the entire blob of jelly.

The mathematical mechanism that describes how your poke is distributed is

calle the stress tensor of the material. It tells how energy and momentum

are connected by the medium itself.

The same concept can be generalized to a four dimensional medium,

where the “jelly” is space time itself. Let us now study what an electromag-

netic stress tensor is, and how it relates to electromagnetic “pokes”. Recall

that

pi =
∂L

∂q̇i
(17.77)

is the canonical momentum corresponding to the variable qi in an arbitrary



Lagrangian. The Hamiltonian is given, in this case, by

H =
∑

i

piq̇i − L (17.78)

as usual. If ∂L/∂t = 0 then one can show that ∂H/∂t = 0. For four

dimensional fields we should probably have a Lagrangian and Hamiltonian

density whose 3–integral are the usual Lagrangian and Hamiltonians. The

Hamiltonian is the energy of a particle or system, so it should transform like

the zeroth component of a four vector. Thus, since

H =
∫

Hd3x (17.79)

and d4x = d0xd
3x, then H must transform like the time component of a

second rank tensor. If we define the Hamiltonian density H in terms of the

Lagrangian density L of a field, then

H =
∑

k

∂L
∂
(

∂φk

∂t

)

∂φk

∂t
− L. (17.80)

Well, great! The first factor in the sum is the conjugate momentum

by definition, and the second is the generalized “velocity”. Since H must

transform like the time component of a second rank tensor (and the time

derivative appears in this equation) it appears that the covariant generaliza-

tion of the Hamiltonian density is something that puts a covariant derivative

there, instead. We try

T αβ =
∑

k

∂L
∂(∂αφk)

∂βφk − gαβL. (17.81)

This is called the canonical stress tensor, and is related to the stress ten-

sor defined and studied in Chapter 6. This tensor has the covariant function

of telling us how the energy and momentum carried by the electromagnetic

field transform.

What is this tensor? It is, in fact, highly non–trivial. The best we can

do is note that if we assume that only free fields are present and that the

free fields are localized in some finite region of space (neither assumption is

particularly physical), then we can show that

∫

T 00d3x =
1

2

∫

(ǫ0E
2 +

1

µ0
B2)d3x = Efield (17.82)



and

∫

T 0id3x = ǫ0c
∫

(E× B)id
3x =

1

c

∫

(E ×H)id
3x = cP i

field (17.83)

which are the “usual” expressions for the energy and momentum of the free

field. At least if I got the change to SI units right...

What, you might ask, is this good for? Well, aside from this corre-

spondance (which is full of holes, by the way), we can write the energy–

momentum conservation law

∂αT
αβ = 0. (17.84)

This is proven in Jackson, with a discussion of some of its shortcomings.

One of these is that it is not symmetric. This creates difficulties when

we consider the angular momentum carried by the field. Since the angu-

lar momentum density is important when we go to create photons (which

must have quantized angular momenta), it is worthwhile to construct the

symmetric stress tensor

Θαβ =
(

gαµFµλF
λβ +

1

4
gαβFµλF

µλ
)

(17.85)

in terms of which we can correctly construct a covariant generalization of

the energy momentum conservation law

∂αΘαβ = 0 (17.86)

and the angular momentum tensor

Mαβγ = Θαβxγ − Θαγxβ (17.87)

which is therefore conserved. This form of the stress tensor can also be

directly coupled to source terms, resulting in the covariant form of the work

energy theorem for the combined system of particles and fields.

This is about all we will say about this at this time. I realize that it

is unsatisfactory and apologize. If we had one more semester together, we

could do it properly, but we don’t. Therefore, it is on to



17.5 Covariant Green’s Functions

Just when you thought it was safe to go back into the classroom, along

comes Jaws himself. Green’s functions are your friends!

The inhomogeneous Maxwell equations are now compactly written as

∂αF
αβ = µ0J

β . (17.88)

From the definition of the field strength tensor, this is

2Aβ − ∂β(∂αA
α) = µ0J

β (17.89)

If the potentials satisfy the Lorentz condition, ∂αA
α = 0 and therefore

2Aβ = µ0J
β (17.90)

Do you get the feeling that there is something mystical about space–time

notations? Do you remember what a pain in the butt this was to derive the

hard way?

To solve this inhomogeneous differential equation, we construct simulta-

neously a Green’s function

2D(x, x′) = δ(4)(x− x′) (17.91)

and the associated integral equation over the source term:

Aα(x) = Aα
I + µ0

∫

d4x′D(x− x′)Jα(x′) (17.92)

(where the inhomogeneous term Aα
I depends on the Green’s function and

is the “boundary” term or the free potential from inhomogeneous sources

outside the region of integration).

Next week we will concentrate on the integral equation solutions them-

selves. Now let us see how to construct the appropriate (covariant) Green’s

function. As usual, the principle part of the Green’s function can involve

only the absolute distance between the points. Thus if yα = xα − x′α we

seek solutions to

2D(y) = δ(4)(y). (17.93)

There are several ways we could go about solving this equation. They

are all equivalent at some level or another. For example, we have already



solved this equation for a single fourier component in Chapter 9. We could

transform this result and obtain a four dimensional result. However, a more

general procedure is to construct the solution from scratch.

The four dimensional fourier transform of the desired Green’s function

is defined by

D(y) =
1

(2π)4

∫

d4kD̃(k)e−ik·y (17.94)

where k · y = k0y0 − k · y. The four dimensional delta function is

δ4(y) =
1

(2π)4

∫

d4kd−ik·y (17.95)

so (taking the 2 of D(y) under the integral and equating factors)

D̃(k) = − 1

k · k . (17.96)

We therefore know that the Green’s function has the form

D(y) =
−1

(2π)4

∫

d4k
e−ik·y

k · k . (17.97)

The integrand in this expression is singular when k · k = 0. Recall that

the presence of singularities means that we have to decide how to treat them

to get a well-defined result. There are several ways to do this, and each has

a physical interpretation. If we integrate over the “time” component k0 first,

we get

D(y) = − 1

(2π)4

∫

d3keik·y
∫

dk0
e−ik0y0

k2
0 − κ2

(17.98)

where |k| = κ. Now the singularities live in a single 1–D integral that we can

easily evaluate via contour integration and the method of residues provided

that we select a suitable contour.

Let’s do the integral carefully (in case your contour integration is bit

rusty). Note that the poles of this integral are both real. This means that

the integral is ambiguous – it can be assigned any of several possible val-

ues depending on how we choose to evaluation it. It is beyond the scope

of these notes to evaluate the consequences of making and physically inter-

preting each of these choices. Instead we will choose to include both poles

completely within a standard contour closed in the upper or lower half plane

respectively, and then take limits such that the poles return to the real axis
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Figure 17.1: Contours for evaluating the Green’s function in 4–dimensions.

after the integral because this particular choice leads us very simply to the

advanced and retarded forms of the Green’s function that we already ob-

tained when discussing the fourier transform of the incoming or outgoing

spherical Green’s functions for the Helmholtz equation.

First we have to decide which way to close the contour. Examining the

integrand, we note that if y0 = x0 − x′0 > 0 the integrand vanishes on a

lower-half contour like C in the figure above. We displace the poles down

slightly so that they lie inside the contour Γ: ±κ → ±κ − iǫ. Finally, let

z = k0 + iki be a complex variable such that the real axis is k0.

∮

Γ
dz

e−iy0z

z2 − κ2
=
∫ ∞

−∞
dk0

e−ik0y0

k2
0 − κ2

+
∫

C
dz

e−iy0z

z2 − κ2
(17.99)

As noted, the integral over C clearly vanishes for y0 > 0. Thus:

∫ ∞

−∞
dk0

e−ik0y0

k2
0 − κ2

=
∮

Γ
dz

e−iy0z

z2 − κ2

= lim
ǫ→0

(−2πi)Res
e−izy0

(z − (κ− iǫ))(z + (κ+ iǫ)

= −2πi

{

e−iκy0

2κ
+
eiκy0

−2κ

}

= −2π
sin(κy0)

κ
(17.100)



We can then write the Green’s function as

D(z) =
θ(y0)

(2π)3

∫

d3keik·z sin(κz0)

κ

=
θ(y0)

(2π)3

∫ ∞

0
κ2dκ

∫ 1

−1
d(cos(θ))

∫ 2π

0
dφeiκR cos(θ) sin(κy0)

κ

=
θ(y0)

(2π)2

∫ ∞

0
κ2dκ

∫ iκR

−iκR
d(iκR cos(θ))

eiκR cos(θ)

iκR

sin(κy0)

κ

=
θ(y0)

2π2R

∫ ∞

0
dκ sin(κR) sin(κy0)

(17.101)

where R = |x − x′| is the spatial separation of the points x and x′.

Using a trig identity (or if you prefer expanding the sin’s in terms of

exponentials and multiplying out, then changing variables and exploiting

the fact that only even terms survive) to extend the integral to −∞ we can

write this as:

D(z) =
θ(y0)

4πR

{

1

2π

∫ ∞

−∞
dκ
(

ei(y0−R)κ − ei(y0+R)κ
)

}

. (17.102)

These remaining integrals are just one dimensional Dirac delta functions.

Evaluating, we get:

Dr(x− x′) =
θ(x0 − x′0)

4πR

{

δ(x0 − x′0 − R) + δ(x0 − x′0 +R)
}

(17.103)

where we have now labelled it with “r” for “retarded”. The source event

x′ is always at an earlier time than the observation event x. This means

that the domain of the support of the Heaviside function just happens to

be disjoint from the support of the second delta function. We can therefore

simplify this to:

Dr(x− x′) =
θ(x0 − x′0)

4πR
δ(x0 − x′0 − R) (17.104)

which is just what we got before from Fourier transforming the outgoing

stationary wave Green’s function, as it should be.

If we had chosen the other contour, identical arguments would have led

us to the advanced Green’s function:

Da(x− x′) =
θ[−(x0 − x′0)]

4πR
δ(x0 − x′0 +R) (17.105)



The other possible contours (enclosing only one or the other of the two sin-

gularities, using a contour that avoids the singularities on the real axis in-

stead of displacing the singularities) would yield still other possible Green’s

functions. Just as an arbitrary normalized sum of outgoing and incoming

Green’s functions resulted in an acceptable Green’s function before, an arbi-

trary sum of advanced and retarded Green’s functions are acceptable here.

However, the inhomogeneous term of the integral equation is a functional of

the Green’s function selected!

For what it is worth, the Green’s functions can be put in covariant form.

One almost never uses them in that form, and it isn’t pretty, so I won’t

bother writing it down. We can now easily write down formal solutions to

the wave equation for arbitrary currents (not just harmonic ones):

Aα(x) = Aα
in(x) + µ0

∫

d4x′Dr(x− x′)Jα(x′) (17.106)

and

Aα(x) = Aα
out(x) + µ0

∫

d4x′Da(x− x′)Jα(x′). (17.107)

In these equations, the inhomogeneous terms are the radiation field incident

upon (radiated from) the four-volume of space-time containing the four-

current that are not connected to the four-current in that four-volume by

the retarded Green’s function.

It is a worthwhile exercise to meditate upon what might be a suitable

form for the inhomogeneous terms if one considerst the integration four-

volume to be infinite (with no inhomogeneous term at all) and then split

the infinite volume up into the interior and exterior of a finite four-volume,

as we did with incoming and outgoing waves before, especially when there

are many charges and they are permitted to interact.

Dirac noted that choosing a “retarded” Green’s function, just as choosing

an “outgoing wave” Green’s function before, results in a somewhat mislead-

ing picture given that the actual physics is completely time-reversal symmet-

ric (indeed, independent of using a mixed version of the Green’s functions in

either case). He therefore introduced the “radiation field” as the difference

between the “outgoing” and the “incoming” inhomogenous terms given the

contraint that the actual vector potential is the same regardless of the choice

of Green’s function used::

Aα
radiation = Aα

out −Aα
in =

4π

c

∫

d4x′D(x− x′)Jα(x′) (17.108)



where

D(z) = Dr(z) −Da(z). (17.109)

In some fundamental sense, only the radiation fields are “physical” – they

are the change in the vector potential at an event produced symmetrically

by any given four-current due to its past and its future motion. This is a

critical aspect of the interpretation of radiation reaction as being produced

by transfer of momentum both to a charge (event) from other charges in its

past and from a charge to those same charges in its future.





Chapter 18

Radiation from Point Charges

To summarize from the last chapter, two useful Green’s functions for the

inhomogeneous wave equation:

2Aα = µ0J
α (18.1)

are

Dr(x− x′) =
θ(x0 − x′0)

4πR
δ(x0 − x′0 − R) (18.2)

(the retarded Green’s function) and

Da(x− x′) =
θ[−(x0 − x′0)]

4πR
δ(x0 − x′0 + R) (18.3)

(the advanced Green’s function). The integral equations associated with

these Green’s functions were:

Aα(x) = Aα
in(x) + µ0

∫

d4x′Dr(x− x′)Jα(x′) (18.4)

and

Aα(x) = Aα
out(x) + µ0

∫

d4x′Da(x− x′)Jα(x′). (18.5)

For the moment, let us ignore Dirac’s observations and the radiation

field and focus instead on only the “normal” causally connected retarded

potential produced by a single charged particle as it moves in the absence

of external potentials. This potential is “causal” in that the effect (the

potential field) follows the cause (the motion of the charge) in time, where

the advanced potential has the effect preceding the cause, so to speak. Let
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me emphasize that this is not a particularly consistent assumption (again,

we the theory is manifestly time symmetric so “past” and “future” are pretty

much arbitrary namings of two opposed directions), but it yields some very

nice results, as well as some problems. In that case:

Aα(x) = µ0

∫

d4x′Dr(x− x′)Jα(x′) (18.6)

where the four–current of a point charge e is found from

J(x′, t) =

{

cρ(x′, t)

J(x′, t)

}

=

{

ec δ[x′ − r(t)]

evδ[x′ − r(t)]

}

(18.7)

in the lab/rest frame K or (in covariant form):

Jα(x′) = ec
∫

dτUα(τ)δ(4) ([x′ − r(τ)]) (18.8)

where

U = γ

(

c

v

)

=
dr

dτ
(18.9)

Note that the δ function in these expressions simply forces the particle to

be found at the correct location at each (proper) time. The r(τ) function

is the trajectory of the particle. Its τ derivative is the four–velocity. This

yields (when the γ’s have all been accounted for) the rest frame expression.

To do the integral, we need the “manifestly covariant” form of the re-

tarded Green’s function. Note that:

δ[(x− x′)2] = δ[(x0 − x′0)2 − |x − vx′|2]
= δ[(x0 − x′0 −R)(x0 − x′0 +R)]

=
1

2R
[δ(x0 − x′0 − R) + δ(x0 − x′0 +R)] (18.10)

(where R = |x − x′|). In terms of this, Dr is given by

Dr(x− x′) =
1

2π
θ(x0 − x′0)δ[(x− x′)2]. (18.11)

Again, the second delta–function makes no contribution because of the op-

posing θ–function. Thus

Aα(x) =
µ0c

2π

∫

d4x′θ(x0 − x′0)δ([x− x′]2)

×e
∫

dτUα(τ)δ(4) ([x′ − r(τ)]) (18.12)

=
eµ0c

2π

∫

dτUα(τ)θ[x0 − rx(τ)]δ
{

[x− r(τ)]2
}

. (18.13)



The vector potential at a point gets a contribution only where–when that

point lies on the light cone in the future (picked out by the θ function) of the

world line of the charge (picked out be the δ function). The contribution is

proportional to eUα(τ) at that (retarded) time. It dies off like 1/R, although

that is obscured by the form of the δ function.

To evaluate this (and discover the embedded R), we use the rule (from

way back at the beginning of the book, p. 30 in J1.2)

δ[f(x)] =
∑

i

δ(x− xi)
∣

∣

∣

∣

(

df
dx

)

x=xi

∣

∣

∣

∣

(18.14)

where the x = xi are the non–degenerate zeros of f(x). f(x) is assumed to

be “smooth”. Then if we let

f(τ) = [x− r(τ)]2 (18.15)

(which is zero when τ = τp in the past) then

d

dτ
[x− r(τ)]2 = −2[x− r(τ)]βU

β(τ) (18.16)

and therefore

δ([x− r(τ)]2) =
δ(τ − τp)

|−2[x− r(τ)]βUβ(τ)| =
δ(τ − τp)

2[x− r(τ)]βUβ(τ)
(18.17)

From this we see that

Aα(x) =
eµ0c

4π

Uα(τ)

U · [x− r(τ)]

∣

∣

∣

∣

∣

τ=τp

(18.18)

where τp is the proper time in the past of x when the light cone of the charge

contains the event x. This potential (and its other forms above) are called

the Liénard–Wiechert potentials. In non–covariant form, they are obtained

from the identity

U · (x− r) = U0[x0 − r0(τp)] − U · [x − r(τp)]

= γcR(1 − β · n) (18.19)

where n is a unit vector in the direction of x − r(τ) and where β = v(τ)/c

as usual.



Recall that A = (φ/c,A). Thus:

A0(x) =
eµ0c

4π

γc

γcR(1 − β · n̂)

∣

∣

∣

∣

∣

ret

(18.20)

and

φ(x, t) = cA0 =
e

4πǫ0

1

R(1 − β · n̂)

∣

∣

∣

∣

∣

ret

(18.21)

where all quantities (e.g. β, R) must be evaluated at the retarded time

where the event x is on the light cone of a point on the particle trajectory.

Similarly

A(x, t) =
eµ0c

4π

γcβ

γcR(1 − β · n̂)

∣

∣

∣

∣

∣

ret

=
e

4π

√

µ0

ǫ0

β

R(1 − β · n̂)

∣

∣

∣

∣

∣

ret

(18.22)

where again things must be evaluated at retarded times on the particle

trajectory. Note well that both of these manifestly have the correct non-

relativistic form in the limit |β| << 1.

We can get the fields from the 4–potential in any of these forms. However,

the last few forms we have written are compact, beautiful, intuitive, and have

virtually no handles with which to take vector derivatives. It is simpler to

return to the integral form, where we can let ∂α act on the δ and θ functions.

∂αAβ =
eµ0c

2π

∫

dτUβ(τ)θ[x0 − r0(τ)]∂
αδ
(

[x− r(τ)]2
)

(18.23)

where

∂αδ[f ] = ∂αf ·
(

d

df
δ[f ]

)

= ∂αf · dτ
df

· d
dτ
δ[f ]. (18.24)

Again, we let f = [x− r(τ)]2. Then

∂αδ[f ] = − (x− r)α

U · (x− r)

d

dτ
δ[f ] (18.25)

This is inserted into the expression above and integrated by parts:

∂αAβ = −eµ0c

2π

∫

dτUβ(τ)θ[x0 − r0(τ)]
(x− r)α

U · (x− r)

d

dτ
δ[f ]

=
eµ0c

2π

∫

dτ
d

dτ

{

Uβ(τ)
(x− r)α

U · (x− r)

}

θ[x0 − r0(τ)]δ([x− r(τ)]2).(18.26)



There is no contribution from the θ function because the derivative of a

theta function is a delta function with the same arguments

d

dτ
θ(x0 − r0(τ)) = δ[x0 − r0(τ)] (18.27)

which constrains the other delta function to be δ(−R2). This only gets a

contribution at R = 0 (on the world line of the charge), but we already

feel uncomfortable about the field there, which we suspect is infinite and

meaningless, so we exclude this point from consideration. Anywhere else

the result above is exact.

We can now do the integrals (which have the same form as the potential

integrals above) and construct the field strength tensor:

F αβ =
eµ0c

4π

e

U · (x− r)

d

dτ

{

(x− r)αUβ − (x− r)βUα

U · (x− r)

}∣

∣

∣

∣

∣

ret

(18.28)

This whole expression must be evaluated after the differentiation at the

retarded proper time τp.

This result is beautifully covariant, but not particularly transparent for

all of that. Yet we will need to find explicit and useful forms for the fields

for later use, even if they are not as pretty. Jackson gives a “little” list of

ingredients (J14.12) to plug into this expression when taking the derivative

to get the result, which is obviously quite a piece of algebra (which we will

skip):

E(x, t) =
eµ0

4πc2

[

(n̂ − β)

γ2(1 − β · n̂)3R2

]

ret

+
eµ0

4πc3





n̂ ×
(

(n̂ − β) × β̇
)

(1 − β · n̂)3R





ret
(18.29)

and

B(x, t) =
1

c
(n̂ × E) (18.30)

“Arrrgh, mateys! Shiver me timbers and avast!”, you cry out in dismay.

“This is easier? Nonsense!” Actually, though, when you think about it (so

think about it) the first term is clearly (in the low velocity, low acceleration

limits) the usual static field:

E ≈ e

4πǫ0

n̂

R2
(18.31)



Interestingly, it has a “short” range and is isotropic.

The second term is proportional to the acceleration of the charge; both

E and B are transverse and the fields drop off like R−1 and hence are “long

range” but highly directional.

If you like, the first terms are the “near” and “intermediate” fields and

the second is the complete “far” field; only the far field is produced by the

acceleration of a charge. Only this field contributes to a net radiation of

energy and momentum away from the charge.

With that (whew!) behind us we can proceed to discuss some important

expressions. First of all, we need to obtain the power radiated by a moving

charge.

18.1 Larmor’s Formula

If one is far (enough) away from the an accelerating charge in the right

direction, the field is given by primarily by the second (acceleration) term.

This is the “usual” transverse EM field. If the particle is moving slowly with

respect to c (so β << 1), then

E =
e

4πǫ0

1

c

n̂ × (n̂ × β̇)

R

∣

∣

∣

∣

∣

ret

(18.32)

B =
e

4πǫ0

1

c2
n̂ × β̇

R

∣

∣

∣

∣

∣

ret

(18.33)

The energy flux is given by the (instantaneous) Poynting vector:

S =
1

µ0
(E × B)

=
e2

16π2ǫ0 R2

1

µ0ǫ0

1

c3
|n̂ × (n̂ × β̇)|2n̂

=
e2

16π2ǫ0 R2

1

c3
|n̂ × (n̂ × c2β̇)|2n̂

=
e2

16π2ǫ0 R2

1

c3
|n̂ × (n̂ × v̇)|2n̂ (18.34)



As always, the power cross-section (energy per unit solid angle) is

dP

dΩ
= S · n̂R2

=
e2

16π2ǫ0

1

c3
|n̂ × (n̂ × v̇)|2

=
e2

16π2ǫ0

1

c3
|v̇|2 sin2(Θ) (18.35)

where Θ is the angle between n̂ and v̇.

Aha! we say. The characteristic sin2 Θ! Aha again! Inspecting the

vector products, we see that the radiation is polarized in the plane of n, v̇,

perpendicular to n. Finally, the integral over angles yields 8π/3, so that

P =
e2

6πǫ0c3
|v̇|2 . (18.36)

This is the Larmor formula for the power radiated from a nonrelativistic

accelerated point charge. This has a covariant generalization that is valid

for any velocity of charge. First we factor out an m2 and convert this to

momentum coordinates. Then we realize that the energy carried by this

field (per unit time) is indeed related to the momentum by a factor of 1/c

and convert the whole thing to 4–vector form. Last, we convert t into τ :

P =
e2

6πǫ0c3
1

m2

∣

∣

∣

∣

∣

d(mv)

dt

∣

∣

∣

∣

∣

2

=
e2

6πǫ0m2c3

∣

∣

∣

∣

∣

d(mv)

γdτ

∣

∣

∣

∣

∣

2

=
e2

6πǫ0m2c3
(1 − β2)

∣

∣

∣

∣

∣

dp

dτ

∣

∣

∣

∣

∣

2

=
e2

6πǫ0m2c3

(

dp

dτ

)2

−
(

1

c2
dE

dτ

)2

= − e2

6πǫ0m2c3

(

dpα

dτ

dpα

dτ

)

(18.37)

This can be written one more way, (substituting E = γmc2 and p = γmv

and using some vector identities) due to Liénard:

P =
e2

6πǫ0c3
γ6[(β̇)2 − (β × β̇)2] (18.38)



We are all better people for knowing this.

Why, you may ask, is this torture necessary? Because quite a few of

you will spend unreasonable amounts of your lives calculating things like

radiative losses in accelerators. After all, if we could build GeV accelerators

in a little bitty ten foot ring it would be a whole lot cheaper than 6 billion

bucks, plus inflation. Unfortunately, nature says that if you try it the nasty

thing will give off synchrotron radiation! Let us see that tanstaafl1.

The radiated power is proportional to the acceleration. The work is

proportional to the tangential force times the velocity. Light particles ac-

celerate the most for a given tangential force and have the highest velocity

for a given energy; radiative losses are thus the most important for those

particles at all energies. We will evaluate the radiative power loss for an

electron in a linear accelerator.

We begin with

P =
e2

6πǫ0m2c3

(

dp

dt

)2

(18.39)

where −e is now really the charge on the electron. Since the accelerator is

linear, we can find the force directly from the rate at which work is done

on the electron (otherwise we would have to include the force bending it in

a curved path, which does no work). It is related to the “gradient” of the

total energy,

P =
e2

6πǫ0m2c3

(

dE

dx

)2

. (18.40)

For linear acceleration we don’t care what the actual energy of the particle

is; we only care how that energy changes with distance.

We will turn this into a rate equation by using the chain rule:

Prad =
e2

6πǫ0m2c3
dE

dx

dE

dt

dt

dx
(18.41)

Thus the ratio of power radiated to power supplied by the accelerator Pacc =

dE/dt is:
Prad

Pacc
=

e2

6πǫ0m2c3
1

v

dE

dx
≈ 1

6πǫ0

e2/mc2

mc2
dE

dx
(18.42)

where the latter form is valid when the electron is travelling at v ≈ c.

1There Ain’t No Such Thing As A Free Lunch. No kidding.



This quantity will be less than one while the gain in energy in a distance

e2/mc2 = 2.82 × 10−13 cm is of the order of mc2 = .5 MeV. That would

require a potential difference (or other force) on the order of 1014 MV/meter.

Maybe at the surface of a positron. Come to think of it, falling into

a positron there comes a point where this is true and at that point the

total mass energy of the pair is radiated away. But nowhere else. We can

completely neglect radiative losses for linear acceleration simply because the

forces required to produce the requisite changes in energy when the particle

is moving at nearly the speed of light are ludicrously large. For a charged

particle moving in a straight line, radiative losses are more important at

low velocities. This is fortunate, or radios and the like with linear dipole

antennas would not work!

However, it is incovenient to build linear accelerators. That is because

a linear accelerator long enough to achieve reasonable energies for electrons

starts (these days) at around 100–500 miles long. At that point, it is still

not “straight” because the earth isn’t flat and we don’t bother tunnelling

out a secant. Also, it seems sensible to let a charged particle fall many

times through the “same” potential, which is possible only if the accelerator

is circular. Unfortunately, we get into real trouble when the accelerator is

not straight.

In a circular accelerator, there is a non–zero force proportional to its

velocity squared, even when little or no work is being done to accelerate the

particle! In fact, the centripetal force on the particle is
∣

∣

∣

∣

∣

dp

dτ

∣

∣

∣

∣

∣

= γω |p| >> 1

c

dE

dτ
(18.43)

all of which increase as the speed of the particle increases. If we completely

neglect the radiative loss due to tangential acceleration (which is completely

negligible once relativistic velocities have been reached) we see that

P =
e2

6πǫ0m2c3
γ2ω2 |p|2 =

e2c

6πǫ0r2
β4γ4 (18.44)

where we have used ω = (cβ/r). The loss per revolution is obtained by

multiplying by T (the period of a revolution). This yields

∆E =
2πr

cβ
P =

e2

3ǫ0r
β3γ4 (18.45)



which is still deadly if r is small and/or γ and β are large.

If one does some arithmetic (shudder), one can see that for high energy

electrons (where β ≈ 1), this is

∆E(MeV) = 8.85 × 10−2 [E(GeV)]4

r(meters)
. (18.46)

At around 1 GeV, one needs roughly 1/(10r) of that energy gain per cycle

in order to turn (heh, heh) a net profit. That is not so bad, but the power

of 4 says that at 10 GeV, one needs a gain per cycle of 1000/r GeV (!) in

order to turn a profit. Now, it is true that the bigger the radius the longer

the circumference (linearly) and the longer the circumference the more work

one can do with a given fixed potential in a cycle. So in terms of force this

relation is not as bad as it seems. But it is bad enough, because you still

have to do the work, which costs you the same no matter how hard you have

to push to do it. Clearly even at 10 GeV, an orbit of radius ∼ 100 meters or

better is necessary. In electron–positron storage rings, work must be done

at this general rate just to keep the particles moving.

Those of you who need to know can read section 14.3 on your own. The

results are straightforward but algebraically tedious, and are of use only

if you plan on studying accelerator design or neutron stars. Don’t get me

wrong. Nobel prizes have been won for accelerator design and may be again.

Go for it.

Ditto for 14.4. This is highly readable and contains no algebra. In

a nutshell, a particle moving in a synchrotron emits its radiation in its

instantaneous direction of motion (which is indeed perpendicular to the

acceleration). Since it moves in a circle, a stationary observer in the plane

of motion sees short bursts of radiation at the characteristic frequency c/r.

The length (in time) of the pulses is L/c in time, and thus will contain

frequencies up to c/L ∼ (c/r)γ3 in a fourier decomposition of their “wave

packet” where L ≈ r/(2γ3) is the length of the pulse in space. For highly

relativistic particles moving in big circles, the characteristic frequency can

be many orders of magnitude smaller than the high frequency cut off, as

in AM radio frequencies to X–rays or worse. Synchrotron radiation is a

potential source of high frequency electromagnetic energy.

Of course, it isn’t tunable or coherent (in fact, its highly incoherent since

the spectrum is so wide!) and we’d love to use the same kind of trick to



make coherent, tunable, high frequency light. Some of you probably will use

the same kind of trick before you leave, since free electron lasers produce

energy from a similar principle (although with a totally different spectrum!).

Section 14.6 deals with the spectrum, and we will blow that off, too. Suffice

it to say that it can be calculated, and you can learn how, if you need to.

You really should remember that ωc ≈ ω0γ
3, and should take a peek at the

distribution curves. These curves let one detect synchrotron radiation from

cosmological sources. These sources are generally charged particles falling

into dark stars, radiation belts around planets, sunspots, or anyplace else

that relativistic electrons are strongly accelerated in a circular, or helical,

path. Finally, we will neglect 14.5 too, which analyzes radiation emitted by

particles moving in wierd ways. Jackson is encyclopaediac, but we needn’t

be.

We will come back into focus at section 14.7, Thomson Scattering of

Radiation. This is scattering of radiation by charged particles and is closely

related to Compton scattering. It is important, as it is a common phe-

nomenon.

18.2 Thomson Scattering of Radiation

Suppose that a plane wave of monochromatic electromagnetic radiation is

incident on a free particle of charge e and mass m. The particle will expe-

rience a force from this field, and will accelerate. As it accelerates, it will

emit radiation in different directions, dispersing the incident beam.

For a non–relativistic particle accelerated by a force we can see that:

dP

dΩ
=

e2

16π2ǫ0

1

c3
|ǫ̂∗ · v̇|2 (18.47)

(where |ǫ̂∗ · v̇|2 = |v̇|2 sin2 Θ for a particular polarization perpendicular to

the plane of n̂ and v̇).

The (leading order) acceleration is due to the plane wave electric field

with polarization ǫ̂0, wave vector k0, and Newton’s Law:

v̇ =
e

m
E0ǫ̂0e

ik0·x−ωt (18.48)



If the charge moves much less than one wavelength during a cycle (true for

all but the lightest particles and strongest fields) then

|v̇|av =
1

2
Re (v̇ · v̇∗) (18.49)

Thus the average power flux distribution is

(

dP

dΩ

)

av

=
c

32π2ǫ0
|E0|2

(

e2

mc2

)2

|ǫ̂∗ · ǫ̂0|2

=

{

e2

4πǫ0mc2

}2
ǫ0cE

2
0

2
|ǫ̂∗ · ǫ̂0|2 (18.50)

This is clearly of the same general form as the scattering expressions

we described and derived earlier. Since the result contains E2
0 it makes

sense to divide out the incident intensity and thus obtain a differential cross

section that works for all but the strongest fields. We thus divide out the

time-averaged flux of the Poynting vector of the incident plane wave:

I =
ǫ0cE

2
0

2
(18.51)

hence
dσ

dΩ
=

{

e2

4πǫ0mc2

}2

|ǫ̂∗ · ǫ̂0|2 (18.52)

If we let the plane wave be incident along the z axis, let n̂ form an angle

θ with that axis, and pick two polarization directions in and perpendicular

to the (n̂, ẑ) plane (as before), and average over polarizations then this dot

product yields:

dσ

dΩ
=

{

e2

4πǫ0mc2

}2
1

2
(1 + cos2 θ). (18.53)

as it did back in our earlier work on scattering, but now for a point particle.

This is the Thomson formula for scattering of radiation by free charge.

It works for X–rays for electrons or γ–rays for protons. It does not work

when the photon momentum and the recoil of the charged particle cannot

be neglected. The integral of this,

σT =
8π

3

{

e2

4πǫ0mc2

}2

(18.54)



is called the Thomson cross–section. It is 0.665× 10−29 m2 for electrons.

The quantity in parentheses has the units of length. If the total “mass–

energy” of the electron were due to its charge being concentrated in a ball,

then this would be the close order of the radius of that ball; it is called the

classical electron radius. This number crops up quite frequently, so you

should remember it. What it tells us is that even point particles have a finite

scattering cross-section that appears in this limit to be independent of the

wavelength of the light scattered.

However, this is not really true if you recall the approximations made –

this expression will fail if the wavelength is on the same order as the clas-

sical radius, which is precisely where pair production becomes a significant

process quantum mechanically. In quantum mechanics, if the energy of the

incident photon h̄ω ≈ mc2 for the electron, significant momentum is trans-

ferred to the electron by the collision and the energy of the scattered photon

cannot be equal to the energy of the incident photon. Whatever a photon

is . . .

We can actually fix that without too much difficulty, deriving the Comp-

ton scattering formula (which takes over from Thomson in this limit). This

formula adds a wavelength/angle dependence to Thomson’s general result

and yields the Klien-Nishina formula, but this is beyond our scope in this

course to derive or discuss in further detail.

We are almost finished with our study of electrodynamics. Our final

object of study will be to to try to address the following observation:

Accelerated charges radiate. Radiation accelerates charge. Energy must

be conserved. These three things have not been consistently maintained in

our treatments. We study one, then the other, and require the third to be

true in only part of the dynamics.

What is missing is radiation reaction. As charges accelerate, they radiate.

This radiation carries energy away from the system. This, then means that

a counterforce must be exerted on the charges when we try to accelerate

them that damps charge oscillations.

At last the folly of our ways is apparent. Our blind insistence that only

retarded fields are meaningful (so that we can imagine the fields to be zero up

to some time and then start moving a charge, which subsequently radiates)



has left us with only one charge that can produce the field that produces the

force that damps applied external forces — the charge itself that is radiating.

No other charge produces a field that can act on this charge “in time”. We

have invented the most sublime of violations of Newton’s laws – an object

that lift’s itself up by its own bootstraps, an Aristotelian object that might

even be able to come to rest on its own in the absence of external forces.

Clearly we must investigate radiation reaction as a self–force acting on an

electron due to its own radiation field, and see if it is possible to salvage any-

thing like a Newtonian description of even classical dynamics. We already

know that Larmor radiation plus stable atoms spells trouble for Newton,

but Newton still works classically, doesn’t it?

Let’s take a look. Uh–oh, you say. Wasn’t the, well, wasn’t everything

singular on a point charge? Won’t we get infinities at every turn? How will

we realize finite results from infinite fields, potentials, self-energies, and so

on?

Yes! I cry with glee. That’s the problem. Finally we will learn how

to take a singular field, a singular charge, and infinite energy, and make a

physically realized (almost) radiation reaction force out of it.



Chapter 19

Radiation Reaction

19.1 The Death of Classical Physics

Thus far we have learned how to solve two kinds of problems. Either the

fields were assumed to be given, in which case the relativistic Lorentz force

law yielded covariant equations of motion for a point charged massive parti-

cle interacting with these fields or the trajectory of a charged, point particle

was given and the fields radiated by this particle were determined.

This, however, was clearly not enough, or at least was not consistent.

That is because (as a few simple mental problems will show) each of these

processes is only half of an interaction — a complete, consistent field theory

would include the self–consistent interaction of a charged particle with the

field in its vicinity, or better yet, the self-consistent interaction of all particles

and fields. We need to be able to calculate the total field (including the

radiated field) at the position of any given point charge. Some of that field

is due to the charge itself and some is due to the field produced by the other

charges. But we do not know how to do this, really, since the one will affect

the other, and there are clearly infinities present.

This sort of problem can also lead to Newtonian paradoxes, paradoxes

that smack of the resurrection of Aristotelian dynamics. To see this, let us

assume (non–physically) that we have a Universe consisting of a single point

charge orbiting around an uncharged gravitational mass (or some other force

center that causes the charge to move in a bound orbit). In that case, the

301



point charge must (according to the laws of electrodynamics that we have

thus far deduced) radiate energy and momentum into the electromagnetic

field.

As it accelerates, it must radiate. As it radiates, energy and momentum

must be carried away from the point particle to “infinity”. The particle must

therefore decrease its total energy. If the particle is bound in an attractive,

negative potential well, the only way that total energy can be conserved is

if its total energy decreases. The particle must therefore spiral inwards the

center, converting its potential energy into radiative energy in the field, until

it reaches the potential minimum and comes to rest.

There is only one difficulty with this picture. There is only one charged

particle in the Universe, and it is interacting with only one attractive center.

What acts to slow the particle down?

This is a non–question, of course – a thought experiment designed to

help us understand where our equations of motion and classical picture are

incomplete or inconsistent. The real universe has many charged particles,

and they are all constantly interacting with all the other charged particles

that lie within the “event horizon” of an event relative to the time of the

big bang, which is the set of the most distant events in space–time in the

past and in the future that can interact with the current event on the world

line of each particle. It is the edge of the “black hole” that surrounds us1.

However, in our simplied Universe this question is very real. We have

systematically rid ourselves of the fields of all the other particles, so now

we must find a field based on the particle itself that yields the necessary

“radiation reaction” force to balance the energy–momentum conservation

equations. This approach will have many unsatisfactory aspects, but it

works.

First, when will radiation reaction become important? When the energy

radiated by a particle is a reasonable fraction of the total relevant energy

E0 of the particle under consideration. That is

Erad ∼ 2

3c

e2a2T

4πǫ0c2
(19.1)

1It is interesting to meditate upon the fact that your event horizon and my event

horizon are not coincident, which leads in turn to an interesting problem with logical

positivism.



where a is the total (e.g. centripetal) acceleration and T is the period of

the orbit associated with E0 or the time a uniform acceleration is applied.

If Erad << E0 then we can neglect radiation reaction.

As before, if a particle is uniformly (linearly) accelerated for a time τr,

then we can neglect radiation reaction when

E0 ∼ m(aτr)
2 ≫ 2

3c

e2a2τr
4πǫ0c2

(19.2)

Radiation reaction is thus only significant when the opposite is true,

when:

τr ∼ 2

3c

e2

4πǫ0mc2

∼ 2

3
re/c =

2

3
τe (19.3)

Only if τr ∼ τe and a is large will radiation reaction be appreciable. For

electrons this time is around 10−23 seconds. This was the situation we

examined before for linear accelerators and electron–positron anihillation.

Only in the latter case is radiation reaction likely.

The second case to consider is where the acceleration is centripetal. Then

the potential and kinetic energy are commensurate in magnitude (virial

theorem) and

E0 ∼ mω2
0d

2 (19.4)

where a ∼ ω2
0d and τr ∼ 1/ω0. As before, we can neglect radiation reaction

if

mω2
0d

2 ≫ 2

3c

e2ω4
0d

2

4πǫ0c2ω0
= ω0d

2 2

3c

e2

4πǫ0c2
(19.5)

Radiation reaction is thus again significant per cycle only if

ω0τr ∼ 1 (19.6)

(ignoring factors of order one) where τr is given above – another way of

saying the same thing. ω−1
0 is (within irrelevant factor of 2π and 2

3
) the time

associated with the motion, so only if this timescale corresponds to τr ≈ τe
will radiation reaction be significant.

So far, our results are just a restatement of those we obtained discussing

Larmor radiation except that we are going to be more interested in elec-

trons in atomic scale periodic orbits rather than accelerators. Electrons in



an atomic orbit would be constantly accelerating, so any small loss per cy-

cle is summed over many cycles. A bit of very simple order-of-magnitude

arithmetic will show you that radiative power loss need not be negligible as

a rate compared to human timescales when ω−1
0 is very small (e.g. order

of 10−15 seconds for e.g. optical frequency radiation). Charged particles

(especially electrons) that move in a circle at a high enough (angular) speed

do indeed radiate a significant fraction of their energy per second when the

loss is summed over many cycles. The loss per cycle may be small, but it

adds up inexorably.

How do we evaluate this “radiation reaction force” that has no obvious

physical source in the equations that remain? The easy way is: try to

balance energy (and momentum etc) and add a radiation reaction force to

account for the “missing energy”. This was the approach taken by Abraham

and Lorentz many moons ago.

19.2 Radiation Reaction and Energy Con-

servation

We know that

F tot = mv̇ (19.7)

is (nonrelativistic) Newton’s 2nd Law for a charged particle being accelerated

by a (for the moment, non–electromagnetic) given external force. The work

energy theorem dictates how fast the particle can gain kinetic energy if this

is the only force acting.

However, at the same time it is being acted on by the external force (and

is accelerating), it is also radiating power away at the total rate:

P (t) =
2

3c

e2

4πǫ0c2
v̇2

=
2

3

mre

c
v̇2

= mτrv̇
2 (19.8)

(the Larmor formula). These are the two pieces we’ve thus far treated

independently, neglecting the one to obtain the other.



However, in order for Newton’s law to correctly lead to the conservation

of energy, the work done by the external force must equal the increase in

kinetic energy plus the energy radiated into the field. Energy conservation

for this system states that:

Wext = ∆Ee + ∆Ef (19.9)

or the total work done by the external force must equal the change in the

total energy of the charged particle (electron) plus the energy that appears

in the field. If we rearrange this to:

Wext − ∆Ef = ∆Ee (19.10)

and consider the electron only, we are forced to conclude that there must be

another force acting on the electron, one where the total work done by the

force decreases the change in energy of the electron and places the energy

into the radiated field. We call that force F rad, the radiation reaction force.

Thus (rewriting Newton’s second law in terms of this force):

F ext + F rad = mv̇

F rad = mv̇ − F ext (19.11)

defines the radiation reaction force that must act on the particle in order

for energy conservation to make sense. The reaction force has a number of

necessary or desireable properties in order for us to not get into “trouble”2.

• We would like energy to be conserved (as indicated above), so that

the energy that appears in the radiation field is balanced by the work

done by the radiation reaction force (relative to the total work done

by an external force that makes the charge accelerate).

• We would like this force to vanish when the external force vanishes, so

that particles do not spontaneously accelerate away to infinity without

an external agent acting on them.

• We would like the radiated power to be proportional to e2, since the

power and its space derivatives is proporotional to e2 and since the

force magnitude should be dependent of the sign of the charge.

2Trouble such as particles capable of lifting themselves up by their own metaphorical

bootstraps...



• Finally, we want the force to involve the “characteristic time” τ (whereever

it needs a parameter with the dimensions of time) since no other time-

scaled parameters are available.

Let’s start with the first of these. We want the energy radiated by some

“bound” charge (one undergoing periodic motion in some orbit, say) to equal

the work done by the radiation reaction force in the previous equation. Let’s

start by examining just the reaction force and the radiated power, then, and

set the total work done by the one to equal the total energy radiated in the

other, over a suitable time interval:

∫ t2

t1
F rad · vdt = −

∫ t2

t1
Pdt = −

∫ t2

t1
mτrv̇ · v̇dt (19.12)

for the relation between the rates, where the minus sign indicates that the

energy is removed from the system. We can integrate the right hand side

by parts to obtain

∫ t2

t1
F rad · vdt =

∫ t2

t1
mτrv̈ · vdt−mτr(v̇ · v) |t2t1 (19.13)

Finally, the motion is “periodic” and we only want the result over a period;

we can therefore pick the end points such that v̇ · v = 0. Thus we get

∫ t2

t1
(F rad −mτrv̈) · vdt = 0. (19.14)

One (sufficient but not necessary) way to ensure that this equation be

satisfied is to let

F rad = mτrv̈ (19.15)

This turns Newton’s law (corrected for radiation reaction) into

F ext = mv̇ − F rad

= m(v̇ − τrv̈) (19.16)

This is called the Abraham–Lorentz equation of motion and the radia-

tion reaction force is called the Abraham–Lorentz force. It can be made

relativistic be converting to proper time as usual.

Note that this is not necessarily the only way to satisfy the integral

constraint above. Another way to satisfy it is to require that the difference



be orthogonal to v. Even this is too specific, though. The only thing that

is required is that the total integral be zero, and short of decomposing the

velocity trajectory in an orthogonal system and perhaps using the calculus of

variations, it is not possible to make positive statements about the necessary

form of F rad.

This “sufficient” solution is not without problems of its own, problems

that seem unlikely to go away if we choose some other “sufficient” criterion.

This is apparent from the observation that they all lead to an equation of

motion that is third order in time. Now, it may not seem to you (yet) that

that is a disaster, but it is.

Suppose that the external force is zero at some instant of time t = 0.

Then

v̇ ≈ τ v̈ (19.17)

or

v̇(t) = a0e
t/τ (19.18)

where a0 is the instantaneous acceleration of the particle at t = 0.

Recalling that v · v̇ = 0 at t1 and t2, we see that this can only be true if

a0 = 0 (or we can relax this condition and pick up an additional boundary

condition and work much harder to arrive at the same conclusion). Dirac

had a simply lovely time with the third order equation. Before attacking it,

though, let us obtain a solution that doesn’t have the problems associated

with it in a different (more up-front) way.

Let us note that the radiation reaction force in almost all cases will be

very small compared to the external force. The external force, in addi-

tion, will generally be “slowly varying”, at least on a timescale compared

to τr ≈ 10−24 seconds. If we assume that F ext(t) is smooth (continuously

differentiable in time), slowly varying, and small enough that F rad ≪ F ext

we can use what amounts to perturbation theory to determine F rad and

obtain a second order equation of motion.

Under these circumstances, we can assume that F ext ≈ mv̇, so that:

F ext = m(v̇ − τrv̈)

≈ mv̇ − τr
dF ext

dt
(19.19)



or

mv̇ = F ext + τr
dF ext

dt

= F ext + τr

{

∂

∂t
+ (v · ∇)

}

F ext (19.20)

This latter equation has no runaway solutions or acausal behavior as long

as F ext is differentiable in space and time.

We will defer the discussion of the covariant, structure free generalization

of the Abraham–Lorentz derivation until later. This is because it involves

the use of the field stress tensor, as does Dirac’s original paper — we will

discuss them at the same time.

What are these runaway solutions of the first (Abraham-Lorentz) equa-

tion of motion? Could they return to plague us when the force is not small

and turns on quickly? Let’s see...

19.3 Integrodifferential Equations of Motion

We seek solutions to the third order AL equation of motion that evolve into

the “natural” ones when the driving force is turned off. In other words, radi-

ation reaction must, by hypothesis, only damp the system and not drive it.

Clearly even this requirement makes no sense when time reversal symmetry

is considered. Once we fall into the trap of choosing retarded interaction

only, we are sunk and anything we do to fix it will be a band–aid.

Let us introduce an “integrating factor” into the equations of motion. If

we assume (quite generally) that

v̇(t) = et/τru(t) (19.21)

where u(t) is to be determined, then the equations of motion simplify to

mu̇ = − 1

τr
e−t/τF (t). (19.22)

We can formally integrate this second equation, obtaining

mv̇(t) =
et/τr

τr

∫ C

t
e−t′/τrF (t′)dt′ (19.23)



The constant of integration is determined by our requirement that no run-

away solutions exist! Note well that it is a constraint that lives in the future

of the particle. In order to use this to find v(t), we must know the force

F (t) for some time (of order τr) in the future! After this, the integrand is

“cut off” by the decaying exponential.

This suggests that we can extend the integral to C = ∞ without diffi-

culty. In the limit τr → 0, we recover Newton’s law, as we should. To see

this, let

s =
1

τr
(t′ − t) (19.24)

so that

mv̇(t) =
∫ ∞

0
e−sF (t+ τrs)ds. (19.25)

The force is assumed to be slowly varying with respect to τ (or none of this

makes sense, just as was the case above) so that a Taylor series expansion

converges:

F (t+ τs) =
∞
∑

n=0

(τrs)
2

n!
a
dnF (t)

dtn
(19.26)

which, upon substitution and integration over s, yields

mv̇ =
∞
∑

n=0

τn
r

dnF

dtn
. (19.27)

In the limit τ → 0 only the lowest order term survives. This is New-

ton’s law without radiation reaction. The higher order terms are successive

radiative corrections and matter only to the extent that the force varies in

time. Note that this force obeys a “Lenz’s Law” sort of behavior; when the

applied force is changed (say, increased) there is an additional “force” in

the direction of the change that acts on the particle. A particle moving in

a circle has a force that changes direction but not magnitude. This change

is (think about it) tangent to the motion and in the opposite direction. It

acts to slow the charged particle down. Hmmmmmm.

There are two extremely annoying aspects to this otherwise noble solu-

tion. First, as we have repeatedly noted, it requires a knowledge of F (t)

in the future of the particle to obtain its acceleration now. Truthfully, this

isn’t really a problem – obviously this is absolutely equivalent to saying that

F (t) can be expanded in a Taylor series (is an analytic function). Second,

(and even worse) it responds to a force that is completely in its future with



Figure 19.1: F (t), v̇(t) and v(t) on a timescale of τr. Note that the particle

“preaccelerates” before “the force gets there”, whatever that means.

an acceleration now. It “knows” that a force is going to act on it before that

force gets there.

Mind you, not long before the force gets there. About 10−24 seconds

before (for reasonable forces). Classically this is very bad, but quantum

theory fuzzes physics over a much larger time scale. This is viewed by many

physicists as an excuse for not working out a consistently causal classical

theory. You can make up your own mind about that, but note well that

even if the integrodifferential equation had involved past values of the force

you should have been equally bothered – either one makes Newton’s law

nonlocal in time!

Note well that we’ve already seen (nonlocal) integrodifferential equations

in time in a somewhat similar context! Remember our derivation of of

dispersion relations, in particular Kramers-Kronig? We had a kernel there

that effectively sampled times in the future or past of a system’s motion.

This worked because we could integrate over frequencies with a constraint

of analyticity – our fields were presumed fourier decomposable. Fourier

transforms are, of course, infinitely continuously differentiable as long as we



avoid sharp changes like (pure) heaviside function forces or field changes,

and yes, they explicity provide a knowledge of the quantities in the future

and past of their current values.

I personally think that this is yet another aspect of the mistake made by

requiring that our description of electrodynamics always proceed from the

past into the future with a retarded interaction. As we have seen, this is

silly – one could equally well use only advanced interactions or a mix of the

two and the solutions obtained for a given boundary value problem will be

identical, where the “boundary” is now a four-volume and hence requires

future conditions to be specified as well as the past conditions on a spatial

three-surface bounding the four-volume.

19.4 Radiation Damping of an Oscillating Charge

The most important application of the Abraham–Lorentz force law is the

radiation reaction of bound electrons in atoms as they radiate. This is the

problem originally studied by Lorentz, in the context of a classical oscillator,

and yes, we are returning to our discussion of dispersion but now with a

physical model for why we expect there to be a damping term instead of a

strictly phenomenological one.

To simplify life, we consider a Lorentz “atom” to be an electron on a

spring with constant k = mω2
0 ; a one–dimensional classical oscillator with

a resonant frequency ω0. If the oscillator is displaced from equilibrium, it

radiates energy away and is simultaneously damped. This is a classical ana-

logue of the emission of a photon by a quantum atom, which is accompanied

by the atom entering a lower energy level.

The equation of motion for the electron is (from the AL force law above,

integrated as described for offset times):

ẍ(t) + ω2
0

∫ ∞

0
e−sx(t+ τs)ds = 0 (19.28)

where we have used Hooke’s law. If we try the usual song and dance (assume

that x(t) = x0e
−αt we get the characteristic equation

x0e
−αt

(

α2 + ω2
0

∫ ∞

0
e−(1+ατ)sds

)

= 0. (19.29)



In order for the integral to exist, it must damp at infinity, so Re(1+ατ) > 0.

In that case, we get:

α2 +
ω2

0

−(1 + ατ)

∫ ∞

0
e−xdx = 0

α2 +
ω2

0

(1 + ατ)
= 0

α2(1 + ατ) + ω2
0 = 0

τα3 + α2 + ω2
0 = 0

(τα)3 + (τα)2 + (ω0τ)
2 = 0

z3 + z2 + ω2
0τ

2 = 0 (19.30)

where we’ve defined z = ατ .

This is the same cubic that would arise directly from the original AL

equation of motion but the restriction on the integral eliminates the “run-

away” solutions (α = −(1 + ω2
0τ

2)/τ) at the expense of introducing preac-

celerated ones. There is no point in giving the physical roots in closed form

here, but you should feel free to crank up e.g. Mathematica and take a look.

If ω0τ << 1 (which is the physically relevant range), then the first order

result is

α =
Γ

2
± i(ω0 + ∆ω) (19.31)

whith

Γ = ω2
0τ (19.32)

and

∆ω = −5

8
ω3

0τ
2. (19.33)

The constant Γ is the decay constant and the ∆ω is the level shift. Note

that the radiative force both introduces damping and shifts the frequency,

just like it does for a classical damped oscillator. If we evaluate the electric

field radiated by such an oscillator (neglecting the transient signal at the

beginning) we find that the energy radiated as a function of frequency is

dI(ω)

dω
= I0

Γ

2π

1

(ω − ω0 − ∆ω)2 + (Γ/2)2
(19.34)

which is the characteristic spectrum of a broadened, shifted resonant line.



Figure 19.2: A typical broadened and shifted resonant line due to radiation

reaction.

This concludes our discussion of the consequences of radiation reaction.

You will note that the derivations we have seen are not particularly satisfying

or consistent. Now we will examine the “best” of the derivations (Dirac’s

and Wheeler and Feynman’s) and try to make some sense of it all.

The following sections are alas still incomplete but will be added shortly.



19.5 Dirac’s Derivation of Radiation Reac-

tion

19.6 Wheeler and Feynman’s Derivation of

Radiation Reaction

19.7 My Own Field-Free Derivation of Radi-

ation Reaction
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