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Chapter 1

Preface

The problems in this review guide are provided as is without any guarantee

of being correct! That’s not to suggest that they are all broken – on the
contrary, most of them are well-tested and have been used as homework, quiz
and exam problems for decades if not centuries. It is to suggest that they have
typos in them, errors of other sorts, bad figures, and one or two of them are
really too difficult for this course but haven’t been sorted out or altered to make
them doable.

Leaving these in just adds to the fun. Physics problems are not all cut and
dried; physics itself isn’t. One thing you should be building up as you work is
an appreciation for what is easy, what is difficult, what is correct and what is
incorrect. If you find an error and bring it to my attention, I’ll do my best to
correct it, of course, but in the meantime, be warned!

A few of the problems have rather detailed solutions (due to Prof. Ronen
Plesser and myself), provided as examples of how a really good solution might
develop, with considerable annotation. However, most problems do not have
included solutions and never will have. I am actually philosophically opposed
to providing students with solutions that they are then immediately tempted to
memorize. This guide is provided so that you can learn to solve problems and
work sufficiently carefully that they can trust the solutions.

Students invariably then ask: “But how are we to know if we’ve solved the
problems correctly?”

The answer is simple. The same way you would in the real world! Work on
them in groups and check your algebra, your approach, and your answers against
one another’s. Build a consensus. Solve them with mentoring (course TAs,
professors, former students, tutors all are happy to help you). Find answers
through research on the web or in the literature.
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4 CHAPTER 1. PREFACE

To be honest, almost any of the ways that involve hard work on your part are
good ways to learn to solve physics problems. The only bad way to (try to) learn
is to have the material all laid out, cut and dried, so that you don’t have to
struggle to learn, so that you don’t have to work hard and thereby permanently

imprint the knowledge on your brain as you go. Physics requires engagement
and investment of time and energy like no subject you have ever taken, if only
because it is one of the most difficult subjects you’ve ever tried to learn (at the
same time it is remarkably simple, paradoxically enough).

In any event, to use this guide most effectively, first skim through the whole
thing to see what is there, then start in at the beginning and work through it,
again and again, reviewing repeatedly all of the problems and material you’ve
covered so far as you go on to what you are working on currently in class and on
the homework and for the upcoming exam(s). Don’t be afraid to solve problems
more than once, or even more than three or four times.

And work in groups! Seriously! With pizza and beer...



Chapter 2

Short Math Review
Problems

The problems below are a diagnostic for what you are likely to need in order
to work physics problems. There aren’t really enough of them to constitute
“practice”, but if you have difficulty with any of them, you should probably
find a math review (there is usually one in almost any introductory physics text
and there are a number available online) and work through it.

Weakness in geometry, trigonometry, algebra, calculus, solving simultaneous
equations, or general visualization and graphing will all negatively impact your
physics performance and, if uncorrected, your grade.

5



6 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 1.

problems/short-math-binomial-expansion.tex

Write down the binomial expansion for the following expressions, given the
conditions indicated. FYI, the binomial expansion is:

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 +

n(n − 1)(n − 2)

3!
x3 + . . .

where x can be positive or negative and where n is any real number and only
converges if |x| < 1. Write at least the first three non-zero terms in the expan-
sion:

a) For x > a:
1

(x + a)2

b) For x > a:
1

(x + a)3/2

c) For x > a:
(x + a)1/2

d) For x > a:
1

(x + a)1/2
− 1

(x − a)1/2

e) For r > a:
1

(r2 + a2 − 2ar cos(θ))1/2
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Short Problem 2.

problems/short-math-differentiate-expressions.tex

Evaluate the following expressions:

a)
d

dt
(at5 + be−ct2 + sin(dt)) =

b)
d

dt
eαt =

c)
d

dt
eαt2 =

d)
d

dt
tan(ωt) =



8 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 3.

problems/short-math-elliptical-trajectory.tex

The position of a particle as a function of time is given by:

~x(t) = x0 cos(ωt)x̂ + y0 sin(ωt)ŷ

where x0 > y0.

a) What is ~v(t) for this particle?

b) What is ~a(t) for this particle?

c) Draw a generic plot of the trajectory function for the particle. What kind
of shape is this? In what direction/sense is the particle moving (indicate
with arrow on trajectory)?

d) Draw separate plots of x(t) and y(t) on the same axes.
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Short Problem 4.

problems/short-math-evaluate-vector-products.tex

A

B

θ

a

b

Evaluate the following vector expressions.

a) Express the dot product in terms of its Cartesian components e.g. ~A =
Axx̂ + Ay ŷ + Az ẑ:

~A · ~B =

b) Express the dot product in terms of the magnitudes A, B and θ:

~A · ~B =

c) Express the cross product in terms of its Cartesian components e.g. ~A =
Axx̂ + Ay ŷ + Az ẑ (this has a lot of terms):

~A × ~B =

d) Express the magnitude of cross product in terms of the magnitudes A, B
and θ and indicate its direction:

~A × ~B =



10 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 5.

problems/short-math-integrate-expressions.tex

Evaluate the following (indefinite) integrals. Don’t forget the constant of inte-
gration!

a) ∫
sin(θ)dθ =

b) ∫
cos(θ)dθ =

c) ∫
sin3(θ)dθ =

d) ∫
eiωtdt =

e) ∫
cos(ωt)dt =

f) ∫
xndx =

g) ∫
1

x
dx =

h)

v(t) =

∫
−gdt =

i)

x(t) =

∫
(−1

2
gt + v0)dt =
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Short Problem 6.

problems/short-math-solve-simple-equations.tex

Solve for t:

a)
v0t − x0 = 0

b)

−1

2
gt2 + v0t = 0

c)

−1

2
gt2 + v0t + x0 = 0



12 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 7.

problems/short-math-solve-simultaneous-equations.tex

Solve the following system of simultaneous equations for x, y and z:

5x + 5y = 10

5x − 2z = 4

2z − y = 0
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Short Problem 8.

problems/short-math-sum-two-vectors-1.tex

(3 points) Vector ~A = 3x̂+6ŷ. Vector ~B = −7x̂−3ŷ. The vector ~C = ~A+ ~B:

a) is in the first quadrant (x+,y+) and has magnitude 7.

b) is in the second quadrant (x-,y+) and has magnitude 7.

c) is in the second quadrant (x-,y+) and has magnitude 5.

d) is in the fourth quadrant (x+,y-) and has magnitude 5.

e) is in the third quadrant (x-,y-) and has magnitude 6.



14 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 9.

problems/short-math-sum-two-vectors.tex

(3 points) Vector ~A = −4x̂+6ŷ. Vector ~B = 9x̂+6ŷ. The vector ~C = ~A+ ~B:

a) is in the first quadrant (x+,y+) and has magnitude 17.

b) is in the fourth quadrant (x+,y-) and has magnitude 12.

c) is in the first quadrant (x+,y+) and has magnitude 13.

d) is in the second quadrant (x-,y+) and has magnitude 17.

e) is in the third quadrant (x-,y-) and has magnitude 13.
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Short Problem 10.

problems/short-math-taylor-series.tex

Evaluate the first three nonzero terms for the Taylor series for the following
expressions. Expand about the indicated point:

a) Expand about x = 0:
(1 + x)n ≈

b) Expand about x = 0:
sin(x) ≈

c) Expand about x = 0:
cos(x) ≈

d) Expand about x = 0:
ex ≈

e) Expand about x = 0 (note: i2 = −1):

eix ≈

Verify that the expansions of both sides of the following expression match:

eiθ = cos(θ) + i sin(θ)



16 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Short Problem 11.

problems/short-math-trig-diagnostic.tex

h
o

a

θ

Fill in the following in terms of the marked sides:

a)
sin(θ) =

b)
cos(θ) =

c)
tan(θ) =



Chapter 3

Essential Laws, Theorems,
and Principles

The questions below guide you through basic physical laws and concepts. They
are the stuff that one way or another you should know” going into any exam
or quiz following the lecture in which they are covered. Note that there aren’t
really all that many of them, and a lot of them are actually easily derived from
the most important ones.

There is absolutely no point in memorizing solutions to all of the problems in
this guide. In fact, for all but truly prodigious memories, memorizing them all
would be impossible (presuming that one could work out all of the solutions into
an even larger book to memorize!). However, every student should memorize,
internalize, learn, know the principles, laws, and and theorems covered in this
section (and perhaps a few that haven’t yet been added). These are things upon
which all the rest of the solutions are based.

17



18 CHAPTER 3. ESSENTIAL LAWS, THEOREMS, AND PRINCIPLES

Short Problem 1.

problems/true-facts-ALMDC.tex

What is Ampere’s Law with the Maxwell displacement current? (Equation and
figure, please; circle the displacement current only.)

Short Problem 2.

problems/true-facts-AL.tex

What is Ampere’s Law? (Equation and figure please. Your answer does not
need to have the Maxwell Displacement Current in it yet, as it has not yet been
covered in class, but if you put it in (correctly) anyway, you may have two points
of extra credit.)

Short Problem 3.

problems/true-facts-Biot-Savart-law.tex

What is the Biot-Savart Law? (Equation and figure, please.)

Short Problem 4.

problems/true-facts-Coulombs-Law.tex

What is Coulomb’s Law? (Equation and figure ok, or in words.)

Short Problem 5.

problems/true-facts-critical-angle.tex

What is the formula for the critical angle (of total internal reflection) for a beam
of light going from medium 1 to medium 2 with n1 > n2? (Equation and figure,
please.)

Short Problem 6.

problems/true-facts-definition-of-capacitance.tex

What is the defining relation for the capacitance of an arrangement of charge
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Q stored at a potential V ? (Equation.)

Short Problem 7.

problems/true-facts-energy-density-of-b-field.tex

What is the energy density ηM of the magnetic field ~B? (Equation.)

Short Problem 8.

problems/true-facts-energy-density-of-e-field.tex

What is the energy density ηE of the electric field ~E? (Equation.)

Short Problem 9.

problems/true-facts-energy-in-capacitor.tex

Give three equivalent expressions for the total energy stored on a capacitor in
terms of any two of Q, C, V (at a time).

Short Problem 10.

problems/true-facts-fermat-principle.tex

What is the Fermat Principle (from which e.g. Snell’s Law follows)? (Statement
in words, possible with illustrating figure.)

Short Problem 11.

problems/true-facts-FL.tex

What is Faraday’s Law? Circle Lenz’s Law within. (Equation and figure,
please.)

Short Problem 12.

problems/true-facts-force-on-dipole-in-uniform-electric-field.tex



20 CHAPTER 3. ESSENTIAL LAWS, THEOREMS, AND PRINCIPLES

What is the force ~F acting on an electric dipole ~p in a uniform electric field ~E?
(Equation and figure, please.)

Short Problem 13.

problems/true-facts-fraunhofer-diffraction.tex

What is Fraunhofer diffraction? (Short statement in words, plus picture.)

Short Problem 14.

problems/true-facts-fresnel-diffraction.tex

What is Fresnel diffraction? (Short statement in words, plus picture.)

Short Problem 15.

problems/true-facts-GLE.tex

What is Gauss’s Law for Electricity? (Equation and figure, please.)

Short Problem 16.

problems/true-facts-GLM.tex

What is Gauss’s Law for Magnetism? What important experimental result does
it represent? (Equation and figure, please.)

Short Problem 17.

problems/true-facts-index-of-refraction-dispersion.tex

What is the “dispersion” of refracted light passing through some medium?
(Short statement, but please relate the phenomenon in some way to a particular
property of the index of refraction of the medium.)

Short Problem 18.

problems/true-facts-intensity-of-dipole-source.tex
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What is the formula for the intensity of radiation from an oscillating dipole
oriented along the ẑ-direction, as a function of r and θ, in the limit that one is
far from the dipole? (Equation and figure, please.)

Short Problem 19.

problems/true-facts-kirchoffs-rules.tex

What are Kirchoff’s Rules? Also (and still for credit!) what physical principle
does each rule corresponds to?

a)

b)

Short Problem 20.

problems/true-facts-lensmakers-formula.tex

What is the “lensmakers formula” that predicts the focal length of a lens made
of a material with index of refraction n in air (with index of refraction approx-
imately equal to 1), given the radii of curvature r1 and r2 of its two refracting
surfaces? (Equation and figure, please.)

Short Problem 21.

problems/true-facts-lorentz-force-law.tex

What is the “Lorentz Force Law” (the law that relates the electromagnetic force

on a charged particle q moving at velocity ~v in an electric field ~E and magnetic
field ~B? (Give equation and draw a figure with vE, ~B and ~v to illustrate the
relative directions).

Short Problem 22.



22 CHAPTER 3. ESSENTIAL LAWS, THEOREMS, AND PRINCIPLES

problems/true-facts-magnetic-force-charge-particle.tex

What is the net force on a charged particle q moving with velocity ~v in a
magnetic field ~B? (Give equation and draw a figure to illustrate its relative
direction.)

Short Problem 23.

problems/true-facts-malus-law.tex

If vertically polarized light of intensity I0 strikes a polarizing filter with a trans-
mission axis at an angle θ with respect to the vertical, what is the intensity of
the transmitted light (Malus’ Law)? (Equation and figure, please.)

Short Problem 24.

problems/true-facts-near-point.tex

What is the near point distance of the human eye (both what is it and what is
its presumed/approximate value)? (Answer in words and of course a length in
appropriate units.)

Short Problem 25.

problems/true-facts-ohms-law.tex

What is Ohm’s Law? (Equation.)

Short Problem 26.

problems/true-facts-paraxial-mirror-equation.tex

What is the equation one uses to locate the image of an object a distance s
in front of a spherical mirror with radius r (in the limit that the rays are all
paraxial, that is the object height y ≪ r for an object on the axis)? (Equation
and figure, please.)

Short Problem 27.

problems/true-facts-potential-energy-dipole-b-field.tex
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What is the potential energy of a magnetic dipole ~m in a magnetic field ~B?
(Equation and figure, please.)

Short Problem 28.

problems/true-facts-potential-energy-dipole-e-field.tex

What is the potential energy of an electric dipole ~p in an electric field ~E?
(Equation and figure, please.)

Short Problem 29.

problems/true-facts-poynting-vector-intensity.tex

What is the Poynting vector? (Equation and figure, please.) What do we call
its absolute magnitude? (Single word.)

Short Problem 30.

problems/true-facts-rayleigh-criterion-for-resolution.tex

What is the Rayleigh criterion for resolution (of, say, two diffraction limited
images of stars seen through a telescope or viruses seen through a microscope)?
(Equation and figure, please.)

Short Problem 31.

problems/true-facts-snells-law.tex

What is Snell’s Law? (Equation and figure, please.)

Short Problem 32.

problems/true-facts-speed-of-light-formula.tex

What is the speed of light in terms of ǫ − 0 and µ0? (Equation.)

Short Problem 33.
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problems/true-facts-thin-lens-equation.tex

What is the “thin lens equation”? (Equation and figure, please.)

Short Problem 34.

problems/true-facts-torque-on-dipole-in-electric-field.tex

What is the torque ~τ acting on an electric dipole ~p in an electric field ~E?
(Equation and figure, please.)

Short Problem 35.

problems/true-facts-transformer.tex

A transformer has N1 turns in its primary winding and N2 turns in its sec-
ondary winding. If it has an alternating voltage V1 applied across its primary,
what would one expect to measure for V2 across its secondary? (Equation and
schematic/figure, please.)

Short Problem 36.

problems/true-facts-transverse-wave-E-and-B.tex

What is the relation between ~E and ~B in a transverse electromagnetic wave?
(Equation relating amplitudes, figure indicating directions including direction
of wave propagation.)

Short Problem 37.

problems/true-facts-waves-in-medium.tex

If a beam of light has speed c, frequency f , and wavelength λ in a vaccuum, what
are its speed, frequency and wavelength in a medium with index of refraction
n? (Equations for vn, fn and λn.)



Chapter 4

Problem Solving

The following problems are, at last, the meat of the matter: serious, moder-
ately to extremely difficult physics problems. An A” student would be able to
construct beautiful solutions, or almost all, of these problems.

Note well the phrase beautiful solutions”. In no case is the answer” to these
problems an equation, or a number (or set of equations or numbers). It is a
process. Skillful physics involves a systematic progression that involves:

• Visualization and conceptualization. What’s going on? What will hap-
pen?

• Drawing figures and graphs and pictures to help with the process of de-
termining what physics principles to use and how to use them. The paper
should be an extension of your brain, helping you associate coordinates
and quantities with the problem and working out a solution strategy. For
example: drawing a free body diagram” in a problem where there are
various forces acting on various bodies in various directions will usually
help you break a large, complex problem into much smaller and more
manageable pieces.

• Identifying (on the basis of these first two steps) the physical principles to
use in solving the problem. These are almost invariably things from the
Laws, Theorems and Principles chapter above, and with practice, you will
get to where you can easily identify a Newtons Second Law” problem (or
part of a problem) or an Energy Conservation” (part of) a problem.

• Once these principles are identified (and identifying them by name is a
good practice, especially at first!) one can proceed to formulate the solu-
tion. Often this involves translating your figures into equations using the
laws and principles, for example creating a free body diagram and trans-

25
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lating it into Newton’s Second Law for each mass and coordinate direction
separately.

• At this point, believe it or not, the hard part is usually done (and most of
the credit for the problem is already secured). What’s left is using alge-

bra and other mathematical techniques (e.g. trigonometry, differentiation,
integration, solution of simultaneous equations that combine the results
from different laws or principles into a single answer) to obtain a com-

pletely algebraic (symbolic) expression or set of expressions that answer
the question(s).

• At this point you should check your units! One of several good reasons
to solve the problem algebraically is that all the symbols one uses carry
implicit units, so usually it is a simple matter to check whether or not
your answer has the right ones. If it does, that’s good! It means you
probably didn’t make any trivial algebra mistakes like dividing instead of
multiplying, as that sort of thing would have led to the wrong units.

Remember, an answer with the right units may be wrong, but it’s not
crazy and will probably get lots of credit if the reasoning process is clear.
On the other hand, an answer with the wrong units isn’t just mistaken,
its crazy mistaken, impossible, silly. Even if you can’t see your error, if
you check your answer and get the wrong units say so; your instructor can
then give you a few points for being diligent and checking and knowing
that you are wrong, and can usually quickly help you find your mistake
and permanently correct it.

• Finally, at the very end, substitute any numbers given for the algebraic
symbols, do the arithmetic, and determine the final numerical answers.

Most of the problems below won’t have any numbers in them at all to emphasize
how unimportant this last step is in learning physics! Sure, you should learn
to be careful in your doing of arithmetic, but anybody can (with practice)
learn to punch numbers into a calculator or enter them into a computer that
will do all of the arithmetic flawlessly no matter what. It is the process of
determining how to punch those numbers or program the computer to evaluate
a correct formula that is what physics is all about. Indeed, with skill and
practice (especially practice at estimation and conceptual problem solving) you
will usually be able to at least approximate an answer and fully understand
what is going on and what will happen even without doing any arithmetic at
all, or doing only arithmetic you can do in your head.

As with all things, practice makes perfect, wax on, wax off, and the more fun

you have while doing, the more you will learn. Work in groups, with friends,
over pizza and beer. Learning physics should not be punishment, it should be
a pleasure. And the ultimate reward is seeing the entire world around you with
different eyes...



Chapter 5

The Electric Field (discrete
and continuous
distributions)

The problems in this chapter are intended to help you practice using Coulomb’s

Law (the fundamental equation governing electrostatic force between charged
particles) and the closely derived ideas of the electric field of charged particles
and continuous charge distributions.
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5.1 Electric Field

5.1.1 Multiple Choice

Problem 1.

problems/efield-mc-force-between-conductor-and-charge.tex

Q=0 (neutral)

q

conducting sphere

In the figure above, a point charge q is brought near a neutral conducting sphere.

Is the force of between the sphere and the charge:

a) Zero.

b) Attractive.

c) Repulsive.

d) Out of the page.

e) Into the page.

Draw a representation of the charge distribution on the conductor that explains
your answer.
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Problem 2.

problems/efield-mc-force-between-two-charges.tex

−q Q

Q

d d

I release a negatively charged particle with charge q at a point P centered
midway between the centers of an insulating spherical shell of uniformly dis-

tributed charge Q and a point charge Q as shown. The charged particle:

a) accelerates to the right and the electric potential decreases.

b) accelerates to the left and the electric potential increases.

c) does not accelerate.

d) accelerates to the right and the electric potential increases.

e) accelerates to the left and the electric potential decreases.
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5.1.2 Short Answer/Concept

Problem 3.

problems/efield-sa-find-equilibrium-point-charges.tex

Q3Q
x

D

In the figure above, a charge of 3Q is at the origin and a charge of Q is at the
position x = D on the x-axis.

a) Find the point xe where the total field vanishes and mark it in on the
figure (drawn approximately to scale).

b) If a bead is threaded on a wire stretched between the two charges (so that
movement in the y or z direction is opposed by the wire) what is the sign

of the charge we need to give the bead so that xe is a point of stable force

equilibrium for it?
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Problem 4.

problems/efield-sa-force-on-fourth-charge.tex

x

+q

+q
−q

+q

a

a

In the figure above, four charges are located at at the corners of a square of side
length a. Find the force on the upper right hand charge.
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Problem 5.

problems/efield-co-draw-quadrupole-field.tex

−

+

+

−

(5 points) In the figure above, four charges of equal magnitude are arranged in
a square as shown. Sketch the field lines you might expect to result from this
arrangement in the plane of the figure. Hint: Remember that field lines flow
out from positive charges, flow into negative charges, and cannot cross (the field
is well defined in direction at all points in space). What kind of field is this?
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5.1.3 Long Problems

Problem 6.

problems/efield-pr-axis-of-disk.tex

R

+z

+x

+y

σ

Find the electric field on the (z) axis of a disk of charge of radius R with uniform
surface charge distribution σ by direct integration.
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Problem 7.

problems/efield-pr-center-half-circle-charge.tex

Q

R

x

y

A half-ring of total charge Q and radius R sits symmetrically across the x-axis
around the origin as shown in the figure above. Find the electric field at the
origin (magnitude and direction) from direct integration.
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Problem 8.

problems/efield-pr-center-quarter-circle-charge.tex

Q

y

x

R

A quarter of a ring of total charge Q and radius R is oriented as shown in the
figure above. Find the electric field at the origin (magnitude and direction)
from direct integration. Show all work.



36CHAPTER 5. THE ELECTRIC FIELD (DISCRETE AND CONTINUOUS DISTRIBUTIONS)

Problem 9.

problems/efield-pr-dipole-cartesian.tex

P

+a

−a

−q

+q

x

y

In the figure above an electric dipole is shown consisting of two equal and
opposite charges ±q separated by a distance 2a lined up with the y-axis and
centered on the origin. A point P with arbitrary coordinates (x, y) is shown.

a) Find an expression for the vector field ~E at the point P in Cartesian

coordinates. Recall that a vector is a magnitude and a direction, and can
be specified by e.g. Ex and Ey, by |~E| and θ

b) Draw a proportionate picture of the resultant electric field vector at P
(showing its approximately correct direction for reasonable representations
of the relative field strengths for each charge).

c) Show that in the limit x ≫ a, x ≫ y, the field near the x-axis is roughly
Ex ≈ −kep/x3, Ey ≈ 0 (where p is the magnitude of the dipole moment).
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Problem 10.

problems/efield-pr-dipole-pendulum.tex

θ

+q

−q

R

M

E

In the figure above a neutral insulating disk of mass M and radius R is pivoted
at the center. A small charge +q is fixed to one edge and a charge of −q is fixed
to the opposite edge so that the line between the two charges makes a small

angle θ with an applied, uniform electric field ~E as shown.

a) Find the torque on the disk.

b) Write the equation of motion for the disk.

c) Find the angular frequency with which the disk oscillates.

d) If we start the disk at an initial angle θ0 at t = 0, what is θ(t)?

e) What is the potential energy of the disk in the field? Assume that zero
potential energy is at θ = 0.
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Problem 11.

problems/efield-pr-dipole.tex

−a

+a

y

x

+q

−q

In the figure above we see an electric dipole consisting of equal and opposite
charges separated by a (vector) distance.

a) Find the electric field at an arbitrary point (for example, the one drawn)
on the y-axis. Remember, the field is a vector so you must (somehow)
specify both magnitude and direction.

b) Find the electric field at an arbitrary point on the x-axis.

c) What are the asymptotic forms of the electric fields on the x and y axes
in the limits that x or y is much, much larger than a?
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Problem 12.

problems/efield-pr-dipole-z-only.tex

+q,+a/2

−q,−a/2

+z

Charges of ±q are located at both z = ±a/2, respectively. This arrangement
forms a electric dipole.

a) Find both the electric potential and electric field (magnitude and direction)
at an arbitrary point z > a/2 on the z-axis.

b) What is the first nonzero term in the expansion of the electric field evaluated
far from the charges, i.e. – for z ≫ a/2?
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Problem 13.

problems/efield-pr-equilateral-quadrupole.tex

−2q

+q

a a

+q

a

y

x

Charges of +q are located at the two bottom corners of an equilateral triangle
with sides of length a. A charge of −2q is at that top corner. This arrangement
of charge can be considered two dipoles oriented at 60◦ with respect to one
another.

a) Find the electric field (magnitude and direction) at an arbitrary point on
the y-axis above/outside the triangle.

b) What are the first two surviving terms in the binomial-theorem-derived
series for the electric field evaluated far from the charges, i.e. – for y >>
a1?

1Hint: since the net charge balances (=0), we expect no monopolar part (like 1/x2). Since
the dipoles do not quite balance, we might see a dipolar part (like 1/x3). However, since the
dipoles are not parallel we might expect to see a significant quadrupolar term that varies like
1/x4 as well.
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Problem 14.

problems/efield-pr-force-rod-on-charge.tex

L L x
Q

λ

A rod with uniform charge per unit length λ = Q/L and length L is located on
the negative x-axis with one end at the origin. A charge Q is located a distance
L from the end of the rod as shown. Find the total force acting on the charge
Q due to the rod (magnitude and direction).
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Problem 15.

problems/efield-pr-four-charges-on-z-axis.tex

+q

+q +q

+q

x y

z

Four positive charges of magnitude +q are located on at positions (0, a, 0),
(0,−a, 0), (a, 0, 0), (−a, 0, 0) on the x−y plane as shown. Find the electrostatic
field at an arbitrary point on the z axis.
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Problem 16.

problems/efield-pr-inline-monopole-quadrupole.tex

−q

−q−a

+a

y

x
+3q

Charges of −q are located at both y = a and y = −a, and a charge of +3q is
located at y = 0 on the y-axis. This arrangement of charge can be visualized as
two opposing dipoles plus a charge at the center.

a) Find the electric field (magnitude and direction) at an arbitrary point on
the x-axis.

b) What are the first two nonzero terms in the electric field evaluated far

from the charges, i.e. – for x >> a? Your answer should be a series of
terms in inverse powers of x.

c) What is the total potential energy of this collection of charges?
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Problem 17.

problems/efield-pr-inline-quadrupole-x.tex

x

y

+2q

a

a

−q

−q

Charges of −q are located at both y = a and y = −a, and a charge of +2q is
located at y = 0 on the y-axis. This arrangement of charge can be visualized as
two opposing dipoles.

a) Find the electric field (magnitude and direction) at an arbitrary point on
the x-axis.

b) What is nonzero term in the expansion of the electric field evaluated far

from the charges, i.e. – for x >> a? Your answer should be a series of
terms in inverse powers of x.
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Problem 18.

problems/efield-pr-inline-quadrupole-y.tex

x

y

+2q−a +a

−q−q

Charges of −q are located at both x = a and x = −a, and a charge of +2q is
located at x = 0 on the x-axis. This arrangement of charge can be visualized as
two opposing dipoles.

a) Find the electric field (magnitude and direction) at an arbitrary point on the
y-axis.

b) What is nonzero term in the expansion of the electric field evaluated far

from the charges, i.e. – for y >> a? Your answer should be a series of terms in
inverse powers of y.
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Problem 19.

problems/efield-pr-ring-on-axis.tex

x

y

z

z

R

λ

Find the electric field at an arbitrary point on the z axis for the ring of charge
of radius R with charge per unit length λ above.
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Problem 20.

problems/efield-pr-square-on-axis.tex

z

x

y

L

L

Four lines of uniform linear charge density λ and length L form a square in the
xy-plane centered symmetrically on the z-axis as shown. Find the electric field
at an arbitrary point on the z-axis. You may use E⊥ = keλ

y (sin θ2 − sin θ1) for
a line segment of charge without deriving it.

Hint: The arbitrary point and corners of the square form a square pyramid. If
you use the pythagorean theorem a couple of times you can find the perpendic-
ular height of one face of the pyramid and the length of an edge of that face. A
bit of trig using the triangles involved will tell you the sines and cosines of the
angles that you might need to find the answer.
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Problem 21.

problems/efield-pr-two-pith-balls.tex

Q,m

Θ

L L

Two positively charged pith balls of mass m each have a charge Q and are
suspended by insulating (massless) lines of length L from a common point as
shown. Assume that L is long enough that θ at the top is a small angle. Find
θ such that the pith balls are in static equilibrium in terms of k, Q, m, L and
of course g.



Chapter 6

Gauss’s Law for
Electrostatics

Gauss’s Law is our first one of Maxwell’s Equations, and is considered to be
(part of) the Laws of Nature that describe the electromagnetic field. We will
find a surprising richness of uses for it – an easy way to find the electric field of
many sufficiently symmetric charge distributions, a way of understanding and
deriving many results for conductors, a way of conceptually visualizing what
the field/flux of electric charge looks like. Future physics majors or students of
mathematics, however, may find our treatment most useful as a stepping stone
to a partial differential treatment that is more useful still (beyond the scope of
these practice problems, but represented by an advanced problem in the book).
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6.1 Gauss’s Law and Flux

6.1.1 Ranking/Scaling

Problem 22.

problems/gausslaw-ra-flux.tex

+q

−q+q

+q

+q

+q+q

−q

−q

−q

−q

−q

S

S

AS

BS

C

D

Rank the net outward directed flux through the four surfaces SA,B,C,D above,
from the least (most negative) to the most (most positive). Your answer could
look like (but probably isn’t) A = B < C < D.
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6.1.2 Short Answer/Concept

Problem 23.

problems/gausslaw-sa-e-perp-sigma.tex

What is the electric field just outside of a conductor at electrostatic equilibrium
in terms of its surface charge density σ? Note well that the electric field is a
vector quantity, so you’ll have to give at least two generic components.
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Problem 24.

problems/gausslaw-co-charge-in-hollow-conductor.tex

+q

+q −q

Two charges of magnitude +q and one of charge −q are arranged inside a spher-
ical conductor with a hollow irregular cavity as shown so that they do not touch
the conductor. The total charge on the outside surface of the spherical con-
ductor is:

a) +q, with positive charge on the left side of the sphere and negative charge
on the right.

b) −q, with negative charge on the left side of the sphere and positive on the
right.

c) +q, uniformly distributed.

d) −q, uniformly distributed.

e) zero.
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Problem 25.

problems/gausslaw-co-draw-field-of-charged-conducting-ellipse.tex

Q

(5 points) In the figure above, a solid conducting ellipsoid of revolution is shown
that was charged up with a total charge Q and then left for a moment to come
to equilibrium. Draw a qualitative picture of the field lines (in the plane of the
paper only) you might expect to “see” (if you could see field lines) both inside
and outside of the surface of the ellipsoid.



54 CHAPTER 6. GAUSS’S LAW FOR ELECTROSTATICS

Problem 26.

problems/gausslaw-co-flow-through-two-nets.tex

A 2A

I

θ = 60

Larry stretches a fishing net of area A straight across a river that is flowing at
a rate of I = 100 cubic meters per second to the sea. “I’m going to catch a lot
of fish!” he tells Curly.

“N’yuk n’yuk, I’ve got a net that is twice as long,” says Curly, “so I’ll catch
all the fish in twice as much water!”

“You knucklehead!” says Moe to Curly, whapping him upside the head. “You
won’t catch all the fish in twice as much water.”

Aside from the fact that all of the fish are downstream from their nets, why is
Moe correct? Show explicitly that the flux of river water through the two nets
is the total current of the river independent of the size or angle (or even shape),
as long as they both stretch across the river, using the idea of a flux integral.
You will probably need to define a “current density” of river water: ~J = (I/A)x̂
to do this properly, although many heuristic arguments might also work (they
worked for Moe).
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Problem 27.

problems/gausslaw-co-force-on-conducting-sphere.tex

+q

A charge q is sitting a short distance away from an uncharged conducting sphere.
Is there a force acting on this charge? If so, in what direction (towards the sphere
or away from the sphere) does the force point? Indicate why you answer what
you answer, dressing up the picture above to illustrate what happens.
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Problem 28.

problems/gausslaw-co-inner-sphere-outer-charge.tex

+Q

In the picture above, a charge Q sits close to an uncharged conducting sphere
concentric with a second uncharged conducting sphere as shown. Is there a
nonzero electrostatic force between the inner sphere and the external charge
Q? (Explain your answer – an answer such as “yes” or “no” is not sufficient.)
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6.1.3 Long Problems

Problem 29.

problems/gausslaw-pr-charge-in-conducting-shell.tex

Q

Conductor

r

R2

R1

A conducting shell concentrically surrounds a point charge of magnitude Q
located at the origin. The inner radius of the shell is R1 and the outer radius
R2.

a) Find the electric field ~E at all points in space (you should have three
answers for three distinct regions).

b) Find the surface charge density σ on the inner surface of the conductor.
Justify your answer with Gauss’s law.
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Problem 30.

problems/gausslaw-pr-concentric-cylinders.tex

R

R

2

1σ

σ
2

1

Two infinitely long, cylindrical conducting shells are concentrically arranged as
shown above. The inner shell has a radius R1 and the outer shell the radius R2.
The inner shell has a charge per unit area σ1, and the outer shell a charge per
unit area σ2.

a) Find the electric field ~E at all points in space (you should have three answers
for three distinct regions).

b) Find the surface charge density σ2 (in terms of σ1, R1, R2, etc.) that causes
the field to vanish everywhere but in between the two shells. Justify your answer

with Gauss’s law.
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Problem 31.

problems/gausslaw-pr-hydrogen-atom.tex

Find the electric field at all points in space of a spherical charge distribution
with radial charge density:

ρ(r) = ρ0
e−r/2a

r2

For extra credit, determine ρ0 such that the total charge Q in the distribution
is −e.

This is the charge distribution of the electron cloud about a hydrogen atom
in the ground state. Remember, if you can’t quite see how to do the integral
(which is actually pretty easy) set the problem up, systematically – following
the steps outlined in class – until all that is LEFT is doing the integral, to end
up with most of the credit.
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Problem 32.

problems/gausslaw-pr-linear-charge-density-sphere.tex

R

r

(r)ρ

Find the electric field and electric potential at all points in space of a sphere
with radial charge density:

ρ(r) = ρ0
r

R
r ≤ R

ρ(r) = 0 r > R
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Problem 33.

problems/gausslaw-pr-line-charge-force-on-dipole.tex

r

a
−q

+q

λ

The electric field of an infinite straight line of charge is given by:

~E =
2kλ

r
r̂

(where λ is the charge per unit length and ~r is in cylindrical coordinates).

A dipole consisting of a charges ±q separated by a (small) distance a is located
with the charge −q a distance r away from the line and the direction of the
dipole parallel to vr as shown.

Find:

a) The next force on the dipole.

b) The net force on the dipole in the limit that a → 0 while the magnitude of
the diple moment p = qa is held constant. This is the force on a “point dipole”
in the field of the line of charge.
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Problem 34.

problems/gausslaw-pr-particle-beam-electrostatics.tex

R
v

ρ

r

(q,m)

Beam Electrostatics: A cylindrical beam of particles each with charge q and
mass m has a uniform initial (charge) density ρ and radius R. Each particle in
the beam is initially travelling with velocity v parallel to the beam’s axis. Con-
sider the stability of this beam by examining the forces on a particle travelling
in the beam at a distance r < R from the axis (the center of the cylinder).

Find the approximate force on a particle at radius r caused by the other particles
in the beam. You will need to use Gauss’s law to calculate the electric field at
radius r. Describe your work, and do not skip steps; show that you understand
Gauss’s law. Make a sketch as needed. .



6.1. GAUSS’S LAW AND FLUX 63

Problem 35.

problems/gausslaw-pr-solid-cylinder.tex

ρ

R

z

r

A segment of an “infinitely long” cylinder of uniform charge density ρ and radius
R is pictured above. Find the electric field at all points in space.
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Problem 36.

problems/gausslaw-pr-sphere-1-over-r-density.tex

ρ(r)

R

r

Find the electric field at all points in space of a sphere with radial charge density:

ρ(r) =
ρ0R

r
r ≤ R

ρ(r) = 0 r > R
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Problem 37.

problems/gausslaw-pr-sphere-and-plane.tex

R

R/2

R

P

y

x

ρ

σ

A uniform insulating ball of charge with charge density ρ and radius R is
suspended with its center a distance 3R/2 above a uniform insulating plane

of charge with charge per unit area σ. The origin of a set of xyz coordinates is
located at the center of the sphere with z pointing out of the page, and a point
P is located at x = z = 0, y = −R/2 inside the sphere as shown above.

a) Using Gauss’s Law, find the electric field (magnitude and direction)
due to the plane of charge only at the point P .

b) Using Gauss’s Law, find the electric field (magnitude and direction)
due to the ball of charge only at point P .

c) Find the total electric field at point P .
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Problem 38.

problems/gausslaw-pr-sphere-with-hole.tex

b

R

0
ρ

ρ = 0

A sphere of uniform charge density ρ0 has a hole of radius b = R/2 centered on
x = b cut out of it as shown in the figure.

a) Find the electric field vector inside the hole.

b) What do you expect to be the first two terms in the electric field expansion
at an arbitrary point x ≫ R on the x axis? Note that you can either guess this
answer based on what you know of multipolar fields or you can evaluate the
field exactly (which is pretty easy) and do a binomial expansion through two
surviving terms.

Hint: Remember, you can think of this as a superposition problem for two
spheres, one with uniform charge density ρ0 and one with uniform charge density
−ρ0.
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R

R

1

2

r

Q

Conductor

Problem 39.

problems/gausslaw-pr-thick-spherical-conductor-surrounds-Q.tex

A conducting shell concentrically surrounds a point charge of magnitude Q
located at the origin. The inner radius of the shell is R1 and the outer radius
R2.

a) Find the electric field ~E at all points in space (you should have three answers
for three distinct regions).

b) Find the surface charge density σ on the inner surface of the conductor.
Justify your answer with Gauss’s law.
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Problem 40.

problems/gausslaw-pr-thick-spherical-shell.tex

ρ

a

b

Find the electric field at all points in space for a spherical shell of constant
charge density ρ that has inner radius a and outer radius b. Express your answer
in terms of ρ, not Q.
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Problem 41.

problems/gausslaw-pr-two-spheres-one-charge.tex

R1

R2

−Q

−Q

+2Q

Two spherical shells with radii R1 and R2 respectively concentrically surround
a point charge. The central point charge has magnitude 2Q. Both the spherical
shells have a charge of −Q (each) distributed uniformly upon the shells. Find

the electric field at all points in space.
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Chapter 7

Potential and Potential
Energy

At this point, you should be pretty good at finding the electric field of various
charge distributions and/or solving problems involving electrostatic force, as
well as familiar with some of the most important properties of conductors in
electrostatic equilibrium. But one feature of the electric field that sucks (from
the point of view of the problem solver) is that one has to solve 2-3 problems
per problem, not just one, because the electric field is a vector quantity.

Fortunately, the electrostatic field is conservative, so we define the electro-
static potential energy of two charges from Coulomb’s Law and the electrostatic
potential from a similar treatment of the electric field. Suddenly we have lots

of ways of evaluating the electrostatic potential (or potential difference) as a
scalar function, and can (more) easily find the vector field by differentiating
the potential than we could have by directly integrating its components.

Knowing that conductors in electrostatic equilibrium are equipotential also
helps us understand things like charge sharing and dielectric breakdown and
the corona effect near sharp conducting points. This conceptual understanding
is often tested with simple questions or problems.

71
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7.1 Electrostatic Potential

7.1.1 Multiple Choice

Problem 42.

problems/potential-mc-conducting-blob.tex

+Q

A

B

A charge Q sits close to the inner surface of a hollow conductor in electrostatic
equilibrium as shown above. Is the potential at A:

a) Greater than the potential at B.

b) Equal to the potential at B.

c) Less than the potential at B.

d) Zero.

e) Negative relative to infinity.
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Problem 43.

problems/potential-mc-conducting-ovoid.tex

A

B−q

+Q

The conducting ovoid above is in electrostatic equilibrium in an external
electric field generated by a charge Q outside and a charge -q inside a hollow in
the conductor as shown. Two points, A and B, are labelled on the accompanying
figure.

Is the potential at A

a) less than

b) greater than

c) equal to

d) impossible to determine relative to

the potential at B?
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Problem 44.

problems/potential-mc-equipotential-conductor.tex

A

B

−q

A negative charge −q is held at rest above a silver bar (which is a good conduc-
tor) as shown. The points A and B are on the surface of the conductor itself.
The electric potential is:

a) Greater at point A than at point B.

b) Greater at point B than at point A.

c) Equal at points A and B.

d) Zero at points A and B.
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Problem 45.

problems/potential-mc-four-charges-at-center.tex

2q

2q

−q

−q

+a

+a

What is the potential at the center of the square of four charges shown (at the
origin)? Note that the square has sides of length 2a.

a) V = keq/a

b) V = 2keq/a

c) V =
√

2keq/a

d) V = keq/2a

e) V = keq/
√

2a
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7.1.2 Ranking/Scaling

Problem 46.

problems/potential-ra-three-spheres.tex

Q
2Q

−2Q

a

b

c

A B C D

Rank the electrostatic potential at the four points A, B, C, D shown, from
highest to lowest, with equality a possibility.
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7.1.3 Short Answer/Concept

Problem 47.

problems/potential-sa-center-circle.tex

z

R

Q

What is the potential at the origin/center of the ring of total charge Q and
radius R shown?
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Problem 48.

problems/potential-sa-center-half-circle.tex

Q

R

x

y

A half-ring of total charge Q and radius R sits symmetrically across the x-axis
around the origin as shown in the figure above. What is the electric potential
at the origin?
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Problem 49.

problems/potential-sa-jump-or-die.tex

Oops! You ran into a power pole in your car, and a 14,000 volt primary supply
line is resting on its hood, sparking occasionally as your car loses built up charge
to the air. Unfortunately, you smell gasoline. Staying in your car doesn’t seem
like the good idea that it might otherwise be. What do you do (and why)?
[Physics as a survival skill. Who would have imagined!]
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Problem 50.

problems/potential-sa-two-spheres-inner-grounded-find-charge.tex

Q  = −Q
b

Q   = ?a

a

b

Two spherical conducting shells are drawn above. The outer shell, at a radius
b, has a total charge of Qb = −Q. The inner shell is grounded (has potential
zero). What is the charge Qa on the inner shell?
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7.1.4 Long Problems

Problem 51.

problems/potential-pr-axis-of-disk.tex

R

+z

+x

+y

σ

Find the electric potential on the (z) axis of a disk of charge of radius R with
uniform surface charge distribution σ.
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Problem 52.

problems/potential-pr-center-quarter-circle-charge.tex

Q

y

x

R

A quarter of a ring of total charge Q and radius R is oriented as shown in the
figure above. Find the electric potential at the origin. Indicate your reasoning
if you just write the answer down, or show all work if you integrate to find it.
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Problem 53.

problems/potential-pr-concentric-spherical-shells.tex

R1

R2

 V = 0

+Q

Two concentric spherical conducting shells of radii R1 and R2 are arranged as
shown. The inner shell is given a total charge +Q. The outer shell is grounded
(connected to a conductor at zero potential) as shown.

Find the potential and the electric field at all points in space. Show all work
– don’t just write down answers even if you can “see” what the answers must
be. Don’t forget what kind of quantity each thing is!
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Problem 54.

problems/potential-pr-dipole-all-space.tex

x

z

+a

+q

y

P

r

φ

−q

−a

θ

A point charge of −q is located at z = −a on the z-axis and a point charge of
+q is located at z = +a.

a) Write down the potential at an arbitrary point P in space in spherical
coordinates: V (r, θ). Note that the problem has azimuthal symmetry (has
no φ dependence) so your answer shouldn’t either.

b) What is the leading term in the expansion of the potential for r ≫ a,
expressed in terms of the dipole moment pz (and the coordinates)?
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Problem 55.

problems/potential-pr-dipole-axes.tex

−a

+a

y

x

+q

−q

In the figure above we see an electric dipole consisting of equal and opposite
charges separated by a (vector) distance.

a) What is the dipole moment of this pair of charges?

b) Find the electric potential at an arbitrary point (for example, the one
drawn) on the y-axis in terms of the dipole moment.

c) Find the electric potential at an arbitrary point on the x-axis in terms of
the dipole moment.

d) What are the asymptotic forms of the electric potentials on the x and y
axes in the limits that x or y is much, much larger than a?
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Problem 56.

problems/potential-pr-half-circle-charge-and-field.tex

Q

R

x

y

A half-ring of total charge Q and radius R sits symmetrically across the x-axis
around the origin as shown in the figure above.

a) Find the electric field at the origin (magnitude and direction) from direct
integration.

b) What is the electric potential at the origin?
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Problem 57.

problems/potential-pr-three-cylinders-two-grounded.tex

V = 0

a
b

L

Q
V = 0

V = 0

c

(10 points) Three cylindrical conducting shells of radii a < b < c and of length
L ≫ c are placed in a concentric configuration as shown. The middle shell
is given a total charge Q, and both the inner and outer shells are grounded
(connected by a thin wire to each other and to something at a potential of “0”).
Find:

a) The total charge on the inner shell, in terms of a, b, c, L, Q and k.

b) The potential on the middle shell. In what direction does the field point in
between a and b and in between b and c?
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Problem 58.

problems/potential-pr-three-plates-two-grounded.tex

d

d

A

?

−Q

?

Three parallel plates with area A and separation d are shown in the figure above.
The middle plate has a charge −Q, and the bottom plate and top plates are
grounded (at V = 0). Find:

a) The charge on the top and bottom plates.

b) The electric field at all points in space.

c) The potential of the middle plate.
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Problem 59.

problems/potential-pr-three-spheres-inner-grounded.tex

a

b

c

V=0

−2Q

+Q

Three concentric conducting spheres of radii a, b, c are drawn above. The outer
shell has a charge Q. The middle shell has a charge −2Q. The inner shell is
grounded. Find the charge on the inner shell, and the potential at all points in
space.
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Problem 60.

problems/potential-pr-three-spheres-middle-grounded.tex

V=0

+Q

+Q

V=0
a

b c

A charge of +Q is placed on the innermost and outermost of three concentric
conducting spherical shells. The middle shell is grounded via a thin wire that
passes through an insulated hole in the outer shell and hence has a potential
(relative to ∞) of 0.

a) Find the charge Qs on the middle shell in terms of k, Q, and the given
radii a, b and c.

b) Find the potential at all points in space (in each region where there is a
distinct field). You may express your answers algebraically in terms of Qs

to make life a bit simpler (and independent of your answer to part a).
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Problem 61.

problems/potential-pr-two-spheres-inner-grounded.tex

a
b

+Q?

Two spherical conducting shells have radius a and b respectively. The outer
shell has a total charge +Q on it. The inner shell is grounded by means of a
thin wire through a tiny hole in the outer shell as shown, and therefore is at
potential Va = 0. Find:

a) The total charge Qa on the inner shell, in terms of ke, Q, a, b.

b) The electric field at all points in space.

c) The electric potential at all points in space.
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R1

R2

+2Q

−2Q+Q

Problem 62.

problems/potential-pr-two-spheres-one-charge-2.tex

Find the potential V (r) at all points in space for the arrangement of charge pic-
tured above, where there is a point charge +2Q at the origin, a charge uniformly
distributed −2Q on the inner shell (radius R1), and a charge +Q uniformly dis-
tributed on the outer shell (radius R2). You will need three different answers
for the three distinct regions of space.
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Problem 63.

problems/potential-pr-two-spheres-one-charge.tex

R1

R2

−Q

−Q

+2Q

Two spherical shells with radii R1 and R2 respectively concentrically surround
a point charge. The central point charge has magnitude 2Q. Both the spherical
shells have a charge of −Q (each) distributed uniformly upon the shells.

Find the field and potential at all points in space. Show your work – even
if you can just write the answer(s) down for each region, briefly sketch the
methodology used to get the answers.
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Problem 64.

problems/potential-pr-uniform-sphere.tex

R

ρ

Find the electric field and electric potential at all points in space for a solid
sphere with a constant/uniform charge density ρ and radius R. Show all your
work, step by step.
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Problem 65.

problems/potential-pr-uniform-spherical-shell-thick.tex

ρ

a

b

A spherical shell of inner radius a and outer radius b contains a uniform distri-
bution of charge with charge density ρ.

Find the field and potential at all points in space.
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7.2 Electrostatic Potential Energy

7.2.1 Ranking/Scaling

Problem 66.

problems/potential-energy-ra-three-spheres-same-charge.tex

cba

In the figure above, a charge Q is uniformly distributed in the grey region of each
sphere. The relative sizes of the spheres are as shown. Rank the distributions
from the least potential energy to the most potential energy with equality a
possibility. That is, your answer could be (but probably isn’t) A = B < C.
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7.2.2 Short Answer/Concept

Problem 67.

problems/potential-energy-sa-tetrahedron-of-charges.tex

a a

a

a

a

q

q

q

q
a

Four identical charges q are arranged in a tetrahedron with identical distance a
between any pair of charges.

a) What is the total potential energy of this arrangement?

b) The top charge is released from rest and pushed away by the other charges
in free space (no gravity or other objects nearby). What is its speed when
it has travelled to where it is very far away?
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7.2.3 Long Problems

Problem 68.

problems/potential-energy-pr-spherical-shell-charge.tex

R
Q

o

A spherical conducting shell of radius R is pictured above. It is charged up to
a total charge Q0. Find the potential energy of the charged sphere.

(Note: There are two ways to do this problem, one very easy and one a bit
harder. Both should be within your capabilities.)



Chapter 8

Capacitance and Dielectrics

99
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8.1 Capacitance

8.1.1 Multiple Choice

Problem 69.

problems/capacitance-mc-four-capacitors.tex

2C C 2C

C

What is the total capacitance of the arrangement of four capacitors above?

a) C

b) 2C

c) 3C/2

d) 2C/3

e) 5C
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Problem 70.

problems/capacitance-mc-two-capacitor-equilibrium.tex

2C C
Q2Q

In the figure above, the capacitor on the left has capacitance 2C and is charged
with a battery to a total charge 2Q. The capacitor on the right has capacitance
C and is charged up to a total charge Q. The two capacitors are then connected
as shown (still charged) and the switch is thrown. The charge on the left

capacitor (2C) then:

a) Decreases

b) Increases

c) Remains the same.
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8.1.2 Ranking/Scaling

Problem 71.

problems/capacitance-ra-energy-of-capacitor.tex

V
C

Q 2Q

C
2V

C
2V

Q/2

a b c d

In the figure above four capacitors are shown. The first one (a) is a capacitor
with capacitance C, charge Q, and has a voltage across the plates of V . The
others have capacitance, charge, and/or voltages as shown, given in terms of
C, Q, V from capacitor (a). Rank the energy stored on the capacitors from
least to most, with permitted equality. A possible answer might be (but
probably isn’t) a = b < c < d.
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8.1.3 Short Answer/Concept

Problem 72.

problems/capacitance-sa-4-Cs-to-C.tex

You are given four capacitors, each with a capcitance of C. Discover an ar-
rangement of these capacitors in series and/or parallel combinations that has a
net capacitance of C.
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Problem 73.

problems/capacitance-sa-five-capacitors.tex

C0

C0C0

C0 C0

2

3

2

BA

Five capacitors, each with the capacitance shown (in terms of a reference capac-
itance C0, are arranged in the circuit above. Find the total capacitance between
the points A and B.



8.1. CAPACITANCE 105

Problem 74.

problems/capacitance-sa-six-capacitors.tex

BA

C

2C 2C

3C3C 3C

A network of capacitors with various values given as multiples of a reference
capacitance C is drawn above. Find the total capacitance between points A
and B in terms of C.
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Problem 75.

problems/capacitance-sa-three-reasons-for-dielectrics.tex

Dielectric materials are generally used when designing capacitors for three ex-
cellent reasons. What are they?

a)

b)

c)
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8.1.4 Long Problems

Problem 76.

problems/capacitance-pr-five-capacitors.tex

C

C C

C C

a) Find the total effective capacitance between the two contacts (the round
circles at the top and the bottom) of the arrangement of capacitors drawn
above. Naturally, show all work.

b) If a potential V is connected across the contacts, indicate the relative size
of the charge on each capacitor. (It will probably be easiest if you give
your answers in terms of Q = CV .)
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Problem 77.

problems/capacitance-pr-half-filled-cylindrical.tex

L

ε r

b

c

a

Derive C for the cylindrical capacitor drawn above. This capacitor has length
L and consists of a conducting shell with radius a, a relative permittivity ǫr

from radius a to radius b, and empty space from radius b to radius c, the outer
conductor.

Show all work! You must follow the progression ~E → ∆V → C, inserting
or using the important property of the dielectric where it is appropriate or
necessary.
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Problem 78.

problems/capacitance-pr-half-filled-dielectric-series.tex

d/2

d/2

A
ε

ε

r1

r2

A parallel plate capacitor has cross sectional area A and separation d. A dielec-
tric material with relative permittivity ǫr of thickness d/2 and area A half fills
the space in between as shown.

Find the capacitance of this arrangement. Show all work!.
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Problem 79.

problems/capacitance-pr-spherical-dielectric.tex

+

V

b

a

dielectric ε r

A spherical capacitor has inner radius a and outer radius b. The space between
the spheres is filled with a dielectric of relative permittivity ǫr.

• Find the capacitance of this arrangement, including the effect of the di-
electric ǫr. Show All Reasoning and Work!

• Show that when b = a + δ with δ ≪ a the capacitance has the limiting
form C = ǫ0A/δ (parallel plate result) where A is the area of the inner
sphere and δ is the separation of the shells.
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Problem 80.

problems/capacitance-pr-spherical.tex

+

V

b

a

A spherical capacitor has inner radius a and outer radius b

• Find the capacitance of this arrangement. Show All Work!

• Show that when b = a + δ with δ ≪ a the capacitance has the limiting
form C = ǫ0A/δ (parallel plate result) where A is the area of the inner
sphere and δ is the separation of the shells.



112 CHAPTER 8. CAPACITANCE AND DIELECTRICS

8.2 Dielectrics

8.2.1 Long Problems

Problem 81.

problems/dielectrics-pr-capacitor-two-dielectrics-parallel.tex

−Q

+Q

d

A/2 A/2

1ε ε 2

In the figure above, a parallel plate capacitor with cross-sectional area A and
plate separation d is drawn. The space between the plates is filled with two

dielectrics with relative permittivities ǫr = ǫ1 and ǫr = ǫ2 of thickness d and
area A/2 as shown. A (free) charge Q is placed on the upper plate and −Q is
similarly placed on the lower plate.

Find the capacitance of this arrangement any way you like.
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Problem 82.

problems/dielectrics-pr-capacitor-two-dielectrics-series.tex

ε

−Q

+Q

1

A

A

d/2

d/2

ε
2

In the figure above, a parallel plate capacitor with cross-sectional area A and
plate separation d is drawn. The space between the plates is filled with two

dielectrics with relative permittivities ǫr = ǫ1 and ǫr = ǫ2 of equal thickness d/2
as shown. A (free) charge Q is placed on the upper plate and −Q is similarly
placed on the lower plate.

Find the capacitance of this arrangement any way you like.
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Problem 83.

problems/dielectrics-pr-cylindrical-capacitor.tex

ε

L

b
a

r

Derive C for the cylindrical capacitor drawn above, with inner radius a, outer
radius b, length L, filled with a dielectric with relative permittivity ǫr.

Show all work! You must follow the progression ~E → ∆V → C, inserting
or using the relevant important property of the dielectric medium either at the
beginning or the end.
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Problem 84.

problems/dielectrics-pr-force-constant-Q-half-filled.tex

d A

A

r

x

L

L

ε

A parallel plate capacitor is constructed from two square conducting plates with
side length L and an area of A = L2, separated by a distance of d. An insulating
slab of thickness d and with a relative permittivity ǫr is inserted to a distance
x = L/2 so that it half-fills the space between the plates as shown. Find:

a) The capacitance of this arrangement.

b) When a constant charge ±Q is placed on the capacitor does the electric
field pull the dielectric in between the plates or push it out from between
them?

c) What is the force on the capacitor in this case? Hint: Consider how the
energy stored on the capacitor varies with x.
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Problem 85.

problems/dielectrics-pr-force-constant-V-half-filled.tex

d A

A

r

x

L

L

ε

A parallel plate capacitor is constructed from two square conducting plates with
side length L and an area of A = L2, separated by a distance of d. An insulating
slab of thickness d and with a relative permittivity ǫr is inserted to a distance
x = L/2 so that it half-fills the space between the plates as shown. Find:

a) The capacitance of this arrangement.

b) When a potential V is maintained across the capacitor does the electric
field pull the dielectric in between the plates or push it out from between
them?

c) Challenge Problem: What is the force on the capacitor in this case?
Note well: Do not forget the work done by the battery as the slab’s

position is varied! This is why it is difficult!
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Problem 86.

problems/dielectrics-pr-lorentz-atom-polarizability.tex

Eext

+Ze

−Ze

a
d?

A simple model for an atom has a tiny (point-like) nucleus with charge +Ze
is located at the center of a uniform sphere of charge with radius a and total
charge -Ze. The atom is placed in a uniform electric field which displaces the
nucleus as shown. Find:

a) The equilibrium separation d of the nucleus from the center of the spherical
electron cloud;

b) The average polarization density ~P (dipole moment per unit volume) of a
solid made up of these atoms, assuming that the atoms are arranged so that
they “touch” in a simple cubic lattice (a three dimensional array where atoms
sit at positions (x, y, z) where all three coordinates are integer multiples of 2R).

Remember, this polarization density can be related to the total electric field
inside the conductor by a relation like ~P = χeǫ0 ~E where χe is called the electric

susceptibility of the material. This in turn lets you completely understand
ǫr = 1 + χe, the relative permittivity of the model material.
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Problem 87.

problems/dielectrics-pr-parallel-plate-capacitor.tex

ε rd

A

V
+

A parallel plate capacitor has cross sectional area A and separation d. A di-
electric material with relative permittivity ǫr, thickness d, and area A fills the
space in between as shown. A potential V is connected across this capacitor.
Find:

a) The electric field inside the dielectric.

b) The free charge on the plates.

c) The capacitance.

d) The bound charge on the surface of the dielectric.

Show all work!
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Problem 88.

problems/dielectrics-pr-spherical-capacitor-half-dielectric-series.tex

R

ε r

+Q

−Q
2R

3R

The inner conductor of a spherical capacitor of inner radius R is surrounded by a
dielectric shell of thickness R and relative permittivity ǫr. The outer conductor
of the capacitor is at 3R.

a) If the inner conducting sphere has a charge +Q on it and the outer con-
ducting sphere has a charge −Q on it, what is the electric field in all
space?

b) What is the potential difference between the inner shell and the outer
one (just the magnitude is fine, but indicate which shell is at the higher
potential on the figure).

c) Find the capacitance of this arrangement.
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Problem 89.

problems/dielectrics-pr-spherical-capacitor.tex

b
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0

A spherical capacitor with inner radius a and outer radius b has the space in
between filled with a dielectric with relative permittivity ǫr. A potential V0 is
connected across it as shown. Find:

a) The field between the shells

b) The charge on the inner and outer shells

c) The capacitance.

d) The total energy of the charged capacitor

Show All Work!
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Problem 90.

problems/dielectrics-pr-spherical-conductor-with-dielectric-shell.tex

R

2R

ε r

+Q

An isolated conducting sphere of radius R is surrounded by a dielectric shell of
thickness R with relative permittivity ǫr.

a) If the sphere has a charge Q on it, what is the electric field in all space?

b) What is the potential of the sphere?

c) Find its capacitance.

d) What is the total energy of the charged sphere?
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9.1 Resistance

9.1.1 Multiple Choice

Problem 91.

problems/resistance-mc-electric-field-in-current-carrying-wire.tex

A conducting wire of resistivity ρ, length L and cross sectional area A is carrying
current I.

The wire has no electric field inside.

a) T

b) F

(Briefly explain your answer.)
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Problem 92.

problems/resistance-mc-is-wire-with-current-equipotential.tex

A conducting wire of resistivity ρ, length L and cross sectional area A is carrying
current I.

The wire is equipotential.

a) T

b) F

(Briefly explain your answer.)
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Problem 93.

problems/resistance-mc-power-light-bulbs.tex
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Four identical light bulbs are connected to a battery as shown. Initially the
switch is closed and the circuit draws a total initial power from the battery Pi.
At a certain time, the switch is opened, breaking the circuit through bulb C.
Pf is the power drawn by the circuit after the switch is opened. At that time:

a) Pf = Pi and bulb D is the brightest.

b) Pf < Pi and bulb D is the brightest.

c) Pf > Pi and bulb D is the dimmest.

d) Pf = Pi and bulb D is the dimmest.
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Problem 94.

problems/resistance-mc-power-resistance-network.tex
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R
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R

R
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The total power dissipated in the circuit above is:

a) 3/5I2R

b) 2/3I2R

c) 4/5I2R

d) 5/6I2R

e) I2R
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Problem 95.

problems/resistance-mc-resistance-scaling-1.tex

1

2

1

1

1

2

RA
RB

Two resistors are made out of the same conducting material. In RA, current
runs across a length 2 in between two square faces that are 1 × 1 in size (in
any units you like). In RB, current runs across a length 1 in between two
rectangular faces that are 2 × 1 in size.

The ratio RA/RB is:

a) RA

RB
= 1/4

b) RA

RB
= 1/2

c) RA

RB
= 1

d) RA

RB
= 2

e) RA

RB
= 4
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Problem 96.

problems/resistance-mc-resistance-scaling-2.tex

L

2L

2L

L

A B

Two box-shaped resistors with square end caps are made from the same ma-
terial are shown, with their relative dimensions, above (the perfectly conducting
leads are the vertical whiskers).

What is the ratio RA/RB?

a) RA

RB
= 1/4

b) RA

RB
= 1/2

c) RA

RB
= 2

d) RA

RB
= 4

e) RA

RB
= 8
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Problem 97.

problems/resistance-mc-three-bulbs-1.tex
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Three identical light bulbs are arranged in a simple DC circuit as drawn. At a
certain time the switch S is closed. Does the brightness of bulb A:

a) increase?

b) decrease?

c) stay the same?

Assume that the circuit is powered by an ideal battery with no internal resis-
tance.
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Problem 98.

problems/resistance-mc-three-bulbs-2.tex

B C

A

V

+

S

Three identical light bulbs are arranged in a simple DC circuit as drawn. At
a certain time the switch S is closed. Does the brightness of bulb B increase,
decrease, or remain the same? Assume that the circuit is powered by an ideal
battery with no internal resistance.



132 CHAPTER 9. RESISTANCE AND DC CIRCUITS

9.1.2 Ranking/Scaling

Problem 99.

problems/resistance-ra-resistivity.tex
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L

A B

Two box-shaped resistors with square end caps are made from two different

materials with their relative dimensions shown above (the perfectly conducting
leads are the vertical whiskers). Their resistance is equal. Rank the resis-

tivity ρ of the materials (he two possible answers are ρA < ρB or vice versa)
and indicate why you made this choice.
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9.1.3 Short Answer/Concept

Problem 100.

problems/resistance-sa-kirchoffs-rules.tex

What are Kirchoff’s Rules? Also (and still for credit!) what physical principle
does each rule corresponds to?

a)

b)
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Problem 101.

problems/resistance-sa-network-1.tex

BA
R 2R

R 3R2R

2R

A network of resistors with various values given as multiples of a reference
resistance R is drawn above. Find the total resistance between points A and B
in terms of R.
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Problem 102.

problems/resistance-sa-network-2.tex

BA
2R

2R

2R

2R

A network of resistors with various values given as multiples of a reference
resistance R is drawn above. Find the total resistance between points A and B
in terms of R.
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Problem 103.

problems/resistance-sa-network-3.tex

R

R

R R

R

R R

R

R

A network of resistors with various values given as multiples of a reference
resistance R is drawn above. Find the total resistance between points A and B
in terms of R.
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9.1.4 Long Problems

Problem 104.

problems/resistance-pr-five-resistors-one-voltage.tex
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In the figure above, a V = 8 Volt battery is applied across the resistance network,
where R = 1 Ohm. Find the currents I1, I2, I3, I4 and I5, and indicate the
total power delivered by the battery.

Your answer can be given algebraically in terms of V and R or numerically in
terms of Amps and Watts. The arithmetic should be easy enough to do in your
head should you wish to do the latter.
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Problem 105.

problems/resistance-pr-half-annulus.tex

t

ρ

b

a

A printed circuit board contains a resistor formed of a semicircular bend of
resistive material (resistivity ρ) of thickness t, inner radius a and outer radius
b as shown in the figure above. Copper traces maintain a constant voltage V
across the semicircular resistor. Find (in terms of the givens):

a) the resistance R of the resistor – be sure to indicate the basic formulae you
are starting from for partial credit in case you can’t quite get the integral right
(it is like the integral in a homework problem);

b) the energy dissipated as heat in the resistor in s seconds. Again, if you cannot
find R in terms of the givens (or have little confidence in your answer), you may
use R and other given quantities to answer b) for at least partial credit.

Check the Units of Your Answers!
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Problem 106.

problems/resistance-pr-impedance-matching.tex
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R b
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In the circuit above, the dashed box represents a battery with an internal “pole
voltage” of V0 that has a signficant internal resistance Rb. Rl represents a “load”
resistance (such as a light bulb or motor).

a) What is the current I in this circuit.

b) What is the power Pl delivered to the load resistance?

c) Prove that the power delivered to the load resistance is maximum when
Rl = Rb.

This is called impedance matching – to get the most power out of a circuit el-
ement with some resistance/impedance, one matches it to the internal resistance
of the part of the circuit providing the power.
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Problem 107.

problems/resistance-pr-three-resistors-two-voltages-1.tex
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Find the three currents I1, I2 and I3 in the figure above, and clearly indicate
their direction on the figure. Note that you’ll likely have to assume a direction
for each current in order to solve the problem, so go back and put your final

direction(s) back in on the figure when you are done!
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Problem 108.

problems/resistance-pr-three-resistors-two-voltages-2.tex
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Find the three currents I1, I2 and I3 in the figure above, and clearly indicate
their direction on the figure. Note that you’ll likely have to assume a direction
for each current in order to solve the problem, so go back and put your final

direction(s) back in on the figure when you are done!
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Problem 109.

problems/resistance-pr-three-resistors-two-voltages-3.tex
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Find the three currents I1, I2 and I3 in the figure above, and clearly indicate
their direction on the figure. Note that you’ll likely have to assume a direction
for each current in order to solve the problem, so go back and put your final

direction(s) back in on the figure when you are done!
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Problem 110.

problems/resistance-pr-three-resistors-two-voltages-4.tex
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Find the three currents I1, I2 and I3 in the figure above, and clearly indicate
their direction on the figure. Note that you’ll likely have to assume a direction
for each current in order to solve the problem, so go back and put your final

direction(s) back in on the figure when you are done!
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Problem 111.

problems/resistance-pr-three-resistors-two-voltages-5.tex

5 5Ω Ω5 Ω

10V 15V

a) Find the magnitude and direction of the currents flowing in each resistor.

b) Find the combined power dissipated in the resistors.
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Problem 112.

problems/resistance-pr-three-resistors-two-voltages-6.tex
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Find the three currents I1, I2 and I3 in the figure above, and clearly indicate
their direction on the figure. Note that you’ll likely have to assume a direction
for each current in order to solve the problem, so go back and put your final

direction(s) back in on the figure when you are done!
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9.2 RC Circuits

9.2.1 Ranking/Scaling

Problem 113.

problems/rc-circuits-ra-three-circuits.tex

C CC

R R C

RR

A B C

In the figure above, three RC circuits are shown, built out of equal resistances
R and capacitances C. The circuits are all charged to a total charge Q and then
discharged through the switch at the same time. Rank the circuits in the order
of fastest discharge, where equality is possible (so e.g. A = B > C is a possible
answer).
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9.2.2 Short Answer/Concept

Problem 114.

problems/rc-circuits-sa-initial-current-charging.tex

Vo

C

R

In the figure above, the switch is closed at time t = 0 and the uncharged

capacitor starts to charge. What is the initial current in the circuit immediately

after the switch is closed?
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V

C

R

S1

S2

9.2.3 Long Problems

Problem 115.

problems/rc-circuits-pr-charge-and-discharge-numbers.tex

In the circuit above, R = 100Ω and C = 1µFarad, and V = 10 volts. The
capacitor is initially uncharged. To simplify arithmetic to the finger and toe
level, answers given algebraically in terms of powers of e are acceptable – no
calculators should be strictly necessary although you can smoke ’em if you got
’em.

a) At time t = 0, switch 1 is closed. What is the charge on the capacitor as a
function of time?

b) At time t = 300 microseconds, switch 1 is opened and switch 2 is closed.
What is the voltage across the capacitor as a function of time.

c) At time t = 500 microseconds (from t = 0 in part a) switch 2 is opened. How
much energy is stored in the capacitor at that time?
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Problem 116.

problems/rc-circuits-pr-charge-and-discharge.tex
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In the circuit above, assume R, C, and V are given. Derive all your answers for
up to five bonus points, but you may just give the answers below for full credit.
All answers may be expressed in terms of powers of e.

a) At time t = 0, switch 1 is closed. What is the charge on the capacitor as a
function of time in terms of the given quantities.

b) After a very long time (≫ RC) switch 1 is opened and switch 2 is closed.
What is the voltage across the capacitor as a function of time.

c) At time t = 2RC switch 2 is opened. How much energy is stored in the
capacitor at that time?
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Problem 117.

problems/rc-circuits-pr-charging-discharging-two-R-paths.tex
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In the circuit above, the switch S has been closed for a very long time already

at t = 0. Find:

a) The initial currents I1(0) and I2(0).

b) The initial charge Q(0) on the capacitor.

c) At t = 0 the switch is opened. Find the charge on the capacitor Q(t) for
all t > 0.

Note that you can solve parts b) and c) independently by assuming that you
know Q(0) for part c).
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Problem 118.

problems/rc-circuits-pr-leyden-jar-discharge-time.tex
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A large Leyden jar (capacitor) is surrounded by dry air so that the net resis-
tance between its charged and grounded terminal is approximately 1010 Ω. It is
charged up to 50,000 volts by a Wimshurst generator (at which time it contains
0.005 Coulombs of charge). It is then disconnected and left there by a negli-
gent physics instructor. 33 1/3 minutes later, an astrophysics professor comes
into the room and, seeking to move the jar, grabs the ungrounded, charged,
central terminal. How much charge seeks ground through this hapless soul’s
body? How much stored energy is dissipated in the process? (You can solve
this algebraically if you have no calculator handy.)

Ouch! These are not unrealistic parameters. Leyden jars or other large capaci-
tors can be very, very dangerous for hours after they are charged up.
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Problem 119.

problems/rc-circuits-pr-two-capacitors-one-resistor.tex
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A pair of capacitors C1 and C2 is connected as shown, with a resistance R in
between them. Initially, the first capacitor carries a total charge Q1i and the
second one is uncharged, Q2i = 0. At t = 0 the switch is closed. Find:

a) The equilibrium (t = ∞) charges on the two capacitors, Q1f and Q2f .

b) Using Kirchoff’s laws for this arrangement, find the time constant for the
equilibration process. Note that you do NOT have to solve the DE, just
formulate it with dt and some arrangement of R, C1, and C2 on the other
side.
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Problem 120.

problems/rc-circuits-pr-two-capacitors.tex
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In the figure above, a voltage V0 is briefly applied across two capacitors in
parallel to charge them to this potential difference as shown (higher potential
on the upper plate) with the switch open. At time t = 0 the switch is closed.
Find:

a) The initial charges on the two capacitors, Q1 and Q2, given that the
capacitances are C and 3C respectively.

b) The initial energy stored on the capacitors.

c) The time constant of the discharge process in terms of R and C.

d) Write Kirchoff’s Loop Rule for this circuit at an arbitrary time t after the
switch is closed and turn it into a first order, linear, homogeneous ordinary
differential equation (of motion) for the total charge on the capacitors.

e) Write down and sketch a graph of Q(t), the total charge on the capacitors
as a function of time. If you don’t remember it, you are welcome to derive
it, and if you do derive it you might get a few extra credit points. Be sure
to mark τ , the exponential time constant of the discharge process, on your
graph to set its scale.
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10.1 Magnetic Force

10.1.1 Multiple Choice

Problem 121.

problems/magnetic-force-mc-loop-between-two-wires.tex

I
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A square conducting loop carries a current I0 in the direction shown. It is sitting
symmetrically between two wires each carrying a current I to the right. The
net force on the rectangular loop is:

a) up.

b) down.

c) left.

d) right.

e) zero.
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Problem 122.

problems/magnetic-force-mc-positron-electron-cloud-chamber.tex

e+

e−

The figure above portrays the tracks left by a positron and an electron (la-
belled) in a cloud chamber. Is the magnetic field that bends their tracks (pre-
dominantly):

a) into

b) out of

the paper? Circle a or b.
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10.1.2 Ranking/Scaling

Problem 123.

problems/magnetic-force-ra-magnetic-force-rectangular-loops.tex

I 0 I 0I 0

(B)(A) (C)

B(in)B(in) B(in)

a/2

I
2II

a/2

a/2 a/2a/2

a a

a
a

In the figures above, the long straight wire to the left produces a field of varying
magnitude:

B =
µ0I0

2πr

where r is the perpendicular distance of the point of observation from the wire
that is into the page at the location of the wire loops on the right (which
have the dimensions and carry the currents shown). The near wire of all of the
loops is a distance a/2 from and parallel to the long straight wire. For each
example, rank the magnitude of the net magnetic force on the loop compared
to the others, and indicate the direction of the net force on the diagram with
an arrow. Equality is permitted, so your answer for the ranking might be
A = B > C.
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Problem 124.

problems/magnetic-force-ra-three-curved-trajectories.tex
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In the figure about, particles a, b and c enter a magnetic field travelling in a
straight line as shown. All three particles have the same velocity as they enter.
Circle all of the statements below that could be consistent with the observed
trajectories of the particles.

a) All the particle have the same mass m, and qa > qb > qc.

b) All of the particles have the same charge q, and have mass ma < mb < mc.

c) All of the particles have the same mass, and qc > qb > qa.

d) All of the particles have the same charge q, and have mass mc < mb < ma.

e) The particles have qc > qb > qa and mc < mb < ma.
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Problem 125.

problems/magnetic-force-ra-three-magnetic-moments.tex
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Three objects that each have a total charge Q uniformly distributed in the
grey region are pictured above, rotating about the z-axis (which is an axis of
symmetry for the object). The horizontal dimension (width) of each object is
the same, as shown. Rank the magnetic moments of the objects from smallest
to largest, where equality is a possible answer. That is an answer might be
A < B = C.
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10.1.3 Short Answer/Concept

Problem 126.

problems/magnetic-force-sa-region-crossed-fields.tex

E down, B in

vq

Above is portrayed a region of crossed ~E and ~B fields. If one shoots a charged
particle q through the region from the left, what must its speed be for it to pass
through the region undeflected? Neglect fringe fields.
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10.1.4 Long Problems

Problem 127.

problems/magnetic-force-pr-circular-loop-oscillator.tex
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In the figure above, a circular loop of wire of radius R carries a current I and
has mass M . The loop is pivoted so it can turn freely about an axle through
its center (more or less perpendicular to the plane of the paper as shown). A

uniform magnetic field ~B in the z-direction surrounds the loop. The loop is
twisted through a small angle θ relative to the applied field and released to
oscillate.

Find the angular frequency of oscillation. Note that the moment of inertia of a
circular ring of mass M and radius R about the axis shown is Irot = 1

2MR2.
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Problem 128.

problems/magnetic-force-pr-hall-effect-2.tex
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Current I measured through strip in direction shown
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Magnetic Field B perpendicular to strip as shown
Voltage V    measured across wH

VH

The apparatus for measuring the Hall effect is shown above. Consider a charge
carrier q (to keep you from having to mess with the negative charge on the real
charge carriers – electrons) moving through the apparatus in a material with an
unknown n charge carriers per unit volume. Derive an expression for n, given
I, VH , t, B, w and q. Note that I’d have to consider you moderately insane
to have memorized this result (I certainly haven’t) but by considering the strip
to be a region of self-maintaining crossed fields and relating the current to the
drift velocity you should be able to get it fairly easily.
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Problem 129.

problems/magnetic-force-pr-hall-effect.tex
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A rectangular metal strip of length L, width w, and thickness t sits in a uniform
magnetic field B perpendicular to the strip and into the page as shown. The
material has resistivity ρ and a free (conducting) electron (charge q = −e)
density of n. A voltage V0 is connected across the strip so that the electrons

travel from left to right as shown.

a) What is the resistance of the strip in terms of ρ and its dimensions?

b) Find an expression for the Hall potential (the potential difference across
the strip from top to bottom) in terms of the given quantities.

c) Is the top of the strip at higher or lower potential than the bottom?

Hints: you’ll have to start by determining I (the current in the strip) in terms
of the givens, and then translate that into a form involving the drift velocity vd.
From vd and your knowledge of magnetic forces you should be able to determine
the electric field and then the potential across the strip in the steady state.
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Problem 130.

problems/magnetic-force-pr-helical-motion-point-charge.tex

A beam of particles with velocity ~v enters a region of uniform magnetic field ~B
such that ~v makes a small angle θ < π/2 with ~B. Show that after a particle
moves a distance

D =
2πm

qB
v cos(θ)

measured along the direction of ~B, the velocity of the particle is in the same
direction as it was when it entered the field.

Hint: The magnetic force does not alter the component of the velocity in the
same direction as the field.
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Problem 131.

problems/magnetic-force-pr-magnetic-moment-rotating-disk-2.tex

ω

m

z

R

Q,M

A flat disk of radius R and mass M with uniform surface charge density

σ =
Q

πR2

is rotating at angular velocity ω about the z-axis as shown.

a) Find its magnetic moment ~m.

b) Show that:

~m =
Q

2M
~L

where ~L is the angular momentum of the disk.
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Problem 132.

problems/magnetic-force-pr-magnetic-moment-rotating-disk.tex
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A disk of radius R and thickness t, with uniform charge density ρq and uniform
mass density ρm is rotating at angular velocity ~ω = ωẑ.

Consider a tiny differential chunk of the disk’s volume dV = dA t located at r, θ
in cylindrical polar coordinates. Note that this chunk is orbiting the z-axis at
angular frequency ω in a circular path.

a) Find the magnetic moment dmz of this chunk in terms of ρq, ω, dV and its
coordinates.

b) Find the angular momentum dLz of this chunk in terms of ρm, ω, dV and
its coordinates.

c) Doing the two (simple) integrals, express them in terms of the total charge
and total mass of the disk, respectively, and show that the magnetic moment of
the disk is given by ~m = µB

~L, where µB = Q
2M .

d) What do you expect the magnetic field of this disk to look like on the z axis
for z ≫ R? (Answer in terms of ~m is fine.)
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Problem 133.

problems/magnetic-force-pr-magnetic-moment-rotating-rod.tex
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A rod of mass M and length L is uniformly charged with a total charge Q and
pivoted around one end. It is rotating in a plane at angular velocity ω. Find:

a) The magnetic moment of the rod in the direction of its angular velocity
(axis of rotation). Is it into or out of the page as drawn? (You will have
to do a simple integral for this – what is the average “current” of a small
chunk of the rod a distance x from the pivot?)

b) The angular momentum of the rod. Note that its moment of inertia is:

I =
1

3
ML2

c) From your answers to a) and b), show that

~m = µB
~L

and find µB. If you cannot make it work out but know the answer, be
sure to put it down (but getting it to work out is an important check that
will give you confidence in your answers to a) and b).

Show all work.
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Problem 134.

problems/magnetic-force-pr-magnetic-moment-rotating-sphere.tex

z

Q,M
m

R

ω

A sphere of radius R with uniform charge density ρq = 3Q
4πR3 and uniform mass

density ρm = 3M
4πR3 is rotating at angular velocity ~ω = ωẑ.

Consider a tiny differential chunk of the sphere’s volume dV located at r, θ, φ
in spherical polar coordinates. Note that this chunk is orbiting the z-axis at
angular frequency ω in a circular path.

a) Find the magnetic moment dmz of this chunk in terms of ρq, ω, dV , and its
coordinates. You do not need to express dV in coordinates – leave it as dV .

b) Find the angular momentum dLz of this chunk in terms of ρm, ω, dV , and
its coordinates.

c) Expressing the two integrals without doing them in actual coordinates, show

that the magnetic moment of the sphere is given by ~m = µB
~L, where µB = Q

2M .

d) For extra credit: Despite its generality, the conclusion is not true for any

shape with a uniform mass and charge density rotating about the z-axis at a
constant angular velocity ~ω. Why not? Give a specific example of a (simple)
distribution for which it is not true, and/or the condition for it to be true.
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+

V

B (out)

r

+e,M (or +2e,M or +3e,M)

Film

Problem 135.

problems/magnetic-force-pr-mass-spectrograph.tex

In the mass spectrograph above, the goo in the source chamber contains molecules
of mass M that are ionized to have charges of +e, +2e or +3e at the source.
The particles then fall through a potential of V and enter the uniform B field
in the box.

a) Derive an expression for the radius r at which a fragment of charge-to-mass
ratio of m/q hits.

b) Use this expression to find r for each of the three possible ionization charges,
and draw a picture of the bars produced on the film to a reasonable scale.
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Problem 136.

problems/magnetic-force-pr-motion-of-point-charge.tex

A particle of charge q and mass m has momentum (magnitude) p = mv and

kinetic energy K = 1
2mv2 = p2

2m . If the particle moves in a circular orbit of
radius r perpendicular to a uniform magnetic field of magnitude B, show that:

a) The magnitude of the momentum is p = Bqr

b) The kinetic energy is K = B2q2r2

2m

c) The magnitude of the angular momentum is L = Bqr2.
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Problem 137.

problems/magnetic-force-pr-particle-beam-bending-magnet.tex

B?

Target

e,mp

kinetic energy K

R

R

A beam of protons (charge +e, mass mp) with kinetic energy K produced by an
accelerator moving inside a beam pipe is incident on a circular bending magnet
that creates a uniform field in the circular region drawn above. We wish to bend
it through π/2 so it emerges from the magnet in the indicated pipe to hit the
target at the end. Assume that the magnetic field cuts off sharply at the edge
of the magnet.

a) In order to bend the beam as shown, is ~B into the page or out of the
page?

b) What is the speed of a proton in the beam in terms of K and mp?

c) What is the magnetic force acting on the proton indicated in terms of
the givens? Draw the direction in on the figure.

d) What should we set the magnitude of the magnetic field B to be as a
function of K, mp, e and R in order to put the beam of particles on target
as shown?
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Problem 138.

problems/magnetic-force-pr-precession-of-proton-advanced.tex

Bext

m =     Lµ
bProton

θ

Challenge problem for physics majors: A proton (charge +e) with mass

mp has an intrisic angular momentum given by ~L and a magnetic moment

given by ~m = µB
~L. When the proton is placed in a uniform magnetic field of

strength ~B = B0ẑ so that ~L makes an angle of θ with ~B, the angular momentum
precesses around ~B.

a) Using calculus, derive the angular frequency ωp with which the angular
momentum precesses. That is, from the equations of motion for the x
and y components angular momentum, show that Lx and Ly oscillate
harmonically and determine their oscillation frequency.

b) Indicate the direction of precession on the figure above (into or out of
page, as drawn).

c) Solve the equations of motion to obtain Lx(t) assuming that it is at a pos-
itive maximum at t = 0. From this and the equations of motion obtained
above, find Ly(t) and Lz(t). You now know exactly what the angular
momentum of the proton does in

d) Finally, derive µB = Q/2M . One way you might proceed is to simply

derive ~m and ~L separately for the proton, assuming uniform mass and
charge distribution and a common angular velocity ~ω. A better way to
proceed might be to relate dmz (along the axis of rotation) to dLz (ditto)

assuming axial symmetry so that ~L is parallel to ~ω.
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Problem 139.

problems/magnetic-force-pr-precession-of-proton.tex

Bext

m =     Lµ
bProton

A model for a proton (charge +e) with mass mp has an intrinsic angular momen-

tum given by ~L and a magnetic moment given by ~m = µB
~L (where µB = Q/2M

for reasons you should completely understand). When the proton is placed in a

uniform magnetic field of strength B so that ~L makes an angle of θ with ~B, the
angular momentum precesses around ~B.

Find (derive) the angular frequency with which the angular momentum pre-
cesses. Indicate the direction of precession on the figure above (into or out of
page, as drawn).
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11.1 Biot-Savart Law

11.1.1 Multiple Choice

Problem 140.

problems/bfield-mc-magnetic-dipole.tex

Q,R

ω

z

A ring of radius R of charge Q is rotating at angular velocity ω about the z-axis
as shown. The field at an arbitrary point on the z-axis far from the ring (z ≫ R)
is:

a) kmQR2ω
z

b) kmQR2ω
z2

c) kmQR2ω
6z2

d) kmQR2ω
z3

e) kmQR2ω
6z3
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11.1.2 Ranking/Scaling

Problem 141.

problems/bfield-ra-circular-current-loop-center.tex

I

N

R

A plane circular loop of wire with N turns, radius R, and current in each turn I
is shown above and produce a magnetic field with strength B (out of the page)
at the geometric center of the loopj.

Four possible sets of relative values of N, R, I are given below. Rank the mag-
nitudes of B from least to greatest for the four cases where equality might be
an answer (so an answer might be, but probably isn’t: a < b < c = d).

a) N = N0, R = R0, I = I0

b) N = 2N0, R = 2R0, I = I0

c) N = 2N0, R = R0, I = I0/2

d) N = 2N0, R = 2R0, I = 2I0
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11.1.3 Short Answer/Concept

Problem 142.

problems/bfield-sa-spinning-ring-at-center.tex

x

y

z

ω
R

Q

In the figure above a ring of radius R with total charge Q is spinning at angular
velocity ω around the z-axis. What is the magnetic field strength at the origin?
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11.1.4 Long Problems

Problem 143.

problems/bfield-pr-circular-current-loop-N-turns.tex

R
I

N turns

x

y

z

In the figure above a circular current loop of radius R and N turns carries a
current I.

a) Find the magnetic field at an arbitrary point on the z-axis.

b) What is the asymptotic form magnetic field in the limit that z ≫ R,
expressed in terms of the magnetic dipole moment of the loop?
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Problem 144.

problems/bfield-pr-electrodynamics-two-point-charges.tex

q qr

vv

Two identical point charges with charge q are separated by a distance r and
have identical velocities ~v perpendicular to ~r.

a) Find the magnitude of the electrostatic force between the two charges.
Draw it in on the figure as vectors acting on the two charges labelled ‘Fe’.

b) Find the magnitude of the magnetic force between the two charges. Draw
it in on the figure as vectors acting on the two charges.

c) The magnetic force increases with the speed v of the particles. Solve for
the speed v for which they are equal. You should be able to numerically
evaluate this speed in meters per second; please do.

The speed you get should be the speed of light!

A final meditation: The two charges have this magnetic force in between them
only in the inertial frame drawn, where they have identical velocities. But there
exists another inertial reference frame, travelling at velocity ~v compared to the
one used in the figure, where the velocities of the charges is zero! You have
just discovered an argument for the inconsistency of Galilean relativity with
Maxwell’s equations, as in this frame there is no magnetic force at all. Observers
in the two frames in question will thus disagree about the magnitudes of the
forces and the observed motion of the charges. This makes us sad – until we fix
it by inventing relativity theory.
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Problem 145.

problems/bfield-pr-ring-on-axis.tex

z

a

I

A circular loop of wire of radius a is carrying a current I counterclockwise
(viewed from above) around the z-axis. It is located in the x-y plane, centered
on the origin as drawn.

a) Using the Biot-Savart law, find the magnetic field at an arbitrary point
on the z-axis. Show all work (don’t just write the answer down if you
remember it from your homework).

b) What is the magnetic moment of this current loop ~m? You don’t have to
derive this, you can just write it down.

c) Find the field in the (hopefully familiar) limit z ≫ a and show that it is
the familiar field of a magnetic dipole on its axis.
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Problem 146.

problems/bfield-pr-semicircle-of-current.tex

P

I

R

In the figure above, a long straight wire with a semicircular arc of radius R bent
into it carries a current I as shown. Find the magnitude of the magnetic field
at the point P . Indicate its direction on the figure.
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Problem 147.

problems/bfield-pr-spinning-disk.tex

R

z

ω

Q,Mm

A flat disk of radius R and mass M with uniform surface charge density σq =
Q

πR2 is rotating at angular velocity ω about the z-axis as shown.

Find the magnetic field at an arbitrary point on the z-axis of the disk.
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Problem 148.

problems/bfield-pr-square-loop-center.tex

x

y

D

D

I

A square loop of wire with side length D carries a current I. What is the
magnetic field (vector, so magnitude and direction) at the origin (center of loop
as drawn)?
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11.2 Ampere’s Law

11.2.1 Multiple Choice

Problem 149.

problems/ampere-mc-integral-b-dot-dl.tex

2I

2I
I

I

I

C

In the figure above, long straight wires carry the currents indicated into or out
of the page. The integral of ~B around the indicated curve C:

∮
C

~B · d~ℓ

in the indicated direction is:

a) −1µ0I

b) 1µ0I

c) −2µ0I

d) 2µ0I

e) −5µ0I

f) 5µ0I
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11.2.2 Ranking/Scaling

Problem 150.

problems/ampere-ra-four-pairs-parallel-wires-force.tex

I I I/22II

d 2d d d/2

A B C D

2I 2I I/2

In the figure above, several arrangements of two long straight parallel wires
separated by multiples or fractions of d and carrying currents that are multiples
or fractions of I are shown. Rank the magnitude of the magnetic force of
attraction between the two wires in the figures (separated by the dashed lines),
where equality is permitted. That is, a possible answer might be A > C = B >
D.
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Problem 151.

problems/ampere-ra-integral-b-dot-dl.tex

+I +3I

−3I

+I

+2I −I

−2I

−I +2I

+5I −3I−2I

−I

+I

CA

C

D

C
C

C

B

In the figure above are four sets of currents, each with an indicated closed curve
C. Rank:

∮
Ci

~B · d~ℓ

for i = A, B, C, D. For example, the answer could be (but probably isn’t)
A = B < C < D. Negative values are less than positive values, and positive
current is out of the page.
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11.2.3 Long Problems

Problem 152.

problems/ampere-pr-particle-beam-electrodynamics.tex

R
v

ρ

r

(q,m)

Beam Dynamics: Each part of this problem (a) and b)) will be graded sep-
arately. You do not need to get the first part right to do the second part, but
obviously you need to get both parts right to get the extra credit from c).

A cylindrical beam of particles each with charge q and mass m has a uniform
initial (charge) density ρ and radius R. Each particle in the beam is initially
travelling with velocity v parallel to the beam’s axis. We will discuss the stability
of this beam by examining the forces on a particle travelling in the beam at a
distance r < R from the axis (the center of the cylinder).

a) Find the approximate force on a particle at radius r caused by the other
particles in the beam. You will need to use Gauss’s law to calculate the
electric field at radius r. Describe your work, and do not skip steps; show
that you understand Gauss’s law. Make a sketch as needed.

b) Find the magnetic force on a particle at radius r caused by the other
particles in the beam. Use Ampere’s law to calculate the magnetic field.
Describe your work, and do not skip steps; show that you understand
Ampere’s law. Make a sketch.

c) (5 points extra credit) At what beam velocity do the forces in a) and b) ex-
actly balance? Given the unbalanced electric force in the rest frame of the

particles from a), offer a hypothesis that can explain both measurements.
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Problem 153.

problems/ampere-pr-particle-beam-magnetostatics.tex

R
v

ρ

r

(q,m)

Beam Magnetostatics: Not all charged particles travel inside conductors; in
the particle beam produced by an accelerator they fly freely together through a
vacuum. In the figure above, a cylindrical beam of particles each with charge q
and mass m has a uniform initial (charge) density ρ and radius R. Each particle
in the beam is initially travelling with velocity v parallel to the beam’s axis.

a) Use Ampere’s law to calculate the (average) magnetic field at points inside
the beam.

b) Find the average magnetic force on one of the particles at radius r caused
by the other particles in the beam.

Things to think about: Does this force pull the beam tighter together (compress
it) or spread it further apart (disperse it)? Is there another force that might
oppose it?
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Problem 154.

problems/ampere-pr-solenoid.tex

N S

(I out)

(I in)

I I

N turns

A solenoid with N turns and length L is pictured above. The solenoid is wrapped
and connected to a battery (not shown) so that a current I is going into the
page at the top of each loop and out of the page at the bottom.

a) Find the magnetic field inside the solenoid using Ampere’s Law. Assume
that the solenoid is “infinitely long” as usual. Clearly indicate the direc-
tion of the field in on the figure.

b) If a bar magnet is placed at rest near the right hand end of the solenoid
as pictured will it be attracted towards the solenoid or repelled away from
the solenoid? (Hint: Think of the “north pole” of a bar magnet as being
like a “positive magnetic charge”.)
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Problem 155.

problems/ampere-pr-thick-wire-uniform-J.tex

R

J (in)

A cylindrical long straight wire of radius R carries a current density of magnitude
J = I/πR2 into the page as drawn.

a) Find the magnetic field (magnitude and direction) for r < R (inside the
wire).

b) Find the magnetic field (magnitude and direction) for r > R (outside the
wire).

c) Sketch the magnitude of the magnitude B(r) from r = 0 to r = 2R. Where
is the field maximum and what is its value there in terms of I?

Show all work and clearly name and label the law or rule used to find the
answers.
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Problem 156.

problems/ampere-pr-thick-wire-uniform-J-with-hole.tex

R/2ir

R

J (in)

A cylindrical long straight wire of radius R has a cylindrical long straight hole
of radius b = R/2 and carries a current density of ~J into the page as drawn.
Find the magnetic field at the point ~ri shown inside of the hole.
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Problem 157.

problems/ampere-pr-toroidal-solenoid.tex

r

P

representative coils

y

x

N turns, carrying current I

a) State Ampere’s Law.

b) Using Ampere’s Law find the magnetic field at the point labelled P a
distance r from the axis and completely inside the toroidal solenoid with
N turns and current I in each turn pictured above.

c) Clearly indicate the direction of the field on the picture.
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Problem 158.

problems/ampere-pr-two-current-sheets.tex

L

y/2

y/2

outλ

λ in

C

Two infinitely wide and long sheets of current carry charge out of and into the
paper as shown. They each carry a current per unit length of λ, where the length
unit in question is in the plane of the page.

a) From symmetry and your knowledge of how the magnetic field depends on
the direction of long straight currents, determine the direction only of the
magnetic field above, in between, and below the sheets of charge.

b) A possible Amperian path C is drawn on the figure as a dashed line.
Indicate a direction of integration on this figure for the lower sheet only,
then use Ampere’s Law to find the magnitude of the magnetic field a
distance y/2 away from the sheet.

c) Use the superposition principle to find the total magnetic field produced
by both sheets above, in between and below them. Be sure to give both

magnitude and (from part a) direction.
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12.1 Motional Voltage

12.1.1 Multiple Choice

Problem 159.

problems/motional-voltage-mc-pulling-wire-loop.tex

R

A conducting loop of wire with a small but finite resistance R sits in and per-
pendicular to a powerful magnetic field. You grab the loop and try to pull it
out of the field. The loop (circle one):

a) Is actively pushed out of the field in the direction you pull.

b) Is actively pushed out of the field in the opposite direction you pull.

c) Resists your attempt to move it and the resistor heats slightly as you move
succeed.

d) Resists your attempt to move it and the resistor does not change temper-
ature as you succeed.

e) Does not move.
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12.1.2 Long Problems

Problem 160.

problems/motional-voltage-pr-dc-induction-generator.tex

tω

Bin

R

L

V

A

A rod of length L is pivoted at one end and swings around at an angular
frequency ω with its other end sliding along a circular conducting track. A
magnetic field Bin is oriented perpendicular to the plane of rotation of the rod
as shown. The pivot point and the outer ring are connected by (fixed) wires
across a resistance R with a voltmeter and ammeter inserted in the circuit as
shown. What do the voltmeter and ammeter read?
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Problem 161.

problems/motional-voltage-pr-falling-rod.tex

Bin

L

R

v,g

A rod of length L and mass m slides on frictionless conducting guides down
vertical rails, connected at the bottom, that enclose a uniform magnetic field of
magnitude B as shown, starting at rest at t = 0. The loop formed by the rod
and rails has a total resistance of R. Gravity makes the rod fall. Find:

a) The current I(v) induced in the rod when the speed of the rod is v (down).
Indicate the direction on the figure above.

b) The net force on the rod as a function of v.

c) The “terminal velocity” of the rod ~vt.

d) For extra credit, explicitly solve the equations of motion and find v(t) for all
times, assuming of course that it hasn’t yet fallen off of the rails.
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Problem 162.

problems/motional-voltage-pr-falling-wire-loop.tex

L

W

Bin

v,g

R

A rigid rectangular loop of wire of length L, width W , and mass m has a total
resistance R and is vertically suspended in a horizontal uniform magnetic field
~Bin as shown. At time t = 0 it is released and falls under the influence of
gravity. Note well that the bottom of the loop is not in the region of uniform
field! Find:

a) The current I(v) induced in the loop when its downward speed is v. Indi-
cate the direction of this current on the figure above.

b) The net force on the wire loop as a function of v.

c) The “terminal velocity” of the wire loop ~vt (this is the velocity it must
have when all forces on the wire balance).
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Problem 163.

problems/motional-voltage-pr-inclined-plane-rod-on-rails.tex

θ

m
B

R
Vo

B

θ

m,L

Two views are shown of a perfectly conducting rod of mass m and length L sit-
ting at rest on frictionless rails elevated at an angle θ with respect to horizontal.
The rod is in a vertical magnetic field ~B as shown. A voltage V0 and variable

resistance R creates a circuit.

a) Find R such that the rod is in equilibrium and sits at rest.

At t = 0, the resistance is suddenly decreased to R/2.

b) Which way does the rod slide, up or down the rails?

c) Derive its equation of motion.

d) For extra credit, determine the terminal velocity of the rod. For a lot of extra
credit, solve the equation of motion! But don’t attempt this until everything
else is finished, as it will be a bit messy...



12.1. MOTIONAL VOLTAGE 201

Problem 164.

problems/motional-voltage-pr-rod-on-rails-VR-only-exam.tex

S

V

Bin

L,R

A rod of mass m, resistance R and length L is sitting at rest on frictionless rails
in a magnetic field as shown. At t = 0, the switch S is closed and a voltage
V applied across the rails. Show all work while deriving the following results,
clearly indicating the physical law used and reasoning process. Neatness and
clarity count.

a) What is the net voltage across the resistance R as a function of |~v|?

b) What is the current I in the loop as a function of ~v?

c) What is the force ~F on the rod as a function of ~v?

d) What is the terminal velocity of the rod as t → ∞?

10 points of extra Credit: Solve the first order, linear, ordinary, inhomogeneous
differential equation and find the velocity of the rod ~v(t) as a function of time.
Draw a qualitatively correct curve showing this function and show how it cor-
responds to your answer to d).
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Problem 165.

problems/motional-voltage-pr-rod-on-rails-VR-only.tex

S

LV

Bin

A rod of mass m, resistance R and length L is sitting at rest on frictionless rails
in a magnetic field as shown. At t = 0, the switch S is closed and a voltage V
applied across the rails. Find:

a) The total voltage in the wire as a function of the speed of the rod v.

b) The total current in the wire as a function of v.

c) The total force on the rod as a function of v.

d) Identify the terminal velocity of the rod vt.

e) If you can, solve the equation of motion arising from Newton’s Law for
the rod for v(t).
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Problem 166.

problems/motional-voltage-pr-rotating-rod.tex

ω

A conducting bar of length L rotates at an angular frequency ω in a uniform,
perpendicular magnetic field as shown.

b) Find the forces acting on a charge +q in the rod (magnitude and direction)
at the radius r. What causes these forces and what direction do they point?

a) Find the potential difference developed between the central end of the rod
and a point at radius r on the rotating rod.

c) Discuss the qualitative distribution of charge in the (presumed neutrally
charged) rod, assuming that it is in equilibrium (has been rotating for a long
time). Draw a qualitative graph of ρ(r), the charge density as a function of r
to support your assertions. That is, you don’t have to have exactly the right
functional form but your curve should have all the right features.
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12.2 Faraday’s Law

12.2.1 Multiple Choice

Problem 167.

problems/faraday-mc-bar-magnet-and-loop-1.tex

S

N

S

N

a b

In the figure above, two bar magnets are held near two circular loops of con-
ducting wire with many turns and given a sharp pull downward as shown. The
directions of the induced magnetic forces on the two loops are:

a) Left loop is pulled down, right loop is pushed down.

b) Left loop is pushed up, right loop is pushed down.

c) Left loop is pulled down, right loop is pulled up.

d) Left loop is pushed up, right loop is pulled up.

e) One cannot tell which direction the forces will act from the information
given in the picture.
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Problem 168.

problems/faraday-mc-bar-magnet-and-loop-2.tex

S

N

S

N

a b

In the figure above, two bar magnets are held near two circular loops of con-
ducting wire with many turns and given a sharp pull downward as shown. The
directions of the induced magnetic forces on the two loops are:

a) Left loop is pulled down, right loop is pushed down.

b) Left loop is pushed up, right loop is pushed down.

c) Left loop is pulled down, right loop is pulled up.

d) Left loop is pushed up, right loop is pulled up.

e) One cannot tell which direction the forces will act from the information
given in the picture.
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Problem 169.

problems/faraday-mc-curie-temperature.tex

What happens at the Curie Temperature of a magnetic material?

a) Frogs float.

b) A diamagnetic material becomes paramagnetic.

c) A paramagnetic material becomes ferromagnetic.

d) The magnetization of an object in a strong field vanishes.

e) A magnetic material becomes a superconductor.
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Problem 170.

problems/faraday-mc-diamagnetism.tex

Which of the following characterize a diamagnetic material? Circle all cor-

rect answers (there can be more than one):

a) When placed in an external magnetic field, they have a reduced field
inside.

b) They can float if placed in a strong enough field.

c) When placed in an external magnetic field, they have a stronger field
inside.

d) They have a magnetic field inside even in zero external field.

e) They attract other magnets.
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Problem 171.

problems/faraday-mc-frog-diamagnetic-levitation.tex

In the figure above, a frog is shown that is being levitated by a superpowerful
magnetic field. Is the frog being levitated because it is:

a) diamagnetic

b) dielectric

c) paramagnetic

d) ferromagnetic

e) a conductor
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Problem 172.

problems/faraday-mc-two-loops-force.tex

21

Two circular loops of wire are suspended facing each other and carrying no
current. A current is suddenly switched on in the first. Does the second loop:

a) move towards the first loop

b) move away from the first loop

c) move sideways (staying at the same distance)

d) remain stationary?
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Problem 173.

problems/faraday-mc-two-loops-one-current.tex

1 2

I

An increasing current I flows in an elliptical loop of wire. Two loops of wire
are placed as shown. The flow of induced current:

a) is clockwise for loop 1 and counterclockwise for loop 2.

b) is counterclockwise for loop 1 and counterclockwise for loop 2.

c) is clockwise for loop 1 and clockwise for loop 2.

d) is counterclockwise for loop 1 and clockwise for loop 2.
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Problem 174.

problems/faraday-mc-two-solenoids-induced-voltage.tex

A
B

Two identical long solenoids (shown in cross section) produce a ~B-field into the
page on the left and out of the page on the right. Both magnetic fields are
increasing in magnitude with time at the same constant rate. Assume
the field outside the solenoid is negligibly small, so that flux arises only from

the fields in the solenoid. A circuit with two identical light bulbs surrounds
the solenoids. By considering Faraday’s law, you can conclude that:

a) bulb A is dark and bulb B is bright.

b) bulb B is dark and bulb A is bright.

c) both bulbs are bright.

d) both bulbs are dark.
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12.2.2 Short Answer/Concept

Problem 175.

problems/faraday-sa-double-inductance-loop.tex

outin ba c

I (solenoid)

B (solenoid)

A toroidal solenoid (seen in cross-section) is surrounded by a double circuit of
wires as shown, with bulbs inline that will light up if they carry a current. The
current in the solenoid is increasing. Which bulb(s) are the brightest?
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Problem 176.

problems/faraday-sa-ferromagnetic-transition.tex

T

M

On the provided graph above, plot a QUALITATIVE graph of the magnitude of
the magnetization of a paramagnet in zero external magnetic field M as
a function of absolute temperature T . Identify and label the Curie Temperature
and the paramagnetic and ferromagnetic parts of the graph. The magnetization
is, recall, the microscopic “magnetic moment per unit volume” of the material.
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Problem 177.

problems/faraday-sa-laminated-transformer-cores.tex

Why are transformer cores generally made of thin slices of laminated iron sep-
arated by a thin insulating layer? I’m interested in knowing “why laminated”,
not “why iron” (although feel free to answer both).
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Problem 178.

problems/faraday-sa-limp-loop-responds.tex

A thin, flexible loop of wire is carrying a current I (it has some resistance and a
built-in small battery) and is sitting in a limp no-particular shape, the shape a
loop of string might take if you just dropped it onto a table on edge. A strong,
uniform magnetic field is slowly turned on in some direction. It exerts forces on
the small segments of wire.

After a short while, the wire loop will be found to have a certain shape and
orientation relative to the field. What are they?

Note that this question requires no actual integration – consider the forces on
all the small segments of wire and what they’ll do to the wire. You should,
however, give a qualitative argument for the form and orientation you decide
on, including why it is stable where other possible shapes are not.

Drawing pictures of a proposed initial state, the forces on selected bits of wire,
an intermediate state, and the final state showing the balance of forces is highly
recommended.
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Problem 179.

problems/faraday-sa-magnetic-brake.tex

Many exercycles come with a knob that can be turned one way or another to
increase or decrease the “resistance” of the pedals. However, it is not possible to
systematically increase the resistance by means of friction (with, for example, a
brake shoe) because it would soon wear out. So they use magnets instead. Draw
a sketch of a possible magnetic brake below, and indicate the physical principle
upon which it would work. Where does the extra work one does pushing the
pedals go?
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Problem 180.

problems/faraday-sa-magnetic-materials.tex

a) Is the magnetic field inside a paramagnetic material greater than or less
than an applied external magnetic field? (Assume that the material is
somewhat above the Curie temperature if it has one.)

b) What happens to a paramagnetic material cooled below the Curie tem-
perature?

c) Is the magnetic field inside a diamagnetic material greater than or less
than an applied external magnetic field?
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(average)

a e

B2

v

"doughtnut"

B1

12.2.3 Long Problems

Problem 181.

problems/faraday-pr-betatron-2.tex

A Betatron is pictured above (with field out of the page). It works by increasing

a non-uniform magnetic field ~B(r) in such a way that electrons of charge e and
mass m inside the “doughnut” tube are accelerated by the E-field produced
by induction (via Faraday’s law) from the “average” time-dependent magnetic
field B1(t) inside a, while the magnitude of the magnetic field at the radius a,

B2(t) = | ~B(a, t)|, bends those same electrons around in the circle of (constant)
radius a.

This problem solves, in simple steps, for the “betatron condition” which relates
B1(t) to B2(t) such that both things can simultaneously be true.

a) The electrons go around in circles of radius a and are accelerated by an ~E
field produced by Faraday’s law. We will define the (magnitude of the) average

field B1 by φm = B1(πa2) =
∫
(r<a)

~B(r) · n̂dA. What is the induced E field

(tangent to the circle) in terms of B1 and a?

(Problem continued on next page!)
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b) The electrons (at their instantaneous speed v tangent to the circle) are bent
into the circle of radius a by the field B2. Relate B2 to the magnitude of the
momentum p = mv, the charge e of the electron, and the radius a.

c) The force ~F from the E-field acting on the electron with charge e in the
direction of its motion is equal to the time rate of change of the magnitude of
its momentum p (if Newton did not live in vain). Substitute, cancel stuff, and
solve for dB1

dt in terms of dB2

dt . If you did things right, the units will make sense
and the relationship will only involve dimensionless numbers, not e or m.

Cool! You’ve just figured out how to build one of the world’s cheapest electron
accelerators! Or perhaps not....
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Problem 182.

problems/faraday-pr-betatron.tex

B1
r e

B2

v

"doughtnut"

A Betatron (pictured above with field out of the page) works by increasing a
non-uniform magnetic field in such a way that electrons of charge e and mass m
inside the “doughnut” tube are accelerated by the E-field produced by induction
from the average time-dependent magnetic field B1(t) inside r (via Faraday’s
law) while the specific magnitude of the magnetic field at the radius B2(t)
bends the electrons around in the constant radius circle of radius r.

This problem solves for the “faraday-pr-betatron condition” which relates B1(t)
to B2(t) such that both things can simultaneously be true.

a) First, assuming that the electrons go around in circles of radius r and are

accelerated by an ~E field produced by Faraday’s law from the average field
B1 inside that radius, solve for that induced E field in terms of B1 and r.

b) Second, assuming that the electrons are bent into a circle of radius r by
the specific field at that radius, B2, relate B2 to the momentum p = mv
and charge e of the electron, and the radius r.

c) Third, noting that the force F from the E-field acting on the electron with
charge e in part a) is equal to the time rate of change of p in the result
of b) substitute, cancel stuff, and solve for dB1/dt in terms of dB2/dt. If
you did things right, the units will make sense and the relationship will
only involve dimensionless numbers, not e or m.

Cool! By determining how to relate the average field inside r to the actual field
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at r, you’ve just figured out how to build one of the world’s cheapest electron
accelerators!
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Problem 183.

problems/faraday-pr-rod-on-rails-two-loops.tex

F

B(in)

R RL

Two perfectly conducting frictionless rods are connected at the ends with resis-
tors R as shown. It is placed in a uniform magnetic field of magnitude B into
the page, and a frictionless perfectly conducting rod with length L (between

the rods) and mass M is placed on top. A force ~F is applied such that the rod
moves with a constant speed v0 to the right.

a) Find the current (magnitude and direction) in each resistor and the bar.

b) Find the magnitude of the force F that keeps the bar moving at constant
speed v0.

c) Find the total power dissipated in the resistors as the bar moves.
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12.3 Inductance and LR Circuits

12.3.1 Ranking/Scaling

Problem 184.

problems/inductance-ra-energy.tex

I I I 2I

l l l
N N

2N

N2l

AA 2A A

(A) (B)

(C)

(D)

Four inductors are drawn above. Rank the magnetic field energy stored in
each inductor, given the values of I, N, A, ℓ of each. A possible answer might
be A < B < C = D (but probably isn’t).
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12.3.2 Long Problems

Problem 185.

problems/inductance-pr-charging-discharging-LR-circuit.tex

R L

R

V

t = 0S

I (0)

I(0)

0

1

I (0)2

In the circuit above, switch S is closed at t = 0. Find:

a) The currents I(0), I1(0), and I2(0) at t = 0 at the instant after the switch
is closed.

b) Find I(t), I1(t), and I2(t).

After a very long time we restart our clock, and at t = 0 the switch is opened
again. Find:

a) The currents I(0), I1(0), and I2(0) at t = 0 at the instant before the
switch is opened.

b) Find I(t), I1(t), and I2(t).
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Problem 186.

problems/inductance-pr-coaxial-cable.tex

a

b
l

I

IB

r

Find the self-inductance per unit length of a coaxial cable consisting of two
coaxial cylindrical conducting shells, the inner one with radius a and outer with
radius b. I’ve shaded in a chunk of area for you to use in computing the flux,
and have even helped you out by drawing in a cartoon for the field between the
shells when the inner one is carrying a current I (and the outer one is returning
it).
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Problem 187.

problems/inductance-pr-discharging-LR-circuit.tex

I (0)2

R L

R

V

t = 0

I (0)

0

1

S

In the circuit above, the switch S has been closed a very long time. At t = 0
the switch is opened.

a) What are the currents I1 and I2 at the instant before the switch is opened?

b) Find the current in the right hand loop as a function of t after the switch
has been opened.
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Problem 188.

problems/inductance-pr-LR-circuit.tex

L

V

S1

R

In the circuit above, assume R, L, and V are given.

a) At time t = 0, switch S1 is closed. Start by writing Kirchoff’s loop rule
for the circuit and find the current through the inductor as a function of
time in terms of the given quantities.

b) Find the power provided by the voltage and delivered to L and R as a
function of time and show that PV = PR+PL (so that energy is conserved).
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Problem 189.

problems/inductance-pr-mutual-solenoid.tex

N1 N2

Flux coupling material

Two solenoid coils are wrapped around a paramagnetic core of cross-sectional
area A that traps magnetic flux so that the flux (per turn) in both solenoids is
always the same. The first coil has N1 turns, the second coil has N2 turns.

a) If µr (the relative permeability) is 10, what is the self-inductance of each
solenoid?

b) What is the mutual inductance M12 between the two coils?

c) If a current I1 sin(ωt) is running through the first solenoid, what is the
magnitude of the induced voltage V2 across the second as a function of
time?
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Problem 190.

problems/inductance-pr-power-in-LR-circuit.tex

R
S

LV
+

In the figure above, the switch is closed at t = 0 and a current I(t) builds up
through the inductor. Find (solve for, showing all work):

a) I(t), the current in the wire as a function of time.

b) PL(t), the power delivered to the inductor as a function of time.
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Problem 191.

problems/inductance-pr-solenoid.tex

I

+z

−z

I

r

LN turns

A solenoid has length L, N turns, and radius r is centered on the z-axis. A
current I is driven through the solenoid.

a) Derive the magnetic field ~B inside the solenoid, neglecting end effects. Draw
the direction of the field lines in on your picture.

b) Derive the self-inductance of the solenoid.

In both cases, start from fundamental principles, equations, laws or definitions
and clearly state what they are; do not just put down a remembered answer.
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Problem 192.

problems/inductance-pr-toroidal-solenoid.tex

I

a
b

H

N turns

Find the self-inductance L of a toroidal solenoid with a rectangular cross-section
(height H , inner radius a, outer radius b) and N turns. Presume that the wires
are wrapped uniformly all the way around and carry a current of I.
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Problem 193.

problems/inductance-pr-wire-rectangular-loop.tex

I(t)

d

a

b

R

r

In the figure above, I(t) = I0 sin(ωt) in the long, straight wire to the left. A
rectangular conducting loop of resistance R, width a and length b sits a distance
d from and in the plane of the wire. Find:

a) The magnetic field at an arbitrary point a distance r from the wire inside
the loop.

b) The total magnetic flux through the loop.

c) The mutual inductance M between the wire and the loop.

d) The induced voltage in the loop Vloop(t).

e) The induced current Iloop(t).

f) During the first quarter cycle of I(t) (when the current in the wire is in-

creasing) indicate the direction of the current in the loop, the direction
of its induced magnetic dipole moment ~mloop, and the direction of the
total force on the loop due to the wire.
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13.1 Passive AC Circuits

13.1.1 Ranking/Scaling

Problem 194.

problems/ac-passive-ra-resonance-frequency.tex

L
C

L

C

C

L

L

C L

C

C

(C)

(D)

(B)

(A)

Four LC circuits are drawn above. Rank the resonance frequencies ω0 of each
circuit, with equality a possibility. A possible answer could therefore be A <
B < C = D (but probably isn’t).
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13.1.2 Long Problems

Problem 195.

problems/ac-passive-pr-LC.tex

t = 0

Q0

C L

At time t = 0 the capacitor in the LC circuit above has a charge Q0 and the
current in the wire is I0 = 0 (there is no current in the wire).

a) Write Kirchoff’s voltage rule for this circuit loop.

b) Turn it into a “simple harmonic oscillator” differential equation for Q.
What is the angular frequency ω of this oscillator?

c) Write down (or derive, if necessary) Q(t).

.
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Problem 196.

problems/ac-passive-pr-LRC.tex

R

+Q0C L

At time t = 0 the capacitor in the LRC circuit above has a charge Q0 and the
current in the wire is I0 = 0 (there is no current in the wire).

a) Find (or remember) Q(t). Don’t forget to define ω′, the shifted frequency
of this system.

b) Draw a qualitatively correct picture of Q(t) in the case that the oscillation
is only weakly damped.

Show all your work. Remember that Q(t) (in the end) is a real quantity, al-
though it may be convenient for you to assume that it is complex while solving
the problem.
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13.2 Driven AC Circuits

13.2.1 Ranking/Scaling

Problem 197.

problems/ac-driven-ra-transformer.tex

V

R

N  = 10  N  = 5
0

1 2

(A)

V
N  = 10  N  = 5

0

1 2

V

R

0

1 2

V
0

1 2

(B)

2R

(D)

N  = 10  N  =10

(C)

N  = 10  N  = 10 

2R

In the figure above, four transformers are drawn with the numbers of turns
given on the figures. Rank the magnitude of the currents that appear in the
load resistor from lowest to highest with equality an option. That is, a possible
answer is A < B = C < D (but probably isn’t).
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13.2.2 Short Answer/Concept

Problem 198.

problems/ac-driven-sa-build-high-pass-filter.tex

Draw an arrangement of (your choice of) Ls, Rs and Cs that can be used as a
“high pass” filter (one that passes high frequencies but blocks low frequencies).
Indicate the two points where the output voltage should be sampled.

Note that you do not have to use all of the circuit elements (but can use more
than one of any kind if you like) and there is more than one way to do this!
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Problem 199.

problems/ac-driven-sa-build-low-pass-filter.tex

Draw an arrangement of (your choice of) Ls, Rs and Cs that can be used as a
“low pass” filter (one that passes low frequencies but blocks high frequencies).
Indicate the two points where the output voltage should be sampled.

Note that you do not have to use all of the circuit elements (but can use more
than one of any kind if you like) and there is more than one way to do this!
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Problem 200.

problems/ac-driven-sa-resonance-Q-16.tex

P

ω

av

ω0

On the axes provided above, draw a qualitatively correct resonance curves for
Pav(ω), the average power delivered to a damped, driven LRC circuit for Q =
16. The curve must correctly and proportionately exhibit ∆ω, the full
width at half max. Be sure to indicate the algebraic relation between Q and
∆ω you use to draw the curves to scale.
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Problem 201.

problems/ac-driven-sa-resonance-Q-4-10.tex

P

ω

av

ω0

On the axes provided above, draw two qualitatively correct resonance curves
for Pav(ω), the average power delivered to a damped, driven LRC circuit: one
for Q = 4 and one for Q = 10. The (labelled!) curves must correctly and

proportionately exhibit ∆ω, the full width at half max. Be sure to indicate
the algebraic relation between Q and ∆ω you use to draw the curves to scale.
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Problem 202.

problems/ac-driven-sa-resonance-Q-8.tex

P

ω

av

ω0

On the axes provided above, draw a qualitatively correct resonance curves for
Pav(ω), the average power delivered to a damped, driven LRC circuit for Q = 8.
The curve must correctly and proportionately exhibit ∆ω, the full width
at half max. Be sure to indicate the algebraic relation between Q and ∆ω
you use to draw the curves to scale.
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13.2.3 Long Problems

Problem 203.

problems/ac-driven-pr-AM-radio.tex

Antenna

C L

Ground

R

R a

load
V(t) sin( ωt)

Challenge Problem: The simplest crystal radio circuit consists of the par-

allel LRC circuit drawn above. The antenna-to-ground connection represents
an amplitude-modulated AC voltage source V = V (t) sin(ωt). The diode (in
series with the earphone of resistance R) is a circuit element that only lets cur-
rent flow in the direction of the arrow – a one-way gate. The capacitor and/or
inductor can be varied to tune the radio. Ra represents the physical and “ra-
diation” resistance of the antenna itself, and Rload represents the resistance of
e.g. headphones used to listen to the rectified signal.

a) At very low frequencies, what is the reactance of the inductor? What will
happen to the current through Rload?

b) At very high frequencies, what is the reactance of the capacitor? What
will happen to the current through Rload?

c) Therefore, how should one set C with respect to the value of L to tune
the radio to deliver the maximum current through the earphones Rload)
and what is that maximum current? Assume that the diode has negligible
resistance and capacitance and that the amplitude modulation of V (t) is
slow relative to ω−1.

d) Describe qualitatively, with a suitable picture or figure, how the diode
allows the amplitude-modulated signal (V (t)) to be extracted from the
carrier frequency ω.
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e) When the radio is correctly tuned, no net current flows through L and
C together and the circuit behaves like Ra and Rload in series from the
antenna to ground. Prove that the power delivered to Rload is maximum
when Ra = Rload.

This last property is called impedance matching and is actually a general
property of even simple series DC circuits – the power delivered to either of a
pair of resistors in series is maximum when their resistance is equal.
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Problem 204.

problems/ac-driven-pr-build-high-pass-filter.tex

V

You are given an electronic parts box containing compartments containing 1
ohm, 10 ohm, 100 ohm, ... 1,000,000 ohm resistors. The box also contains com-
partments of inductors of 1 millihenry, 10 millihenries, ..., 1,000,000 millihenries
and capacitors of 1 nanofarad, 10 nanofarads, 100 nanofarads, ... , 1,000,000
nanofarads (basically any power of ten of one ohm, farad, or henry that you
like).

Use any parts from this box that you wish to design a high pass filter that
cuts off frequencies smaller than approximately ω = 104 radians/second. Draw
its schematic and clearly indicate where one should place a resistive load that
matches the resistor you choose so that it gets significant current at high fre-
quencies above this cutoff. You may consider the frequency cutoff to occur

when I(ω = 104) =
√

2I0
2 where I0 is the current at infinite frequency. Prove

(algebraically) that your design and the values you select for the components
are correct.
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Problem 205.

problems/ac-driven-pr-build-low-pass-filter.tex

V

You are given an electronic parts box containing compartments containing 1
ohm, 10 ohm, 100 ohm, ... 1,000,000 ohm resistors. The box also contains com-
partments of inductors of 1 millihenry, 10 millihenries, ..., 1,000,000 millihenries
and capacitors of 1 nanofarad, 10 nanofarads, 100 nanofarads, ... , 1,000,000
nanofarads (basically any power of ten of one ohm, farad, or henry that you
like).

Use any parts from this box that you wish to design a low pass filter that
cuts off frequencies larger than approximately ω = 104 radians/second. Draw
its schematic and clearly indicate where one should place a resistive load that
matches the resistor you choose so that it gets significant current at low frequen-

cies. You may consider the frequency cutoff to occur when I(ω = 104) =
√

2I0
2

where I0 is the current at zero frequency. Prove (algebraically) that your design
and the values you select for the components are correct.
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Problem 206.

problems/ac-driven-pr-high-pass-filter.tex

V cos   tω0

C

R VR

The LC circuit above is connected to an alternating voltage V0 cos(ωt) and the
circuit run until it is in a steady state. The following problem steps lead you
through an exploration of this circuit so that you end by deducing its purpose
and have all quantitative relations in hand to be able to e.g. select C and R to
accomplish a given design goal.

a) Write Kirchoff’s voltage rule for this circuit loop.

b) Draw the phasor diagram for the voltage, noting that the current must be
in phase with the voltage across the resistor.

c) From this phasor diagram and the relations between maximum current,
reactance or resistance of the circuit elements, and the maximum voltage
drop across them, deduce and draw the phasor diagram for the impedance
Z of the circuit, clearly labelling the phase angle φ.

d) What is the phase angle φ and hence the power factor of this circuit (as a
function of C, R, and ω)?

e) Find the voltage drops across the resistor VR and sketch it out qualitatively

as a function of frequency. If R represents a load of some sort (perhaps
the inputs to an amplifier) to which one is sending frequency-encoded
information, what kind of filter is this circuit?
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Problem 207.

problems/ac-driven-pr-low-pass-filter.tex

V cos   tω0 R

L

VR

The LR circuit above is connected to an alternating voltage V0 cos(ωt) and the
circuit run until it is in a steady state. The following problem steps lead you
through an exploration of this circuit so that you end by deducing its purpose
and have all quantitative relations in hand to be able to e.g. select L and R to
accomplish a given design goal.

a) Write Kirchoff’s voltage rule for this circuit loop.

b) Draw the phasor diagram for the voltage, noting that the current must be
in phase with the voltage across the resistor.

c) From this phasor diagram and the relations between maximum current,
reactance or resistance of the circuit elements, and the maximum voltage
drop across them, deduce and draw the phasor diagram for the impedance
Z of the circuit, clearly labelling the phase angle φ.

d) What is the phase angle φ and hence the power factor of this circuit (as a
function of L, R, and ω)?

e) Find the voltage drops across the resistor VR and sketch it out qualitatively

as a function of frequency. If R represents a load of some sort (perhaps
the inputs to an amplifier) to which one is sending frequency-encoded
information, what kind of filter is this circuit?
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Problem 208.

problems/ac-driven-pr-parallel-high-pass.tex

Vsin(  t)ω0

R

R

I

I RI

load
L

L

A driven AC circuit is drawn above. Answer the following questions, which
do not require a complicated algebraic analysis. V0, R, Rload and L are
given, and the frequence ω is variable.

a) What is the inductive reactance χL of the inductor, as a function of
the givens and ω?

b) Will the current through the inductor IL be maximum at high fre-
quencies or low frequencies?

c) Will the voltage drop across the load resistor VR be maximum at
high frequencies or low frequencies?

d) Based on your analysis above, does this circuit constitute a high pass

filter or a low pass filter for power delivered to the load resistance
Rload?

You may give a short, qualitative explanation of your reasoning with an
equation or two, but do not attempt to solve this as an algebraic system!
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Problem 209.

problems/ac-driven-pr-parallel-low-pass.tex

Vsin(  t)ω0

R

R
C

I

CI RI

load

A driven AC circuit is drawn above. Answer the following questions, which do

not require a complicated algebraic analysis. V0, R, Rload, C are given,
and the frequence ω is variable.

a) What is the capacitive reactance χC of the capacitor, as a function of
the givens and ω?

b) Will the current through the capacitor IC be maximum at high fre-
quencies or low frequencies?

c) Will the voltage drop across the load resistor VR be maximum for
high frequencies or low frequencies?

d) Based on your analysis above, does this circuit constitute a high pass

filter or a low pass filter for power delivered to the load resistance
Rload?

You may give a short, qualitative explanation of your reasoning with an
equation or two, but do not attempt to solve this as an algebraic system!
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Problem 210.

problems/ac-driven-pr-parallel-LRC.tex

I(t)

L C R
V0sin(ωt)

A parallel LRC circuit connected across a variable AC voltage source V =
V0 sin(ωt) is drawn above. Find (in terms of L, R, C, V0, ω and any quantities
you define in terms of these such as χL or χc):

a) Draw the phasor diagram that represents Kirchhoff’s rule for the currents
around the loop. What is the form of the total current as a function of
time?

b) Draw the phasor diagram from which the impedance Z can be determined
and write down its value in terms of the givens. Also indicate the value
of the phase angle δ in terms of the givens.

c) What is the resonant frequency ω0 for the circuit in terms of the givens?

d) Does the average power delivered to the circuit depend on ω? Why or
why not?
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Problem 211.

problems/ac-driven-pr-parallel-LR-LC.tex
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0

a) Draw (two) qualitatively correct phasor diagrams that show the voltage drops
and gains for each of the two loops shown. Be sure to correctly indicate the
phases of the currents I1 and I2 relative to the phase of the applied voltage and
the voltage drop across each element.

b) Write the Kirchoff’s Law (Voltage) for each of the two loops shown that
corresponds to your phasor diagram.

c) From a) and b), find the impedance of each loop Z1 and Z2, the current phase
of each loop δ1 and δ2, and write down an expression for I1(t) and I2(t). Try to
work neatly enough that I can grade this.

d) For extra credit, use Kirchoff’s Law (current) to find the total impedance
of the circuit, the total current provided by the voltage, and the total power
provided by the voltage.
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Problem 212.

problems/ac-driven-pr-series-LRC.tex

V

C

0
sin(ωt)

R

L

The LRC circuit above is connected to an alternating voltage V0 sin(ωt) and
the circuit is run until it is in a steady state. Assume that the current in this
circuit is given by I0 sin(ωt − δ).

a) Write Kirchoff’s voltage rule for this circuit loop.

b) Draw the phasor diagram for the voltages in the loop, noting that the
current must be in phase with the voltage across the resistor. Clearly
label e.g. δ.

c) Draw the related figure for the impedance Z for the circuit. Write an
algebraic expression for Z in terms of R, L, C and ω.

d) Write an algebraic expression for δ in terms of R, L, C and ω.
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14.1 Maxwell’s Equations

14.1.1 Multiple Choice

Problem 213.

problems/maxwell-mc-discharging-capacitor-poynting-vector.tex

I I

−Q+Q

P

r

An air-spaced capacitor with circular plates that is charged up with a total
charge Q is discharging with a current I. At a point P between the capacitor
plates a distance r from the axis of the plates, the Poynting vector for the
combined electric and magnetic field points:

a) outward away from the center.

b) inward toward the center.

c) to the right.

d) to the left.

e) impossible to tell.
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Problem 214.

problems/maxwell-mc-discharging-inductor-poynting-vector.tex

I(t) decreasing

r

P

An (ideal) inductor has a current I(t) running through it. That current is
decreasing. At a point P inside the inductor and a distance r from its axis,
the Poynting vector for the combined electric and magnetic field points:

a) outward away from the center.

b) inward toward the center.

c) to the right.

d) to the left.

e) impossible to tell.
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14.1.2 Short Answer/Concept

Problem 215.

problems/maxwell-sa-benefit-of-transformers.tex

Transformers are ubiquitous in our society (on poles outside of our houses) for
a very important reason. What is it? I don’t need a long essay here, just the
bottom line and an indication that you know how it works.
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Problem 216.

problems/maxwell-sa-intensity-of-em-wave.tex

Suppose you are given an electromagnetic field whose equations are:

~E(z, t) = ŷE0 sin(kz + ωt)

~B(z, t) = x̂B0 sin(kz + ωt)

a) What is the time-averaged intensity of this field in terms of E0?

b) Does this wave propagate to the right (+z direction) or the left (−z
direction)?

You may use any or all of ǫ0, µ0, c in your answer, and there is more than one
correct way to write the answer.
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Problem 217.

problems/maxwell-sa-maxwells-equations-complete.tex

What are Maxwell’s Equations? To get full credit for them, they need to be
written exactly the way I write them in class, with all the little vector arrows,
hats, loopy thingies in the middle of integral signs and so forth.

In addition, explain the “meaning” of Gauss’s Law for Magnetism. Circle and
label Lenz’s Law. Label Maxwell’s Displacement Current.

a) (GLE)

b) (GLM)

c) (AL+MDC)

d) (FL)
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Problem 218.

problems/maxwell-sa-maxwells-equations.tex

What are Maxwell’s Equations (as you have learned them so far)? To get full
credit for them, they need to be written exactly the way I write them in class,
with all the little vector arrows, hats, loopy thingies in the middle of integral
signs and so forth. An illustrative figure should accompany each one. Circle
Lenz’s Law.

a) (GLE)

b) (GLM)

c) (AL)

d) (FL)
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Problem 219.

problems/maxwell-sa-sunlight-on-a-panel.tex

Sunlight

60 o

Solar Panel

n

Suppose that the intensity of incoming sunlight is 1000 Watts/meter2 at the
surface of the earth. At a certain time of day, the angle of incidence (relative to
a unit vector normal to the surface) is 60◦. The efficiency of the solar panel is
10%. How much power can one collect from five square meters of solar panels
at this time of day and angle of incidence?
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14.1.3 Long Problems

Problem 220.

problems/maxwell-pr-bfield-in-capacitor.tex

I

R

a

b

In the picture above, a circular capacitor is being charged by a current I. Using
Ampere’s Law and the Maxwell Displacement Current, derive a formula for the
magnitude of the magnetic field at the two points shown (one at radius a < R
from the axis of the capacitor in between the plates, one at radius b > R from
the axis of the capacitor outside of the plates).
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Problem 221.

problems/maxwell-pr-light-sail.tex

In some science fiction stories, spaceships get their propulsion from lasers, that
is, directly from light pressure.

So, put on your sunglasses (really, really dark ones) and explore the design of
such a spaceship to see if this is at all feasible. Assume that the ship to be
lifted has a mass of 104 kg (ten metric tons) – that’s about two and a half times
the mass of my Ford Excursion and hence not very big. Assume that you get
propulsion from a panel of 106 lasers with a cross-sectional area of 1 cm each
(or about 100 square meters – 10 meters square – of lasers).

a) What would the power of each those lasers need to be, in watts, in order
to barely lift the ship (generate a force on the ship equal to that of gravity,
assuming g = 10 m/sec2)?

b) Let’s assume instead that the lasers have the not totally unreasonable (but
still very large) intensity of one watt apiece, so that the bank delivers 1
megawatt in 100 m2. Now what force would be exerted on the spaceship,
and what (roughly) would be its acceleration. Can you lift such a ship off
of the earth?

So, what do you report to NASA about your massless “photon drive”? Good
idea or bad? Don’t forget those sunglasses...
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Problem 222.

problems/maxwell-pr-light-vs-mass-propulsion.tex

Invent and compare spaceships (draw them in the blank space above) that are
driven according to the following (ideal) criteria. The actual source of power is
e.g. a small fusion plant onboard the spaceship.

a) Suppose a spaceship is powered by a laser that emits 1000 Watts in a beam
1 cm2 in cross-sectional area. What is the recoil force (per KW) exerted by the
laser?

b) Suppose instead the spaceship is powered by throwing mass. If it throws 1000
small beads per second, each with mass m = 1 gram and with a kinetic energy
of 1 Joule per bead (so the power required to operate it is still 1000 Watts),
what is the average force (per KW) exerted by the mass-driver?
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Problem 223.

problems/maxwell-pr-poynting-vector-capacitor.tex
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I(t)

+Q(t)

Our archetypical model for a capacitor of capacitance C = ǫ0πR2

d is drawn
above: two circular “perfectly conducting” plates with radius R, separated at
a distance d by a vacuum. Assuming that the current is flowing as shown to
charge the capacitor at rate I = +dQ/dt, show that the flux of the Poynting
vector into the volume between the plates is equal to the rate energy is being
stored in the capacitor.
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Problem 224.

problems/maxwell-pr-poynting-vector-inductor.tex

L

+V

I(t)

Our archetypical model for an inductor is drawn above: N circular turns of
wire forming a solenoid of length L and radius R, carrying a current I(t). Show
that the flux of the Poynting vector for this inductor into its interior volume
equals the power flowing into it evaluated as P (t) = VL(t)I(t) where VL(t) is
the voltage drop across the inductor.
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Problem 225.

problems/maxwell-pr-poynting-vector-resistor.tex
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Our archetypical model for a resistor is drawn above: two circular “perfectly
conducting” plates (metal contacts) with radius R, separated at a distance d by
a material with resistivity ρ.

a) In a steady state situation where a DC voltage V is applied as shown, find

the field ~E inside the resistive material.

b) Find the current density ~J inside the resistive material.

c) From Ampere’s law, find the magnetic field as a function of r in the region
between the plates.

d) From your answers to a) and c), find the Poynting vector ~S (magnitude and
direction) as a function of r in the region in between the plates.

e) NOW show that:

∮
A

~S · n̂dA = −I2R

where A is the outer surface of the resistor and n̂ is its outward-directed normal
unit vector.

Thus the heat that appears in the resistor can be thought of as the electromag-
netic field energy that flows in through its outer surface!
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Problem 226.

problems/maxwell-pr-properties-of-em-field.tex

Suppose you are given an electromagnetic field whose equations are:

~E = x̂E0 sin(kz − ωt)

~B = ŷB0 sin(kz − ωt)

Answer the following questions about it. You may use any or all of ǫ0, µ0, c in
your answers in addition to the actual parameters of the fields.

a) What is the magnitude B0 in terms of E0?

b) What is the direction of propagation of the electromagnetic field?

c) What is the speed of the wave in terms of the wavenumber k and the

angular frequency ω?

d) What is the instantaneous Poynting Vector for this electromagnetic field?

e) What is the time average intensity of this field in terms of E0?

f) What radiation force would be exerted by this field on a reflective screen
of area A held perpendicular to the direction of propagation?
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Problem 227.

problems/maxwell-pr-radiation-inflates-balloon.tex

P = 1.4 Pa

R = 1m

Light Source

Mylar Balloon

The pressure on Triton, a moon of Neptune, is roughly 1.4 pascals. Suppose you
have a weather balloon that is made of reflective mylar that, if fully inflated,
is 1 meter in radius. You would like to inflate it on Triton using only a very
bright light source to exert radiation pressure on the inside that exceeds Triton’s
atmospheric pressure on the outside. The arrangement to accomplish this is
pictured above.

a) The balloon will inflate nicely if you make the radiation pressure inside
equal to 2 pascals. What must the intensity of the light be at the in-
ner surface of the balloon in order to exert this pressure, assuming that
the light is absorbed (not reflected)? You may answer with an algebraic
expression, but the arithmetic is pretty easy to do in your head.

b) What must the power of the light source at the center be to achieve
this intensity? Again, an algebraic expression is sufficient, but at least
estimating the arithmetic isn’t that difficult if you remember that 4π ≈
12.5.

Given the power requirement (compared to, say, just pumping up or warming
some of the atmosphere) is this a reasonable way to inflate the balloon, even
against an atmosphere so tenuous that a reasonable person would call it ”a
vacuum”?
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Problem 228.

problems/maxwell-pr-radiation-pressure-spherical-dust.tex

A spherical grain of dust of radius r is a distance R ≫ r from Mr. Sun. Mr.
Sun has a mass Msun = 2 × 1030 kg and produces power (all radiated away in
the form of light) at a rate Psun = 3.83 × 1026 watts. The mass density of the
grain of dust is ρ.

a) Draw a figure schematically representing what’s going on to help you solve
the rest of the problem.

b) Assuming that light is reflected from the grain in such a way that (on
average) all the momentum in the light that hits the grain at all is trans-
ferred to the grain (per unit time), find an algebraic expression for the
radius r of the particle that will cause it to hang precisely balanced be-
tween gravitation and light pressure. Note well, do not use the numbers
above yet.

c) Does your answer depend on R?

d) Evalute this radius, assuming a density ρ = 1000 kg/m3 (the density of
water – most condensed matter has a density between this and about ten
times this).
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Problem 229.

problems/maxwell-pr-solar-cell-from-light-bulb.tex

Solar cells

1 meter

100 Watts

Many pocket calculators today run on solar cells instead of batteries, using
ambient light (such as a nearby light bulb) for their power source.

You have a pocket calculator has a solar cell with a collection area of A = 4
cm2. It works fine using the light from an ordinary P0 = 100 Watt light bulb
located R = 1 meter away. Make a reasonable (upper bound) estimate for the
power used by the calculator. Assume that the efficiency of the solar cell is
η = 0.1 (10% efficient).

You may answer this problem algebraically if you wish (or don’t have a solar
powered calculator handy to help with the arithmetic). If you do have a calcu-
lator (or do the arithmetic by hand; it isn’t difficult) and get the right numerical
answer as well as the right algebraic answer, you may have 2 extra points.
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Problem 230.

problems/maxwell-pr-solar-panel-analysis.tex

You need to decide whether or not to buy a solar panel for your house. Use the
facts below and your understanding of light energy to estimate whether or not
you will invest in a panel based energy system.

• The sun produces 4 × 1026 Watts of power and is 1.5 × 1011 meters away
from the earth.

• Only about 70% of this makes it down through the atmosphere on a clear
day at the equator.

• On average, at our latitude the sun will strike your panel at an angle of
45◦.

• The solar panel converts sunlight into electrical energy and stores it into
a battery to be recovered later at an overall efficiency of about 10%.

• Electricity can be purchased from a power company at a cost of $0.10
kW-hour (what is that in joules?).

• A 1 m2 solar panel and associated battery storage system cost approx-
imately $1000, with additional panels (that will feed the same battery)
costing around $250 each.

If you collect an average of six hours of sunlight a day, roughly how long would it
take to recover the cost of a single panel? Show all of your reasoning, supporting
it with figures and diagrams as needed. Note that to be completely fair, you’d
need to add in the cost of borrowing the money for the panel in which case the
answer might well be “never”, but let’s go with the easy answer first.

Next, assume that you double your investment and spend $2000 for five panels.
How long will it take to recover your investment now?

You may make “reasonable” simplifying assumptions to make your arithmetic
easier as you proceed as long as you are very clear as to what they are, e.g. –
six hours is 0.25 days, 0.25 ∗ 365 ≈ 100 days...
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Problem 231.

problems/maxwell-pr-sunlight-at-the-Earth.tex

P

Sun

R

The power output of the Sun is roughly P = 4 × 1026 Watts. The Sun is R =
1.5× 1011 meters away from Earth. Answer the problems below algebraically,
but feel free to plug the numbers into a calculator if you have one (for one extra
point per item below) as the numerical answers are instructive.

a) What is the intensity of sunlight at the top of the atmosphere?

b) What is the approximate force exerted by the Sun on a sheet of shiny
aluminum foil 1 meter square placed out in the Sun on a clear day at
midday? Assume that the atmosphere absorbs roughly half of the available
energy before the light reaches the ground. (Use 1500 Watts/m2 at the
top of the atmosphere if you couldn’t do better in your answer to a).)

c) Suppose one builds a solar power plant that has 1 kilometer squared worth
of collectors, each of them 5% efficient at converting light energy into
electricity. What is the expected power output of this plant under optimal
conditions?
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15.1 Snell’s Law

15.1.1 Multiple Choice

Problem 232.

problems/snells-law-mc-critical-angle-diamond.tex

Diamond has an index of refraction of around nd = 2.4, air has an index of
refraction around na = 1. What is the critical angle at which total internal
reflection will occur when white light is incident on the surface of a diamond
facet from the inside?

a) θc = cos−1(2.4)

b) θc = cos−1(1/2.4)

c) θc = sin−1(1/2.4)

d) θc = tan−1(1/2.4)

e) π/2.4
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Problem 233.

problems/snells-law-mc-fiber-optic-cable.tex
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θ

A fiber optic cable is made with a glass core (index of refraction n2) and an
outer sheath (index of refraction n1). To achieve efficient transmission of the
light along the fiber, one should choose:

a) n1 < n2 and sufficiently large θ.

b) n1 > n2 and sufficiently large θ.

c) n1 < n2 and sufficiently small θ.

d) n1 > n2 and sufficiently small θ.
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Problem 234.

problems/snells-law-mc-water-to-glass.tex
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θ

A beam of light is incident on the interface between water (nw = 4/3) and glass
(ng = 3/2) at an angle of incidence of θi = 30◦. Which statement below is true:

a) Water is over glass, θr = sin−1(2/9).

b) Water is over glass, θr = sin−1(4/9).

c) Glass is over water, θr = sin−1(2/3).

d) Glass is over water, θr = sin−1(9/2).

e) This picture could not represent a light beam going from water into glass.
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15.1.2 Ranking/Scaling

Problem 235.

problems/snells-law-ra-index-of-refraction.tex
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The figures above represent data indicating the way light rays refract when
passing between four media with indices of refraction n1, n2, n3, and n4. Rank
the indices of refraction from smallest to largest. Note well: You will have to
solve a (fairly easy) logic puzzle to answer this question!
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15.1.3 Short Answer/Concept

Problem 236.

problems/snells-law-sa-critical-angle-light-fiber.tex

Light propagates down a light fiber “without loss” even as it goes around (gentle)
curves by reflecting off the interface between the fiber and its surroundings.
Assuming that a fiber has an index of refraction of nf = 3/2 and it is submerged
in water (with nw = 4/3), what is the critical angle of incidence such that light
will remain trapped in the fiber?
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Problem 237.

problems/snells-law-sa-dispersion-prism.tex
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The graph above shows the dispersion (index of refraction as a function of
wavelength) for a kind of glass around the mean value for visible light of 3/2.
The wavelengths of violet light (λ = 400 nanometers) and red light (λ = 700
nanometers) are indicated with vertical dashed lines. Two rays of light are
shown entering a prism on the right. Give a short argument based on explicit

principles of physics that explains which ray is which color and fill in the blanks
below:

A:

B:
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15.1.4 Long Problems

Problem 238.

problems/snells-law-pr-critical-angle-diamond.tex

Unpolarized light is incident on the surface of a large diamond (n = 2.4). Some
of the light is reflected from the diamond; the rest penetrates the diamond
surface and is refracted.

a) Find the angle at which the reflected light is completely polarized and
indicate the direction of polarization on a suitable figure.

b) Diamond is interesting for another reason. It “traps light” and reflects it
internally many times as it bounces from facet to facet. Explain how a
diamond (with n = 2.4) traps more light more than an identically shaped
piece of glass (n = 1.5). Your answer should be at least partly quantitative.
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Problem 239.

problems/snells-law-pr-derive.tex

Derive Snell’s Law. You may use either the wave picture (that I gave in class) or
the Fermat principle (which was on your homework). For a bit of extra credit,
do it both ways. Be sure to give the definition of index of refraction.
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Problem 240.

problems/snells-law-pr-double-critical-angle.tex

Glass
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θ

Suppose that you have a sheet of glass with a thin layer of water on top, in air,
as shown (where na = 1 < nw = 4/3 < ng = 3/2). Prove that the critical angle
in the glass (where total internal reflection occurs for rays coming from the glass
through the water into the air) is not changed by the presence of the water.
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15.2 Polarization

15.2.1 Multiple Choice

Problem 241.

problems/polarization-mc-dipole-antenna.tex
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Four graphs are presented above of the distribution of outgoing radiated inten-
sity from an oscillating charged dipole (antenna) aligned with the z-axis. The
polar angle θ is shown in the first graph. Which one is correct?

a) A

b) B

c) C

d) D
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Problem 242.

problems/polarization-mc-malus-3-filters.tex
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Unpolarized light of intensity I0 is normally incident along the z-axis onto
three successive polaroid filters with transmission axes at θ = 0, 60◦, 120◦ with
respect to the x-axis. What is the intensity of light that makes it through the
last filter?

a) I = 0

b) I = I0
4

c) I = I0
8

d) I = I0
16

e) I = I0
32
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15.2.2 Short Answer/Concept

Problem 243.

problems/polarization-sa-reflection.tex
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Unpolarized radiation is incident upon a reflecting surface between two different
media with indices of refraction as shown. Draw E-field vectors onto the figure
that illustrating the polarization of the transmitted and reflected rays. Write
down the Brewster formula for the angle of incidence at which the reflected ray
is completely polarized in terms of n1 and n2.
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Problem 244.

problems/polarization-sa-sunglasses-scattering.tex

You are out fishing and your polarized sunglasses do great job of reducing re-
flected glare off the water in the late afternoon. Do they also reduce the scattered

glare from the sky just above the horizon at noon? No good just answering yes
or no, have to draw a picture to indicate why to get credit.
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15.2.3 Long Problems

Problem 245.

problems/polarization-pr-maximize-3-filter-transmission.tex
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Unpolarized light of intensity I0 is normally incident along the z-axis onto two
successive polaroid filters with transmission axes at θ1 = 0◦ and θ2 = 90◦ with
respect to the x-axis as drawn above. No light is transmitted through these two
filters in this orientation.

You are given a third filter.

a) Where (along the z-axis should you place it to maximize the intensity
of transmitted light?

b) What should its angle θ be relative to the x-axis?

c) What is the (maximized) transmitted intensity relative to I0?

Derive or verify/justify your answers.
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Problem 246.

problems/polarization-pr-reflection-absorption-scattering.tex

Indicate, with pictures and/or a short descriptions, how light is polarized by:

a) Absorption: Derive and explain (with a figure) Malus’s law, which
quantitatively describes how much light polarized in one direction passes
through a filter whose transmission axis is rotated through an angle θ with
respect to that direction.

b) Reflection: Derive and explain (with a figure) the formula for the Brew-
ster angle (telling us what the Brewster angle is).

c) Scattering: Explain with a figure, and indicate the rule that leads to the
result.
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Problem 247.

problems/polarization-pr-scattering-and-sunglasses.tex

Polaroid sunglasses are lovely because they reduce reflected glare in the morning
and evening when the sun is low AND because they darken the blue sky near
the horizon in the middle of the day when the sun is directly overhead.

How does all this work? To answer this, I need a description of polarization by
absorption (the sunglasses) including the transmission axis used in the glasses,
and the “standard pictures” that indicate QUALITATIVELY how the reflected
glare is polarized (so that the sunglasses will block it) and how the scattered
light from the sky is polarized (so that the sunglasses will block it).

Clearly good pictures are essential to your answer.



292 CHAPTER 15. LIGHT

Problem 248.

problems/polarization-pr-scattering.tex

Scattered rays

Unpolarized radiation is incident upon a molecule and is scattered at right angles
as shown. State the rule we use to determine the polarization of each of the
light rays and draw the polarization into the figure in the usual way.
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16.1 Mirrors

16.1.1 Multiple Choice

Problem 249.

problems/mirrors-mc-concave-object-at-r.tex

r

A concave mirror is shown above with an object located at its center of curva-
ture, s = r. The image is at:

a) s′ = −r, virtual, erect, and the same size as the object.

b) s′ = r, real, inverted, and larger than the object.

c) s′ = r/2, virtual, inverted, and smaller than the object.

d) s′ = r, real, inverted, and the same size as the object.

e) s′ = −∞, virtual, inverted, and larger than the object.
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16.1.2 Long Problems

Problem 250.

problems/mirrors-pr-real-image-mag3.tex

20 cm

There is an object 20 cm away from a screen. Using a concave mirror, I would
like to throw an image of this object upon the screen that is three times larger
than the object itself. Find the location of the mirror (with respect to object
and screen and the focal length of the mirror necessary to accomplish this. Draw
the corresponding ray diagram.
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Problem 251.

problems/mirrors-pr-s20-f10-converging.tex

r = 10 cm

s = 20 cm

The mirror above has a radius of curvature r = 10 cm. A candle is placed at
s = 20 cm as shown. Find:

• The focal length of the mirror (draw the focal point in on the diagram
above).

• The location s′ of the image in centimeters.

• The magnification of the image.

• State whether the image is real or virtual, erect or inverted.

• Draw the ray diagram for this arrangement using the three “named” rays
used for both lenses and mirrors as shown in class. Obviously it should
validate your answers to the above.
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Problem 252.

problems/mirrors-pr-s=2f-converging.tex

This problem will be solved algebraically in terms of the positive length f > 0.
If it pleases you to make this length definite, say 10 cm, feel free, but it is not
necessary.

A small object is placed 2f in front of a diverging (convex) mirror with focal
length −f – negative because it is diverging. Determine (in terms of f where
appropriate):

a) The image distance s′.

b) The magnification m.

c) The kind of image (erect/inverted, real/virtual).

Draw a neat ray diagram for the arrangement using (and labelling!) the
three standard rays covered in class to locate the image. It should at least
approximately correspond to your numerical results above. It’s a good idea
to use a straightedge of some sort, and try to make the size of the diagram
reasonable so it clearly illustrates the problem.
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Problem 253.

problems/mirrors-pr-s60-f-20-diverging.tex

f
s

f

A candle 20 cm high is placed 60 cm in front of the center of a thin lens. The
lens has a focal length of -80 cm.

a) Find the location s′ of the image, its magnification, and indicate whether the
image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to
a. Be sure to include 3 rays that uniquely specify the image location.



16.2. LENSES 299

16.2 Lenses

16.2.1 Multiple Choice

Problem 254.

problems/lenses-mc-diverging-image.tex

f f/2 f

An object (arrow) is placed at an object distance s = f/2 in front of a diverging

lens with a negative focal length as shown. Note that the dots indicate the
location, but not the sign, of f in the figure above. The image formed is:

a) real and larger than the object.

b) real and smaller than the object.

c) virtual and larger than the object.

d) virtual and smaller than the object.
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Problem 255.

problems/lenses-mc-virtual-image-m2.tex

f f/2 f

An object (arrow) is placed at a distance f/2 from a lens with a positive focal
length f as shown. The image is:

a) real and twice as large as the object.

b) real and half as large as the object.

c) virtual and twice as large as the object.

d) virtual and half as large as the object.
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16.2.2 Long Problems

Problem 256.

problems/lenses-pr-candle-and-screen.tex

Parts Box

ff

You have a candle and two lenses with a focal length of 10 cm (each). You wish
to cast a real image of the candle right side up upon a screen. You want the
image size (magnitude) to be exactly two times the size of the actual candle.

a) Determine the set of locations of the object, the lenses, and the image/virtual
objects such that this condition is satisfied and so that the absolute value of the
magnification of the second lens is |m2| = 1.

b) Carefully place the components on the figure above and draw a ray diagram
to locate the image, to scale, in agreement with your answers to a. Be sure to
include the 3 rays that uniquely specify the image location, for each lens.

Don’t burn yourself on the candle.
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Problem 257.

problems/lenses-pr-candle-and-two-lenses.tex

A candle 20 cm high is placed 40 cm in front of the center of a thin lens. This
lens has a focal length of 10 cm. A second thin lens, also with a focal length of
10 cm, is placed 40 cm from the first. Find:

a) The location s′ of the image due to the first lens and its magnification.
Indicate whether the image is real or virtual.

b) The location s′′ of the image (of the image of the first lens) of the second
lens. Find the overall magnification, and indicate if the final image is real or
virtual.

c) Draw a ray diagram to locate the image in agreement with your answers to
a and b. Be sure to include and label 3 rays that uniquely specify the image
locations.
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Problem 258.

problems/lenses-pr-candle-diverging-virtual-image.tex

s
f f

A candle y = 5 cm high is placed s = 20 cm in front of the center of a thin
diverging lens. The lens has a focal length of f = −60 cm.

a) Find the location s′ of the image, its magnification, and indicate whether the
image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to
a. Be sure to include 3 rays that uniquely specify the image location. Use a
straightedge (folded piece of paper) or ruler to draw the rays if at all possible,
and be neat.
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Problem 259.

problems/lenses-pr-candle-real-image.tex

f
s

f

A candle 10 cm high is placed 75 cm in front of the center of a thin lens. The
lens has a focal length of 50 cm.

a) Find the location s′ of the image, its magnification, and indicate whether the
image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to
a. Be sure to include the 3 rays that uniquely specify the image location.
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Problem 260.

problems/lenses-pr-candle-virtual-image.tex

s
f f

A candle 5 cm high is placed 20 cm in front of the center of a thin lens. The
lens has a focal length of +40 cm.

a) Find the location s′ of the image, its magnification, and indicate whether the
image is real or virtual.

b) Draw a ray diagram to locate the image in agreement with your answers to
a. Be sure to include 3 rays that uniquely specify the image location.
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Problem 261.

problems/lenses-pr-f10-real-m2.tex

f f

You have a candle and a lens with a focal length f = +10 cm. You wish to view
a real, inverted image of a candle that is exactly two times the size of the

actual candle.

a) Find s and s′ such that this kind of image is formed.

b) Carefully ‘place’ the candle into the figure above at the position you deter-
mine and draw a ray diagram to locate the image, to scale, in agreement
with your answers to a). Be sure to include the 3 rays that uniquely
specify the image location.

c) If you view this image with the naked eye, is the apparent size of the
image larger or smaller than it would be if you used the lens as a simple
magnifier to view the image?

Don’t burn yourself on the candle.
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Problem 262.

problems/lenses-pr-f10-virtual-m2.tex

f f

You have a candle and a lens with a focal length of +10 cm. You wish to view
a virtual, erect image of a candle that is exactly two times the size of the actual
candle.

a) Find s and s′ such that this kind of image is formed.

b) Carefully ‘place’ the candle into the figure above at the position you deter-
mine and draw a ray diagram to locate the image, to scale, in agreement
with your answers to a). Be sure to include the 3 rays that uniquely
specify the image location.

c) If you view this image with the naked eye, is the apparent size of the
image larger or smaller than it would be if you used the lens as a simple
magnifier to view the image?

Don’t burn yourself on the candle.
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Problem 263.

problems/lenses-pr-f15-real-m2.tex

Parts Box

f

You have a candle and a lens with a focal length of 15 cm. You wish to cast a
real image of the candle upon a screen. You want the image size (magnitude)
to be exactly two times the size of the actual candle.

a) Find s and s′ such that this kind of image can be formed.

b) Carefully place the components on the figure above and draw a ray dia-
gram to locate the image, to scale, in agreement with your answers to a.
Be sure to include the 3 rays that uniquely specify the image location.

Don’t burn yourself on the candle.
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Problem 264.

problems/lenses-pr-inverting-microscope.tex

ff f fL

s?

objective eyepiece

Amoeba

The arrangement of lenses that makes up a compound microscope is pictured
above. The focal lengths of the objective and eyepiece lenses are fo = fe = f = 1
cm. The tube length is L = 9 cm.

a) Find s (the object distance from the objective lens) such that the final image
viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

b) Draw the ray diagram from which you can find the overall magnification (try
to use a straight edge to do this).

c) From this diagram and your knowledge of the separate purposes of the two
lenses, find the overall magnification. Explain each part (that is, what are the
separate roles of the objective and eyepiece).
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Problem 265.

problems/lenses-pr-physics-demo-m1.tex

L

You are given the job of designing a display for the physics department lobby
that will demonstrate real images. You are given a box of large, high qual-
ity, thin lenses with focal lengths of ±10, 20, 30, 50 cm (several of each size)
along with other construction materials such as a small electric candle, ply-
wood, black spray paint, and construction adhesive to use to make a hooded
box (to hide/house the candle) and lens mounts.

The plan is for you to construct an arrangement of lenses that creates a real
image of the candle with overall magnification of +1 at the front of a short
platform, so that a ”real candle” appears to be attached there if one looks
through the lenses from in front. Of course the candle is just the ghost of a
candle and cannot be grasped by the hand if a student tries.

Select one or more lenses from the box and draw a plan for an arrangement that
will do the trick. Your plan should include the location (to scale) of the lens(es),
its(their) focal length(s) on the diagram, a ray diagram that shows how it will
work, proof that the total magnification is +1, and an estimate of the overall
length of the box L (accurate within a few cm).

Note that there are an infinite number of choices and arrangements that will
“work”, but bear in mind that it would be desirable for the overall box and
platform to to fit on a moveable cart or small table, so maintaining a total
length of L < 1.75 meters would be a good idea...
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Problem 266.

problems/lenses-pr-real-image-mag3.tex

20 cm

There is an object 20 cm away from a screen. Using a converging (thin) lens,
I would like to throw an image of this object upon the screen that is three
times larger (in magnitude) than the object itself. Find the location of the lens
(with respect to object and screen and the focal length of the lens necessary to
accomplish this. Draw the corresponding ray diagram. [Hints: Remember the
central ray! Is the image required real or virtual?]
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Problem 267.

problems/lenses-pr-two-converging.tex

f 1 f 1 f 2 f 2

D

Two converging lenses are shown above. The first has a focal length of f1 = 1
cm. The second has a focal length of f2 = 3 cm and is placed a distance of
D = 5 cm from the first lens.

An object is placed a distance s1 = 3/2 cm in front of the first lens. Dashed
lines are drawn for your convenience into the figure at the focal points and down
the center plane of the lenses.

a) Draw (using a straightedge if possible) the ray diagrams for both lenses,
using the image from the first lens as the virtual object for the second one.
Locate and circle the final image and indicate whether the final image is
erect or inverted, real or virtual.

b) Solve for the magnification of this final image. Show all work! Just because
there are numbers, don’t go all crazy. You shouldn’t need a calculator
for these numbers, but you are welcome to use one after setting up the
arithmetic required on the paper.
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16.3 The Eye

16.3.1 Multiple Choice

Problem 268.

problems/eye-mc-vision-underwater.tex

If you dive into a clear freshwater lake or pool and open your eyes, everything
is a blur. This is because:

a) The muscles that control accommodation spasm when the eye is in contact
with water, making you effectively nearsighted. This is why people wear
swim masks.

b) Contact with the water makes the lens swell, making you effectively near-
sighted. This is why people wear swim masks.

c) Your eyes’ lenses have become farsighted underwater beyond your ability
to accommodate by altering the bending of light at their surface.

d) Your eyes’ lenses have become nearsighted underwater beyond your ability
to accommodate by altering the bending of light at their surface.

e) Water isn’t really transparent – it naturally makes things look blurry.
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16.3.2 Short Answer/Concept

Problem 269.

problems/eye-sa-bull-shark-in-fresh-water.tex

Bull sharks are known to swim from the ocean into freshwater rivers and lakes
and are sometimes found a thousand miles or more away from the sea. Fresh-
water is considerably less dense than salt water, and the index of refraction of
saltwater is correspondingly greater than that of fresh water.

If a bull shark has perfectly normal vision in the ocean, is it shortsighted or
farsighted in fresh water? In particular, can it still accommodate to a clear
vision of distant prey or is everything a bit of a blur to it in fresh water?
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Problem 270.

problems/eye-sa-corrections.tex

c

b

a

On the figure above there are three “eyeballs” schematically represented. On
each figure draw:

a) The correct location of the focal point of the relaxed eye of each kind (in
front of, on, or behind the retina).

b) The lenses required to correct nearsightedness and farsightedness, drawn
in front of each eye.

c) Complete the two rays given (arising from a very distant object “at infin-
ity”), tracing their path through the lenses needed (if any) to the retina,
assuming the objects are in focus.
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Problem 271.

problems/eye-sa-fish-out-of-water.tex

You catch a fish that has normal vision – in the water! In air you appear all
blurry to it. Is the fish nearsighted or farsighted in air? Should you outfit the
fish with converging or diverging lenses so that it can see you clearly?
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Problem 272.

problems/eye-sa-nearsighted.tex

Draw a representation of a nearsighted eye, indicating the focal length of the
relaxed lens. Then draw the eye with the appropriate corrective lense in front
and indicate with rays how it “fixes” the problem.
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Problem 273.

problems/eye-sa-scuba-mask.tex

Explain in very simple terms why you can see clearly underwater wearing a
diving mask but see everything as a blur when your eyes are in direct contact
with the water. (Pictures would certainly help your explanation.)
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16.4 Optical Instruments

16.4.1 Short Answer/Concept

Problem 274.

problems/optical-instruments-sa-draw-reflector-telescope.tex

One can make a telescope by using a mirror instead of a lens for the primary
(objective) stage of magnification. Using what you know about how telescopes
work as inspiration, draw a schematic for such a (Newtonian) reflecting tele-
scope. The diagram should indicate how the focal lengths of primary mirror
and eyepiece lens are placed so that one can view distant objects, magnified,
with a relaxed normal eye. You do not have to draw an actual ray diagram,
and you may or may not choose to use a small flat mirror in the barrel of the
telescope to allow you to put the eyepiece on the side.
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Problem 275.

problems/optical-instruments-sa-three-telescope-question.tex

Answer the three short questions below with a word, phrase or picture. For
example, an answer to the first question might be “To avoid sinusoidal wiggle”
(but probably isn’t).

a) Why would one make a parabolic lens or mirror?

b) Why are big telescopes almost invariably built with a primary mirror
instead of a lens?

c) Why are the optics of good binoculars “coated” with a thin film?
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16.4.2 Long Problems

Problem 276.

problems/optical-instruments-pr-build-microscope-m500.tex

A physics professor hands you a box that contains the following material:
(mounted) lens A with fA = 10 cm, lens B with fB = 1 cm, lens C with
fC = 5 mm and lens D with fD = −2 mm. There is also a piece of tubing 15
cm long that fits the lens mounts exactly and can be cut to any length you like
with the enclosed hacksaw, a focus gear (that can be used to move the objective
lens mount small distances along its axis in the tube), glue, screws, a slide/tube
mounting bracket, and things like that.

a) Create a rough design in the space above for a simple microscope with a
magnification of M = −500 using this material and equipment. Clearly

indicate the lenses you use and their arrangement in the tube.

b) Draw the rays needed to prove that the magnification of your design is
correct and do so.
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Problem 277.

problems/optical-instruments-pr-build-reflecting-telescope-m200.tex

A physics professor hands you a box that contains the following material: a
converging mirror A with fA = 100 cm, a converging mirror B with fB = 200
cm, a diverging lens C with fC = −2 mm, a converging lens D with fD = 5 mm
and diverging lens E with fE = −5 mm. The box also contains a small, round
flat mirror centered on an axle so that it can be rotated to any angle, 4 meter
sections of PVC pipe that fit each lens or mirror and that can be cut with a
handy hacksaw, sleeves that can nest PVC pipe sections together, some glue,
focus gears (that can be used to move the eyepiece lens small distances along
its axis), and things like that.

a) Create a rough design in the space above for a reflecting telescope with an
angular magnification of magnitude M = 200, made using this material
and equipment. Clearly indicate the lenses you use and their arrangement
in the tube(s). Note that there might be more than one way to do this.

b) Draw the rays needed to prove that the magnification of your design is
correct and do so. It need not be precisely to scale, but should have all of
the correct features.
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Problem 278.

problems/optical-instruments-pr-build-refracting-telescope-m200.tex

A physics professor hands you a box that contains the following material: lens A
with fA = 100 cm, lens B with fB = 200 cm, lens C with fC = −2 mm, lens D
with fD = 5 mm and lens E with fE = −5 mm. There are also 4 meter sections
of PVC pipe that fit each lens and that can be cut with a handy hacksaw, sleeves
that nest the PVC pipe sections together, some glue, focus gears (that can be
used to move the eyepiece lens small distances along its axis), and things like
that.

a) Create a rough design in the space above for a refracting telescope with
an angular magnification of magnitude M = 200, made using this mate-
rial and equipment. Clearly indicate the lenses you use and their arrange-
ment in the tube(s). Note that there might be more than one way to do
this.

b) Draw the rays needed to prove that the magnification of your design is
correct and do so. It need not be precisely to scale, but should have all of
the correct features.
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Problem 279.

problems/optical-instruments-pr-design-microscope-m250.tex

a) Design a microscope with a tube length ℓ = 10 cm and a magnification
of 250. Draw it below to scale. You may pick fo and fe to have any
“sensible” values, and can make the microscope invert the image you see
or not as you wish.

b) Draw the rays needed to prove that it has the correct magnification and
do so.

c) Determine where (that is, the actual object distance s in cm) one has to
place the object in front of the objective lens in order for the relaxed, nor-
mal eye to view its image at infinity through the eyepiece. Note that this
answer will depend (obviously) on your choice of fo and other parameters,
so the number answer is less important than the algebra (which is what
will be checked).
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Problem 280.

problems/optical-instruments-pr-galilean-microscope.tex

o o e e

s?

objective eyepiece

L

f f f f

Amoeba

The arrangement of lenses that makes up a “Galilean” compound microscope
is pictured above. The focal lengths of the objective and eyepiece lenses are
fo = 2 cm and fe = −1 cm. The tube length is L = 20 cm.

• Find s (the object distance from the objective lens) such that the final
image viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

• Draw the ray diagram from which you can find the overall magnification.
NOTE WELL the tube length goes to the second (negative) focal point
of the eyepiece. Why?

• From this diagram, find the overall magnification. Explain each part (that
is, what are the separate roles of the objective and eyepiece).

• What is the advantage of this kind of microscope compared to one with
two converging lenses?
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Problem 281.

problems/optical-instruments-pr-galilean-telescope-design.tex

Draw below a Gallilean telescope (one built with a converging primary lens
and a diverging eyepiece lens). Draw it to scale so that the overall angular
magnification is M = 10. Derive (with a figure and the correct rays and triangles
and angles) its magnification in terms of fp, fe, and any other parameters you
think necessary. Remember, fe is negative for a Gallilean telescope – be sure to
specify whether the brain perceives the final image right side up or upside down
so that there is no ambiguity.

Note that the rays used to derive the magnfication are tricky for a diverging
eyepiece, so be careful.
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Problem 282.

problems/optical-instruments-pr-regular-microscope.tex

o o e e

s?

objective eyepiece
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f f f f

Amoeba

The arrangement of lenses that makes up a compound microscope is pictured
above. The focal lengths of the objective and eyepiece lenses are fo = 2 cm and
fe = 1 cm. The tube length is L = 20 cm.

a) Find s (the object distance from the objective lens) such that the final
image viewed by the eye is in focus (at infinity, as imaged by the eyepiece).

b) Draw the ray diagram from which you can find the overall magnification.

c) From this diagram, find the overall magnification. Explain what each part
contributes to the overall magnification (that is, what are the separate
roles of the objective and eyepiece in allowing you to see a significantly
magnified image at infinity).

d) Is the final image you see inverted or erect compared to the way you would
see the object with your naked eye (if you could see the object with your
naked eye)?
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Problem 283.

problems/optical-instruments-pr-small-microscope.tex

f f21

L

An arrangement of two lenses is drawn above. f1 = 2 cm and f2 = 1 cm. The
lenses themselves are separated by a distance L = 8 cm. Then:

a) What is this particular arrangement of lenses called?

b) Find where (s) to put an object to be viewed relative to the first lens (on
the left) so that the final image seen through the second lens (on the right)
can be viewed with the relaxed, normal eye.

c) The angular magnification of the final image compared to what it would
be when seen by the relaxed, normal eye without any lenses.

d) Draw the ray diagram for this arrangement using the object distance de-
termined above that can be used to locate the final image and (with some
rules) find the magnification. You may or may not have to redraw the
arrangement to have room.
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Problem 284.

problems/optical-instruments-pr-telescope-cassegrain-reflector.tex

This problem asks you to analyze the Cassegrain reflecting telescope design,
drawn above. The two incoming rays drawn from an object at infinity in the
center of its visual field are reflected from the parabolic primary mirror and then
re-reflected by the flat secondary mirror so that they converge in the vicinity of
the eyepiece tube. The focal length of the primary mirror is 100 cm. You have
two eyepiece lenses, one converging and one diverging, each with a focal length
of five cm.

a) Pick either of these eyepieces and locate it in the eyepiece tube in such a
way that the telescope permits you to observe this distant object with a relaxed
normal eye. Clearly indicate where its focal point has to be relative to the
doubly reflected focal point of the primary mirror. Show the two distances that
must add up to 100 cm.

b) Draw the rest of the ray diagram for the two incoming rays that show how
they emerge from the eyepiece lens to enter your eye so that the condition
required in a) is true. What is the expected magnification of this telescope?

c) This telescope has the reflecting secondary mirror situated right in the middle
of the telescope mouth. Is there a corresponding hole in your visual field?

d) What happens to the image you observe as you vary the diameter of this
secondary mirror relative to the diameter of the primary reflecting mirror?
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Problem 285.

problems/optical-instruments-pr-telescope-galilean.tex

Consider an Galilean refracting telescope (one built with a converging pri-
mary/objective lens with focal length fo and a diverging eyepiece lens with
focal length −fe). Then:

a) Draw it to scale (below) so that the overall angular magnification is |M | =
4. (Note: You have to determine the correct sign of M below, so I only
give you its magnitude here.)

b) Derive (with a figure and the correct rays and triangles and angles) its
magnification in terms of fo, fe, and any other parameters you think
necessary.

c) Does this telescope invert its image (as seen by the eye) or not?
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Problem 286.

problems/optical-instruments-pr-telescope-near-object.tex

You have a telescope constructed with a primary lens with a focal length fo = 1
meter, and an eyepiece lens with a focal length of fe = 0.1 meter (ten centime-
ters).

a) What is the magnification of this telescope when used to view truly distant
objects, i.e. the moon? Does it invert the image or not?

b) Suppose one wishes to use the telescope to view a bird ten meters (or
10fo) in front of the primary lens. Where is the (real) image formed (that
is, find s′ in terms of fo)?

c) Where must one locate the eyepiece lens (via the “focus” knob) in this
case in order to view the bird through the telescope with a relaxed, normal
eye?

d) Draw the arrangement of lenses and a representation of the image of the
bird inside the telescope, approximately to scale horizontally, labelling all
distances. You do not need to draw the bird/object itself – it is too far
away to easily fit on your page if the telescope is clearly drawn. Do, how-
ever, draw the rays one might use to estimate the effective magnification
of the telescope in this case.
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Problem 287.

problems/optical-instruments-pr-telescope.tex

Consider an ordinary refracting telescope (one built with a converging pri-
mary/objective lens with focal length fo and a converging eyepiece lens with
focal length fe). Then:

a) Draw it to scale (below) so that the overall angular magnification is |M | =
4. (Note: You have to determine the correct sign of M below, so I only
give you its magnitude here.)

b) Derive (with a figure and the correct rays and triangles and angles) its
magnification in terms of fo, fe, and any other parameters you think
necessary.

c) Does this telescope invert its image (as seen by the eye) or not?
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17.1 Interference

17.1.1 Short Answer/Concept

Problem 288.

problems/interference-sa-4-slit-phasors.tex

Draw the phasor diagrams that correspond to interference minima for the
four slit problem – four slits that are much narrower than the wavelength of
monochromatic light illuminating them, separated by a distance d, a long way
away from a screen. Write down the first set of angles 0 ≤ δ = kd sin θ ≤ 2π
(Note well: δ in the range [0, 2π]) for which these minima occur.
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Problem 289.

problems/interference-sa-5-slit-phasors.tex

Draw the phasor diagrams that correspond to interference minima for the
five slit problem – five slits that are much narrower than the wavelength of
monochromatic light illuminating them, separated by a distance d, a long way
away from a screen. Write down the first set of angles 0 ≤ δ = kd sin θ ≤ 2π
(Note well: δ in the range [0, 2π]) for which these minima occur.
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Problem 290.

problems/interference-sa-6-slit-phasors.tex

Draw the phasor diagrams that correspond to interference minima for the
six slit problem – six slits that are much narrower than the wavelength of
monochromatic light illuminating them, separated by a distance d, a long way
away from a screen. Write down the first set of angles 0 ≤ δ = kd sin θ ≤ 2π
(Note well: δ in the range [0, 2π]) for which these minima occur.
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Problem 291.

problems/interference-sa-four-slit-minima.tex

What are the four values of δ = kd sin θ for the first four interference minima

produced by five slits. Should be able to read them right off the phasor pictures...
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Problem 292.

problems/interference-sa-resolution-grating-sodium.tex

Light from a sodium lamp has a double line in the yellow part of the spectrum
with wavelengths λ1 = 589.6 nm and λ2 = 589.0 nm (∆λ ≈ 0.6 nm correct to
the number of significant digits displayed). What is the minimum number of
slits that must be illuminated within the coherence length of the light so that a
diffraction grating that can resolve the lines:

a) In first order (for m = 1)?

b) In second order (for m = 2)?

You may approximate freely, e.g. you can assume that λ1 ≈ λ2 ≈ 600 nm to
get your answer without a calculator...
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17.1.2 Long Problems

Problem 293.

problems/interference-pr-2-asymmetric-slits.tex

d

P

θ

λ

Light with wavelength λ is incident on a barrier with two narrow (width much
smaller than a wavelength) slits separated by a distance d = 3λ cut in it. The
lower slit is twice as wide as the upper one. The light passes through the two
slits and falls upon a distant screen at a point P that is at an angle θ above
both slits, where the figure is not horizontally to scale.

a) Write an expression for the total electric field you expect to get at P from
both slits, in terms of the field strength E0 at P from the upper slit only.

b) Draw a phasor diagram that you could use to solve for the total field
amplitude for arbitrary δ = kd sin(θ). Do not attempt to solve it at this
time.

c) Draw (small) phasor diagrams that schematically indicate the phase angles
δ where you expect to get maximum and minimum intensity on the screen.
What are the magnitudes you expect for maximum and minimum intensity
on the basis of these diagrams.

d) Find the angles θ where the maxima and minima occur and sketch the
intensity as a function of θ, approximately to scale.

Only when this is done and checked should you then attempt:

e) For five points of extra credit, find an explicit expression for Etot, and use
it to express the intensity I(δ) in terms of the intensity of the upper slit
by itself, I0. Hint: remember the law of cosines.
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Problem 294.

problems/interference-pr-2-narrow-slits-1.tex

d

(long distance >> d)

P

λ

Light with wavelength λ = 600 nm passes through two extremely narrow slits.
The slits are spaced a distance d = 2400 nm apart. The light then travels a long
distance and falls on a screen. The intensity of light reaching the midpoint of
the screen from any single slit (with the other one covered) is I0 and corresponds
to a field strength E0.

a) Using the superposition principle, write down an expression for the total
electric field evaluated at P resulting from the waves that pass through
the two slits.

b) What is δ (the phase difference between the waves from the upper and
lower slits) in terms of d, λ, and θ?

c) Draw the phasor diagram and use it to evaluate the total field ampli-
tude.

d) Make a short table of all of the angles where interference maxima and
minima occur.

e) Draw a semi-quantitatively correct graph of the intensity as a function
of θ between 0 and π/2. Correctly label the peak intensity expressed in
terms of I0.



17.1. INTERFERENCE 341

Problem 295.

problems/interference-pr-2-narrow-slits.tex

d

(long distance >> d)

P

λ

Light with wavelength λ = 500 nm passes through two extremely narrow slits.
The slits are spaced a distance d = 2000 nm apart. The light then travels a long
distance and falls on a screen. The intensity of light reaching the midpoint of the
screen from any single slit (with the other two covered) is I0 (and corresponds
to a field strength E0).

a) Draw onto the figure above lines and coordinates that will help you determine
the intensity of the interference pattern produced by the slits. Use θ for the angle
to an arbitrary point P on the screen relative to the midline drawn from the
central slit (as done in class).

b) Using the superposition principle, write down the sum of the two waves from
the slits at P , using δ as the phase angle introduced by the path difference
between them.

c) Draw the phasor diagram that allows you to find the total field amplitude
as a function of an arbitrary δ (choose and draw a convenient one as I did in
class), and evaluate the total field amplitude. Write an expression for the total
intensity as a function of δ and I0. What is the peak intensity in terms of I0?

d) Write an expression for the angles θ where a principle interference maximum
occurs. How many (non-negative) angles are there? Draw a qualitatively correct
graph of the intensity as a function of θ between 0 and π/2.
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Problem 296.

problems/interference-pr-2-wide-slits-1.tex

λ

d

a

a

Light with wavelength λ = 700 nm passes through two slits of a width a = 1400
nm. The centerpoints of these two slits are separated by a distance of d = 3500
nm. The light then travels a long distance and falls on a screen. It is not

necessary (for once) to derive or justify the equation(s) you use below, but if
you do you will get partial credit even if your numerical answers are wrong.

a) Write down (or derive) the algebraic formula for the intensity of the combined
interference-diffraction pattern for this arrangement.

b) Write down (or derive) the formula from which the angles at which diffraction
minima occur can be found, and apply it to find all these angles (put them in
a table).

c) Write down (or derive) the formulas from which the angles at which inter-
ference maxima and minima occur, and apply them to find the first three of
each (only) (put them in a table).

d) Draw a qualitatively correct picture of the expected diffraction/integration
pattern I(θ).
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λ

d

a

a

Problem 297.

problems/interference-pr-2-wide-slits-2.tex

Light with wavelength λ = 300 nm passes through two slits of a width a = 900
nm. The centerpoints of these two slits are separated by a distance of d = 2700
nm. The light then travels a long distance and falls on a screen. It is not

necessary (for once) to derive or justify the equation(s) you use below, but if
you do you will get partial credit even if your answers are wrong.

a) Write down (or derive) the formula from which the angles at which diffraction
minima occur can be found, and apply it to find all these angles (put them in
a table).

b) Write down (or derive) the formulas from which the angles at which interfer-
ence maxima and minima occur, and apply them to find the first three of each
(put them in a table).

c) Draw a qualitatively correct picture of the expected diffraction/integration
pattern I(θ).
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λ

d

a

a

Problem 298.

problems/interference-pr-2-wide-slits-3.tex

All angles in the parts a-c may be expressed by means of tables of inverse
trigonometric functions of simple fractions, e.g. cos−1(1/2), sin−1(2/7), etc.

Two vertical slits of width a = 1200 nanometers (nm) are separated (center to
center) by a distance of d = 3000 nm and illuminated by light of wavelength
λ = 600 nm. The light which passes through is then projected on a distant
screen. Find:

a) The location (angles θ) of all diffraction minima.

b) The location of all interference minima.

c) The location of all interference maxima.

d) Finally, draw a properly proportional figure of the resulting interference pat-
tern between 0 and π/2 (on either side), indicating the maximum intensity in
terms of the central maximum intensity that would result from a single slit.

e) For five points of extra credit, write down the algebraic expression for I(θ)
in terms of I0 (the central intensity of a single slit), defining all variables used
(like φ and δ) in terms of a, d, λ and θ.
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Problem 299.

problems/interference-pr-2-wide-slits-4.tex

λ

d

a

a

Two vertical slits of width 1500 nanometers (nm) are separated (center to center)
by a distance of 2500 nm and illuminated by light of wavelength 500 nm. The
light which passes through is then projected on a distant screen. Find θ (or
sin(θ)) for:

a) The location of all diffraction minima.

b) The location of all interference minima.

c) The location of all interference maxima.

d) Finally, draw a properly proportional graph of I(θ) (or I(sin(θ))) between
−π/2 and π/2 (or -1 and 1) indicating the maximum intensity in terms of
the central maximum intensity that would result from a single slit.

Note well that you may answer in terms of sin(theta) or θ as you prefer, but
without a calculator sin(θ) is usually somewhat simpler.
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Problem 300.

problems/interference-pr-3-narrow-slits.tex

P

(long distance >> d)

λ

d

d

Light with wavelength λ = 500 nm passes through three extremely narrow slits.
The slits are spaced a distance d = 2000 nm apart. The light then travels a long
distance and falls on a screen. The intensity of light reaching the midpoint of the
screen from any single slit (with the other two covered) is I0 (and corresponds
to a field strength E0).

a) Draw onto the figure above lines and coordinates that will help you determine
the intensity of the interference pattern produced by the slits. Use θ for the angle
to an arbitrary point P on the screen relative to the midline drawn from the
central slit (as done in class).

b) Using the superposition principle, write down the sum of the three waves
from the slits at P , using δ as the phase angle introduced by the path difference
between them.

c) Draw the phasor diagram that allows you to find the total field amplitude
as a function of an arbitrary δ (choose and draw a convenient one as I did in
class), and evaluate the total field amplitude. Write an expression for the total
intensity as a function of δ and I0. What is the peak intensity in terms of I0?

d) Write an expression for the angles θ where a principle interference maximum
occurs. How many (non-negative) angles are there? Draw a qualitatively correct
graph of the intensity as a function of θ between 0 and π/2.
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d

θ
L >> d

Problem 301.

problems/interference-pr-5-slits.tex

Suppose you have five point sources of monochromatic, coherent light with wave-
length λ and a common phase lined up and separated by a distance d as shown
above. The light from all five sources falls upon a distant (L ≫ d) screen as
shown.

Derive expressions for the angles at which maxima and minima occur. Your
derivation should include the phasor diagrams for the minima and the maxima
and should relate φ = kd sin(θ) to suitable fractional multiples of π. End by
drawing a representative cycle or two (primary maximum to primary maximum)
of the resulting interference pattern, showing the correct relative intensity of
primary and secondary peaks and the right number of minima and maxima per
cycle.

Note that in this case ”derive” pretty much means draw the correct five-sided
phasors for each of the max and min cases and read off what φ must be for each,
and arrange it in a pretty (simple) pattern.
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17.2 Thin Films

17.2.1 Short Answer/Concept

Problem 302.

problems/thin-film-sa-oil-on-water-sheen.tex

When a a layer of oil spreads out on top of water and gets much thinner
than the wavelength of visible lignt, it becomes shiny and bright, reflecting all
wavelengths. Why? (A diagram with the reason marked and circled is fine.)
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Problem 303.

problems/thin-film-sa-oil-on-water.tex

A drop of oil (no = 1.25) floats on top of water (nw = 4/3) creating a very think
film as it spreads out. At first you see a riot of vaguely toxic rainbow colors
in the reflection of white overhead light, but then, as its thickness gets to be
much less than any wavelength in visible light, it either turns bright (reflecting
all colors like a mirror) or dark (transmitting all colors and reflecting none of
them.

Which? Justify your answer with a picture and a few words explaining.
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Problem 304.

problems/thin-film-sa-optical-coating.tex

n = 1.5

n = 1.25
n = 1

reflected light

t

glass

coating

You would like to eliminate the reflected light from a flat glass pane for perpen-
dicularly incident light of wavelength 550 nm. The index of refraction of the
glass is ng = 1.5, and the index of refraction of the coating material to be used
is nc = 1.25. What minimum thickness t of the coating material will have the
desired effect? (Try to show your reasoning, and don’t forget “details”.)
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Problem 305.

problems/thin-film-sa-soap-bubble-transparency.tex

When a soap bubble like the one drawn above gets much thinner than the
wavelength of visible light, it becomes transparent. Why? (A diagram with
the reason marked and circled on the figure above, plus a sentence or two of
explanation is fine.)
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Problem 306.

problems/thin-film-sa-wedge-caliper.tex

Glass Air

Hair

Light

Two pieces of very flat glass are used in the arrangement above to measure the
thickness of a human hair. When viewed with light of 600 nm from above, 30
dark fringes are observed in the light reflected from the wedge of air. How thick
(approximately) is the hair? (Note well: Derive/explain your answer and show
all work).
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17.2.2 Long Problems

Problem 307.

problems/thin-film-pr-ornament-1.tex

incident

reflected

Glass

air

(not to scale)t

light

light

air

chemical film

A Christmas tree ornament is constructed by vapor-depositing a chemical film
(with n = 1.7) on a “thick” (∼ 2 mm) spherical glass (n = 1.5) bubble as drawn
schematically above. The thin chemical film is not uniform in thickness, and its
variation in the range 0-2 microns (micrometers) produces brilliant streaks of
color in the reflected light.

a) What is the smallest (nontrivial) mean thickness t of the film such that
reflected light to has a constructive interference maximum in the center of the
visible spectrum (λ = 400-700 nm in free space where n = 1).

b) When the film first starts to deposit on the glass (and has a thickness t of only
a few nanometers) does the film on the bulb turn shiny (constructively reflect-
ing all wavelengths) or transparent (destructively reflecting all wavelengths)?
Explain.
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Problem 308.

problems/thin-film-pr-ornament-2.tex

incident

reflected

Glass

air

plastic

(not to scale)t

light

light

air

A Christmas tree ornament is constructed by vapor-depositing a thin, transpar-
ent film (with n = 1.25) on a “thick” (∼ 2 mm) spherical glass (n = 1.5) bubble
as drawn schematically above. The thin plastic film is not quite uniform in
thickness, and this variation produces brilliant streaks of color in the reflected
light.

a) What does the light reflected from the ornament look like where t ∼ 0 (or
t ≪ λ, at any rate). Explain the physics behind your answer with a single
sentence and/or diagram.

b) At what thickness t ∼ λ > 0 of the film will the reflected light first have a
constructive interference maximum at λ = 550 nm (where λ, recall, is the
wavelength in free space where n = 1)?

c) At that thickness, will any other visible wavelengths have an interference
maximum or minimum? Justify your answer – just ‘yes’ or ‘no’ (even if
correct) are incorrect.
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17.3 Diffraction and Resolution

17.3.1 Multiple Choice

Problem 309.

problems/diffraction-mc-grating-resolution.tex

θ

500 nm495 nm 
I

One wishes to resolve two spectral lines at λ1 = 495 nm and λ2 = 500 nm,
respectively at second order with a diffraction grating. What is the mini-

mum number of slits that must be illuminated (within the coherence length)
to accomplish this?

a) N = 50

b) N = 100

c) N = 250

d) N = 500

e) Answer not on the list above.

Draw the minimally resolved lines in on the figure above (where the horizontal
axis is not to scale!) for a point of partial or extra credit. It is also probably
wise to indicate the formula or reasoning process you are using.
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17.3.2 Short Answer/Concept

Problem 310.

problems/diffraction-sa-minimal-resolution-graph-only.tex

I

θ

Draw a qualitatively correct graph of the intensity that schematically represents
two minimally resolved diffraction patterns (from e.g. a single slit) according to
the Rayleigh Criterion of Resolution. Carefully mark the location of the
maximum and first minimum of the patterns on your figure corresponding to
the criterion.
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Problem 311.

problems/diffraction-sa-rayleigh-circular-aperture.tex

α

sources

screen

circular aperture

What is the smallest angle α for which light from two point-like sources will be
minimally resolved (according to Rayleigh’ criterion for resolution) if the light
from the objects has wavelength λ and passes through a circular aperture of
diameter D ≫ λ (so the small angle approximation will hold)?
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17.3.3 Long Problems

Problem 312.

problems/diffraction-pr-1-wide-slit-1.tex

a

λ

Light with wavelength λ = 700 nm passes through a single slit with a width
a = 2100 nm. The light then travels a long distance (compared to a and λ)
and falls on a screen. It is not necessary (for once) to derive or justify the
equation(s) you use below, but if you do you might get partial credit even if
your numerical answers are wrong.

a) Write down (or derive) the algebraic formula for the intensity of the diffrac-
tion pattern for this arrangement, I(θ) where θ is measured from the mid-
line of the slit to a line directed at the point of observation on the screen.

b) Write down (or derive) the formula from which the angles at which diffrac-
tion minima occur can be found, and apply it to find all these angles (put
them in a table).

c) Draw a qualitatively correct picture of the expected diffraction pattern
I(θ).
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Problem 313.

problems/diffraction-pr-pinhole-camera-resolution.tex

(L >> d)

Film

λ

d

The pinhole (with diameter d) in a pinhole camera functions like a high-resolution
universal-focus “lens” by permitting only the “central ray” through to form an
image on a piece of film placed a distance L = 50 cm behind it as shown. A
point source a distance s ≫ L in front of the pinhole creates a dot on the film
the size of the aperture in the geometric optic approximation (where wavelength
does not matter and light travels in straight lines). To get the best possible res-
olution we would then try to use the smallest possible dot (and wait longer for
enough light to pass through to activate the film) with no lower bound in size.
Light with wavelength λ = 500 nm passing through the aperture, on the other
hand, casts a diffraction pattern onto the film that for small enough d will be
wider than the geometric dot.

From these two competing limits, determine the diffraction-limited optimum
minimum size for the pinhold diameter d that will give you the smallest possible
image of the point source on the screen in terms of the givens. I gave you some
(simple) numbers because the actual geometry matters a bit and the number is
a good/reasonable one to know, but feel free to use algebra first to answer the
question.
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Problem 314.

problems/diffraction-pr-width-of-slit.tex

a

D

y
2

θ2

λ

Light of wavelength λ = 500 nanometers passes through a slit of width a and
falls on a screen a distance D = 1 meter away. The second minimum of the
resulting diffraction pattern is observed at a position y2 = 2 cm above the
central maximum on the screen.

a) Find the width a of the slit.

b) Now the slit is illuminated with light with a wavelength of λ = 400
nanometers. What is y1, the location of its first minimum on the screen?

As always, you can answer the questions algebraically first, but please try to do
the arithmetic. You may use the small angle approximation to avoid having to
use a calculator.
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