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Chapter 1

Preface

The problems in this review guide are provided as is without any guarantee of being correct! That’s

not to suggest that they are all broken – on the contrary, most of them are well-tested and have been

used as homework, quiz and exam problems for decades if not centuries. It is to suggest that they have

typos in them, errors of other sorts, bad figures, and one or two of them are really too difficult for this

course but haven’t been sorted out or altered to make them doable.

Leaving these in just adds to the fun. Physics problems are not all cut and dried; physics itself isn’t.

One thing you should be building up as you work is an appreciation for what is easy, what is difficult,

what is correct and what is incorrect. If you find an error and bring it to my attention, I’ll do my best

to correct it, of course, but in the meantime, be warned!

A few of the problems have rather detailed solutions (due to Prof. Ronen Plesser and myself), provided

as examples of how a really good solution might develop, with considerable annotation. However, most

problems do not have included solutions and never will have. I am actually philosophically opposed to

providing students with solutions that they are then immediately tempted to memorize. This guide is

provided so that you can learn to solve problems and work sufficiently carefully that they can trust the

solutions.

Students invariably then ask: But how are we to know if we’ve solved the problems correctly?”

The answer is simple. The same way you would in the real world! Work on them in groups and check

your algebra, your approach, and your answers against one another’s. Build a consensus. Solve them

with mentoring (course TAs, professors, former students, tutors all are happy to help you). Find answers

through research on the web or in the literature.

To be honest, almost any of the ways that involve hard work on your part are good ways to learn to solve

physics problems. The only bad way to (try to) learn is to have the material all laid out, cut and dried,

so that you don’t have to struggle to learn, so that you don’t have to work hard and thereby permanently

imprint the knowledge on your brain as you go. Physics requires engagement and investment of time

and energy like no subject you have ever taken, if only because it is one of the most difficult subjects

you’ve ever tried to learn (at the same time it is remarkably simple, paradoxically enough).

In any event, to use this guide most effectively, first skim through the whole thing to see what is there,

then start in at the beginning and work through it, again and again, reviewing repeatedly all of the

problems and material you’ve covered so far as you go on to what you are working on currently in class

and on the homework and for the upcoming exam(s). Don’t be afraid to solve problems more than once,

3



4 CHAPTER 1. PREFACE

or even more than three or four times.

And work in groups! Seriously! With pizza and beer...



Chapter 2

Short Math Review Problems

The problems below are a diagnostic for what you are likely to need in order to work physics problems.

There aren’t really enough of them to constitute practice”, but if you have difficulty with any of them,

you should probably find a math review (there is usually one in almost any introductory physics text

and there are a number available online) and work through it.

Weakness in geometry, trigonometry, algebra, calculus, solving simultaneous equations, or general vi-

sualization and graphing will all negatively impact your physics performance and, if uncorrected, your

grade.
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6 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Problem 1. problems-1/math-sa-binomial-expansion.tex

Write down the binomial expansion for the following expressions, given the conditions indicated. FYI,

the binomial expansion is:

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3 + . . .

where x can be positive or negative and where n is any real number and only converges if |x| < 1. Write

at least the first three non-zero terms in the expansion:

a) For x > a:
1

(x + a)2

b) For x > a:
1

(x+ a)3/2

c) For x > a:

(x+ a)1/2

d) For x > a:
1

(x + a)1/2
− 1

(x − a)1/2

e) For r > a:
1

(r2 + a2 − 2ar cos(θ))1/2
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Problem 2. problems-1/math-sa-differentiate-expressions.tex

Evaluate the following expressions, where d
dt means “differentiate with respect to t”:

a)
d

dt
sin(ωt) =

b)
d

dt
cos(ωt) =

c)
d

dt
ln(at) =

d)
d

dt

(

at5 + bt2 + c
)

=

e)
d

dt
eλt =

f)
d

dt

(

1 + at2
)3

=



8 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Problem 3. problems-1/math-sa-evaluate-vector-products.tex

y

x
θ

z A

B

a) Express the dot product in terms of its Cartesian components e.g. ~A = Axx̂+Ayŷ +Azẑ:

~A · ~B =

b) Express the dot product in terms of the magnitudes A, B and θ:

~A · ~B =

c) Express the magnitude of cross product in terms of the magnitudes A, B and θ:

∣

∣

∣

~A× ~B
∣

∣

∣
=

d) Express the cross product in terms of its Cartesian components e.g. ~A = Axx̂+Ayŷ +Azẑ (this

has a lot of terms):

~A× ~B =
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Problem 4. problems-1/math-sa-general-arithmetic.tex

Solve the following short problems:

a)

10 ∗ 24
5

=

b)

7.1 ∗ 3.× 103 + 12. =

c)

√
3

2
∗ 1√

6
=

d)

cos(π/6)/9 =

e)

sin(30◦) ∗ 3.14 =
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Problem 5. problems-1/math-sa-integrate-expressions.tex

Evaluate the following indefinite and definite integrals:

a)

∫ π/2

0

sin(θ) dθ =

b)

∫

cos(ωt) dt =

c)

∫

xn dx =

d)

∫ b

a

1

x
dx =

e)

∫

(−gt+ v0) dt =
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Problem 6. problems-1/math-sa-simple-series.tex

Evaluate the first three nonzero terms for the Taylor Series for the following expressions. Recall that

the radius of convergence for the binomial expansion (another name for the first taylor series in the list

below) is |x| < 1 – this gives you two ways to consider the expansions of the form (x+ a)n.

a) Expand about x = 0:

(1 + x)−2 ≈

b) Expand about x = 0:

ex ≈

c) For x > a (expand about x or use the binomial expansion after factoring):

(x+ a)−2 ≈

d) Estimate 0.91/4 to within 1% without a calculator, if you can. Explain your reasoning.
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Problem 7. problems-1/math-sa-solve-simple-equations.tex

Solve for t. Your answer should be an equation, although you may give a number answer for the last

one as well as the algebraic answer if you have a calculator handy. You may find ln(2) ≈ 0.693 to be a

useful thing to know if not.

a) v0t− x0 = 0 t =

b) −1

2
gt2 + v0t = 0 t =

c) −1

2
gt2 + v0t+ x0 = 0 t =

d) A/2 = Ae−t t =

(for A = 5).
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Problem 8. problems-1/math-sa-solve-simultaneous-equations.tex

Solve the following system of simultaneous equations for a and T . Show your work and give algebraic

answers in terms of m1, m2, θ and g:

m1g sin(θ) − T = m1a

T −m2g = m2a

a =

T =



14 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Problem 9. problems-1/math-sa-sum-two-vectors-1.tex

Suppose vector ~A = −4x̂+ 6ŷ and vector ~B = 9x̂+ 6ŷ. Then the vector ~C = ~A+ ~B:

a) is in the first quadrant (x+,y+) and has magnitude 17.

b) is in the fourth quadrant (x+,y-) and has magnitude 12.

c) is in the first quadrant (x+,y+) and has magnitude 13.

d) is in the second quadrant (x-,y+) and has magnitude 17.

e) is in the third quadrant (x-,y-) and has magnitude 13.
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Problem 10. problems-1/math-sa-sum-two-vectors.tex

a) Suppose vector ~A = 3x̂+ 6ŷ and bector ~B = −7x̂− 3ŷ. Then the vector ~C = ~A+ ~B:

A) is in the first quadrant (x+,y+) and has magnitude 7.

B) is in the second quadrant (x-,y+) and has magnitude 7.

C) is in the second quadrant (x-,y+) and has magnitude 5.

D) is in the fourth quadrant (x+,y-) and has magnitude 5.

E) is in the third quadrant (x-,y-) and has magnitude 6.

b) Suppose vector ~A = −4x̂+ 6ŷ and vector ~B = 9x̂+ 6ŷ. Then the vector ~C = ~A− ~B:

A) is in the x-direction and has magnitude 17.

B) is in the y-direction and has magnitude 13.

C) is in the −y-direction and has magnitude 12.

D) is in the x-direction and has magnitude 5.

E) is in the −x-direction and has magnitude 13.
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Problem 11. problems-1/math-sa-taylor-series.tex

Evaluate the first three nonzero terms for the Taylor series for the following expressions. Expand about

the indicated point:

a) Expand about x = 0:

(1 + x)n ≈

b) Expand about x = 0:

sin(x) ≈

c) Expand about x = 0:

cos(x) ≈

d) Expand about x = 0:

ex ≈

e) Expand about x = 0 (note: i2 = −1):

eix ≈

Verify that the expansions of both sides of the following expression match:

eiθ = cos(θ) + i sin(θ)
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Problem 12. problems-1/math-sa-trig-basic.tex

θ

hyp
opp

adj

Fill in the following in terms of the marked sides. For example, one of the answers below might be (but

probably isn’t) hyp
opp :

sin(θ) = cos(θ) = tan(θ) =



18 CHAPTER 2. SHORT MATH REVIEW PROBLEMS

Problem 13. problems-1/math-sa-vector-components.tex

x x

yy

60

5
4

4

(a) (b)

Two simple problems in vector analysis are presented above. You may leave your answers in terms of

radical fractions (e.g.
√
7/13) where appropriate. You may not use calculators!

a) Find the cartesian coordinate components (X,Y ) of the vector given.

X =

Y =

b) Find the polar coordinate components (V, θ) of the vector given.

|V | =

θ =
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2.0.1 Long Problems

Problem 14. problems-1/math-pr-elliptical-trajectory.tex

The position of a particle as a function of time is given by:

~x(t) = x0 cos(ωt)x̂+ y0 sin(ωt)ŷ

where x0 > y0.

a) What is ~v(t) for this particle?

b) What is ~a(t) for this particle?

c) Draw a generic plot of the trajectory function for the particle. What kind of shape is this? In

what direction/sense is the particle moving (indicate with arrow on trajectory)?

d) Draw separate plots of x(t) and y(t) on the same axes.
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Chapter 3

Essential Laws, Theorems, and

Principles

The questions below guide you through basic physical laws and concepts. They are the stuff that one

way or another you should know” going into any exam or quiz following the lecture in which they are

covered. Note that there aren’t really all that many of them, and a lot of them are actually easily derived

from the most important ones.

There is absolutely no point in memorizing solutions to all of the problems in this guide. In fact, for

all but truly prodigious memories, memorizing them all would be impossible (presuming that one could

work out all of the solutions into an even larger book to memorize!). However, every student should

memorize, internalize, learn, know the principles, laws, and and theorems covered in this section (and

perhaps a few that haven’t yet been added). These are things upon which all the rest of the solutions

are based.

21
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Short Problem 1.

problems-1/true-facts-angular-momentum-conservation.tex

When is the angular momentum of a system conserved?

Short Problem 2.

problems-1/true-facts-archimedes-principle.tex

What is Archimedes’ Principle? (Equation with associated diagram or clear and correct statement in

words.)

Short Problem 3.

problems-1/true-facts-bernoullis-equation.tex

What is Bernoulli’s equation? What does it describe? Draw a small picture to illustrate.

Short Problem 4.

problems-1/true-facts-coefficient-of-performance.tex

How is the coefficient of performance of a refrigerator defined? Draw a small diagram that schematically

indicates the flow of heat and work between reservoirs.

Short Problem 5.

problems-1/true-facts-conditions-static-equilibrium.tex

What are the two conditions for a rigid object to be in static equilibrium?

Condition 1:

Condition 1:

Short Problem 6.

problems-1/true-facts-coriolis-force.tex

What “force” makes hurricanes spin counterclockwise in the northern hemisphere and clockwise in the

southern hemisphere?
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Short Problem 7.

problems-1/true-facts-definition-of-decibel.tex

One measures sound intensity in decibels. What is a decibel? (Equation, please, and define and give

value of all constants.)

Short Problem 8.

problems-1/true-facts-doppler-shift-moving-source.tex

What is the equation for the Doppler shift, specifically for the frequency f ′ heard by a stationary observer

when a source emitting waves with speed u at frequence f0 is approaching at speed us?

Short Problem 9.

problems-1/true-facts-equipartition-theorem.tex

What is the Equipartition Theorem?

Short Problem 10.

problems-1/true-facts-four-forces-of-nature.tex

Name the four fundamental forces of nature as we know them now.

a)

b)

c)

d)

Short Problem 11.

problems-1/true-facts-generalized-work-energy.tex

What is the Generalized Work-Mechanical-Energy Theorem? (Equation only. This is the one that

differentiates between conservative and non-conservative forces.)

Short Problem 12.

problems-1/true-facts-heat-capacity-monoatomic-gas.tex

What is the heat capacity at constant volume CV of N molecules of an ideal monoatomic gas? What is

its heat capacity at constant pressure CP ?
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Short Problem 13.

problems-1/true-facts-heat-engine-efficiency.tex

What is the algebraic definition of the efficiency of a heat engine? Draw a small diagram that schemat-

ically indicates the flow of heat and work between reservoirs.

Short Problem 14.

problems-1/true-facts-inelastic-collision-conservation.tex

What is conserved (and what isn’t) in an inelastic collision?

Short Problem 15.

problems-1/true-facts-integral-definition-moment-of-inertia.tex

Write the integral definition of the moment of inertia of an object about a particular axis of rotation.

Draw a picture illustrating what “dm” is within the object relative to the axis of rotation.

Short Problem 16.

problems-1/true-facts-kepler1.tex

What is Kepler’s First Law?

Short Problem 17.

problems-1/true-facts-kepler2.tex

What is Kepler’s Second Law and what physical principle does it correspond to?

Short Problem 18.

problems-1/true-facts-kepler3.tex

What is Kepler’s Third Law?

Short Problem 19.

problems-1/true-facts-momentum-conservation.tex

Under what condition(s) is the linear momentum of a system conserved?
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Short Problem 20.

problems-1/true-facts-n1.tex

What is Newton’s First Law?

Short Problem 21.

problems-1/true-facts-n2.tex

What is Newton’s Second Law?

Short Problem 22.

problems-1/true-facts-n3.tex

What is Newton’s Third Law?

Short Problem 23.

problems-1/true-facts-newtons-law-gravitation.tex

What is Newton’s Law for Gravitation? Draw a picture showing the coordinates used (for two pointlike

masses at arbitrary positions), and indicate the value of G in SI units.

Short Problem 24.

problems-1/true-facts-parallel-axis-theorem.tex

Write the parallel axis theorem for the moment of inertia of an object around an axis parallel to one

through its center of mass. Draw a picture to go with it, if it helps.

Short Problem 25.

problems-1/true-facts-pascals-principle.tex

What is Pascal’s principle? A small picture would help.

Short Problem 26.

problems-1/true-facts-perpendicular-axis-theorem.tex

Write the perpendicular axis theorem for a mass distributed in the x − y plane. Draw a picture to go

with it, if it helps.
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Short Problem 27.

problems-1/true-facts-toricellis-law.tex

What is Toricelli’s Law (for fluid flow) and what is the condition required for it to be approximately

true?

Short Problem 28.

problems-1/true-facts-venturi-effect.tex

What is the Venturi Effect?

Short Problem 29.

problems-1/true-facts-wave-equation-string.tex

Write the wave equation (the differential equation) for waves on a string with tension T and mass density

µ. Identify all parts.

Short Problem 30.

problems-1/true-facts-work-energy.tex

What is the Work-Kinetic Energy Theorem?

Short Problem 31.

problems-1/true-facts-youngs-modulus.tex

What is the definition of Young’s modulus Y ? Draw a picture illustrating the physical situation it

describes and define all terms used in terms of the picture.



Chapter 4

Problem Solving

The following problems are, at last, the meat of the matter: serious, moderately to extremely difficult

physics problems. An A” student would be able to construct beautiful solutions, or almost all, of these

problems.

Note well the phrase beautiful solutions”. In no case is the answer” to these problems an equation,

or a number (or set of equations or numbers). It is a process. Skillful physics involves a systematic

progression that involves:

• Visualization and conceptualization. What’s going on? What will happen?

• Drawing figures and graphs and pictures to help with the process of determining what physics

principles to use and how to use them. The paper should be an extension of your brain, helping

you associate coordinates and quantities with the problem and working out a solution strategy.

For example: drawing a free body diagram” in a problem where there are various forces acting

on various bodies in various directions will usually help you break a large, complex problem into

much smaller and more manageable pieces.

• Identifying (on the basis of these first two steps) the physical principles to use in solving the

problem. These are almost invariably things from the Laws, Theorems and Principles chapter

above, and with practice, you will get to where you can easily identify a Newtons Second Law”

problem (or part of a problem) or an Energy Conservation” (part of) a problem.

• Once these principles are identified (and identifying them by name is a good practice, especially at

first!) one can proceed to formulate the solution. Often this involves translating your figures into

equations using the laws and principles, for example creating a free body diagram and translating

it into Newton’s Second Law for each mass and coordinate direction separately.

• At this point, believe it or not, the hard part is usually done (and most of the credit for the

problem is already secured). What’s left is using algebra and other mathematical techniques (e.g.

trigonometry, differentiation, integration, solution of simultaneous equations that combine the

results from different laws or principles into a single answer) to obtain a completely algebraic

(symbolic) expression or set of expressions that answer the question(s).

• At this point you should check your units! One of several good reasons to solve the problem

algebraically is that all the symbols one uses carry implicit units, so usually it is a simple matter

to check whether or not your answer has the right ones. If it does, that’s good! It means you

27
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probably didn’t make any trivial algebra mistakes like dividing instead of multiplying, as that sort

of thing would have led to the wrong units.

Remember, an answer with the right units may be wrong, but it’s not crazy and will probably get

lots of credit if the reasoning process is clear. On the other hand, an answer with the wrong units

isn’t just mistaken, its crazy mistaken, impossible, silly. Even if you can’t see your error, if you

check your answer and get the wrong units say so; your instructor can then give you a few points

for being diligent and checking and knowing that you are wrong, and can usually quickly help you

find your mistake and permanently correct it.

• Finally, at the very end, substitute any numbers given for the algebraic symbols, do the arithmetic,

and determine the final numerical answers.

Most of the problems below won’t have any numbers in them at all to emphasize how unimportant this

last step is in learning physics! Sure, you should learn to be careful in your doing of arithmetic, but

anybody can (with practice) learn to punch numbers into a calculator or enter them into a computer

that will do all of the arithmetic flawlessly no matter what. It is the process of determining how to

punch those numbers or program the computer to evaluate a correct formula that is what physics is all

about. Indeed, with skill and practice (especially practice at estimation and conceptual problem solving)

you will usually be able to at least approximate an answer and fully understand what is going on and

what will happen even without doing any arithmetic at all, or doing only arithmetic you can do in your

head.

As with all things, practice makes perfect, wax on, wax off, and the more fun you have while doing, the

more you will learn. Work in groups, with friends, over pizza and beer. Learning physics should not

be punishment, it should be a pleasure. And the ultimate reward is seeing the entire world around you

with different eyes...



Chapter 5

Newton’s Laws

The following problems include both kinematics” problems that can be solved using nothing but math-

ematics with units (no real physical principle but the notion of acceleration, for example) and true

dynamics problems – ones based on Newton’s Second Law plus various force laws, used to find the ac-

celeration(s) of various masses and, the differential equation(s) of motion of those masses, and from those

differential equations (by integration or later in the course, by more complicated methods of solution)

the velocity and the position.

Some problems are very short and can be answered on the basis of physics concepts with little or no

computation. Others must be solved algebraically with some real effort, usually using multiple physics

concepts and several mathematical skills synthesized together. A few problems are presented and then

completely solved to illustrate good solution methodology.

The main thing to remember is – be sure to connect the basic physical principles involved to

each problem as you solve them. Write them down separately, in English as well as equation form (if

there is one). Well over half of the difficulty of solving physics problems on exams comes from being

clueless concerning what the problem is all about. Typically, anywhere from 1/3 to 1/2 the credit for a

problem can be obtained by simply getting the basic physics right even if you screw up the algebra

afterwards or have no idea how to proceed from the concept to the solution.

But you will find, especially with practice, that once you do learn to identify the right physics to go

with a problem you can usually make it through the algebra and other math to get a creditable solution,

presuming only that you honestly have met the mathematical prerequisites for this course (or have beefed

up your math skills along the way).

Good luck!
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5.1 Kinematics

5.1.1 Multiple Choice

Problem 15. problems-1/kinematics-mc-range-of-cannon-on-plain.tex

m

m

θ

ov

θ

v?

2R

R

A cannon sits on a horizontal plain. When it fires a cannonball of mass m at speed v0 at an angle θ

relative to the ground it has a range R (neglecting friction and drag). Suppose one wishes to fire at a

target a distance 2R away without altering the the elevation angle θ. The initial speed of the cannonball

as it leaves the cannon in terms of v0 must then be (circle the correct answer):

a)
√
2v0 b) 2v0 c) 3v0 d) 4v0 e) We cannot tell because the answer depends upon θ.
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Problem 16. problems-1/kinematics-mc-cannonball-timed-trajectories-icp.tex

a)

b)

Two cannons fire projectiles into the air along the trajectories shown. Neglect the drag force of the air.

a) Cannonball a is in the air longer.

b) Cannonball b is in the air longer.

c) Cannonballs a and b are in the air the same amount of time.

d) We cannot tell which is in the air longer without more information than is given in the picture.
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Problem 17. problems-1/kinematics-mc-cannonball-timed-trajectories-icp-soln.tex

a)

b)

The motion in x and y are independent for 2D trajectory problems. You can therefore ignore the x

motion altogether when you assess the answer to this question. So, considering only how high each

cannonball goes, which one is in the air longer?
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Problem 18. problems-1/kinematics-mc-shooting-the-monkey.tex

A zookeeper wants to shoot a monkey sitting on a branch a height H above the gun muzzle in a tree a

horizontal distance R away with a tranquilizer gun. Where must the zookeeper aim the gun in order to

hit the monkey if the monkey falls asleep in the tree after being shot (that is, does not drop from the

tree at the instant he fires)? (Neglect air resistance, justify your answer with a sketch or some work.)

a) Straight at the monkey.

b) Slightly below the monkey.

c) Slightly above the monkey.

d) Cannot tell without knowing the mass of the monkey and the dart.
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Problem 19. problems-1/kinematics-mc-velocity-acceleration-2D-1.tex

C

B

A

v

+y

+x

A small ball of mass m is thrown so that it follows the parabolic trajectory shown. Neglect drag forces.

Circle the true statement(s) (there can be more than one) below:

a) The minimum speed occurs at point A.

b) The maximum speed occurs at point C.

c) The acceleration is larger at point B than it is at point C.

d) The acceleration is the same at points A and C.

e) The speed is the same at points A and C.
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Problem 20. problems-1/kinematics-mc-falling-time-mars.tex

Surface gravity on Mars is roughly 1/3 that of the Earth. Suppose you drop a rock (initially at rest)

from a height Hm on Mars and it takes a time tg to hit the ground. From what height He do you need

to drop the mass on Earth so that it hits the ground in the same amount of time?

a) He =
√
3Hm

b) He = 3Hm

c) He = 9Hm

d) He = Hm/
√
3

e) He = Hm/3
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5.1.2 Short Answer

Problem 21. problems-1/kinematics-sa-a2v2x-2.tex
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A particle undergoes one-dimensional motion such that its position x(t) = cos(t). Its velocity is

therefore given by v(t) = dx/dt = − sin(t). Both of these are plotted in the graph on the right.

a) Sketch the acceleration in the x-direction, a(t), in the lowest graph box provided.

b) For which letter(s) A,B,...,I in the middle panel does the particle have nonzero velocity and zero

acceleration?

c) For which letter(s) A,B,...,I in the middle panel does the particle have a zero velocity and nonzero

acceleration?

d) For which letter(s) A,B,...,I in the middle panel is the particle speeding up while its velocity is

negative?

e) Discussion: In physics, functions that have a power series expansion (like sine and cosine and the

exponential function) cannot have physical dimensions, nor can their arguments. Yet, in this

problem, you are given x(t) = cos(t) where x has units of meters, and t has units of seconds.

Find an explanation for this that makes sense. Are there hidden constants in this expression?

This is one of many reasons that algebraic expressions are superior to ones with (often hidden)

dimensioned numbers!
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Problem 22. problems-1/kinematics-sa-a2v2x.tex
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On the figure above the acceleration a(t) for one-dimensional motion is plotted in the bottom panel. In

the first and second panel sketch in approximate curves that represent x(t) and v(t) respectively. Your

curves should at least qualitatively agree with the bottom figure. Assume that the particle in question

starts from rest and is at the origin at time t = 0.
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Problem 23. problems-1/kinematics-sa-x-to-a-graphs.tex

0 2 4 6 8 10
-20

-10

0

10

20

t (seconds)

x 
(m

)

0 2 4 6 8 10
-10

-5

0

5

10

t (seconds)

v 
(m

/s
ec

)

0 2 4 6 8 10
-10

-5

0

5

10

t (seconds)

a 
(m

/s
ec

^2
)

On the figure above a trajectory x(t) for one-dimensional motion is plotted in the top panel. In the

second and third panel sketch in approximate curves that represent v(t) and a(t) respectively. Your

curves should at least qualitatively agree with the top figure and correctly identify ranges of positive,

negative and zero velocity and acceleration.
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Problem 24. problems-1/kinematics-sa-scaling-fall-times-mars.tex

Suppose that a mass dropped dropped from rest on Mars 2 meters above the surface takes 1 second to

reach the ground. How high do you have to drop it from for it to take 4 seconds to reach the ground?

(Neglect air resistance and show work to justify your answer.)
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Problem 25. problems-1/kinematics-sa-scaling-fall-times-icp.tex

A mass m is used to perform some experiments close to the surface of the planet Mongo (which will figure

prominently in a number of problems this semester). The near-surface gravitational force on Mongo,

like that of Earth, is given by:

Fy = −mgm

where the gravitational “constant” of Mongo is represented by the (unknown, so far) constant gm. You

observe that when it is dropped from 4 meters above the ground, it takes 1 second to reach the surface.

a) How high do you have to drop it from for it to take 3 seconds to reach the ground? (Neglect all

forces but gravity and show work to justify your answer.)

b) Just for fun, what is the gravitational acceleration gm on Mongo relative to that of Earth?

gm
ge

=
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Problem 26. problems-1/kinematics-sa-scaling-fall-times-icp-soln.tex

It’s easiest to do this algebraically and take a ratio. It eliminates most of the arithmetic. We follow

the ritual demonstrated in lecture. For either mass:

• Fy = −mgm = may (N2)

• ay = −gm (solve for acceleration)

• vy(t) = −
∫

gm dt = −gmt (Initial Condition: vy(0) = 0)

• y(t) =

∫

vy(t) dt = −
∫

gmt dt = H − 1

2
gmt2 (Initial Condition: y(0) = H)

Note well that we do not write units next to symbols with known/implicit units. In this case, y and

H are obviously lengths, t is a time, gm is an (unknown) acceleration. We don’t even need to specify a

system of units for these equations to be correct!

After the first week or two, you will not need to do the integrals explicitly and will just remember the

constant acceleration results without ever tring to “memorize” them, but for now you should! Then

(writing each solution and rearranging):

H1 =
1

2
gmt21

H2 =
1

2
gmt22

We can take the ratio of these two equations, which eliminates the unknown gm:

H2

H1
=

(

t2
t1

)2

=

(

32

12

)

= 9

or

This is an example of scaling. Since the distance fallen scales with time squared, it falls 9 times as far

in 3 times the time. A physicist might not even write down the equations to arrive at this conclusion!

Remember, the time it takes to answer a question matters on a quiz or exam. One can solve this many

ways, some of them purely arithmetical (for example, find gm from the first equation, substitute it into

the second equation), but most of them are a lot more work and take more time!

Our final answers, of course, should be explicitly written and have units:

a)

H2 = 9H1 = 9× 4 = 36 meters.

b)
gm
ge

= 0.8
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Problem 27. problems-1/kinematics-sa-falling-time-earth-moon.tex

Gravity on the surface of the moon is weaker than it is on the surface of the earth: gmoon ≈ gearth/6.

If a mass dropped from 5 meters above the earth takes 1 second to reach the surface of the earth, how

long does it take a mass dropped from the same height above the moon take to reach the surface of the

moon? (You can express the answer as a rational fraction, no need for calculators.)
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5.1.3 Long Problems

Problem 28. problems-1/kinematics-pr-2D-basketball-trajectory.tex

0v

R
θ

y

x
H

A basketball player shoots a jump hook at a (hor-

izontal) distance R from the basket, releasing the

ball at a height H above the rim as shown. To

shoot over his opponent’s outstretched arm, he

releases the basketball at an angle θ with respect

to the horizontal.

Find v0, the speed he must release the basketball

with (in terms of H , R, g and θ) for the ball to

go through the hoop “perfectly” as shown. As-

sume that his release is on line and undeflected,

at initial speed v0 and that the acceleration of the

basketball is ~a = −gĵ, ignoring drag.
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Problem 29. problems-1/kinematics-pr-2D-basketball-trajectory-soln.tex

0v

R
θ

y

x
H

First, note that

ax = 0, v0x = v0 cos(θ), x0 = 0

and

ay = −g, v0y = v0 sin(θ), y0 = 0

define the initial conditions of two independent 1D constant acceleration problems.

Integrate ax = 0 twice to get:

x(t) = v0 cos(θ)t

Integrate ay = −g twice to get:

y(t) = −1

2
gt2 + v0 sin(θ)t

Next, find the time tb that the basketball reaches the horizontal position of the hoop:

R = v0 cos(θ)tb ⇒ tb = R/(v0 cos(θ))

This must also be the time that the ball has exactly the height of the hoop:

−H = −1

2
gt2b + v0 sin(θ)tb

−H = − gR2

2v20 cos
2(θ)

+R tan(θ)

gR2

2v20 cos
2(θ)

= R tan(θ) +H

And finally, we solve for v0:

v0 =

√

gR2

2(R sin(θ) cos(θ) +H cos2(θ))

After doing the algebra, check the dimensions. Are they OK?

Check “common sense” – does the solution vary the way you expect? Well, if g goes up, he must shoot

the ball faster to overcome gravity on (say) Jupiter. Makes sense. If H goes up, must shoot faster even

here on Earth to reach the hoop. Makes sense.
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Note that solution doesn’t tell us whether a shot at the given angle will hit the rim, but if θ points

directly at center of hoop (tan(θ) = −H/R) then v0 has to become “infinite” for ball to travel in a

straight line to the target. There are no solutions for angles less than this as we can tell because the

solution speed becomes imaginary! This too makes “sense”.

Note Well: There is a second, much more painful solution that involves finding the time that the

basketball reaches the right height H first, then substituting it into equation for R. This solution can

work, but it is not easy. The trick is to isolate the radical on one side of the equals sign, square both

sides (to make the radical go away), and then solve for v0. Done perfectly, it will give you precisely the

same answer obtained above.
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Problem 30. problems-1/kinematics-pr-bombing-run-trajectory.tex

H

R

v0

θ

A forest fire is burning. A forest service plane flying horizontally at a height H above the ground is

about to release a water bomb with initial horizontal velocity v0x̂ at just the right instant so that

it will freely fall with the right trajectory to hit the fire and put it out. Neglect drag forces and answer

the following questions in terms of the givens H and v0 and physical constants you know such as g.

a) How long will it take for the bomb to reach the ground?

b) What should the angle θ of the line that leads directly from the fire to the plane as shown be

at the instant of release if the bomber wishes to hit the fire? (Note that this line is not the

trajectory of the water bomb, which is the curved line above it.)

c) What is the speed of the the bomb when it hits the fire?
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Problem 31. problems-1/kinematics-pr-golf-on-moon-icp.tex

vf = ?

t = ?

H

v0

R = ?

f

An astronaut on the moon hits a golf ball of mass m horizontally from a tee H meters above the plane

as shown. The initial speed of the ball is v0 in the x-direction only. The gravitational force law for the

moon is:
~Fm = −m

g

6
ĵ

Note that there are no drag forces as the moon is in a vacuum, and that the lunar plane is flat on the

scale of this picture. Use Newton’s second law to answer the following questions:

a) How long does it take the ball to reach the ground?

b) How far from the base of the cliff where the tee is located does the ball strike?

c) How fast is the ball going when it hits the ground?
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Problem 32. problems-1/kinematics-pr-golf-on-moon-icp-soln.tex

vf = ?

t = ?

H

v0

R = ?

f

a) tg =

√

2H

g′
=

√

12H

g

b) R = x(tg) = v0tg = v0

√

2H

g′

c) This one is a bit tricky (and gets much easier with energy conservation later):

vx(tg) = v0

vy(tg) =

√

2Hg

6

v =
√

v2x + v2y =

√

v20 +
2Hg

6
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Problem 33. problems-1/kinematics-pr-green-laser-falls.tex

The Green Lantern’s daughter, Green Laserbeam, steps off of a tall building to follow her dad to the

ground. She falls freely (from rest) to the ground, falling the last third of the total distance in a time

t2. Find the following ratio of the total time it takes for her to reach the ground to t2. Your

answer should be a number.

ttot
t2

=
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Problem 34. problems-1/kinematics-pr-range-of-cannon-on-plain.tex

m

θ
R

H
ov

A cannon sits on a horizontal plain. It fires a cannonball of mass m at speed v0 at an angle θ relative

to the ground. Find:

a) The maximum height H of the cannonball’s trajectory.

b) The time ta the cannonball is in the air.

c) The range R of the cannonball.
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Problem 35. problems-1/kinematics-pr-stopping-before-a-turtle.tex

v0

D

A distance of D meters ahead of your car you see a box turtle sitting on the road. Your car is traveling

at a speed of v0 meters per second straight at the turtle (along the straight road).

a) What is the (algebraic) magnitude of the minimum acceleration your car must have in order to

stop before hitting the turtle? What is its direction?

b) How long does it take to stop your car at this acceleration?

c) Evaluate your algebraic answers for D = 50 m, v0 = 20 m/sec (about 45 mph). If your car’s

maximum braking acceleration magnitude is a = 5 m/sec2, do you hit the turtle?
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Problem 36. problems-1/kinematics-pr-evie-kniebel-trajectory.tex

θ = 37.5 v

ramp

4 m

1m

Evie Kniebel, a stunt woman for a movie, is trying to jump a motorcycle across a crocodile-filled ditch

and land on a special ramp that is built into the branch of a convenient tree. The horizontal gap she

must leap to reach the ramp is 4 m. The ramp is vertically 1 m above the lip of the takeoff ramp. The

angle of the takeoff ramp is fixed at 37.5◦(which just happens to be the angle of a 3-4-5 right triangle).

If Evie jumps even a bit too high, she will wreck on an overhanging branch. If she jumps too low, she

bounces back. Either way the crocs that have already dined on Evie’s stunt-cousins Evel, Weevel, and

Abel Kneibel will eat well again.

With what speed v0 must she take off to complete the jump just right (and live to get paid)? Answer

the question algebraically FIRST and only then worry about numbers.
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Problem 37. problems-1/kinematics-pr-monkey-gun.tex

θ
0v

D

H

A hunter aims his gun directly at a monkey in a distant tree. Just as she fires, the monkey lets go and

drops in free fall towards the ground. Show that the bullet hits the monkey.
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Problem 38. problems-1/kinematics-pr-stopping-before-a-bicycle-icp.tex

vs bv

Sally is driving on a straight country road at night at a speed of vs = 20 meters/second when she sees

a bicyle without any lights loom ahead of her. The bike is travelling in the same direction as Sally at

vb = 5 meters/second. She slams on her brakes when she is a distance D = 50 meters from the bike,

and her car brakes with a constant acceleration of a = −5 meters/second2.

a) Write an algebraic condition for car hitting the bike. Do not use any of the numbers given above

in the algebra; use symbols.

b) Draw a graph representing the trajectories of the car and the bike. Again, this doesn’t need to

be for particular values of the givens; you may want to draw several graphs representing different

cases where the bike is or isn’t hit.

c) The biker is deaf and doesn’t hear her brakes or alter his speed in any way. Does Sally’s car hit

the bike for the specific values given?

d) Suppose that the bike is travelling towards her (on the wrong side of the road). Does she hit the

bike (before she stops moving forward) then for the specific values given?
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Problem 39. problems-1/kinematics-pr-stopping-before-a-bicycle-icp-soln.tex

v

x0 D

sv b

First, ignore the numbers.

a)

xcar(tc) = xbike(tc)

or in the coordinate system indicated:

vstc −
1

2
at2c = D + vbtc

This is just a quadratic equation:

1

2
at2c + (vb − vs)tc +D = 0

If one can find a real time tc that solves this equation, the car hits the bike. If the time(s) that

satisfy the quadratic are imaginary, then the car stops before hitting the bicycle.

b) Here are two graphs. In the first one the car barely misses the bike. In the second one, it hits the

bike (but only once – why?).

x

t

bike

D

x

t

bike

D

miss

car
car is stopped

hit

car is stopped
car

c) No bikers were injured in this problem. If the quadratic bothers you (it shouldn’t) note that it

takes 3 seconcds for Sally to slow to the speed of the biker. If her position at that time is still

behind the bike’s position at that time, she will never reach it. The bike is at xb = 65 meters, far

beyond the 37.5 meters she reaches at this time.
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d) It now takes her 4 seconds to stop completely. She stops at xs = 40 meters. But at that same

time, xb = 30 meters! So she hits it.

This is why bikers should always ride with the traffic! They do not obey the same rule as a

pedestrian who walks facing the traffic! The pedestrian can just step off of the road, but a biker often

cannot because of a curb or other obstruction!
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Problem 40. problems-1/kinematics-pr-two-braking-cars.tex

v 2a 3v/2 a

D1 2

Two cars are driving down a straight country road when the driver of the first car (travelling at speed

v1 = v) sees a turtle crossing the road in front of her. She quickly applies the brake, causing her car

to slow down with a (negative) acceleration a1 = 2a. The second car is a distance D behind her and is

travelling at an initial speed v2 = 3v/2. Its driver immediately applies his brakes as well – assume at

the same time as the driver of the first car – but his car is heavier and his tires are not so good and his

car only slows down with a (negative) acceleration a2 = a.

a) Find the minimum value of D such that the cars do not collide.

b) Qualitatively graph x1(t) and x2(t) as functions of time on a reasonable scale.

c) Qualitatively graph v1(t) and v2(t) as functions of time on a reasonable scale with the same time

axis.
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Problem 41. problems-1/kinematics-pr-two-falling-balls.tex

1 2

H

v
0

R

When a trigger is pulled at time t = 0, a compressed spring simultaneously drops ball 1 and hits identical

ball 2 so that it is shot out to the right as initial speed v0 as shown. The two balls then independently

fall a height H . Answer the following questions, assuming that the balls fall only under the influence of

gravity. (Neglect drag forces, and express all answers in terms of the givens, in this case H and v0 and

(assumed) gravitational acceleration g.).

a) Which ball strikes the ground first (or do they strike at the same time)? Prove your answer by

finding the time that each ball hits the ground.

b) Which ball is travelling faster when it hits the ground (or do they hit at the same speed)? Prove

your answer by finding an expression for the speed each ball has when it hits the ground.

c) Find an expression for R, the horizontal distance ball 2 travels before hitting the ground.
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5.2 Dynamics

5.2.1 Multiple Choice

Problem 42. problems-1/force-mc-acceleration-two-masses-1.tex

H

m  = 2 kg1 2m  = 4 kg

+x

+y

A mass m1 = 2 kg and a mass of m2 = 4 kg are both dropped from rest from the same height at the

same time. Mark the true statements with an “X” below (there can be more than one). Neglect drag

forces.

While the two masses are falling, the force acting on m1 and the force acting on m2 are equal

in magnitude.

While the two masses are falling, the acceleration of m1 and the acceleration of m2 are equal in

magnitude.

Mass m2 will strike the ground first.

Mass m1 will strike the ground first.

The two masses will strike the ground at the same time.
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Problem 43. problems-1/force-mc-block-on-paper-icp.tex

m

A block of mass m is resting on a long piece of smooth paper. The block has coefficient of static and

kinetic friction µs, µk with the paper, respectively. You jerk the paper horizontally so it slides out from

under the block quickly in the direction indicated by the arrow without sticking. Which of the following

statements about the force acting on and acceleration of the block are true?

a) F = µsmg, a = µsg, both to the right. b) F = µkmg to the right, a = µkg to the left.

c) F = µkmg, a = µkg both to the left. d) F = µkmg to the left, a = µkg to the right.

e) F = µkmg, a = µkg both to the right. f) None of the above.
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Problem 44. problems-1/force-mc-N3-pick-list-1-icp.tex

The following sentences each describe two specific forces exerted by objects in a physical situation. Circle

the letter of the sentences where those two forces form a Newton’s Third Law force pair. More than

one sentence or no sentences at all in the list may describe a Newton’s Third Law force pair.

a) In an evenly matched tug of war (where the rope does not move); team one pulls the rope to the

left with some force and team two pulls the rope to the right with an equal magnitude force in the

opposite direction.

b) Gravity pulls me down; the normal force exerted by a scale I’m standing on pushes me up with an

equal magnitude force in the opposite direction.

c) The air surrounding a helium balloon pushes it up with a buoyant force; the balloon pushes the

air down with an equal magnitude force in the opposite direction.
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Problem 45. problems-1/force-mc-N3-pick-list.tex

Identify the Newton’s Third Law pairs from the following list of forces (more than one could be right):

a) The Earth pulls me down with gravity, the normal force exerted by the ground pushes me up.

b) I pull hard on a rope in a game of tug-of-war, the rope pulls back hard on me.

c) A table exerts a force upwards on a book sitting on it; the book exerts a force downward on the

table.

d) I pull up on a fishing rod trying to land a big fish; the fish pulls down on the fishing rod to get

away.

e) My car is stuck in the mud. I push hard on the car to free it, but the car pushes back on me hard

enough that I slip and fall on my face in the mire.
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Problem 46. problems-1/force-mc-pushing-two-blocks.tex

M m
F

The figure shows two blocks of mass M and m that are being pushed along a horizontal frictionless

surface by a force of magnitude F as shown. What is the magnitude of the force that the block of mass

M exerts on the block of mass m?

a) F

b) m F
M

c) m F
(M+m)

d) M F
(M+m)
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Problem 47. problems-1/force-mc-sliding-block-and-tackle.tex

m

m

1

2

s kµ µ,

A block of mass m1 sits on a rough table. The coefficient of static and kinetic friction between the mass

and the table are µs and µk, respectively. Another mass m2 is suspended as indicated in the figure above

(where the pulleys are massless and the string is massless and unstretchable). What is the maximum

mass m2 for which the blocks remain at rest?

a) m2 = 2m1µk

b) m2 = m1µk/2

c) m2 = m1/µs

d) m2 = 2m1µs

e) m2 = m1µs/2
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Problem 48. problems-1/force-mc-terminal-velocity-vsq-2bs.tex

Two spherical objects, both with mass m, are falling freely under the influence of gravity through air.

The air exerts a drag force on the two spheres in the opposite direction to their motion with magnitude

F1 = b1v
2
1 and F2 = b2v

2
2 respectively, with b2 = 2b1.

Suppose the terminal speed for object 1 is vt. Then the terminal speed of object 2 is:

a) 2vt

b)
√
2vt

c) vt

d)
√
2
2 vt

e) vt/2
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Problem 49. problems-1/force-mc-terminal-velocity-vsq.tex

m

g (down)

v

air

In the figure above, a spherical mass m is falling freely under the influence of gravity through air. The

air exerts a drag force on the sphere in the opposite direction to its motion of magnitude Fd = bv2

(where the drag coefficient b is determined by the shape of the object and its interaction with the air).

After a (long) time, the falling mass approaches a constant terminal speed vt, where:

a) vt =
Fd

b

b) vt =
mg
b

c) vt =
(

mg
b

)2

d) vt =
√

mg
b

e) vt =
(

Fd

m

)

t
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Problem 50. problems-1/force-mc-terminal-velocity-v.tex

m

g (down)

v

air

In the figure above, a spherical mass m is falling freely under the influence of gravity through air. The

air exerts a drag force on the sphere in the opposite direction to its motion of magnitude Fd = bv (where

the drag coefficient b is determined by the shape of the object and its interaction with the air). After a

(long) time, the falling mass approaches a constant terminal speed vt, where:

a) vt =
Fd

b

b) vt =
mg
b

c) vt =
(

mg
b

)2

d) vt =
√

mg
b

e) vt =
(

Fd

m

)

t
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Problem 51. problems-1/force-mc-two-constant-forces.tex

y

x

gravity 
F      = 2 mgrocket

m
0

v

In the figure above, a rocket engine exerts a constant force ~F = 2mg x̂ to the right on a freely falling

mass near the surface of the earth. The object is initially moving at velocity v0 to the right (+x

direction). No drag or frictional forces are present – consider only the two forces of gravity and the

rocket engine. The object:

a) Moves in a straight line with an acceleration of magnitude 3g.

b) Moves in a straight line with an acceleration of magnitude
√
5g.

c) Moves in a parabolic trajectory with an acceleration of magnitude 3g.

d) Moves in a parabolic trajectory with an acceleration of magnitude
√
5g.

e) We cannot determine the trajectory and/or the magnitude of the acceleration from the information

given.

Sketch your best guess for the trajectory of the particle in on the figure above as a dashed line with an

arrow.
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Problem 52. problems-1/force-mc-two-masses-falling-drag-icp.tex

H

m  = 2 kg1

+x

+y m  = 4 kg2

A mass m1 = 2 kg and a mass of m2 = 4 kg have identical size, shape, and surface characteristics, and

are both dropped from rest from the same height H ≈ 50 meters at the same time. Air resistance

(drag force) is present! Place a T/F in each box below as required:

Initially, the acceleration of both masses is the same.

The 2 kg mass hits the ground first.

The 4 kg mass hits the ground first.

Both masses hit the ground at the same time.

Just before they hit, the acceleration of the heavier mass is greater.
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Problem 53. problems-1/force-mc-inertial-reference-frames.tex

Newton’s Second Law states that ~F tot = m~a where ~F tot is the total force exerted on a given mass m by

actual forces of nature or force rules that idealize actual forces of nature (such as Hooke’s Law, normal

forces, tension in a string), but only if one defines ~a in an inertial reference frame.

Select the best (most complete and accurate) explanation for the inertial reference frame requirement

below:

a) It is too difficult to solve for the acceleration of a mass in a non-inertial reference frame.

b) In non-inertial reference frames, the sum of the actual forces acting on a mass is no longer equal

to the mass times its acceleration in the frame.

c) The Earth’s surface is “the” reference inertial reference frame; we use it as the basis for physics in

all other frames moving at constant velocity relative to the Earth.

d) Inertial reference frames allow one to use pseudoforces when forces alone are not enough.

e) Because the inertia/mass of an object cannot be measured in a non-inertial reference frame, New-

ton’s Second Law doesn’t hold there.



5.2. DYNAMICS 71

Problem 54. problems-1/force-mc-weight-in-elevator-icp.tex

m

a

In the figure above, a person of mass m is standing on a scale in an elevator (near the Earth’s surface)

that is accelerating upwards with acceleration a. What does the scale read?

mg. ma. m(g + a). m(g − a).

We cannot tell what the scale would show without more information.
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Problem 55. problems-1/force-mc-coriolis-dropped-mass-at-equator.tex

A dense mass m is dropped “from rest” from a high tower built at the equator. As the mass falls, it to

a person standing on the ground appears to be deflected as it falls to the:

a) East.

b) West.

c) North.

d) South.

e) Cannot tell from the information given.



5.2. DYNAMICS 73

Problem 56. problems-1/force-mc-coriolis.tex

The Earth is a rotating sphere, and hence is not really an inertial reference frame. Select the true answers

from the following list for the apparent behavior of e.g. naval projectiles or freely falling objects:

a) A naval projectile fired due North in the northern hemisphere will be (apparently) deflected East

(spinward).

b) A naval projectile fired due South in the northern hemisphere will be (apparently) deflected East

(spinward).

c) A bomb dropped from a helicopter hovering over a fixed point on the surface in the northern

hemisphere will be (apparently) deflected West (antispinward).

d) A bomb dropped from a helicopter hovering over a fixed point on the surface in the northern

hemisphere will be (apparently) deflected East (spinward).

e) An object placed at (apparent) “rest” on the surface of the Earth in the Northern hemisphere

experiences an (apparent) force to the North.

f) An object placed at (apparent) “rest” on the surface of the Earth in the Northern hemisphere

experiences an (apparent) force to the South.

g) The true weight of an object measured with a spring balance in a laboratory on the equator is a

bit larger than the measured weight.

h) The true weight of an object measured with a spring balance in a laboratory on the equator is a

bit smaller than the measured weight.
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5.2.2 Ranking/Scaling

Problem 57. problems-1/force-ra-circular-motion-tension.tex

= 2m

= 1 m

= 2 m/sec

= 1 m/sec

= 2 kg

= 1 kg

BA

C D

In the four figures above, you are looking down on a mass sitting on a frictionless table being whirled

on the end of a string. The mass, length of string, and speed of the mass in each figure are indicated in

the key on the right.

Rank the tension in the string in each of the four figures above, from lowest to highest. Equality is

a possibility. An example of a possible answer is thus: A < B = C < D.
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Problem 58. problems-1/force-ra-tension-between-two-unequal-blocks-friction.tex

a)

b)

Tb

Ta

F

F
m

m

M

M

In the figure above a block of mass m is connected to a block of mass M > m by a string. Both blocks

sit on a smooth surface with a coefficient of kinetic friction µk between either block and the surface. In

figure a), a force of magnitude F (large enough to cause both blocks to slide) is exerted on block M to

pull the system to the right. In figure b), a force of (the same) magnitude F is exerted on block m to

pull the system to the left.

Circle the true statement:

a) The tension Ta > Tb.

b) The tension Ta < Tb.

c) The tension Ta = Tb.

d) There is not enough information to determine the relative tension in the two cases.
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Problem 59. problems-1/force-ra-tension-between-two-unequal-blocks-icp.tex

a)

b)

Tb

Ta

F

F
m

m

M

M

In the figure above a block of mass m is connected to a block of mass M > m by a string. Both blocks

sit on a frictionless floor. In a), a force of magnitude F is exerted on block M to pull the system to the

right. In b), a force of (the same) magnitude F is exerted on block m to pull the system to the left.

Circle the true statement:

a) The tension Ta > Tb.

b) The tension Ta < Tb.

c) The tension Ta = Tb.

d) There is not enough information to determine the relative tension in the two cases.
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5.2.3 Short Answer

Problem 60. problems-1/force-sa-block-on-paper.tex

m
µk

A block of mass m is resting on a long piece of smooth paper. The block has a coefficient of kinetic

friction µk with the paper. You pull the paper horizontally out from under the block quickly in the

direction indicated by the arrow.

a) Draw the direction of the frictional force acting on the block.

b) What is the magnitude and direction of the acceleration of the block?
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Problem 61. problems-1/force-sa-free-fall-cliff-icp.tex

v

t

A ball of mass m is dropped from rest over the edge of a very tall (kilometer high) cliff. It experiences

a drag force opposite to its velocity of Fd = −bv2.

a) On the axes above, qualitatively plot its downward speed as function of time.

b) What is its approximate speed when it hits after falling a long time/distance?
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Problem 62. problems-1/force-sa-kinematic-graphs-1-icp.tex

654321

−1

1

t (seconds)

F (t)x

The graph above represents the force in the positive x direction Fx(t) applied to a mass m = 1 kg as

a function of time in seconds. The mass begins at rest at x = 0. The force F is given in Newtons, the

position x is given in meters.

a) What is the acceleration of the mass during the time interval from t = 0 to t = 6 seconds (sketch

a curve)?

b) How fast is the mass going at the end of 6 seconds?

c) How far has the mass travelled at the end of 6 seconds?
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Problem 63. problems-1/force-sa-parachutist.tex

A skydiver of mass m jumps from a helicopter and immediately

opens her parachute (so that her initial downward speed with

the parachute open is basically zero.) The parachute exerts a

quadratic drag force (proportional to v2) with a drag coefficient

b.

a) Draw a free body diagram showing the forces acting on the

skydiver a short time later when her downward speed is v.

Write down an expression for the magnitude of her acceler-

ation at this speed.

b) Find her terminal (asymptotic) speed as she falls over a very

long distance.

c) If her terminal speed needs to be reduced by a factor of 2

for her to land safely, by what factor must b be increased?

m

g

v
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Problem 64. problems-1/force-sa-pushing-two-blocks.tex

M m
F

The figure shows two blocks of mass M and m that are being pushed along a horizontal frictionless

surface by a force of magnitude F as shown. What is the magnitude of the (contact/normal) force that

the block of mass M exerts on the block of mass m?
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Problem 65. problems-1/force-sa-two-blocks-friction.tex

1

m 2

m

F

s k,µ µ

A block of mass m1 is placed on a larger block of mass m2 > m1, where there is a coefficient of static

friction µs = 0.25 and a coefficient of kinetic friction µk = 0.2 for the surface in contact between the

blocks. Both blocks are on a frictionless table. A force of magnitude F = 3(m1 +m2)g is applied to the

bottom block only.

a) Is the magnitude of the acceleration of the lower block greater than, less than, or equal to the

magnitude of the accleration of the upper block?

b) Find the acceleration of the top block only (magnitude and direction).
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5.2.4 Long Problems

Problem 66. problems-1/force-pr-a-constant-simplest-icp.tex

x

y

x 0

v0
m

A block of mass m sits on a horizontal frictionless table as shown. A constant force ~F = F x̂ in the

+x-direction (to the right) is applied to it. The mass is initially moving to the left with speed v0, and

starts a the position x0 as shown.

a) Draw a force diagram for the mass m onto the figure above. This should include all the forces,

including those that cancel.

b) Write down an expression for the acceleration ~a of the mass.

c) Integrate the acceleration one time to find ~v(t).

d) Integrate the velocity one time to find ~x(t).

e) How long will it take to bring the particle to rest (where infinity is a possible answer)?

f) Where will it be when it comes to rest?
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Problem 67. problems-1/force-pr-a-constant-simplest-soln.tex

x

y

x 0

v0
m

mg

F

N

or

mg

N

F

A block of mass m sits on a horizontal frictionless table as shown. A constant force ~F = F x̂ in the

+x-direction (to the right) is applied to it. The mass is initially moving to the left with speed v0, and

starts a the position x0 as shown.

a) Draw a force diagram for the mass m onto the figure above. This should include all the forces,

including those that cancel.

b) Write down an expression for the acceleration ~a of the mass.

c) Integrate the acceleration one time to find ~v(t).

d) Integrate the velocity one time to find ~x(t).

e) How long will it take to bring the particle to rest (where infinity is a possible answer)?

f) Where will it be when it comes to rest?

For a), see above.

For b) in the y-direction:
∑

y

Fy = N −mg = may = m0 = 0

ay = 0

and nothing interesting happens in the y-direction. The block doesn’t jump into the air or fall through

the solid table! In the x-direction:
∑

x

Fx = F = max

ax = F/m

Acceleration is a vector so we must specify its magnitude and direction in some way or some

coordinate frame. Any of the following are acceptable ways:

~a = F/mx̂ = (F/m, 0) = (|~a| = F/m, θ~a = 0)(polar) = F/m “to the right”

or just ax = F/m, ay = 0 as obtained above.

For part c), ay = 0 = dvy/dt so vy = a constant. But its initial y-velocity is zero, so vy = 0 = dy/dt.

Thus y is a constant. But the initial value for y is 0 in a reasonable coordinate system and in any event

it does not change, so we’ll choose coordinates where boring old y = 0 throughout.
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x is more interesting:

ax =
F

m
=

dvx
dt

dvx =

(

F

m

)

dt

vx =

∫

dvy =

(

F

m

)
∫

dt =

(

F

m

)

t+ v0x

hence (using the given fact that vx(0) = −v0):

vx =

(

F

m

)

t− v0 =
dx

dt

For part d) we now repeat this process for dx:

x =

∫

dx =

∫
{(

F

m

)

t− v0

}

dt =
1

2

(

F

m

)

t2 − v0t− x0

where we used the given fact that x(0) = −x0 in the coordinate system shown.

Again, we could express both of these vector answers in any acceptable way. I’ll use cartesian coordi-

nates:

~v(t) =

{(

F

m

)

t− v0]

}

x̂

x(t) =

{

1

2

(

F

m

)

t2 − v0t− x0

}

x̂

For part e) we try to solve:

vx(ts) =

(

F

m

)

ts − v0 = 0

for the particular time ts that the block’s velocity will equal zero. We get:

ts =
mv0
F

At that time its y-coordinate will remain zero (of course) but its x-coordinate will be:

x(ts) =
1

2

(

F

m

)

t2s − v0ts − x0

=
1

2

(

F

m

)

(mv0
F

)2

− v0

(mv0
F

)

− x0

= −1

2

(

mv20
F

)

− x0

Note well! This last result can be made familiar to us by noting that the acceleration is constant, so

that v2f − v20 = 2ax∆x, with ax = F/m. Hence:

xf − (−x0) = ∆x = −v20/(2F/m) = −1

2

(

mv20
F

)

and xf = x(ts) as expected. There is yet another way to do it using work and energy.



86 CHAPTER 5. NEWTON’S LAWS

This example solution has been worked in more detail than would usually be required on a problem,

but I would still recommend that you start out working homework and additional examples from this

guide at exactly this level. After a bit some of the steps will be so obvious and easy and boring (like the

discussion of the nothing interesting that happens in y above) that you can safely omit them or cover

them with a phrase like “ay = 0 so y is unchanged”, but wait for that to happen and pay attention to

the stated requirements of your class’s particular grader(s).
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Problem 68. problems-1/force-pr-atwoods-machine-icp.tex

m1 m2

In the figure above Atwood’s machine is drawn – two masses m1 and m2 hanging over a massless

frictionless pulley, connected by a massless unstretchable string.

a) Draw free body diagrams (isolated diagrams for each object showing just the forces acting on that

object) for the two masses in the figure above.

b) Convert each free body diagram into a statement of Newton’s Second Law for that object.

c) Find the acceleration of the system and the tensions in the string on both sides of the pulley in

terms of m1, m2, and g.

d) Suppose mass m2 > m1 and the system is released from rest with the masses at equal heights.

When mass m2 has descended a distance H , find the speed of the masses.
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Problem 69. problems-1/force-pr-bead-on-hoop.tex

R

m v

A bead of mass m is threaded on a metal hoop of radius R. There is a coefficient of kinetic friction µk

between the bead and the hoop. It is given a push to start it sliding around the hoop with initial speed

v0. The hoop is located on the space station, so you can ignore gravity.

a) Find the normal force exerted by the hoop on the bead as a function of its speed.

b) Find the dynamical frictional force exerted by the hoop on the bead as a function of its speed.

c) Find its speed as a function of time. This involves using the frictional force on the bead in Newton’s

second law, finding its tangential acceleration on the hoop (which is the time rate of change of its

speed) and solving the equation of motion.

All answers should be given in terms of m, µk, R, v (where requested) and v0.
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Problem 70. problems-1/force-pr-bead-on-semicircular-hoop.tex

m

θ R

Ω

A small frictionless bead is threaded on a semicircular wire hoop with radius R, which is then spun on

its vertical axis as shown above at angular velocity Ω.

a) Find the angle θ where the bead will remain stationary relative to the rotating wire as a function

of R, g, and Ω.

b) From your answer to the previous part, it should be apparent that there is a minimum angular

velocity Ωmin that the hoop must have before the bead moves up from the bottom at all. What is

it? (Hint: Think about where the previous answer has solutions.)
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Problem 71. problems-1/force-pr-dropping-washington-duke-trajectory.tex

D

H

ROSES

M

θ
h

v0

me

student

A physics student irritated by the personal mannerisms of their physics professor decides to rid the world

of him. The student plans to drop a large, massive object (the statue of Washington Duke, actually,

recently stolen by pranksters from his fraternity), mounted on nearly frictionless casters, from a tall

building of height H with a smooth roof sloped at the angle θ as shown. However, the student (being

a thoughtful sociopath) wants to make sure that the mass M will make it over the roses to the path a

distance D from the base of the building and needs to know how far to let the statue roll down the roof

to get the right speed.

Unfortunately, the student isn’t very good at physics and comes to you for help. Since they don’t want

to tell you which building or which path they want to use (you might be able to testify against them!)

they want you to find (in two steps, each counting as a separate problem) a general formula for the

requisite distance.

a) Help them out. Start by finding v0 in terms of H , M , D, θ and g (the gravitational constant) that

will drop M on RGB assuming no friction or drag forces. (That way I’m still pretty safe).

b) Now that you know the speed (or rather, assuming that you know the speed, as the case may be)

find h (the vertical distance the statue must roll down, released from rest, to come off with the

right speed). Explicitly show that your overall answer (in which v0 should NOT appear) has the

right units. If you were clueless in problem 4) you may leave v0 in your answer but should still

try to find SOME combination of the letters H , M , D, θ and g that has the right units and varies

the way you expect the answer to (more height H means smaller h, for example, so it probably

belongs on the bottom).
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Problem 72. problems-1/force-pr-flat-plane-three-blocks.tex

M

2M

3M

T1 T2

Three blocks of mass M , 2M and 3M are drawn above. The middle block (2M) sits on a frictionless

table. The other two blocks are connected to it by massless unstretchable strings that run over massless

frictionless pulleys. At time t = 0 the system is released from rest. Find:

a) The acceleration of the middle block sitting on the table.

b) The tensions T1 and T2 in the strings as indicated.
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Problem 73. problems-1/force-pr-flat-plane-two-blocks.tex

m 1

m 2

A mass m1 is attached to a second mass m2 by an Acme (massless, unstretchable) string. m1 sits on a

frictionless table; m2 is hanging over the ends of a table, suspended by the taut string from an Acme

(frictionless, massless) pulley. At time t = 0 both masses are released.

a) Draw the force/free body diagram for this problem.

b) Find the acceleration of the two masses.

c) How fast are the two blocks moving when mass m2 has fallen a height H (assuming that m1 hasn’t

yet hit the pulley)?
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Problem 74. problems-1/force-pr-flat-plane-two-blocks-friction.tex

m 1

m 2

µ , µs k

A mass m1 is attached to a second mass m2 by a massless, unstretchable string. m1 sits on a rough

table with coefficients of static and kinetic friction µs and µk respectively. m2 is hanging over the end

of the table, suspended by the taut string from a frictionless, massless pulley.

At time t = 0 both masses are released from rest. Answer the following two questions:

a) What is the minimum mass m2,min such that the two masses begin to move?

b) Suppose m2 > m2,min. Determine how fast the two blocks are moving when mass m2 has fallen a

height H (assuming that m1 hasn’t yet hit the pulley)?
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Problem 75. problems-1/force-pr-inclined-atwoods-machine-downhill-friction-icp.tex

µ , µs k

m 2

m
1

θ

A block of mass m1 sits on a plane inclined at the angle θ as shown. It is connected with a massless,

unstretchable string running over a massless, frictionless pulley to m2, which is hanging over a drop to

the ground. The two masses are released initially from rest. The inclined plane has coefficients of static

and kinetic friction with m1 of µs and µk respectively.

a) Draw separate free-body diagrams for each mass m1 and m2, and select (indicate on your figure)

an appropriate coordinate system for each diagram;

b) Find the minimum mass m2,min such that the two masses begin to move;

c) If m2 > m2,min (so that the block definitely slides), determine the magnitude of the acceleration

of the blocks.
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Problem 76. problems-1/force-pr-inclined-plane-three-blocks.tex

M

2M

3M

T

T

1

2

θ

Three blocks of mass M , 2M and 3M are drawn above. The middle block (2M) sits on a frictionless

table tipped at an angle θ with the horizontal as shown. The other two blocks are connected to it by

massless unstretchable strings that run over massless frictionless pulleys. At time t = 0 the system is

released from rest. Find:

a) The magnitude of the acceleration of the middle block sitting on the table.

b) The tensions T1 and T2 in the strings as indicated.

c) Suppose θ = 30◦. Which way will the system of blocks accelerate?

Down on the right Down on the left They won’t move.
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Problem 77. problems-1/force-pr-inclined-plane-two-blocks-30deg-icp.tex

θ

2m

m

A block of mass 2m sits on a frictionless incline held at an angle θ relative to the horizontal as shown

in the figure above. It is connected by a massless, unstretchable string that runs over a frictionless,

massless pulley to a block m hanging over a drop. The two blocks are initially at rest.

a) For what angle θ0 will this system will be in force balance (and hence remain stationary).

b) If the incline is lifted from this angle to a new (given) angle θ > θ0, what is the subsequent direction

of motion for both blocks? Indicate the direction on the figure above for each block.

c) At this angle θ, find the magnitude of the acceleration a and the magnitude of the tension T in

the string.
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Problem 78. problems-1/force-pr-inclined-plane-two-blocks.tex

θ m 2

m1

Two blocks of mass m1 and m2 > m1 are drawn above. The block m1 sits on a frictionless inclined

plane tipped at an angle θ with the horizontal as shown. Block m2 is connected to m1 by a massless

unstretchable string that runs over a massless, frictionless pulley to hang over a considerable drop. At

time t = 0 the system is released from rest.

a) Draw a force/free body diagram for the two masses.

b) Find the magnitude of the acceleration of two masses.

c) Find the tension T in the string.

d) When mass m2 has fallen a height H , how fast are the two masses moving?
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Problem 79. problems-1/force-pr-pulling-rough-blocks-on-rough-table.tex

µ k

µs

M

m

θ

F

A rope at an angle θ with the horizontal is pulled with a force vF . It pulls, in turn, two blocks, the

bottom with mass M and the top with mass m. The coefficients of friction are µs between the top and

bottom block (assume that they do not slide for the given force ~F ) and µk between the bottom

block and the table. Remember to show (and possibly evaluate) all forces acting on both blocks, including

internal forces between the blocks.

a) Draw a “free body diagram” for each mass shown, that is, draw in and label all real forces acting

on it;

b) Apply Newton’s Second Law in appropriate coordinates to each mass shown;

c) Solve for the acceleration(s) of each mass shown and evaluate all unknown forces (such as a normal

force or the tension in a string) in terms of the given quantities.

Don’t forget that the acceleration is a vector and must be given as a magnitude and a direction (for

example, “along the plane to the right” is ok) or in vector components.
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Problem 80. problems-1/force-pr-pushing-three-blocks.tex

kF kFkF

F

A B C

M M M

y

x

F

A B C

M M M

y

x

a)

b)

Blocks A, B, and C each have mass M and are sitting on a smooth horizontal surface. A horizontal

force with magnitude F is applied to block A on the left in the x-direction as shown.

a) Initially, assume that the horizontal surface is frictionless. Determine:

• The acceleration of the system of blocks.

• The normal contact force NAB between block A and block B.

• The normal contact force NBC between block B and block C.

b) Now, assume that in addition to the force F the horizontal surface exerts a kinetic frictional force

with magnitude Fk ≪ F in the negative x-direction on each block. Determine:

• The acceleration of the system of blocks.

• The normal contact force NAB between block A and block B.

• The normal contact force NBC between block B and block C.

• Evaluate your answers (for this part only) if F = 100 N, M = 10 kg, and Fk = 10 N.
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Problem 81. problems-1/force-pr-pushing-vertical-blocks-friction-icp.tex

M
mF

A force ~F is applied to a large block with mass M , which pushes a smaller block of mass m as shown.

The large block is supported by a frictionless table. The coefficient of static friction between the large

block and the small block is µs. Find the magnitude of the minimum force Fmin such that the small

block does not slide down the face of the large one. Draw free body diagrams and show all of your

reasoning.
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Problem 82. problems-1/force-pr-range-of-cannon-on-hill.tex

m

ymax

θ

ov

H

R

A cannon sits on at the top of a rampart of height (to the mouth of the cannon) H . It fires a cannonball

of mass m at speed v0 at an angle θ relative to the ground. Find:

a) The maximum height ymax of the cannonball’s trajectory.

b) The time the cannonball is in the air.

c) The range of the cannonball.
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Problem 83. problems-1/force-pr-terminal-velocity-tom-and-jerry.tex

The script calls for Tom (cat) to chase Jerry (mouse) across the top of a cartoon skyscraper of height

H and off the edge where they both fall straight down (their initial x-velocity is negligible as they fall

off) towards a soft pile of dirt that will keep either one from getting hurt by the fall no matter how hard

they land (no toon animals were injured in this problem).

Your job is to work out the physics of a “realistic” fall for the animation team. You decide to use the

following for the drag force acting on either one:

~Fi = −biv
2v̂

where hv is a unit vector in the direction of the velocity and i = t, j for Tom or Jerry respectively and

where:

bi = CL2
i

mi = DL3
i

(that is, the drag force is proportional to their cross-sectional area and their mass is proportional to

their volume). Their relative size is Lt = 5Lj (Tom is five times the height of Jerry).

a) Draw a on the back of the preceding page showing the building, Tom and Jerry at the instant that

Tom runs off of the top. Jerry (who is ahead) should have fallen a short distance d towards the

ground.

b) Using the laws of physics, determine the equation of motion (find an expression for the acceleration

and write it as a differential equation) algebraically (so the solution applies to Tom or Jerry equally

well). Your answer can be given in terms of bi and mi.

c) Without solving the equation of motion, find an algebraic expression for the terminal velocity of

Tom or Jerry as functions of Li. Explain/show your reasoning, don’t just write down an answer.
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Problem 84. problems-1/force-pr-triple-atwoods-machine.tex

H

M M

m

A block and tackle arrangement is built with three massless pulleys and three hanging masses with

masses M , m, and M as shown above. The two M masses are a height H off the ground, and m is on

the ground. At time t = 0 the masses are released from rest from this configuration.

a) Draw a GOOD free body diagram. Clearly label all quantities.

b) Find the acceleration (magnitude and direction) of each block and the tension T in the string as

a function of the givens, assuming that M +M > m.

c) Find the velocity of each block when the blocks of mass M hit the ground.
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Problem 85. problems-1/force-pr-two-balls-1D-2.tex

H

v02

m

mt = t 0

v1

A ball of mass m is dropped at time t = 0 from rest (v01 = 0) from the top of the Duke Chapel (which

has height H) to fall freely under the influence of gravity. A short time t = t0 later a second ball, also

of mass m, is thrown down after it at speed v02. Neglect drag.

a) (2 points) Draw a free body diagram for and compute the net force acting on each mass separately.

b) (4 points) From the equation of motion for each mass, determine their one dimensional

trajectory functions, y1(t) and y2(t).

c) (3 points) Sketch qualitatively correct graphs of y1(t) and y2(t) on the same axes in the case where

the two collide.
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Problem 86. problems-1/force-pr-two-blocks-on-inclined-plane-plus-pulley.tex

3M
θ

T

2M

M

T1

2

Three blocks of mass M , 2M and 3M are drawn above. The two smaller blocks sit on a frictionless

table tipped at an angle θ with respect to the horizontal as shown. The three blocks are connected by

massless unstretchable strings, one of which runs over a massless frictionless pulley to the largest mass.

At time t = 0 the system is released from rest. Find:

a) The acceleration vector in Cartesian components of the middle block on the incline. Any correct

way of uniquely specifying the Cartesian vector will be accepted, for example ~a = (ax, ay), or

~a = axx̂+ ayŷ.

b) The magnitude of the tensions T1 and T2 in the strings as indicated on the diagram.
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Problem 87. problems-1/force-pr-two-blocks-with-friction-icp.tex

k
µ

m

M
F

,µ
s

frictionless

A small block of mass m sits on top of a large block of mass M that sits on a frictionless table. The

coefficient of static friction between the two blocks is µs and the coefficient of kinetic friction between

the two blocks is µk. A force ~F = F x̂ is directly applied to the lower block as shown. All answers should

be given in terms of m, M , µs, µk, and g.

a) What is the largest force Fmax that can be applied such that the upper block does not slide on the

lower block?

b) Suppose that F = 2Fmax (so that the upper block slips freely). What is the acceleration of each

block?
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Problem 88. problems-1/force-pr-two-masses-incline-different-friction.tex

m

m

1

2

θ

Two blocks, each with the same mass m but made of different materials, sit on a rough plane

inclined at an angle θ that is large enough that they will definitely slide down. The first (upper)

block has a coefficient of kinetic friction of µk1 between block and inclined plane; the second (lower)

block has coefficient of kinetic friction µk2. The two blocks are connected by a massless unstretchable

string.

Find the acceleration of the two blocks a1 and a2 down the incline:

a) when µk2 > µk1.

b) when µk1 > µk2;
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Problem 89. problems-1/force-pr-vertical-block-friction.tex

F
m

µs

m1 2

A block of mass m1 is pushed on a frictionless table by a force ~F to the right. A mass m2 is positioned

on the front face as shown. There is a coefficient of static friction µs between the big and little block.

a) What is the horizontal force exerted on block m2 by the block m1?

b) Find the minimum magnitude of force Fmin that will keep the little block from slipping down

the big one.
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5.3 Circular Motion

5.3.1 Multiple Choice

Problem 90. problems-1/circular-motion-mc-ball-on-string-breaks.tex

direction of rotation
E D

C
A

B

string breaks here

A ball is being whirled on a string. At the instant shown, the string breaks. Select the correct trajectory

of the ball after it breaks.

a) A

b) B

c) C

d) D

e) E
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Problem 91. problems-1/circular-motion-mc-two-masses-on-strings-qual.tex

m

ω

LL

m TT1 2

A block of mass m is tied to a cord of length L that is pivoted at the center of a frictionless table. A

second block of mass m is tied to the first block also on a cord of length L, and both are set in motion

so that they rotate together at angular speed ω as shown above. The tensions T1 and T2 in the cords

are:

a) T1 = T2

b) T1 > T2

c) T1 < T2

d) T1 > T2 for ω > 0 and T1 < T2 for ω < 0
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Problem 92. problems-1/circular-motion-mc-two-masses-on-strings-icp.tex

m

ω

LL

m TT1 2

A block of mass m is tied to a cord of length L that is pivoted at the center of a frictionless table. A

second block of mass m is tied to the first block also on a cord of length L, and both are set in motion

so that they rotate together at angular speed ω as shown above. The tensions T1 and T2 in the cords

are:

a) T1 = 3mω2L, T2 = 2mω2L

b) T1 = mω2L, T2 = 2mω2L

c) T1 = mω2L, T2 = mω2L

d) T1 = 2mω2L, T2 = 2mω2L

e) T1 = mω2L, T2 = 4mω2L
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5.3.2 Short Answer

Problem 93. problems-1/circular-motion-sa-runner-on-track-icp.tex

Starting from point A, a runner runs at a constant speed

counter-clockwise along a circular race track of radius R = 20

m.

a) When the runner has reaches point B, draw and label the

runner’s velocity ~vB and acceleration ~aB;

b) If the speed of the runner is 4 m/s, find the angular speed

and the magnitude of the acceleration.

ω = and a = .

c) If the runner runs on the same circular track, but he finished

in one-half of the original time, the new angular speed will

be ω2, and the new magnitude of the acceleration will be a2.

Find the following ratios:

ω2

ω
= and

a2
a

= .

xo

y

B

AA
R



5.3. CIRCULAR MOTION 113

Problem 94. problems-1/circular-motion-sa-sliding-down-curve.tex

In the figure on the right, a small block slides down a frictionless

curved track of circular radius R. When it reaches the angle θ as

shown, it has speed v (in a later chapter, we’ll learn how to find

v from initial conditions).

a) Draw a free body diagram for the mass. You may draw it

directly on the figure if you wish.

b) Select and draw the best coordinate system to use to analyze

its motion. This is tricky!

c) Find the normal force exerted by the track in terms of v and

θ.
v

m

θ R
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5.3.3 Long Problems

Problem 95. problems-1/circular-motion-pr-conic-pendulum-tether-ball.tex

v

θ

A tether ball of mass m is suspended by a rope of length L from the top of a pole. A youngster gives it

a whack so that it moves in a circle of radius r = L sin(θ) < L around the pole. Find an expression for

the speed v of the ball as a function of θ.



5.3. CIRCULAR MOTION 115

Problem 96. problems-1/circular-motion-pr-puck-on-cylinder-friction-review.tex

m
g (in)

Side View Top View

g (down)

(out)

m

z

R

R

Ω

Ω

A hockey puck with mass m is placed against the wall of a hollow cylinder of radius r that is rotating

at a constant angular speed Ω around the z-axis as shown in side and top views above. The

coefficient of static fraction between the puck and the wall of the cylinder is µs. Gravity points in the

negative −z direction: down in the left hand figure and into the page in the right hand figure.

a) On the diagrams above draw in all real forces that act on the mass while the cylinder rotates.

For forces acting vertically, use the side view. For forces acting in the horizontal directions, use

the top view.

b) If the cylinder is rotating fast enough, the puck does not slide down the wall. What is the value

of fs, the magnitude of static friction, in this case?

fs =

c) What is the minimum angular speed Ωmin such that the hockey puck does not slide down the

wall?

Ωmin =
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Problem 97. problems-1/circular-motion-pr-puck-on-cylinder-friction-review-soln.tex

m
g (in)

Side View Top View

g (down)

(out)

m

z

R

R

Ω

Ω
mg N

N

fs

A hockey puck with mass m is placed against the wall of a hollow cylinder of radius r that is rotating

at a constant angular speed Ω around the z-axis as shown in side and top views above. The

coefficient of static fraction between the puck and the wall of the cylinder is µs. Gravity points in the

negative −z direction: down in the left hand figure and into the page in the right hand figure.

a) See above.

b) Comment: fs is a variable force and is always equal to mg if the puck does not slide down.

Presumably this means that Ω > Ωmin, obtained next!

fs = mg

c) Here we need to use Newton’s Second Law and circular motion kinematics to find N , use

N to find Fs = µN and Fs and fs = mg to determine Ωmin. That is:

Fc = N = mac = mΩ2R

Fs = µsN = µsmΩ2R

fs = mg < Fs = µsmΩ2R

so (cancelling m and rearranging):

Ω >

√

g

µsR
= Ωmin

or:

Ωmin =

√

g

µsR
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Scoring:

a) +6 total. +2 each for the three forces in the figure. The common mistakes are making fs tangent

to the circle of motion instead of opposite to gravity, and to use mΩ2R outward (“centrifugal force”)

instead of N inward. These mistakes will likely cost more points later.

b) +5 points straight up, not much room for partial credit. Student loses all five if they write fs = µsN .

c) +9 total. +2 each for each of the three equations above. +3 for the general algebra and final result.

Note that they lose at least another 2-3 points if they got b) wrong and hence fail to write fs < Fs and

even if they wrote Fc and Fs correctly.
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Problem 98. problems-1/circular-motion-pr-puck-on-wheel-friction.tex

M

m µ s

r

Diskhockey puck

block

Ω

A disk is rotating with a constant angular velocity ~Ω (up). A small hockey puck of mass m is placed

on the disk at a distance r from the center, and is attached to another block with mass M hanging below

by a massless unstretchable string that passes through a tiny (frictionless) hole right in the center of the

disk. The static friction coefficient between the hockey puck m and the disk is µs.

a) Which direction(s) could static friction need to point to keep the puck stationary on the rotating

disk (check all that are possible for different/given Ω, r, M , m, µs):

In (towards hole) Out Tangent to circle of motion

b) Find a formula for the largest M that will not move down (as the puck slips on the disk), given

Ω.

c) Find a formula for the smallest M that will not move up (as the puck slips on the disk), given

Ω.
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Problem 99. problems-1/circular-motion-pr-rounding-a-banked-curve-frictionless.tex

R

v towards center

θ

(top view) (side view)

m

A car of mass m is rounding an icy frictionless banked curve that has radius of curvature R and

banking angle θ. What must the speed v of the car be such that it can succeed in making it around the

curve without sliding off of the road uphill or down?
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Problem 100. problems-1/circular-motion-pr-rounding-a-banked-curve.tex
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(top view) (side view)

m

A car of mass m is rounding a banked curve that has radius of curvature R and banking angle θ. The

coefficient of static friction between the car’s tires and the road is µs. Find the range of speeds v of the

car such that it can succeed in making it around the curve without skidding.
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Problem 101. problems-1/circular-motion-pr-rounding-a-flat-curve.tex
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A car of mass m is rounding a flat (unbanked) curve that has radius of curvature R. The coefficient of

static friction between the car’s tires and the road is µs. We will define vmax to be the fastest speed

that the car can have to make it around the curve without without skidding.

a) Suppose that the car is travelling at some constant speed v < vmax (so it does not skid and

successfully rounds the curve). Find the total frictional force ~fs exerted by the tires as it rounds

the curve at that speed. Note that force is a vector – be sure to give its magnitude and direction

using the provided coordinate frame(s).

b) Find the fastest speed of the car vmax such that it can make it around the curve without skidding.
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Chapter 6

Work and Energy

In the previous problems, you were frequently asked to e.g. find the speed at the bottom of an incline or

after a mass falls from some height. Every single time, you had to find the time it reached the bottom

and substitute it back into the expression for the velocity/speed.

Work (and the general concept of energy) arise when we eliminate time once and for all from Newton’s

Laws, and directly relate speed to position. At first this is just a convenience that simplifies certain kinds

of problems. Later, however, we will see that energy is in some sense more fundamental than force,

that we could have started our study of dynamics from the beginning with energy concepts and worked

from various potential energies to forces.

Sadly, certain non-conservative forces are difficult to connect back to potential energies in laws of nature

– they do come from them but we’ll only understand that after the fact. In the meantime, it makes

more sense to go from force to energy than from energy to force, although we’ll do a bit of both in the

following problems.

When you you think maybe I should use work or energy...” in a problem?

Whenever the questions asked relate speed to position independent of time (or, of course, when the

questions asked directly pertain to the concept of work and energy itself). How fast at the bottom of

the incline? Think energy. How high does a mass thrown upward rise before stopping? think energy.

123
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6.1 Work and Kinetic Energy

6.1.1 Multiple Choice

Problem 102. problems-1/wke-mc-block-and-friction-icp.tex

µk

F

m θ

A block of mass m is on a floor. The kinetic friction coefficient between the block and the floor is µk.

A student pulls a block with a force ~F directed upward at an angle θ with respect to the horizontal as

shown. What is the work done by friction when the block moves a distance L along the floor to the

right?

a) −µkmgL

b) −µk(mg − F sin(θ))L

c) FL cos(θ)− µkmgL+ µkF sin(θ)L

d) FL cos(θ)

e) −µk(mg + F sin(θ))L
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Problem 103. problems-1/wke-mc-block-and-friction.tex

F

µθ km

A block of mass m is on a floor. The kinetic friction coefficient between the block and the floor is µk.

A student pushes a block with a force ~F directed down at an angle θ with respect to the horizontal as

shown that makes the block slide to the right. What is the work done by the student (the force ~F )

when the block moves a distance L along the floor?

a) FL

b) µkmgL

c) FL cos(θ)

d) µk(mg + F sin(θ))L

e) Cannot tell from the information given.
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Problem 104. problems-1/wke-mc-cannonball-energy-speed-trajectories-icp.tex

a b

v
0

0
v

Two cannons fire cannonballs at the same initial speed v0 into the air along the trajectories shown.

Neglect the drag force of the air.

Which cannonball strikes the ground faster?

a) Cannonball a hits going faster.

b) Cannonball b hits going faster.

c) Cannonball a and b hit at the same speed

d) We cannot tell which hits the ground going faster without more information than is given in the

problem and picture.
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6.1.2 Ranking/Scaling

Problem 105. problems-1/wke-ra-work-by-force-2.tex

d

F
A) M

d

B) M
F

θ

In the figure above a force with a constant magnitude F is applied to a block of mass M resting on

a table with a rough surface at two different angles as shown. The coefficient of kinetic friction between

the block and table is µk. As the block slides to the right a distance d, the work done by ~F is WF , and

the work done by friction is Wfk .

a) Rank the magnitude of the work done by ~F in the two cases (<>= in box):

WA
F WB

F

b) Rank the magnitude of the work done by friction in the two cases (<>= in box):

WA
fk WB

fk
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Problem 106. problems-1/wke-ra-work-by-force-3.tex
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In the figure above a force with a constant magnitude F < Mg is applied to a block of mass M resting

on a table with a rough surface at two different angles as shown. The coefficient of kinetic friction

between the block and table is µk. As the block slides to the right a distance d, the work done by ~F is

WF , and the work done by friction is Wfk .

a) Rank the magnitude of the work done by ~F in the two cases (<>= in box):

WA
F WB

F

b) Rank the magnitude of the work done by friction in the two cases (<>= in box):

WA
fk

WB
fk
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Problem 107. problems-1/wke-ra-work-by-force.tex

A
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M θ
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In the figure above a force with a constant magnitude F is applied to a block of mass M resting on a

smooth (frictionless) table at three different angles as shown. Rank the work done by ~F as the block

slides to the right a distance d, where equality is allowed. (A possible answer might be A = B > C for

example.)
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6.1.3 Short Answer

Problem 108. problems-1/wke-sa-block-on-paper-icp.tex

m
µk

v

D

A block of mass m is initially at rest on a long piece of smooth paper on a frictionless table. The block

has a coefficient of kinetic friction µk with the paper. You pull the paper horizontally out from under the

block quickly in the direction indicated by the arrow, such that the block moves a distance D (relative

to the ground) while still on the paper.

a) What is the magnitude of the work done by kinetic friction on the block?

b) Is the work done positive (increasing the kinetic energy of the block) or negative (decreasing the

kinetic energy of the block).

c) What is the final velocity of the block when it comes off of the paper and slides along the frictionless

table? Use +x to the right!
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Problem 109. problems-1/wke-sa-graph-work-1.tex
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The graph above represents a force in the positive x direction F (x) applied to a mass m as a function

of its position. The mass begins at rest at x = 0. The force F is given in Newtons, the position x is

given in meters.

a) How much work is done going from x = 0 to x = 6?

b) How much work is done going from x = 6 to x = 12?

c) Assuming m = 1 kg, what is the final velocity of the object at x = 12?
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Problem 110. problems-1/wke-sa-graph-work-icp.tex

x654321
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The graph above represents the total one-dimensional force in the x direction F (x) being applied to a

mass m as a function of its position. The mass begins at rest at x = 0 and moves only along the x axis.

The force F is given in Newtons, the position x is given in meters. Answer the following questions (and

give the units of your answers):

a) How much work is done going from x = 0 to x = 3? W (0 → 3) =

b) How much work is done going from x = 3 to x = 6? W (3 → 6) =

c) Assuming that m = 1 kg and that it begins at rest at the beginning of the motion, what is the

speed of the particle at x = 6? v(x = 6) =
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Problem 111. problems-1/wke-sa-work-done-by-force.tex

θ

d d

F

AF

BM M

A B

In the figure above a force with a constant magnitude FA = FB = F is applied to a block of mass

M resting on a table with a rough surface at two different angles as shown. The coefficient of kinetic

friction between the block and table is µk. As the block slides to the right a distance d, the work done

by ~F is WF , and the work done by friction is Wfk in the two cases, A and B.

a) For case A, find the work done by ~F and friction, WA
F and WA

fk
, respectively. Your answers should

have the correct sign.

b) For case B, find the work done by ~F and friction, WB
F and WB

fk
, respectively. Your answers should

have the correct sign.
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6.1.4 Long Problems

Problem 112. problems-1/wke-pr-painball-gun-exponential-example.tex

D

m

x
oF = F e

−x/D

A simple schematic for a paintball gun with a barrel of length D is shown above; when the trigger is

pulled carbon dioxide gas under pressure is released into the approximately frictionless barrel behind

the paintball (which has mass m). The expanding, cooling gas exerts a force on the ball of magnitude:

F = F0e
− x

D

on the ball to the right, where x is measured from the paintball’s initial position as shown.

a) Find the work done on the paintball by the force as the paintball is accelerated down the barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after it has

been accelerated.

c) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.



6.1. WORK AND KINETIC ENERGY 135

Problem 113. problems-1/wke-pr-painball-gun-exponential-solution.tex
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A simple schematic for a paintball gun with a barrel of length D is shown above; when the trigger is

pulled carbon dioxide gas under pressure is released into the approximately frictionless barrel behind

the paintball (which has mass m). The expanding, cooling gas exerts a force on the ball of magnitude:

F = F0e
− x

D

on the ball to the right, where x is measured from the paintball’s initial position as shown.

a) Find the work done on the paintball by the force as the paintball is accelerated down the barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after it has

been accelerated.

c) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.

The only force acting on the paintball is the force applied by the prssurized gas (gravity is countered

by a normal force from the barrel, and in any case neither does work when the motion is horizontal;

we are neglecting friction which may be less realistic). So WKE reads simply

Kf −Ki =

∫ f

i

bfF · dx

=

∫ D

0

F0e
− x

D dx

= F0

(

−De−d/D
) ∣

∣

∣

D

0

= −FD(e−1 − 1) = FD(1− 1/e) .

(6.1)

This is the work done by the gas. Since the paintball starts at rest so Ki = 0 it is also the kinetic

energy the ball has when it leaves the barrel. To find the speed with which it leaves we set

mv2

2
= Kf = FD(1 − 1/e)

v =

√

2FD(1− 1/e)

m
. (6.2)
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Problem 114. problems-1/wke-pr-paintball-gun-adiabatic.tex

m
x0

4x 0x

A simple schematic for a paintball gun is shown above; when the trigger is pulled carbon dioxide gas

under pressure is released into the approximately frictionless barrel behind the paintball (which has mass

m) initially resting at x0. The gas expands approximately adiabatically and exerts a force on the ball

of magnitude:

F = F0
xγ
0

xγ

on the ball to the right, where F0 is the initial force exerted at x = x0, and x is measured from the end

of the barrel as shown. γ is a constant (equal to 1.4 for carbon dioxide). This force is only exerted up

to the end of the barrel at x = 4x0.

a) Find the work done on the paintball by the force as the paintball is accelerated down the barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after it has

been accelerated.

c) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.
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Problem 115. problems-1/wke-pr-paintball-gun-linear.tex

D

m

x

F =    (D − x)
Fo

D

A simple schematic for a paintball gun is shown above; when the trigger is pulled carbon dioxide gas

under pressure is released into the approximately frictionless barrel behind the paintball (which has mass

m). The gas exerts a force on the ball of magnitude:

F =
F0

D
(D − x)

on the ball to the right, where x is measured from the paintball’s initial position as shown.

a) Find the work done on the paintball by the force as the paintball is accelerated down the barrel.

b) Use the work-kinetic-energy theorem to compute the kinetic energy of the paintball after it has

been accelerated.

c) Find the speed with which the paintball emerges from the barrel after the trigger is pulled.
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6.2 Work and Mechanical Energy

6.2.1 Multiple Choice

Problem 116. problems-1/wme-mc-battleship.tex

A battleship simultaneously fires two shells at enemy ships along the trajectories shown, such that the

shells have the same initial speed. One ship (A) is close by; the other ship (B) is far away. Ignore

drag forces.

a) Which ship is hit first (circle both if they are hit at the same time)?

A B

b) Which shell has the greater speed when it hits the ship (circle both if the speeds are equal)?

A B
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Problem 117. problems-1/wme-mc-zero-of-potential-energy.tex

Tommy is working on a physics problem involving energy. “Look,” he says, “the total energy of this

block at rest is zero at the top of this incline of height H and therefore must be zero at the bottom.”

Sally disagrees. “Impossible. The block is at the top of the incline. It has total energy mgH at the top

and so its total energy must still be mgH at the bottom.”

a) Tommy is right, Sally is wrong.

b) Sally is right, Tommy is wrong.

c) Both Tommy and Sally are right.

d) Both Tommy and Sally are wrong.

e) There isn’t enough information to tell who is right and who is wrong.
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6.2.2 Ranking/Scaling

Problem 118. problems-1/wme-ra-two-skiers-icp.tex

A B

A

B

start

finish

Two skiers start at the same point on a (frictionless) slope. One (A) skis straight down the slope to

the finish line. The other (B) passively skis off of a ski jump to arrive at the finish more flamboyantly.

Rank the answers to the following questions, where equality is a possibility, that is, possible answers

are A < B or A = B. Ignore friction and drag forces and assume that the jumper does not use their leg

muscles to “jump”.

a) Rank the relative speed of the two skiers when they reach the finish line.

b) Rank the finish time – who arrives at the finish line first (or is it at the same time)?
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6.2.3 Short Answer

Problem 119. problems-1/wme-sa-ball-to-ground.tex

A ball is thrown with some speed v0 from the top of a cliff of height H . Show that the speed with which

it hits the ground is independent of the direction it is thrown (and determine that speed in terms of g,

H , and v0).
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Problem 120. problems-1/wme-sa-potential-energy-graph-2.tex
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A conservative one-dimensional force F (x) acts on a particle of mass m = 2 kg. The potential energy

U(x) associated with F (x) is shown in the figure above. The particle is at initially located x1 = 3 m

with kinetic energy K1 = 2 J, moving to the left (alone the negative x direction). [Show your work and

make sure that you use the correct units.]

a) Mark all points on the x-axis where the force on the mass would vanish. Label the points “stable”

or “unstable according to the kind of equilibrium point they are.

b) Between what limits of x does the particle move?

c) What is the particle’s speed when it is at x2 = 6 meters?

d) What is the magnitude and direction of the force ~F (x) at x3 = 9 meters.
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Problem 121. problems-1/wme-sa-potential-energy-to-force-icp.tex

0

−10

−15

−20

U
(x

) 
(J

)

0 5 10 15

−5

x (m)

A one-dimensional force F (x) acts on a 2 kg particle which moves along the x axis. The potential energy

U(x) associated with F (x) is shown in the graph.

When the particle is at x = 11 m, its speed is 2 m/s.

a) What is the magnitude and direction of F (x) at:

x = −3 m:

x = 4 m:

x = 6 m:

x = 11 m:

b) Between what limits of x does the particle move?

c) What is its speed at x = 7 m?
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Problem 122. problems-1/wme-sa-sliding-block-friction.tex

A block of mass m sitting on a horizontal surface is given an initial speed v0. Travelling in a straight

line it comes to rest after sliding a distance d. Show that the coefficient of kinetic friction is given by
v2

2gd .
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Problem 123. problems-1/wme-sa-spring-jumper-straight-up-soln.tex

H

m

d

A simple child’s toy is a jumping frog made up of an approximately massless spring of uncompressed

length d and spring constant k that propels a molded “frog” of mass m. The frog is pressed down onto

a table (compressing the spring by d) and at t = 0 the spring is released so that the frog leaps high into

the air.

Use work and/or mechanical energy to determine how high the frog leaps.

It is by far the easiest to use conservation of mechanical energy. Initially, the frog is located, at rest (so

its kinetic energy K = 0), at y = 0 (so Ug = mgy = 0) with the spring compressed a distance d (so

Uk = 1
2kd

2). When the frog reaches its maximum height, it is again at rest (so K = 0), its gravitational

potential energy is now Ug = mgy = mgH , and the spring is fully expanded so its spring potential

energy is Uk = 0. Hence:

Ei = 0 + 0 +
1

2
kd2 = 0 +mgH + 0

or

mgH =
1

2
kd2

or

H =
kd2

2mg
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Problem 124. problems-1/wme-sa-spring-jumper-straight-up.tex

H
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d

A simple child’s toy is a jumping frog made up of an approximately massless spring with spring constant

k that propels a molded “frog” of mass m. The frog is pressed down onto a table (compressing the

spring by a distance d) and at t = 0 the spring is released so that the frog leaps high into the air.

Use work and/or mechanical energy to determine how high the frog leaps. Neglect drag forces.
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Problem 125. problems-1/wme-sa-tension-pendulum-height-R-icp.tex

θ = π/2
R

m

In the figure above, a mass m is attached to a massless unstretchable string of length R and held at an

initial position at an angle θ = π/2 relative to the horizontal as shown. At time t = 0 it is released from

rest. Find the tension T in the string when it reaches θ = 0.
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6.2.4 Long Problems

Problem 126. problems-1/wme-pr-double-inclines-with-friction.tex

H

θθ

0

A block with mass m is released from rest at a height H0 on an inclined plane that makes an angle θ

with the ground. When it reaches the bottom, it smoothly slides up a second incline, also at an angle θ

with respect to the ground as shown. The coefficient of static friction between the block and the inclines

is µs; the coefficient of kinetic friction between the block and the inclines is µk.

a) Find the minimum angle θmin such that the block will be able to slide down the incline after being

released from rest.

θmin =

b) Suppose θ > θmin. When the block is released from the initial height H0, what height H1 will it

reach as it slides up the opposite incline before coming momentarily to rest?

H1 =

c) Bonus question: 5 points

Suppose that the coefficient of kinetic friction is very small so that it can slide back and forth

many times. Approximately how many times will the block slide back and forth before it loses 1/2

of its initial energy?

N 1

2

=
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Problem 127. problems-1/wme-pr-loop-the-loop-block.tex

H

R

θ

A block of mass M sits at the top of a frictionless loop-the-loop of height H .

a) Find the normal force exerted by the track when the mass is at an angle θ on the loop as shown.

b) Find the minimum height H such that the block loops the loop without coming off of the track.
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Problem 128. problems-1/wme-pr-loop-the-loop-classic-example.tex

H

R

θ

A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-the-loop of

radius R.

a) Find the minimum height Hmin for which the block barely goes around the loop staying on the

track at the top. (Hint: What is the condition on the normal force when it “barely” stays in

contact with the track? This condition can be thought of as “free fall” and will help us understand

circular orbits later, so don’t forget it.).

Discuss within your recitation group why your answer is a scalar number times R and how this

kind of result is usually a good sign that your answer is probably right.

b) If the block is started at this position, what is the normal force exerted by the track at the bottom

of the loop, where it is greatest?

If you have ever ridden roller coasters with loops, use the fact that your apparent weight is the

normal force exerted on you by your seat if you are looping the loop in a roller coaster and discuss

with your recitation group whether or not the results you derive here are in accord with your

experiences. If you haven’t, consider riding one aware of the forces that are acting on you and how

they affect your perception of weight and change your direction on your next visit to e.g. Busch

Gardens to be, in a bizarre kind of way, a physics assignment. (Now c’mon, how many classes have

you ever taken that assign riding roller coasters, even as an optional activity?:-)
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Problem 129. problems-1/wme-pr-loop-the-loop-classic-solution.tex
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A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-the-loop of

radius R.

a) Find the minimum height Hmin for which the block barely goes around the loop staying on the

track at the top. (Hint: What is the condition on the normal force when it “barely” stays in

contact with the track? This condition can be thought of as “free fall” and will help us understand

circular orbits later, so don’t forget it.).

Discuss within your recitation group why your answer is a scalar number times R and how this

kind of result is usually a good sign that your answer is probably right.

b) If the block is started at this position, what is the normal force exerted by the track at the bottom

of the loop, where it is greatest?

If you have ever ridden roller coasters with loops, use the fact that your apparent weight is the

normal force exerted on you by your seat if you are looping the loop in a roller coaster and discuss

with your recitation group whether or not the results you derive here are in accord with your

experiences. If you haven’t, consider riding one aware of the forces that are acting on you and how

they affect your perception of weight and change your direction on your next visit to e.g. Busch

Gardens to be, in a bizarre kind of way, a physics assignment. (Now c’mon, how many classes have

you ever taken that assign riding roller coasters, even as an optional activity?:-)

Let us follow the hint and think about what is going on here. In this problem the block is not bound

to the looping track. This means that when it goes over the top of the loop nothing is “holding it up.”

Like any other object not held up by anything, it must accelerate down with an acceleration g. Yet

experience with toy cars, roller coasters, and strings tells us that if it is going fast enough it will not fall

off the track. The reason is that going around a circular track does involve an acceleration, towards the

center of the circle, of magnitude v2/R where v is the speed. We will reproduce this in the last problem

on this set. If this acceleration is at least g then at the top of the track the block can be in free fall

without leaving the track. If the speed is higher, the acceleration required to complete the circle will be

higher than g. This means if the track broke, the block would in fact fly off above the circular trajectory.

This is prevented by a normal force applied by the track. The point of all this is that if the block is

moving too slowly around the loop it will leave the track. As the speed is reduced past this minimum,

the first failure to stay on the track will occur at the very top of the loop. This is intuitively clear, we

will work it out in detail in another problem.
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To turn these words into equations, consider applying Newton’s second law to the block at the instant

when it is at the apex of the looping track, moving (horizontally, to the left) at a speed vt. The figure

indicates forces, velocity, and acceleration at this point, including the initially unknown normal force

applied by the track. Newton’s second law then reads

F = −mgŷ−N ŷ = ma . (6.3)

In order for the block to continue its circular motion along the track this downward vertical acceleration

must be equal to the centripetal acceleration, directed downward towards the center of the circle, i.e.

we have a = −mv2t /R ŷ. This requires

N =
mv2t
R

−mg . (6.4)

Since N ≥ 0 we see that if the block is moving too slowly it will not stay on the track. The minimum

speed needed to just maintain contact with the track at the top is the speed at which N = 0, i.e.

v2t = gR . (6.5)

Now our job is to find how high the initial ramp must be in order for the block to reach the top

of the look with this speed. Of course, as it goes down the ramp the block accelerates under the

influence of gravity, but as it goes up the looping track it slows down under the same influence. Since

all forces acting on the block are conservative (gravity) or do no work at all (the normal forces, which

are everywhere perpendicular to the direction of motion) the total mechanical energy of the block is

conserved throughout its travels along our track. We can thus relate its speed at the top of the loop to

the height of the ramp where it was released from rest by equating the total mechanical energy in both

configurations, including kinetic and gravitational potential energy. Setting Ug = 0 at the base of the

loop to determine the irrelevant additive constant we have for these initial and final configurations the

following expressions for total energy

Ei = mgH

Et =
mv2t
2

+mg 2R . (6.6)

Setting these equal to each other we find that the speed of the block at the top of the loop is determined

by H,R as

v2t = g(2H − 4R) . (6.7)

The minimum H needed to clear the loop will lead to a value for v equal to the minimal value (6.5) i.e.

g(2H − 4R) = gR

H =
5

2
R . (6.8)

As predicted, we find a number, determined by various geometric factors, times R. This makes sense,

because R is the only parameter in the problem with the right dimensions, length. So to determine a

length H related in some way to R we expect to find a result like this. That it makes sense does not

make it trivial. Neglecting friction, we predict that to double the height of the loop you must double the

height of your ramp. And we could have predicted that just using this kind of dimensional reasoning,

without doing any calculations at all!

We now want to find the normal force applied by the track at the bottom of the loop when the block

is released from this height. The figure indicates forces, velocity, and acceleration at this instant. The

total force on the block is now

F = −mgŷ+N ŷ . (6.9)
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Once more the net acceleration is vertical. In order to be moving around a circle at speed vb we must

have a = v2b/Rŷ directed upward towards the center of the circle. This requires

N = mg +m
v2b
R

. (6.10)

This makes sense. At the bottom, in addition to holding up the block’s weight, the track must apply

additional normal force to provide the centripetal acceleration.

To find the value of N we again use energy conservation to find vb. At the bottom of the loop the

gravitational potential energy vanishes but the conserved total energy is equal to its value at the top of

the ramp (or at any other time during the block’s travels). This means

Eb =
mv2b
2

= Ei = mgH , (6.11)

or

v2b = 2gH = 5gR , (6.12)

where the last equality used (6.8). Inserting this we find

N = mg + 5mg = 6mg . (6.13)

If you are sitting in this block and travelling at the minimal speed needed to traverse the loop, then

at the top of the loop (where N = 0 you will just barely touch your seat. At the bottom your seat

needs to apply six times your weight to your bottom to accelerate you up. Your diaphragm needs to

apply six times the force it is accustomed to to hold up the contents of your abdominal cavity, and

most importantly your heart must lift your blood out of your feet against an apparent 6g of gravity.

This is why pilots of WWII planes that first achieved high speeds had trouble with blacking out. Their

hearts failed to overcome the increased apparent gravity at the bottom of maneuvers and their oxygen-

starved brains lost consciousness. The remedy at the time was inserting wood blocks on the pedals, to

raise their feet and put them in a cramped position amenable to tightening their abdominal muscles to

restrict blood flow. Modern pressure suits simply squeeze the lower extremities in any configuration so

that blood flow is unaffected by acceleration.
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Problem 130. problems-1/wme-pr-loop-the-loop-difficult.tex

H

θ v

m

R

A block of mass m sits at the top of a frictionless hill of height H . It slides down and around a

loop-the-loop of radius R to an angle θ as shown.

a) Find the magnitude of the normal force as a function of the angle θ.

b) From this, deduce an expression for the angle θ0 at which the block will leave the track if the block

is started at a height H = 2R.
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Problem 131. problems-1/wme-pr-loop-the-loop-from-spring.tex

R

∆x

k

A block of mass M sits in front of a spring with spring constant k compressed by an amount ∆x on a

frictionless track leading to a circular loop-the-loop of radius R as shown.

a) Draw two force diagrams, one with the block at the top of the loop and one with the block

at the bottom of the loop. Clearly label all forces, including ones that you might set to zero or

ignore. Use these force diagrams to help answer the following two questions.

b) Find the minimum value of ∆x for which the block barely goes around the loop staying on the

track at the top.

c) If the block is started at this position, what is the normal force exerted by the track at the bottom

of the loop, where it is greatest?
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Problem 132. problems-1/wme-pr-loop-the-loop-skier-ambitious-amy.tex

h

m

H

R

Ambitious Amy has a mass m. She skis from initial rest down the (frictionless) ski slope of height H to

a ski ramp whose radius of curvature R and whose lowest point is h above the ground (as shown).

Amy’s leg strength must oppose her apparent weight at the bottom of the jump. Is she strong enough?

It would be good to know how strong she has to be so that she can work on leg presses if need be before

trying the actual jump. So (in terms of the given quantities m, g,R,H, h) :

a) How fast is Amy going when she reaches the lowest point in the curved jump?

b) What is the total force that must be directed towards the center of the circle of motion at that

point (again, in terms of the given).

c) Using your knowledge of the actual forces acting on her that have to sum to this force, determine

her ”apparent weight” – the peak force she has to push down on the ground with her skis with in

order to stay on the circular curve.
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Problem 133. problems-1/wme-pr-loop-the-loop-skier.tex

R

H = 3.5 R

A skier of mass m at an exhibition wants to loop-the-loop on a special (frictionless) ice track of radius

R set up as shown. Suppose H = 3.5R. All answers should be given in terms of g, m and R. (Note that

the skier is really much shorter than R; the picture is not drawn strictly to scale for ease of viewing.)

a) What is her apparent “weight” (the normal force exerted by the track on her skis) when she is

upside down at the top of the loop-the-loop?

b) What is her maximum apparent “weight” on the loop-the-loop and where (at what point on the

loop-the-loop track) does it occur? Indicate the position on the figure.
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Problem 134. problems-1/wme-pr-loop-the-loop-skier-weight.tex

R

H = 3.5 R

A skier of mass m at an exhibition wants to loop-the-loop on a special (frictionless) ice track of radius

R set up as shown. Suppose H = 3.5R. All answers should be given in terms of g, m and R. (Note that

the picture is not drawn strictly to scale for ease of viewing.)

a) What is her apparent weight (the normal force exerted by the track on her skis) when she is upside

down at the top of the loop-the-loop? If she closed her eyes, what direction would she think of as

“down”?

b) What is her maximum apparent “weight” on the loop-the-loop and where (at what point on the

loop-the-loop track) does it occur? Indicate the position on the figure.
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Problem 135. problems-1/wme-pr-loop-the-loop.tex

H

R

θ

A block of mass M sits at the top of a frictionless hill of height H leading to a circular loop-the-loop of

radius R.

a) Find the minimum height Hmin for which the block barely goes around the loop staying on the

track at the top.

b) If the block is started at this position, what is the normal force exerted by the track at the bottom

of the loop, where it is greatest?
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Problem 136. problems-1/wme-pr-loop-the-loop-to-spring.tex

R

∆x

k

+x

+y

x eq

vb

vt

m

A block of mass m is travelling to the right at the top of a frictionless circular loop-the-loop track of

radius R, travelling at speed vt to the right as shown. vt is large enough that the mass remains on the

track at the top. It then slides around the track to the bottom, slides across the (frictionless) ground,

and hits a spring with spring constant k which slows it to rest after the spring has compressed a distance

∆x from its initial equilibrium length.

a) What is the speed vb at the bottom of the circular loop?

b) What is the normal force exerted by the track at the bottom just before/as it leaves the circular

loop?

c) By what distance ∆x is the spring compressed at the instant the block comes to rest?
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Problem 137. problems-1/wme-pr-razor-cuts-loop-string-1.tex

R

   =   gRv

razor

A small ball of mass m (which can be treated as a point particle for this problem) is attached to a

massless, unstretchable string whose other end is attached to a fixed, frictionless pivot. The ball swings

in a vertical circle, with gravity acting downward as usual.

When the ball is at the top of the circle it has velocity
√
gR to the left as shown, the minimum needed

to keep the particle moving in a circle. After the ball has gone half way around the circle and the string

is again vertical, a razor blade cuts the string. You can assume that the impulse delivered to the string

by the very sharp razor is small enough that it can be ignored.

a) Find the velocity of the ball just before the string is cut.

b) Find the tension in the string just before the string is cut.

c) On the diagram, qualitatively show the path of the ball just after the string is cut.
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Problem 138. problems-1/wme-pr-razor-cuts-loop-string.tex

R

razor

   =   gRv

A small ball (which can be treated as a point particle for this problem) is attached to an Acme (massless,

unstretchable) string whose other end is attached to a fixed, frictionless pivot. The ball swings in a

vertical circle, with gravity acting downward as usual.

When the ball is at the top of the circle it has velocity
√
gR to the left as shown. After the ball has

gone three quarters of the way around and the string is horizontal, a razor blade cuts the string. You

can assume that the impulse delivered to the string by the razor is small enough that it can be ignored.

a) Find the tension in the string just before it is cut.

b) On the diagram, show the path of the ball after the string is cut. Describe in words any features

of the path that you intended to illustrate and be sure to indicate the maximum height you expect

the ball to reach relative to the center of the circle of motion.
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Problem 139. problems-1/wme-pr-sliding-off-a-cylinder-review.tex

m

O

θ
R

In the figure above, a small (treat as a point mass) block of mass m is on top of a frictionless cylinder

so that its center of mass is a distance R from the axis of the cylinder. It is given a nudge so that it

slides with negligible initial speed down the side of the cylinder.

a) When its angular position is θ as shown, what is its speed (assuming that it is still on the cylinder)?

b) What is the magnitude of the normal force exerted on the block by the cylinder at this point?

c) For what value of θ will the block leave the cylinder?

Express your answers in m,R, g and θ.
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Problem 140. problems-1/wme-pr-sliding-off-a-cylinder-review-soln.tex

m

O

θ
R

θ

N

mg

In the figure above, a small (treat as a point mass) block of mass m is on top of a frictionless cylinder

so that its center of mass is a distance R from the axis of the cylinder. It is given a nudge so that it

slides with negligible initial speed down the side of the cylinder.

a) When its angular position is θ as shown, what is its speed (assuming that it is still on the cylinder)?

Use Energy Conservation. Let’s set Ug = 0 at the top of the slope. As it slides, it falls by a

vertical height H = R(1− cos θ) (why?). Then Ei = Ui +Ki = 0 Hence:

Ef =
1

2
mv2 −mgR(1− cos θ) = 0 = Ei

or (rearranging):

v(θ) =
√

2gR(1− cos θ)

As a quick check, this correctly predicts v =
√
2gR at θ = π/2 and v = 0 at θ = 0, and has the

right units.

b) What is the magnitude of the normal force exerted on the block by the cylinder at this point?

We need to write Newton’s Second Law for the component of ~F or ~a towards the center of

the circle. As long as one uses this component only, any coordinate frame above can be made to

work. That is:

Fc = mg cos θ −N = mac =
mv2

R

From the energy conservation result:

mv2 = 2mgR(1− cos θ)

Finally we substitute and rearrange:

N = mg cos θ − 2mg(1− cos θ) = 3mg cos θ − 2mg
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c) For what value of θ will the block leave the cylinder?

Note that N → 0 at the specific angle θa where it comes off of the cylinder. Using the result for

b), θa is easily found:

3mg cos θa = 2mg

or:

θa = cos−1

(

2

3

)

= 48.2◦

Note that because the use of calculators is discouraged, this angle is perfectly well and uniquely

(enough) expressed as an inverse cosine, but I put down the angle in degrees just for fun.
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Problem 141. problems-1/wme-pr-smooth-inclined-plane-friction-table-2.tex

µ

θ m0
k v

D

y

x

A block of mass m is given a push so that it begins sliding at a speed v0 from the right to the left over

a rough surface of length D leading up to a smooth (frictionless) incline. The incline makes an angle θ

with the horizontal as shown. The coefficient of friction between the block and the rough surface is µk.

a) What is the minimum speed v0,min the block must have at the right-hand end of the rough surface

such that the block will reach the bottom of the incline a distance D away?

b) Assuming that the block is travelling at some v0 > v0,min when it starts at the right-hand end of

the rough patch as drawn, how high (to what maximum height ymax) will the block slide up the

incline (use the coordinate system given)?
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Problem 142. problems-1/wme-pr-smooth-inclined-plane-friction-table.tex

L

m

µ
k

D?

at rest

θ

A block of mass m slides down a smooth (frictionless) incline of length L that makes an angle θ with

the horizontal as shown. It then reaches a rough surface with a coefficient of kinetic friction µk.

a) How fast is the block going as it reaches the bottom of the incline?

b) What distance D does the block slide across the rough surface before coming to rest?
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Problem 143. problems-1/wme-pr-spring-to-inclined-plane-friction-numbers.tex

θ

µk,s

frictionless

v?
x

k

eq

with friction

L?
m

x 0

A block of mass M = 1 kg is propelled by a spring with spring constant k = 10 N/m onto a smooth

(frictionless) track. The spring is initially compressed a distance of 0.5m from its equilibrium configura-

tion (xi − x0 = 0.5 m). At the end of the track there is a rough inclined plane at an angle of 45◦ with

respect to the horizontal and with a coefficient of kinetic friction µk = 0.5.

a) How far up the incline will the block slide before coming to rest (find Hf )?

b) The coefficient of static friction is µs = 0.7. Will the block remain at rest on the incline? If not,

how fast will it be going when it reaches the bottom again?
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Problem 144. problems-1/wme-pr-spring-to-inclined-plane-friction-icp.tex

θ

L
v

frictionfrictionless

x
0

k m

A spring with spring constant k is initially compressed a distance of x0 from its equilibrium configuration

as shown in the top diagram above. A block of mass m is placed against it and the spring is released,

propelling it forward on a smooth (frictionless) track. At the end of the track there is a rough inclined

plane at an angle of θ with respect to the horizontal and with a coefficient of kinetic friction µk.

a) How far up the incline will the block slide before coming momentarily to rest (find Lmax)?

b) Suppose the coefficient of static friction is µs. Find the maximum angle θmax such that the block

will remain at rest at the top of the incline instead of sliding back down.
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Problem 145. problems-1/wme-pr-spring-to-plane-friction.tex

∆x

kµ

k v?

with kinetic friction

m

frictionless

xeq

D

A block of mass m sits against a spring with spring constant k that is initially compressed a distance

∆x. At some time the block is released and slides across a frictionless surface until it reaches a rough

surface with a coefficient of kinetic friction µk as shown.

a) How fast is the block going as it leaves the spring at xeq?

b) What distance D down the rough surface does the block slide before coming to rest?
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6.3 Power

6.3.1 Multiple Choice

Problem 146. problems-1/power-mc-two-blocks-hard.tex

F
2m

F
m

B

A

2

In the figures A and B above a force of magnitude F is applied to mass m and a force of magnitude√
2F is applied to mass 2m as shown, where both masses are sitting initially at rest on a frictionless

table. For all values of t > 0, identify the true statement in the list below:

a) The power provided to block m in A is larger than that provided to block 2m in B, and mass m

in A ends up with more kinetic energy at time t.

b) The power provided to the block 2m in B is larger than that provided to block m in A, but block

m in A travels further in time t.

c) The power provided to both blocks is identical throughout this time, and they end up with the

same final kinetic energy at time t.

d) It is impossible to tell from the information given which block receives more power from the forces.
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Problem 147. problems-1/power-mc-two-blocks.tex

F
2m

F
m

B

A

In the figures A and B above an identical magnitude of force is applied to two masses m and 2m

respectively, sitting initially at rest on a frictionless table. For all values of t > 0 identify the true

statement in the list below:

a) The power provided to both blocks is identical throughout this time, and they end up with the

same final kinetic energy at time t.

b) The power provided to block m in A is larger than that provided to block 2m in B, and mass m

in A ends up with more kinetic energy at time t.

c) The power provided to the block 2m in B is larger than that provided to block m in A, but block

m in A travels further in time t.

d) It is impossible to tell from the information given which block receives more power from the forces.
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6.3.2 Long Problems

Problem 148. problems-1/power-pr-constant-power-v-of-t.tex

F

v

P0

m

In the figure above, a mass m is pulled along on a frictionless table by a motor with constant power

P0. At the instant shown, the mass has been previously accelerated to a speed v towards the motor.

a) Find F as a function of P0 and v (in the direction of the motor).

b) Write Newton’s second law for the mass m in terms of your answer to a), using a = dv/dt for the

acceleration.

c) Solve the equation of motion you get for v(t), assuming that v(0) = 0.

d) Qualitatively sketch what you expect to get for v(t) (or what you did get in the previous section).

Note that you can do this one even if you fail to do the integral correctly, if you think about what

happens to the force as the speed gets bigger and bigger.



174 CHAPTER 6. WORK AND ENERGY



Chapter 7

Center of Mass and Momentum

With basic dynamics and kinetics (force and energy) under our belts for massive particles taken one or

two at a time (or even three or four at a time) we need to move on and see what happens when we

treat lots of particles at a time – arbitrarily many. After all, eventually we want to understand solids

that can rotate as well as translate, and fluids that, well, act like fluids. Neither one can be thought of

precisely like a particle.

Or can they? As long as we consider a system of particles to be a single particle” located at its center

of mass, nearly everything we’ve done so far can be applied to the entire system, even if the system is

a liquid or a gas with many, many particles and no particular structure!

When do we want to use the concepts of center of mass and momentum conservation? Momentum

conservation works for isolated systems (or not-so-isolated systems in the impulse approximation) with

no net external force acting on it, especially to understand collisions. Center of mass is a useful concept

both then and when a collection of particles is being acted on in a uniform way by an external force

(such as near-Earth gravity).

175
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7.1 Center of Mass

7.1.1 Multiple Choice

Problem 149. problems-1/center-of-mass-mc-disk-with-hole-icp.tex

B
C

D
E

A

A uniform circular disk has a circular hole cut out of it as shown above. Which letter represents the

best estimate for the position of its new center of mass?

A B C D E
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Problem 150. problems-1/center-of-mass-mc-particles-1.tex

E

A

C

m

m m

m

D B

A collection of four equal masses m (including the uniform half-circle of wire) is shown above. Which of

the points A-E is a plausible location of the center of mass?
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Problem 151. problems-1/center-of-mass-mc-particles-2.tex

m

m

m

m

D

E
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A

Pick (circle) the point A-E closest to the center of mass of the system above, given four equal masses

m arranged as shown. Note that the dashed lines are drawn simply as a guide to the eye.
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Problem 152. problems-1/center-of-mass-mc-particles-3.tex

y

x2 kg 3 kg
1m 2m

2m

1m

2 kg1.5 m

1 kg

In the figure above, various given masses (in kilograms) are located at the positions shown shown. The

center of mass of this system is at:

a) x = 5/4m, y = 1/2m

b) x = 1m, y = 1/2m

c) x = 1/2m, y = 1/4m

d) x = 3/4m, y = 1m

e) x = 1/2m, y = 1m
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Problem 153. problems-1/center-of-mass-mc-particles-4.tex

y

x2 kg
1m 2m

2m

1m

2 kg1.5 m

3 kg

1 kg

In the figure above, various given masses (in kilograms) are located at the positions shown shown. The

center of mass of this system is at:

a) x = 5/4 m, y = 1/2 m

b) x = 3/4 m, y = 5/8 m

c) x = 1/2 m, y = 1/4 m

d) x = 1 m, y = 1/2 m

e) x = 5/8 m, y = 3/4 m
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Problem 154. problems-1/center-of-mass-mc-particles-icp.tex

y

x2 kg 3 kg
1m 2m

1m

1 kg
2m

2 kg

In the figure above, various given masses (in kilograms) are located at the corners of a square with sides

of length 2 meters as shown. The center of mass of this system is at:

a) x = 5/4m, y = 1/2m b) x = 1m, y = 1/2m c) x = 3/2m, y = 3/4m

d) x = 5/4m, y = 3/4m e) x = 3/2m, y = 1/2m
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Problem 155. problems-1/center-of-mass-mc-particles-6.tex

y

x2 kg 3 kg
1m 2m

1m

2m

2 kg 1 kg

In the figure above, various given masses (in kilograms) are located at the positions shown above. The

center of mass of this system is at:

a) x = 5/4 m, y = 3/4 m

b) x = 1 m, y = 3/4 m

c) x = 1 m, y = 1 m

d) x = 5/3 m, y = 5/4 m

e) x = 3/4 m, y = 1 m
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7.1.2 Short Answer

Problem 156. problems-1/center-of-mass-sa-particles.tex

figure In the figure below, various given masses (in kilograms) are located at the corners of a square with

sides of length 10 meters as shown. Fill in the coordinates of the center of mass of this system below

and place an “x” on the the graph at its location.

1 kg 4 kg

3 kg2 kg

−5m

5m

x

y

−5m 5m

xCoM =

yCoM =
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7.1.3 Long Problems

Problem 157. problems-1/center-of-mass-pr-arc-270-example.tex

x

y
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R

In the figure above, a uniformly thick piece of wire is bent into 3/4 of a circular arc as shown. Find

the center of mass of the wire in the coordinate system given, using integration to find the xcm and ycm
components separately.
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Problem 158. problems-1/center-of-mass-pr-arc-270-solution.tex

x

y

M

R

This problem will help you learn required concepts such as:

• Center of Mass

• Integrating a Distribution of Mass

so please review them before you begin.

In the figure above, a uniformly thick piece of wire is bent into 3/4 of a circular arc as shown. Find

the center of mass of the wire in the coordinate system given, using integration to find the xcm and ycm
components separately.

The uniform wire can be assumed to have a uniform mass per unit length µ. We will assume that the

wire’s thickness is far smaller than R so to compute the center of mass we can take the entire mass of the

wire to lie along one circle (neglecting the different positions of various parts of the wire’s cross-section).

We can then parameterize points on the wire using the angle θ from the positive x-axis as shown, just as

we did for motion along a circle. The coordinates of points on the circle are, in Cartesian coordinates,

r = R cos(θ)x̂+R sin(θ)ŷ , (7.1)

and the wire extends over the range 0 ≤ θ ≤ 3π/2. The length of the segment of wire represented by

the angular interval from θ to θ + dθ is µ times the length Rdθ of the interval, i.e.

dM = Rµdθ . (7.2)

The total mass of the wire is thus

M =

∫

dM =

∫ 3π2

0

Rµdθ =
3π

2
µR . (7.3)
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The center of mass position is then

rCOM = (1/M)

∫

rdm

= (1/M)

∫ 3π/2

0

(R cos(θ)x̂ +R sin(θ)ŷ)Rµdθ

=
R2µ

M

∫ 3π/2

0

(cos(θ)x̂ + sin(θ)ŷ) dθ

=
2R

3π
(−x̂+ ŷ) .
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Problem 159. problems-1/center-of-mass-pr-arc-90.tex
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R

In the figure above, a uniformly thick piece of wire is bent into 1/4 of a circular arc as shown. Find

the center of mass of the wire in the coordinate system given, using integration to find the xcm and ycm
components separately.
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Problem 160. problems-1/center-of-mass-pr-circular-cone.tex

θ0

z

x

y

H

Above is drawn a circular cone with uniform mass density ρ. The cone side makes an angle θ0 with the

positive z axis. The cone height is H . Find the center of mass of the cone in terms of the quantities

given above. Hint: Consider circular slabs of thickness dz a height z above the origin.
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Problem 161. problems-1/center-of-mass-pr-dog-in-a-boat.tex

L
L/2

M

L
D

M m

m

A dog of mass m is sitting at one end of a boat of mass M and length L that is sitting next to a dock

as shown. The dog decides he wants some tasty dog chunks that are waiting for him at home and walks

to the other end of the boat, expecting to step out onto the dock. Sadly, when he gets there he finds

himself a distance D away from the dock.

a) What is D in terms of m, M , and L. You may assume that the boat is symmetric, so that its

center of mass is at L/2, although this is not strictly necessary to get the answer.

b) The dog can successfully jump to the dock from the boat if D < L/2, but otherwise he’ll have to

swim. Find the ratio m/M for which the dog (first, barely) can’t make the leap and has to take a

bath to get to the chunks.
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Problem 162. problems-1/center-of-mass-pr-right-triangle.tex

x

M

y

a

b
y(x) = (b/a)x

In the figure above, a uniformly thick sheet of plastic is cut into the a × b right triangle shown. Find

the center of mass of the triangle in the coordinate system given, using integration to find the xcm and

ycm components separately.

Suggested solution strategy:

a) Form σ = M/A where A is the area of the triangle.

b) Form dm = σ dA where dA = dx dy.

c) Do the integrals
∫

x dm and
∫

y dm separately, using the provided functional form of the hypotenuse

to set up the limits of integration in both cases.

d) Divide out the M to obtain xcm and ycm.
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Problem 163. problems-1/center-of-mass-pr-rod-variable-lambda-icp.tex

0 L +x

2M
2L

λ (x) =        x

In the figure above a rod of total mass M and length L is portrayed (with shading that increases with

mass density) that has been machined so that it has a mass per unit length that increases linearly along

the length of the rod:

λ(x) =
2M

L2
x

This might be viewed as a very crude model for the way mass is distributed in something like a human

leg or a baseball bat. The rod is so thin that ycm = zcm ≈ 0 by inspection.

a) verify that the total mass of the rod is indeed M for this mass distribution;

b) find xcm, the x-coordinate of the center of mass of the rod.
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Problem 164. problems-1/center-of-mass-pr-romeo-and-juliet.tex

v0

m w

L

M b

Romeo and Juliet are out in their damn boat again, this time for a picnic on the lake. The boat is

initially at rest. Juliet decides she wants a piece of tasty watermelon, and throws the watermelon at

horizontal speed v0 to Romeo at the other end of the boat a distance L away so he can cut her a piece

with his ever-handy bodkin (dagger). The combined mass of Romeo, Juliet and the boat is Mb; the

mass of the watermelon is mw. Assume that the boat can move horizontally on the water without drag

or friction.

a) What is the horizontal speed of the boat while the watermelon is in the air (neglect its vertical

motion – assume that Juliet has thrown it on a flat trajectory as shown).

b) What is the horizontal speed of the boat after Romeo catches the watermelon?

c) How long is the watermelon in the air?
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Problem 165. problems-1/center-of-mass-pr-semicircular-sheet.tex
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Find the center of mass of the two-dimensional semicircular sheet drawn above. It has a uniform mass

per unit area σ and radius R. You may invoke symmetry for one of the two vector components of the

center of mass location.
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7.2 Momentum

7.2.1 Multiple Choice

Problem 166. problems-1/momentum-mc-also-energy-football-icp.tex

M
M

L

S

Two football players, one large (L – bigger mass) and one small (S – smaller mass) are running in a

straight line directly at one another. They have the same magnitude of momentum. Rank their

mechanical energies and speeds right before they collide.

a) ES < EL, vS < vL b) ES < EL, vS > vL c) ES > EL, vS > vL d) ES > EL, vS < vL
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Problem 167. problems-1/momentum-mc-baseball-and-bat-icp.tex

Ker−pow!

Michelle is playing baseball and hits a home run with a solid wood bat (mass of 3 kg). The baseball

(mass of 0.5 kg) is knocked clean out of the park. The magnitude of the force exerted by the bat on

the baseball is:

a) Greater than the magnitude of the force exerted by the baseball on the bat.

b) Less than the magnitude of the force exerted by the baseball on the bat;

c) The same as the magnitude of the force exerted by the baseball on the bat.



196 CHAPTER 7. CENTER OF MASS AND MOMENTUM

Problem 168. problems-1/momentum-mc-cement-truck-and-bug.tex

A cement truck with a mass Mt is travelling at speed vt collides with a bug of mass mb that is hovering

above the road (so vb ≈ 0). One can safely assume that Mt ≫ mb. Which of the following statements

are unambiguously true (circle all definitely true statements)?

a) If the bug recoils off of the windshield elastically, its final speed is roughly 2vt (in the same

direction as the truck).

b) The magnitude of the momentum change of the truck is much smaller than the magnitude of the

momentum change of the bug.

c) If the bug splatters and sticks to the windshield of the truck, the total kinetic energy of the bug

and truck will be conserved.

d) At all times during the collision, the bug exerts exactly the same magnitude of force on the truck

that the truck exerts on the bug.

e) The final speed of the bug as it recoils off of the windshield is roughly Mt

mb

vt (in the same direction

as the truck).
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Problem 169. problems-1/momentum-mc-elastic-collision-blocks-2.tex

+x

before after

vm 2m m 2mmv 2mv  

A block of mass m slides on a frictionless table at velocity ~v = vx̂ to the right (positive x-direction)

to collide with a block of mass 2m initially at rest as shown. Assuming that the collision is one

dimensional and elastic, the velocities of the two blocks after the collision are:

a) ~vm = − v
2 x̂ ~v2m = 3v

4 x̂

b) ~vm = 0x̂ ~v2m = v
6 x̂

c) ~vm = − v
3 x̂ ~v2m = 4v

3 x̂

d) ~vm = v
3 x̂ ~v2m = 2v

3 x̂

e) ~vm = − v
3 x̂ ~v2m = 2v

3 x̂
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Problem 170. problems-1/momentum-mc-elastic-collision-blocks.tex

2mv  
mv 

+x
v

m2m

before after

2m m

A block of mass 2m slides on a frictionless table at velocity ~v = vx̂ to the right (positive x-direction)

to collide with a block of mass m initially at rest as shown. Assuming that the collision is one

dimensional and elastic, the velocities of the two blocks after the collision are:

a) ~v2m = v
2 x̂ ~vm = 3v

2 x̂

b) ~v2m = 0x̂ ~vm =
√
2vx̂

c) ~v2m = − v
3 x̂ ~vm = 4v

3 x̂

d) ~v2m = v
3 x̂ ~vm = 4v

3 x̂

e) The answers above are all incorrect.
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Problem 171. problems-1/momentum-mc-fission-1.tex

0v

3m
v0

v?

m x
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2m

An atomic nucleus of mass 3m is travelling to the right at velocity ~vinitial = v0î as shown. It sponta-

neously fissions into two fragments of mass m and 2m. The smaller fragment m travels straight down

at velocity ~vm = −v0ĵ after the fission. What is the velocity of the larger fragment?

a) ~v2m = 3
2v0î

b) ~v2m = 2v0ĵ

c) ~v2m = 3
2v0î+

1
2v0ĵ

d) ~v2m = − 3
2v0î− 1

2v0ĵ

e) ~v2m = 3v0î+ 2v0ĵ
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Problem 172. problems-1/momentum-mc-fission-2.tex

x

y

4m, v4m = 2v0

8m, v8m

12m, v0

= ?

An atomic nucleus of mass 12m is travelling to the right at velocity ~vinitial = v0x̂ as shown. It spon-

taneously fissions into two fragments of mass 4m and 8m (releasing energy). The smaller fragment 4m

travels straight down at velocity ~v4m = −2v0ŷ after the fission. What is the velocity of the larger

fragment?

a) ~v8m = 1
2v0x̂+ v0ŷ

b) ~v8m = 2v0x̂+ 2v0ŷ

c) ~v8m = − 3
2v0x̂− v0ŷ

d) ~v8m = 3
2v0x̂+ v0ŷ

e) ~v8m = 3
2v0x̂+ 2v0ŷ
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Problem 173. problems-1/momentum-mc-simple-inelastic-collision-icp.tex

v v
0

0

3mm

A mass m travelling at (one-dimensional) velocity v0 to the right collides with mass 3m travelling at

velocity −v0 to the left and sticks to it. The final velocity vf of the blocks after the collision is:

a) vf = −2v0 b) vf = v0/2 c) vf = −v0 d) vf = −2v0/3 e) vf = −v0/2
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Problem 174. problems-1/momentum-mc-two-masses-spring-2.tex

m 3m

Two masses, m and 3m, are separated by a compressed spring as shown above. At time t = 0 they are

released from rest and the (massless) spring expands. There is no gravity or friction. As they move apart,

which statement about the magnitude of each mass’s relative kinetic energy Ki and the magnitude

of each mass’s relative momentum pi is true?

a) Km = 3K3m, pm = p3m/3

b) Km = K3m/3, pm = 3p3m

c) Km = K3m/3, pm = p3m

d) Km = 3K3m, pm = p3m

e) Km = K3m/4, pm = p3m
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Problem 175. problems-1/momentum-mc-two-masses-spring.tex

m1 m2

Two masses, m2 = 2m1 are separated by a compressed spring. At time t = 0 they are released from rest

and the (massless) spring expands. There is no gravity or friction. As they move apart, which statement

about the magnitude of each mass’s kinetic energy Ki and momentum pi is true?

a) K1 = 2K2, p1 = 2p2

b) K1 = 2K2, p1 = p2

c) K1 = K2, p1 = 2p2

d) K1 = K2/2, p1 = p2/2

e) K1 = K2/4, p1 = p2
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Problem 176. problems-1/momentum-mc-two-trucks-collide.tex

A fully laden dump truck (mass of maybe 10,000 kg) slams into a small pickup truck (mass around 2,000

kg). The two trucks exert a collision force on one another, and momentum is transferred during the

short collision.

Let FD,∆pD, aD represent the magnitude of the force exerted by the dump truck on the pickup truck,

the magnitude of the dump truck’s momentum change, and the magnitude of the dump truck’s average

acceleration during the collision. Let Fp,∆pp, ap represent the magnitude of the force exerted by the

pickup truck on the dump truck, the magnitude of the pickup truck’s momentum change, and the

magnitude of the pickup truck’s average acceleration during the collision.

Select the correct/true description of these magnitudes below:

a) FD = Fp, ∆PD > ∆Pp, aD < ap

b) FD > Fp, ∆PD = ∆Pp, aD < ap

c) FD = Fp, ∆PD > ∆Pp, aD > ap

d) FD = Fp, ∆PD = ∆Pp, aD < ap

e) FD = Fp, ∆PD = ∆Pp, aD = ap

f) None of the above (enter the correct answer here):
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7.2.2 Short Answer

Problem 177. problems-1/momentum-sa-elastic-recoil.tex

(incident) (target)

v

v
m m

m

m
M

M

o

vo

o
(a)

(b)

(c)

In the three figures above, mass M > m. The mass on the left is incident at speed v0 on the target mass

(initially at rest in all three cases) on the right . The two particles undergo an elastic collision in one

dimension and the target mass recoils to the right in all three cases. In the spaces provided below you

are asked to provide a qualitative estimate of the speed and direction of the incident particle after the

collision.

Your answer should be given relative to v0 and should look like “vx > v0, to the left” or “vx = 0” or

vx < v0, to the right” where x = a, b, c. In other words, specify the speed qualitatively compared to v0
and then the direction, per figure.

a)

b)

c)
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Problem 178. problems-1/momentum-sa-hammer-impacts-head.tex

m

H

A hammer of mass m falls from rest off of a roof and drops a height H onto your head. Ouch!

a) Assuming that the tool is in actual contact with your head for a time ∆t before it stops (thud!)

and slides off, what is the algebraic expression for the average force it exerts on your hapless skull

while stopping?

b) Estimate the magnitude of this force using m = 1 kg, H = 1.25 meters, ∆t = 10−2 seconds and

g = 10 m
sec2 . Compare this force to the weight of the hammer of 10 Newtons!
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Problem 179. problems-1/momentum-sa-impact-orc-spears-frodo.tex

An Orc throws a 2 kg spear at Frodo Baggins at point blank range, but it is stopped by his hidden mithril

mail shirt. Assuming that the spear was travelling at 20 m/sec when it hit and that it stopped in 0.1

seconds, what was the average force exerted on the spear by the mail coat (and the hobbit underneath)?

Ouch!
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Problem 180. problems-1/momentum-sa-shark-eats-fish.tex

A great white shark of mass m1, coasting through the water in a nearly frictionless way at speed v1,

engulfs a tuna of mass m2 < m1 travelling in the same direction at speed v2 < v1, swallowing it in one

bite.

a) What is the speed of the shark after its tasty meal, sadly eaten without wasabi (mmm, sashimi!)?

b) Did the shark gain (kinetic) energy, lose energy, or have its energy remain the same in the process.



7.2. MOMENTUM 209

7.2.3 Long Problems

Problem 181. problems-1/momentum-pr-ballistic-pendulum-partially-inelastic.tex

m,v m,v

L

0 1

M,v = 0

M,v  = 0f

θmax

In the figure above, a bullet of massm and initial velocity v0 passes through a block of massM suspended

by an unstretchable, massless string of length L from an overhead support as shown. It emerges from

the collision on the far side travelling at v1 < v0. This happens extremely quickly (before the block

has time to swing up) and the mass of the block is unchanged by the passage of the bullet (the mass

removed making the hole is negligible, in other words). After the collision, the block swings up to a

maximum angle θmax and then stops.

Find θmax.
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Problem 182. problems-1/momentum-pr-bullet-block-free-fall-1.tex

H

R

vm M0

A bullet of mass m travelling at speed v0 in the direction shown above strikes a block of mass M and

embeds itself in it. The block is sitting on the edge of a frictionless table of height H and is knocked off

of the table by the collision.

a) What is the speed vb of the block immediately after the bullet sticks?

b) What distance R from the base of the table does the block land?

Note: If you cannot solve a), just use the symbol vb where needed to get possibly full credit for b). Do

not just use a memorized formula for b): Clearly state the physical principle(s) you are using and work

out the answers.



7.2. MOMENTUM 211

Problem 183. problems-1/momentum-pr-bullet-block-free-fall-2.tex

H

R

v1 v2m M

A bullet of mass m travelling at speed v1 in the direction shown above strikes a block of mass M and

passes through, emerging at speed v2. The block is sitting on the edge of a frictionless table of height

H and is knocked off of the table by the collision.

a) What is the speed vb of the block immediately after the bullet emerges?

b) What distance R from the base of the table does the block land?

Note: If you cannot solve a), just use the symbol vb where needed to get possibly full credit for b). Do

not just use a memorized formula for b): Clearly state the physical principle(s) you are using and work

out the answers.
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Problem 184. problems-1/momentum-pr-bullet-stops-at-block.tex

M

m

v(bullet stops)

v

v0

b

b

In the figure above a bullet of mass m is travelling at initial speed v0 to the right when it strikes a larger

block of mass M that is resting on a smooth (frictionless) horizontal table.

Instead of “sticking” in the block, the bullet is stopped cold by the block and falls to the ground, while

the block recoils from the collision to the right. Note that this collision is partially inelastic, so some

mechanical energy will be lost.

a) What is the velocity of the block vb immediately after the collision.

b) How much energy is lost in the collision?
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Problem 185. problems-1/momentum-pr-bullet-through-block-rough-surface.tex
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(block at rest)

In the figure above a bullet of mass m is travelling at initial speed vi to the right when it strikes a larger

block of mass M that is resting on a rough horizontal table (with coefficient of friction between block

and table of µk). Instead of “sticking” in the block, the bullet blasts its way through the block (without

changing the mass of the block significantly in the process). It emerges with the smaller speed vf , still

to the right.

a) Find the speed of the block vb immediately after the collision (but before the block has had time

to slide any significant distance on the rough surface).

b) Find the (kinetic) energy lost during this collision. Where did this energy go?

c) How far down the rough surface D does the block slide before coming to rest?
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Problem 186. problems-1/momentum-pr-bullet-through-block.tex
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In the figure above a bullet of mass m is travelling at initial speed vi to the right when it strikes a larger

block of mass M that is resting on a horizontal table. Instead of “sticking” in the block, the bullet

blasts its way through the block (without changing the mass of the block significantly in the process). It

emerges with the smaller speed vf , still to the right.

a) What is the velocity of the block vb immediately after the collision.

b) How much energy is lost in the collision?
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Problem 187. problems-1/momentum-pr-collision-icy-hill-to-rough-snow.tex

H

Mom

Tommy

D

rough snow

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a frictionless

slope of height H above a flat plane, where he runs into Mom. The two of them stick together and

slide forward a distance D across a patch of rough snow with coefficient of kinetic friction µk until they

come to rest. The mass of Tommy is mt, the mass of his mother is Mm. Answer the following algebraic

questions in terms of H , µk, mt, Mm, and g:

a) How fast is Tommy going immediately before he collides with his mother?

b) Find D.

c) Howmuch energy is gained or lost during the collision between Tommy and his mother? Indicate

clearly whether the energy is gained or lost.
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Problem 188. problems-1/momentum-pr-collision-on-icy-hills.tex

H

hMom

Tommy

Tommy is learning to ski, but he isn’t very good at it. Starting from rest, he skiis down a frictionless

slope of height H above a small valley, where he runs into Mom. The two of them stick together and

slide up the slope on the far side to a new height h. The mass of Tommy is mt, the mass of his mother

is Mm. Ignore all drag and friction, and answer the following algebraic questions in terms of H ,

mt, Mm, and g:

a) How fast is Tommy going immediately before he collides with his mother?

b) Find h.

c) Howmuch energy is gained or lost during the collision between Tommy and his mother? Indicate

clearly whether the energy is gained or lost.
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Problem 189. problems-1/momentum-pr-dog-jumps-from-boat.tex

m

vb

dv

M D

A dog of mass m gets hungry while sitting at the end of a boat of mass M and length L that is at rest

on the water of a lake. He jumps out onto the dock to go get some tasty dog chunks that are waiting

for him at home when the boat is a distance D away from the dock as shown. The dog travels at a

horizontal speed vd relative to the ground/lake as he flies through the air.

a) What is the recoil speed of the boat, vb, while the dog is in the air? Assume that dog and boat

are both at rest before the jump.

b) How much work did the dog’s legs do during the jump?
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Problem 190. problems-1/momentum-pr-elastic-collision-proton-neon.tex

mp p

vo

M = 20m

A Proton of mass mp is directly incident on a Neon nucleus with mass 20mp. It is initially (far away

from the nucleus) travelling with speed v0. The two particles repel each other (like charges repel) as

they approach, and the force of repulsion is strong enough to prevent the particles from touching. The

“collision” that takes place gradually between the two particles is elastic.

a) At some distant time in the future (after the collision) is the proton moving to the left or to the

right?

b) What is the speed of the proton when it and the Neon nucleus are at the distance of closest

approach?

c) What is the speed of the Neon nucleus at a distant time in the future (after the collision) when

they are once again far apart.
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Problem 191. problems-1/momentum-pr-elastic-two-balls.tex
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In the figure above, a ball with mass m = 1kg and speed v0 = 5 m/sec elastically collides with a

stationary, identical ball (all resting on a frictionless surface so gravity is irrelevant). A student measures

the top ball emerging from the collision at a speed vt = 4 m/sec at an angle θt ≈ 37◦ as shown.

a) Find the speed vb of the other ball.

b) Find the angle θb of the other ball. (Hint: Draw a triangle with sides of length v0, vt, vb.)

c) What does θt + θb add up to? (This is a characteristic of all elastic collisions between identical

masses in 2 dimensions.)
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Problem 192. problems-1/momentum-pr-fission.tex
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An atomic nucleus of mass 3m is travelling to the right at velocity ~vinitial = v0x̂ as shown. It sponta-

neously fissions into two fragments of mass m and 2m. The smaller fragment m travels straight down

at velocity ~vm = −v0ŷ after the fission.

a) What is the velocity of the larger fragment?

b) What is the net energy gain or loss (indicate which!) from the fission process, in terms of the

initial kinetic energy?
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Problem 193. problems-1/momentum-pr-h3-he4-fusion.tex
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In the figure above, a Tritium (H3) nucleus and a Helium (He4) nucleus collide and fuse inelastically

into Beryllium (Be7), an important nucleosynthesis process in the early Universe. The velocity of the

H3 is 4v0î, the velocity of the He4 is 3v0ĵ as drawn. Show your work and reasoning to answer the

following questions in terms of the given quantities m and v0:

a) Find the final velocity vector of the combined object, expressed using vector notation (e.g. ~A =

Axî+Ay ĵ);

b) Find the magnitude of the final velocity vf and its angle θ with respect to the x-direction;

c) Find the change of momentum vectors ∆~pH for the H3 nucleus and ∆~pHe for the He4 nucleus.

(Recall that ∆~p == ~pf − ~pi.) Briefly discuss how they are related and what this means.
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Problem 194. problems-1/momentum-pr-inelastic-collision-ball-bearing-spring.tex

x

m
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v

block comes to rest

collision

A ball bearing of mass m = 50 grams travelling at 200 m/sec smacks into a block of mass M = 950 gms

and sticks in a hole drilled therein. The block is initially at rest on an Acme frictionless table and is also

connected to an Acme spring with spring constant k = 400 N/m at its equilibrium position (see figure).

a) What is the maximum distance x the spring is compressed by the recoiling ball bearing-block

system?

b) How much mechanical energy is lost in the collision (noting that an answer of ‘none’ is one possi-

bility)?
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Problem 195. problems-1/momentum-pr-inelastic-elastic-collision.tex

m
2m

3m
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v

A B

Two masses A and B rest on a frictionless surface, with a massless spring with spring constant k connected

to B. A bullet coming from the left with speed v hits A and becomes embedded in it. The masses of the

bullet, A and B are m, 2m and 3m respectively.

a) What is the speed vcm of the center of mass of the system consisting of A, B and the bullet?

b) Immediately after A gets hit by the bullet, what is the speed vA of A (with the bullet embedded

in it) before it hits the spring?

c) In the subsequent motion of the system, what is the maximum compression ∆xmax of the spring?
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Problem 196. problems-1/momentum-pr-inelastic-football-collision.tex
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A running back of mass M is running at speed v0 upfield. A linebacker of mass 3M/2 is running along

one of the yardlines (so his velocity is at a right angle to the running back’s) at a speed 1
2v0. The

linebacker tackles the running back in mid-air so that the two bodies stick together. Answer the

questions below in terms of the givens above and show your reasoning.

a) By what angle θ is the running back deflected from his original direction?

b) What is the horizontal velocity of the two right after the collision in the x-y plane while they are

still in the air?

c) Who experiences the greatest magnitude of acceleration during the collision, the running back

(M) or linebacker (3M/2)?
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Problem 197. problems-1/momentum-pr-neutron-collides-with-helium.tex
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In the figure above, a neutron of mass m collides elastically with a helium nucleus of mass 4m, striking

it head on so that the collision is one dimensional. The initial speed of the the neutron is v0; the helium

nucleus is initially at rest. In answering the following questions you may either find or just remember

the solution for one dimensional elastic collisions – you do not have to derive it, although you may if

you wish or cannot remember it.

a) What is the final velocity of the neutron (magnitude and direction) after the collision.

b) What is the final velocity of the helium nucleus after the collision.

c) Is the helium nucleus moving faster or slower than the neutron is moving after the collision? (Does

your answer make sense?)
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Problem 198. problems-1/momentum-pr-two-astronauts.tex
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Two astronauts with identical mass M (including their spacesuits) in free-fall are working on a satellite.

They are connected by a taut tether rope of length L. The first astronaut on the needs a tool of mass

m that the second astronaut is carrying (also initially a distance L away), so the second one tosses the

tool to the first at speed v0.

a) What is the speed of the two astronauts while the tool is in space flying freely between them?

b) What is the speed of the two astronauts after the first one catches the tool?

c) The first astronaut cannot reach the satellite if he has drifted a distance d further away while

the tool was in flight. Find the maximum length L that the tether can have such that the first

astronaut can still reach the satellite. Express your answer in terms of M , m, v0 and d as needed.
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Problem 199. problems-1/momentum-pr-two-block-elastic-collision.tex
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Two blocks A and B collide elastically on a frictionless surface. A massless spring with spring constant

k is connected to block B. Initially, block A moves to the right with a speed v to collide with block B

which is initially stationary.

Show your work.

a) Before the collision, what is the speed vcm of the center of mass of the system consisting of blocks

A and B?

vcm =

b) During the collision, what is the maximum compression ∆xmax of the spring?

∆xmax =
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Chapter 8

One Dimensional Rotation and

Torque

OK, so whole systems behave like particles, as long as the particle” is located at the center of mass of

the system of particles. But solid objects have a second kind of motion. They can rotate around an

axis through their center of mass (or possibly around other axes if they are suitably constrained).

A bit of algebra and thought transforms Newton’s Second Law and the notion of kinetic energy into

rotational forms involving rotations around a single axis, although that axis is itself arbitrary so that

we know that eventually we’ll have to make this a vector theory. For the moment, though, we’ll just

add a single plane-polar angle to the regular coordinate description of the center of mass of objects that

rotate, or translate and rotate.

You can understand rotation in terms of the simple 1-D stuff you learned the first week as a analogous

system by thinking of torque as the rotational equivalent of force, moment of inertia the rotational

equivalent of mass, the angle of rotation θ the equivalent of a spatial coordinate like x, and so on.

Don’t forget the rolling constraint used in many of the problems! Also don’t forget to choose your

coordinate system – for translation and for rotation – consistently so that angular acceleration can be

related to translational acceleration (and so on) without a spurious minus sign.

Torque is a bit twisted (as physics subjects go), sorry...

229
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8.1 Rotation

8.1.1 Multiple Choice

Problem 200. problems-1/rotation-mc-cable-spool-rolls-on-line.tex

R
r

F

A cable spool of mass M , radius R and moment of inertia I = βMR2 around an axis through its center

of mass is wrapped around its outer disk with fishing line and set on a rough rope as shown. The fishing

line is then pulled with a force of magnitude F to the right as shown so that it rolls down the rope on

the spool at radius r to the right without slipping.

What is the direction of static friction as it rolls?

a) To the right.

b) To the left.

c) Not enough information to tell (depends on e.g. the size of r relative to R, the numerical value of

β, or other unspecified data).
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Problem 201. problems-1/rotation-mc-K-scaling.tex

Sphere A has mass M and radius R. Sphere B has mass M and radius 2R. In order for the two spheres

to have the same kinetic energy, the ratio of their angular velocities must be:

a)
ωA

ωB
= 4

b)
ωA

ωB
= 2

c)
ωA

ωB
= 1/2

d)
ωA

ωB
= 1/4
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Problem 202. problems-1/rotation-mc-K-scaling-with-I.tex
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Three wheels have the same mass M and outer radius R. This mass is distributed uniformly (but

differently) in each wheel, with the inner radius of the uniform distribution varying as illustrated in the

figure above. Each is rotating about its axis of symmetry through its center of mass in the center, and

all three have the same kinetic energy. Which wheel is rotating the fastest?

a) Wheel A b) Wheel B

c) Wheel C d) Two or more of these wheels are tied for fastest
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Problem 203. problems-1/rotation-mc-K-sharing-with-m.tex
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A very light string is wrapped many times around a disk of mass m and radius R that is pivoted in

the center and free to rotate. A block with the same mass m is attached to the end of the string and

released from rest so that the disk spins as the string unrolls as it falls.

At the instant that the mass m has fallen to where it has kinetic energy K, the disk has kinetic energy:

a) K

b) K/2

c) 2K

d) None of these.
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Problem 204. problems-1/rotation-mc-rolling-disk-friction-1.tex

F

In the figure above a force is applied to the center of a disk (initially at rest) sitting on a rough table

by means of a rope attached to its frictionless axle in the direction shown. The disk then accelerates

and rolls without slipping. The net horizontal force exerted by the table on the disk is:

a) kinetic friction to the right.

b) kinetic friction to the left.

c) static friction to the right.

d) static friction to the left.

e) Cannot tell from the information given.
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Problem 205. problems-1/rotation-mc-rolling-disk-friction.tex

F

In the figure above a force is applied to the center of a disk (initially at rest) sitting on a rough table by

means of a rope attached to its frictionless axle in the direction shown. The disk then accelerates and

rolls without slipping. The net horizontal force exerted by the table on the disk is:

a) kinetic friction to the right.

b) kinetic friction to the left.

c) static friction to the right.

d) static friction to the left.

e) Cannot tell from the information given.
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Problem 206. problems-1/rotation-mc-rolling-race-1.tex

Mr. Hoop Ms. Disk

Mr. Hoop and Ms. Disk had a race rolling down two identical hills without slipping. They both started

at the top at the same time. Who won?

a) Mr. Hoop

b) Ms. Disk



8.1. ROTATION 237

8.1.2 Ranking/Scaling

Problem 207. problems-1/rotation-ra-hoop-and-disk.tex

A hoop and a disk of identical mass and radius are rolled up two identical inclined planes without

slipping and reach a maximum height of Hhoop and Hdisk respectively before coming momentarily to

rest and rolling back down.

Use one of the three signs <, > or = in the boxes below to correctly complete each statement.

a) If both hoop and disk start with the same total kinetic energy then:

Hhoop Hdisk

b) If both hoop and disk start with the same total center of mass speed then:

Hhoop Hdisk

c) If both hoop and disk start with the same total center of mass speed then comparing the

magnitude of the work done by gravity when they have reached their maximum height:

|Wgravity,hoop| |Wgravity,disk|
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Problem 208. problems-1/rotation-ra-loop-the-loops-balls.tex
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slidingrolling

In the figures above, (a) shows a ball rolling without slipping on a track; (b) shows the ball sliding on

a frictionless track; (c) shows the ball on a string; (d) shows the ball attached to a rigid massless rod

attached to a frictionless pivot. In all four figures the ball has the smallest velocity at the bottom of its

circular trajectory that will suffice for the ball to reach the top while still moving in a circle (note that

the velocities are not drawn to scale).

Correctly ordinally rank these minimum velocities, for example va = vb < vc < vd is a possible (but

probably incorrect) answer.

Note: You must either justify your answer with simple physical arguments or just solve for the minimum

velocity needed at the bottom in terms of m, r, β = 2/5 (for a ball), g and then order the results. You

can’t just put down a “guess” for an order with no valid physical reasoning backing it and have it count,

but it is possible to reason your way all or most of the way to an answer without doing all of the algebra.
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8.1.3 Short Answer

Problem 209. problems-1/rotation-sa-rolling-race-1.tex
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(c)

(a)

(b)

Its a race! Three wheels made out of two concentric rings of mass connected by light spokes are identically

placed at the top of an inclined plane of height H as shown. At time t = 0 they are all three released

from rest to roll without slipping down the incline. You are given the following information about each

double ring:

a) Inner ring mass m is less than outer ring mass M .

b) Inner ring mass m is the same as outer ring mass m.

c) Inner ring mass M is greater than outer ring mass m.

In what a, b, c order do the rings arrive at the bottom of the incline? (4 points)
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Problem 210. problems-1/rotation-sa-rolling-race-2.tex

H
h

M,R
ring disk

You are given two inclined planes with different maximum heights H > h as shown. If a ring and disk

of identical radius R and mass M are each placed at the top of one of the two planes and released, they

will roll without slipping to arrive at the bottom travelling at the same speed. If placed at the top of

the planes in the other order, they will not.

Draw and label the ring and disk at the tops of the correct planes such that they will roll to the

bottom and arrive travelling at the same speed.
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Problem 211. problems-1/rotation-sa-rolling-race-3.tex

ring disk
M,R

HH

You are given two inclined planes with the same height H as shown. A ring and disk of identical radius

R and mass M are each placed at the top of one of the two planes and released at the same instant to

roll without slipping to the bottom of their respective inclines..

a) Which one gets to the bottom first? (Circle) ring disk

b) Which one has the greatest speed at the bottom? ring disk

c) Which one has the greatest rotational kinetic energy at the bottom? ring disk
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8.1.4 Long Problems

Problem 212. problems-1/rotation-pr-asymmetric-atwoods-2.tex
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A pulley of mass M , radius R and moment of inertia I = βMR2 has a massless, unstretchable string

wrapped around it many times and has a mass m1 suspended from the string. A second massless,

unstretchable string is wrapped the opposite way around a massless, frictionless axle with radius R/2 as

shown and has mass m2 suspended from the string. The system begins at rest.

a) What must m2 be in terms of m1 for the system to remain stationary?

b) Suppose m1 = m2 = M . Find ~α, the angular acceleration of the pulley about its center of mass.

This is a vector! Indicate the direction of the angular acceleration on the figure or in your

answer.
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Problem 213. problems-1/rotation-pr-asymmetric-atwoods.tex
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Two objects m1 and m2 (with m1 > m2) are attached to massless unstretchable ropes that are attached

to wheels on a common frictionless axle as shown in the figure. The total moment of inertia of the two

wheels is given as I. The radii of the wheels are R (for mass m1 and r (for mass m2 as shown.

a) Show all forces on the two masses and the system of wheels using free-body diagrams; or drawing

the forces in on the provided figure. You do not need to include the force in the strap that connects

the wheel axle to the ceiling – you may assume that it is large enough to keep the axle perfectly

fixed.

b) When mass m1 falls a distance x1, by what distance x2 does mass m2 rise?

c) Find the tensions T1 and T2 in the ropes supporting m1 and m2.

d) After mass m1 falls a height H , what is its speed?
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Problem 214. problems-1/rotation-pr-atwoods-machine.tex
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In the figure above Atwood’s machine is drawn – two masses m1 and m2 hanging over a massive pulley

which you can model as a disk of mass M and radius R, connected by a massless unstretchable string.

The string rolls on the pulley without slipping.

a) Draw three free body diagrams (isolated diagrams for each object showing just the forces acting

on that object) for the three masses in the figure above.

b) Convert each free body diagram into a statement of Newton’s Second Law (linear or rotational)

for that object.

c) Using the rolling constraint (that the pulley rolls without slipping as the masses move up or down)

find the acceleration of the system and the tensions in the string on both sides of the pulley in

terms of m1, m2, M , g, and R.

d) Suppose mass m2 > m1 and the system is released from rest with the masses at equal heights.

When mass m2 has descended a distance H , find the velocity of each mass and the angular velocity

of the pulley.
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Problem 215. problems-1/rotation-pr-bowling-ball-friction.tex
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A bowling ball of mass M and radius R is released horizontally moving at a speed v0 so that it initially

slides without rotating on the bowling lane floor. µk is the coefficient of kinetic friction between the

bowling ball and the lane floor. It slides for a time t and distance d before it rolls without slipping the

rest of the way to the pins at speed vf .

a) Find t.

b) Find d.

c) Find vf .
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Problem 216. problems-1/rotation-pr-cable-spool-rolls-on-line-2.tex
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A cable spool of mass M , radius R and moment of inertia I = 1

3
MR2 is wrapped around its outer

disk radius R with fishing line and set on a rough rope as shown. The fishing line is then pulled with a

force ~F = F x̂ to the right so that it rolls down the rope at its inner radius R/2 without slipping.

a) Find the acceleration of the spool (magnitude and direction): ~a =

b) Find the force the friction of the rope exerts on the spool (magnitude and direction).

~fs =

Show your work. To make your statements of direction(s) unambiguous, please use the coordinate axes

given to express all directions, and draw them in on the figure for good measure.
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Problem 217. problems-1/rotation-pr-cable-spool-rolls-on-line.tex
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A cable spool of mass M , radius R and moment of inertia I = βMR2 around an axis through its center

of mass is wrapped around its OUTER disk with fishing line and set on a rough rope as shown. The

fishing line is then pulled with a force F to the right as shown so that it rolls down the rope on the spool

at radius r without slipping.

a) Which way does the spool roll (left or right)?

b) Find the magnitude of the acceleration of the spool.

c) Find the force the friction of the rope exerts on the spool.

d) Is there a value of the radius r relative to R for which friction exerts no force on the spool? If so,

what is it?
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Problem 218. problems-1/rotation-pr-disk-on-ice-example.tex
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This problem will help you learn required concepts such as:

• Conservation of Mechanical Energy

• Rotational Kinetic Energy

• Rolling Constraint.

so please review them before you begin.

A disk of mass m and radius R rolls without slipping down a rough slope of height H onto an icy

(frictionless) track at the bottom that leads up a second icy/frictionless hill as shown.

a) How fast is the disk moving at the bottom of the first incline? How fast is it rotating (what is its

angular velocity)?

b) Does the disk’s angular velocity change as it leaves the rough track and moves onto the ice (in the

middle of the flat stretch in between the hills)?

c) How far up the second hill (vertically, find H ′) does the disk go before it stops rising?
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Problem 219. problems-1/rotation-pr-disk-on-ice-solution.tex
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This problem will help you learn required concepts such as:

• Conservation of Mechanical Energy

• Rotational Kinetic Energy

• Rolling Constraint.

so please review them before you begin.

A disk of mass m and radius R rolls without slipping down a rough slope of height H onto an icy

(frictionless) track at the bottom that leads up a second icy/frictionless hill as shown.

a) How fast is the disk moving at the bottom of the first incline? How fast is it rotating (what is its

angular velocity)?

As the disk rolls down the incline without slipping, the velocity of its center and the angular

velocity with which it rotates are related by the rolling without slipping constraint:

v = ωR . (8.1)

Because it is not slipping, friction does no work, so that the total mechanical energy is conserved

during the descent. Initial kinetic energy is zero, so Ei = Ui = mgH , where I am setting U = 0

at the bottom of the incline. With this choice, final potential energy vanishes and total energy in

final state is kinetic. This, in turn, is a sum of a translational term representing the motion of

the center of mass and a rotational contribution representing the motion as seen by an observer

moving with the center of mass. Thus:

Ef = Kf =
1

2
mv2 +

1

2
Iω2 . (8.2)

Inserting the constraint as well as the value of the moment of inertia for a uniform disk I = 1
2mR2

we have

mgH =
1

2
mv2 +

1

2

mR2

2

( v

R

)2

=
1

2
mv2 (1 + 1/2) =

3

4
mv2 , (8.3)

whence

v =

√

4

3
gH . (8.4)
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Note that this is less than the
√
2gH we would find were the disk sliding down a frictionless incline.

This makes sense, because friction has been acting to enforce the constraint, but has also slowed

the disk. Alternatively, the expression for the kinetic energy above shows that some of the work

done by gravity was converted into rotational kinetic energy, leaving less of it to be converted to

translational kinetic energy.

Using the constraint we then have

ω =
v

R
=

√

4gH

3R2
. (8.5)

b) Does the disk’s angular velocity change as it leaves the rough track and moves onto the ice (in the

middle of the flat stretch in between the hills)?

During the disk’s accelerating descent down the incline, friction acted to retard the acceleration

and increase the angular acceleration, in order to maintain the condition of no slipping, but it did

no work because it acts at the one point on the wheel that is always stationary with respect

to the ground. Instead it served to redistribute the gravitational potential energy between

translational and rotational kinetic energy.

Once the horizontal stretch is reached, the disk continues at the constant translational and angular

velocity given by the values we computed above. Since these satisfy the rolling constraint and no

energy is entering the system, friction does not act on the disk as it rolls along the horizontal

rough stretch.

This is an important fact! A perfectly round wheel (with frictionless bearings) rolling without

slipping on a level surface experiences no friction and does not slow down. This is why we use

wheels!

When the disk moves onto the ice the change in the coefficient of friction thus produces no change

in its motion, since friction was not applying any force on the rough surface anyway.

c) How far up the second hill (vertically, find H ′) does the disk go before it stops rising?

As it begins to climb the second incline, the disk’s velocity decreases as kinetic energy is converted

to potential energy. As its motion acquires a vertical component gravity is doing negative work on

the disk and this force slows the disk. On the other hand, with no friction the only forces on the

disk, gravity and the normal force, exert no torque about the disk’s center so its angular velocity

remains constant at the value found above. The disk slows as it climbs but continues spinning at

a constant rate. When it comes to a stop at the highest point it can reach, its total mechanical

energy is:

EH′ = mgH ′ +
1

2
Iω2 . (8.6)

where its rotational kinetic energy is unchanged.

This is equal to the total energy found above since during the climb all work was done by gravity,

whence we find

mgH ′ =
1

2
mv2 =

1

2
m

(

4

3
gH

)

, (8.7)

or

H ′ =
2

3
H . (8.8)

The disk does not recover its original height, though energy is conserved, because the energy

converted to rotational kinetic energy cannot, without friction, be converted to potential energy.

If we throw sand on the ice as the disk comes to a halt, the resulting friction will act to propel the

disk farther up the hill, slowing its rotation and recovering this stored energy.
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Problem 220. problems-1/rotation-pr-disk-rolling-on-slab-difficult.tex
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This problem will help you learn required concepts such as:

• Newton’s Second Law (linear and rotational)

• Rolling Constraint

• Static and Kinetic Friction

so please review them before you begin.

A disk of mass m is resting on a slab of mass M , which in turn is resting on a frictionless table. The

coefficients of static and kinetic friction between the disk and the slab are µs and µk, respectively. A

small force ~F to the right is applied to the slab as shown, then gradually increased.

a) When ~F is small, the slab will accelerate to the right and the disk will roll on the slab without

slipping. Find the acceleration of the slab, the acceleration of the disk, and the angular acceleration

of the disk as this happens, in terms of m, M , R, and the magnitude of the force F .

b) Find the maximum force Fmax such that it rolls without slipping.

c) If F is greater than this, solve once again for the acceleration and angular acceleration of the disk

and the acceleration of the slab.

Hint: The hardest single thing about this problem isn’t the physics (which is really pretty straightfoward).

It is visualizing the coordinates as the center of mass of the disk moves with a different acceleration as

the slab. I have drawn two figures above to help you with this – the lower figure represents a possible

position of the disk after the slab has moved some distance to the right and the disk has rolled back

(relative to the slab! It has moved forward relative to the ground! Why?) without slipping. Note the

dashed radius to help you see the angle through which it has rolled and the various dashed lines to help

you relate the distance the slab has moved xs, the distance the center of the disk has moved xd, and

the angle through which it has rolled θ. Use this relation to connect the acceleration of the slab to the

acceleration and angular acceleration of the disk.

If you can do this one, good job!
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Problem 221. problems-1/rotation-pr-disk-rolls-to-loop.tex
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A disk of mass m and radius r (and moment of inertia I = 1
2mr2) sits at the top of slope of height 2R

and rolls without slipping down the hill to a circular track curving upwards. Ignore drag forces and

answer the following questions:

a) How fast is the disk travelling when it reaches the top/end of the curved track (as shown)?

b) Find the normal force acting on the disk due at this point, just before it comes off of the circular

curve of the track.

c) How high (relative to the lower dashed line) will the disk go above the point where the disk leaves

the track before falling back?
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Problem 222. problems-1/rotation-pr-falling-mass-spins-disk.tex
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A disk of mass M and radius R placed on a frictionless table can rotate freely about a fixed frictionless

spindle as shown in the figure. An Acme (massless, unstretchable) string is tightly wound around the

disk and then passes over a small frictionless pulley, where it is attached to a hanging mass m. At time

t = 0 the hanging mass and disk are released from rest.

a) Find the tension T in the string while the mass is falling and the disk is rotating.

b) Find the speed vm of the mass m when it has fallen a height H from its initial position.
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Problem 223. problems-1/rotation-pr-flat-plane-two-blocks-massive-pulley.tex
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A mass m1 is attached to a second mass m2 by an Acme (massless, unstretchable) string. m1 sits on

a frictionless table; m2 is hanging over the ends of a table, suspended by the taut string from pulley of

mass M and radius R. At time t = 0 both masses are released.

a) Draw the force/free body diagram for this problem.

b) Find the acceleration of the two masses.

c) Find the angular acceleration of the pulley.
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Problem 224. problems-1/rotation-pr-gyroscope-torque.tex
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A child spins a gyroscope with moment of inertia I and a frictionless pivot by wrapping a (massless,

unstretchable) string of length L around it at a radius R and then pulling the string with a constant

force F as shown. Find:

a) The angular acceleration of the gyroscope while the string is being pulled.

b) The angular speed of the gyroscope as the string comes free (assume that the force F is exerted

through the entire distance L).
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Problem 225. problems-1/rotation-pr-loop-the-rolling-disk.tex
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A disk of mass m and radius r sits at the top of a loop-the-loop of height H . Find the minimum height

H such that the disk goes around the loop the loop without coming off of the track, assuming that it

rolls without slipping the entire way. Ignore drag forces.
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Problem 226. problems-1/rotation-pr-mass-unrolls-spool.tex
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A pulley of mass m1, radius R and moment of inertia I = βm1R
2 has a massless, unstretchable string

wrapped around it many times and has a mass m2 suspended from it so that the string unrolls on the

disk without slipping as the mass falls. The system begins at rest and is released at time t = 0.

a) Find α, the magnitude of the angular acceleration of the pulley about its center of mass as the

mass falls.

b) Find the tension T in the string as the mass falls..

c) After the mass m2 has fallen through a height H , how fast is it moving?

d) Bonus question (2pt): What force is exerted on the axle of the pulley by the support strap as

the mass falls?
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Problem 227. problems-1/rotation-pr-rolling-spool-pulled-right.tex
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R/2

F

A spool of mass M , radius R and moment of inertia I = 1
3MR2 is wrapped around its spindle (radius

R/2) with fishing line and set on a rough table as shown. The line is then pulled with a force F as

shown so that it rolls without slipping.

a) Which way does the spool roll (left or right)? Put another way, does it roll up the string or unroll

the string?

b) Find the magnitude of the acceleration of the spool and the force exerted by the table on the spool.
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Problem 228. problems-1/rotation-pr-rolling-wheel-static-friction-review.tex

FM R

A force of magnitude F (to the right) is applied to the frictionless axle of a wheel made of a uniform

disk with mass M and radius R. It rolls without slipping on a rough table (with a coefficient of

static friction given by µs). Find:

a) What is the moment of inertia of this disk about its center of mass? If you cannot remember, use

the form Icm = βMR2 to answer the remaining questions.

Icm =

b) The magnitude of the acceleration of the wheel.

a =

c) The magnitude of the force exerted by static friction. Indicate its direction on the figure

above.

fs =

d) The minimum coefficient of static friction µs such that the wheel does not slip for this force.

µs,min =
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Problem 229. problems-1/rotation-pr-rolling-wheel-static-friction-review-soln.tex

FM

N
Mg

f
s

α positive into page

R

A force of magnitude F (to the right) is applied to the frictionless axle of a wheel made of a uniform

disk with mass M and radius R. It rolls without slipping on a rough table (with a coefficient of

static friction given by µs). Find:

a) What is the moment of inertia of this disk about its center of mass? If you cannot remember, use

the form Icm = βMR2 to answer the remaining questions.

Icm =
1

2
MR2

b) The magnitude of the acceleration of the wheel.

This follows from using Newton’s Second Law twice, once for translation and once for rotation,

plus the rolling constraint α = a/R. There is no net vertical force, so N = Mg. N , mg, and F

exert no torque (about the center of mass – there is an entirely different solution possible using the

point of contact with the ground as the pivot, using the parallel axis theorem). So N2 for rotation

is:

fsR = Iα =
1

2
MR2 a

R

If we divide this by R on both sides and line it up with N2 for translation:

F − fs = Ma

fs =
1

2
Ma

and add them to eliminate fs, we get:

a =
2

3

F

M

c) The magnitude of the force exerted by static friction. Indicate its direction on the figure

above.

Backsubstitute this into the expression above for fs:

fs =
1

2
Ma =

1

3
F

Note Well! Any answer such as fs = µsMg is wrong!
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d) The minimum coefficient of static friction µs such that the wheel does not slip for this force.

Here we use:

fs =
1

3
F < Fs = µsN = µsMg

Note Well the inequality! We rearrange this to obtain:

µs >
1

3

F

Mg

or

µs,min =
1

3

F

Mg

Scoring:

a) +2 points. This is something they were told they should know.

b),c) +12 points together. +4 for each N2, +2 for rolling constraint, +2 for algebra including back

substitution. Instant -4 if they assert fs = µsMg.

d) +6 points. If they wrote the wrong answer for c) above, they may well lose more points here, but

we’ll cap it at an additional -3 (basically giving them +3 total for knowing that µsN is relevant in some

way to the problem. But we’ll give successful students +4 for writing down the correct inequality, and

save the last +2 for algebra or confusion.
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Problem 230. problems-1/rotation-pr-rolling-wheel-static-friction-top.tex

R

F

M

A massless rope that is wrapped around a a uniform disk with mass M and radius R is pulled to the

right with a force F as shown. As long as F is less than some maximum value it will roll without

slipping on a rough table (with a coefficient of static friction given by µs).

a) Choose a direction for the force of static friction when the disk rolls without slipping by drawing

a suitable arrow in on the diagram above at the point where it acts.

b) Write suitable equations of motion and find the magnitude of the acceleration of the wheel,

assuming that it rolls without slipping.

c) Find the magnitude of the force exerted by static friction, assuming that it rolls without slipping.

Indicate its actual direction in case your choice in a) above was backwards!

d) What is the largest force Fmax that can be exerted before the wheel starts to slip?
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Problem 231. problems-1/rotation-pr-sliding-rolling-bowling-ball.tex

A uniform bowling ball of radius R, mass M , and moment of inertia I about its center of mass is initially

launched so that it is sliding with speed v0 without rolling on an alley with a coefficient of friction µk.

a) Analyze the forces acting on the bowling ball to find the acceleration of the center of mass and

angular acceleration of the bowling ball about its CM;

b) Find the CM velocity as a function of time (t) and angular velocity of the ball as a function of

time (t).

c) Find the CM velocity of the bowling ball when it starts rolling without slipping.



264 CHAPTER 8. ONE DIMENSIONAL ROTATION AND TORQUE

Problem 232. problems-1/rotation-pr-two-spools-one-mass.tex

M M

M

T T

R R

In the figure above, a mass M is connected to two independent massive spools of radius R, also of mass

M (each), wrapped with massless unstretchable string. You may consider the spools to be disks as far

as their moment of inertia is concerned. At t = 0, the mass M and spools are released from rest and the

mass M falls. Find:

a) The magnitude of the acceleration a of the mass M .

b) The tension T in either string (they are the same from symmetry).

c) When the mass M has fallen a distance H , what is its speed?
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Problem 233. problems-1/rotation-pr-unrolling-a-falling-spool-algebraic.tex

M

T

R

A spool of fishing line is tied to a beam and released from rest in the position shown at time t = 0. The

spool has a mass M , a radius of R, and a moment of inertial I = βMR2. The line itself has negligible

mass per unit length. Once released, the disk falls as the taut line unrolls.

a) What is the tension in the line as the disk falls (unrolling the line)?

b) After the disk has fallen a height H , what is its angular velocity ω?
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Problem 234. problems-1/rotation-pr-unrolling-a-falling-spool-numeric.tex

RM

A spool of fishing line is tied to a beam and released from rest in the position shown at time t = 0. The

spool is a disk and has a mass of 50 grams and a radius of 5 cm. The line itself has negligible mass per

unit length. Once released, the disk falls as the taut line unrolls.

a) What is the tension in the line as the disk falls (unrolling the line)?

b) After the disk has fallen 2m, what is its speed?



8.1. ROTATION 267

Problem 235. problems-1/rotation-pr-unrolling-a-falling-spool-reversed.tex

T

R

M

A spool of fishing line is tied to a beam and released from rest in the position shown at time t = 0. The

spool has a mass M , a radius of R, and a moment of inertial I = βMR2. The line itself has negligible

mass per unit length. Once released, the spool falls as the taut line unrolls.

a) What is the tension in the line as the spool falls (unrolling the line)?

b) What is the magnitude of the angular acceleration of the spool α about its center of mass as it

falls?

c) After the spool has fallen a height H , what is the direction of its angular velocity, ~ω? Indicate

this direction with a labelled arrow symbol on a suitable diagram.
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Problem 236. problems-1/rotation-pr-unrolling-a-falling-yo-yo.tex

M

R

T

R/2

A yo-yo is tied to a beam and released from rest in the position shown at time t = 0. The yo-yo has a

mass M , a radius of R, and a moment of inertia I = βMR2. The unstretchable line itself has negligible

mass per unit length and is wrapped around an inner spindle with radius R/2 as shown. Once released,

the yo-yo falls as the taut line unrolls.

a) What is the angular acceleration ~α of the yo-yo as it falls (unrolling the line)? Note that this

is a vector quantity, so please indicate its direction in your answer and/or on the figure.

b) What is the tension T in the line as the yo-yo falls (unrolling the line)?

c) After the yo-yo has fallen a height H , what is its angular velocity ω?
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Problem 237. problems-1/rotation-pr-unrolling-disk-and-block.tex

R
r

M

M

Challenge Problem (difficult!): In the figure above, a spool with moment of inertia βMR2 is hanging

from a rod by a (massless, unstretchable) string that is wrapped around it at a radius R, while a block

of equal mass M is hung on a second string that is wrapped around it at a radius r as shown. Find the

magnitude of the acceleration of the the central pulley.
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Problem 238. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-1.tex

M

R

θ

ω = 0

H

m

v = 0

At  t = 0 

In the figure above, a pulley at rest of mass M and radius R with frictionless bearings and moment

of inertia I = βMR2 is fixed at the top of a fixed, frictionless inclined plane that makes an angle θ

with respect to the horizontal. The pulley is wrapped with many turns of (approximately massless and

unstretchable) fishing line. The line is also attached to a block of mass m. At time t = 0 the block and

pulley are released from rest , v = 0 (block) and ω = 0 (pulley).

• Find the magnitude of the acceleration a of the block as it slides down the incline.

• Find the tension T in the string as it slides.

• Find the speed v with which the block reaches the bottom of the incline.
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Problem 239. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-2.tex

θ

H

R

M
m

µk

In the figure above, a pulley of mass M and radius R with frictionless bearings and moment of inertia

I = βMR2 is fixed at the top of a rough inclined plane that makes an angle θ with respect to the

horizontal that is large enough that the block will definitely overcome static friction and slide. The

coefficient of kinetic friction between the block and the plane is µk. The pulley is wrapped with many

turns of (approximately massless and unstretchable) fishing line. The line is also attached to a block of

mass m. At time t = 0 the block and pulley are released from rest .

a) Draw a force diagram for both the block and the pulley separately. You do not have to represent

the forces acting at the pivot of the pulley that keep it stationary, only the one(s) relevant to the

solution of the problem. Represent all the forces on the block.

b) Find both the magnitude of the acceleration a of the block and the tension T in the string as the

block slides down the incline in terms of the givens.

c) Find the kinetic energy of the block when it reaches the bottom of the incline.

d) Find the kinetic energy of the pulley when the block reaches the bottom of the incline.



272 CHAPTER 8. ONE DIMENSIONAL ROTATION AND TORQUE

Problem 240. problems-1/rotation-pr-unrolling-spool-down-inclined-plane-friction.tex

M

R

θ

ω = 0

H

m

v = 0

At  t = 0 

A pulley with frictionless bearings and moment of inertia I = βMR2 is at the top of a fixed inclined

plane that makes an angle θ with respect to the horizontal. The pulley is wrapped with many turns of

(approximately massless and unstretchable) fishing line that is attached to a block of mass m resting

on the incline a height H above the bottom. The coefficient of kinetic friction between the block and

the incline is µk. At time t = 0 the block and pulley are released from rest at an angle θ that is large

enough that the block will definitely overcome static friction and begin to slide.

a) On the figure above or in a free body diagram to the side, draw in and label all of the forces acting

on the block only.

b) Find the magnitude of the acceleration a of the block as it slides down the incline.

c) Find the speed v with which the block reaches the bottom of the incline.
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Problem 241. problems-1/rotation-pr-walking-the-spool.tex

F

R

r

mass M

A FB C

F

In the figure above, a spool of mass M is wrapped with string around the inner spool. The spool is

placed on a rough surface and the string is pulled with force F in the three directions shown. The spool,

if it rolls at all, rolls without slipping. (Note that if pulled too hard, the spool can both slip and/or

roll.)

Find the acceleration and frictional force vectors (magnitude and direction) for all three figures. Use

Icm = βMR2.

Note Well: You can use either the center of mass or the point of contact with the ground (with the

parallel axis theorem) as a pivot, the latter being slightly easier.
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8.2 Moment of Inertia

8.2.1 Ranking/Scaling

Problem 242. problems-1/moment-of-inertia-ra-parallel-axes.tex

cm

A B

C

D

A two-dimensional cardboard cut-out of an elephant is drawn above. Small holes are drilled through it

at the points A, B, C and D indicated. Hole C is at the center of mass of the figure. Rank the moment of

inertia of the elephant about axes through each of the holes (with equality permitted) so that a possible

(but unlikely) answer is IA < IB = IC < ID.
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Problem 243. problems-1/moment-of-inertia-ra-point-masses-massless-rods-2.tex

r = 1m

2m

= 1 kg

3m

A

B

D

1m rotation axes

C

In the figure above, all of the masses m are identical and are connected by rigid massless rods as

drawn. Rank the moments of inertia of the four objects about the rotation axes drawn as

dashed lines. Equality is permitted, so a possible answer might be A > C = D > B.
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Problem 244. problems-1/moment-of-inertia-ra-point-masses-massless-rods.tex
A B

C

D

m

rotation axes1

r = 1

2

3

In the figure above, all of the masses m are identical and are connected by rigid massless rods as

drawn. Rank the moments of inertia of the four objects about the rotation axes drawn as dashed lines.

A possible answer could look like A < C = D < B (but probably isn’t).
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8.2.2 Short Answer

Problem 245. problems-1/moment-of-inertia-sa-3-masses-1.tex

3mm
a

a

y

x
2m

(y−axis)

In the figure above, massless rigid rods connect three masses at the origin so that they can freely rotate

around the y-axis (rotating initially into the page as shown). The masses are fixed so that they are at

three corners of a square of side a. Find the moment of inertia about the y-axis of this arrangement

in terms of m and a.
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Problem 246. problems-1/moment-of-inertia-sa-3-masses.tex

3mm

pivot

a

a

y

x
2m

(z−axis)

In the figure above, massless rigid rods connect three masses to a pivot at the origin so that they can

freely rotate around the z-axis (perpendicular to the page). The masses are fixed so that they are at

three corners of a square of side a, with the pivot at the fourth corner as shown. Find the moment of

inertia about the z-axis of this arrangement in terms of m and a.
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Problem 247. problems-1/moment-of-inertia-sa-4-masses-1.tex

2 kg

2 kg

−2m 2m

1 kg

3 kg

x

y

2m

−2m

B

C D

A

In the figure, massless rigid rods connect four point-like masses centered at points A, B, C, D to form a

rigid body. The rigid body can rotate about any axis perpendicular to the plane of the figure.

[Showing your work is recommended, but not mandatory.]

a) Find the center of mass (CM) location of the rigid body (Note: proper units should be included

in your answer).

xcm = ; ycm =

b) Mark the CM’s location in the figure.

c) The moment of inertia about an axis perpendicular to the plane of the figure depends on the

location of the axis. Answer the following by filling the box using A, B, C, D, or CM.

• The smallest moment of inertia is about an axis going through point .

• The next smallest moment of inertia is about an axis going through point .
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Problem 248. problems-1/moment-of-inertia-sa-4-masses-2.tex

2 kg

−5m

5m

x

y

2 kg 2 kg

2 kg

−5m 5m4 kg

In the figure above, massless rigid rods connect five masses to form a rigid body. The rigid body can be

rotated about any axis perpendicular to the plane of the figure. Find a point with coordinates (x0, y0) on

the provided coordinate frame (units of meters) so that the moment of inertia of the system is smallest

if the axis goes through this point. Then, enter the moment of inertia of the system about this axis.

x0 = meters

y0 = meters

Imin = kg-meter2
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Problem 249. problems-1/moment-of-inertia-sa-4-masses.tex

In the figure below, four 2 kilogram masses are held at the corners of a rigid square by massless rods as

shown. The center of mass of the system is located at the origin of the provided x− y coordinate frame

(units in meters). The z-axis points out of the page.

2 kg

−5m

5m

x

y

2 kg 2 kg

2 kg

2nd pivot
cm

−5m 5m

Find the moment of inertia of this system around the z-axis through the center of mass:

Icm =

Now find the moment of inertia of this system around an axis parallel to the z-axis but passing through

a new pivot point at (−5, 0, 0) meters.

Inew =
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Problem 250. problems-1/moment-of-inertia-sa-disk-axis-in-plane.tex

rotation axis

You flip a coin with a friend to see who pays for lunch. The flipped coin spins rapidly around an axis in

the plane of the coin as shown. Assuming the coin to be a uniform disk of mass M and radius R, find

the moment of inertia of the coin about this axis.
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8.2.3 Long Problems

Problem 251. problems-1/moment-of-inertia-pr-disk-pivoted-at-rim.tex

R
M

pivot

In the figure above, a disk of mass M and radius R is pivoted about a point on the rim as shown. What

is the moment of inertia of the disk about this pivot?
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Problem 252. problems-1/moment-of-inertia-pr-disk-with-holes.tex

R

R/2

b

a

ρ

You are employed by a company that makes cogs, pulleys, and other widgets for lawnmower engines.

They have designed a new pulley that is basically an annular disk of thickness t, outer radius R, and

inner radius a, with approximately uniform density otherwise, as shown. To save on material costs (and

to be able to deliver more torque to the real payload, instead of the pulley itself) they have removed

all the material in four large circular holes of radius b through the solid part of the disk, centered on a

circle of radius R/2 as shown. Your job is to compute the new moment of inertia as a function of ρ, t,

R and a, b < R/2.

Hints: Note that you SHOULDN’T have to actually do any integrals in this problem if you remember that

the moment of inertia of a disk is 1
2MR2. You are also welcome to introduce quantities like M = ρπR2t,

ma = ρπa2t and mb = ρπb2t into the problem if it would make the final answer simpler. Explain/show

your reasoning regardless.
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Problem 253. problems-1/moment-of-inertia-pr-moments-of-a-leg.tex

x 0

L

x

pivot
dx

This problem will help you learn required concepts such as:

• Finding the Center of Mass using Integration

• Finding the Moment of Inertia using Integration

so please review them before you begin.

A simple model for the one-dimensional mass distribution of a human leg of length L and mass M is:

λ(x) = C · (L+ x0 − x)

Note that this quantity is maximum at x = 0, varies linearly with x, and vanishes smoothly at x = L+x0.

That means that it doesn’t reach λ = 0 when x = L, just as the mass per unit length of your leg doesn’t

reach zero at your ankles.

a) Find the constant C in terms of M , L, and x0 by evaluating:

M =

∫ L

0

λ(x) dx

and solving for C.

b) Find the center of mass of the leg (as a distance down the leg from the hip/pivot at the origin).

You may leave your answer in terms of C (now that you know it) or you can express it in terms of

L and x0 only as you prefer.

c) Find the moment of inertia of the leg about the hip/pivot at the origin. Again, you may leave it

in terms of C if you wish or express it in terms of M , L and x0. Do your answers all have the right

units?

d) How might one improve the estimate of the moment of inertia to take into account the foot (as a

lump of “extra mass” mf out there at x = L that doesn’t quite fit our linear model)?

This is, as you can see, something that an orthopedic specialist might well need to actually do with

a much better model in order to e.g. outfit a patient with an artificial hip. True, they might use a

computer to do the actual computations required, but is it plausible that they could possibly do what

they need to do without knowing the physics involved in some detail?
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Problem 254. problems-1/moment-of-inertia-pr-ring-axis-in-plane.tex

R
M

axis

In the figure above, a ring of mass M and radius R is rotated around an axis through the middle in the

plane of the ring as shown.

a) Find the moment of inertia of the ring about this axis through direct integration.

b) Find the moment of inertia of the ring about this axis using the perpendicular axis theorem. Which

is easier?
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Problem 255. problems-1/moment-of-inertia-pr-ring-pivoted-at-rim.tex

R
M

pivot

In the figure above, a ring of mass M and radius R is pivoted about a point on the rim as shown. What

is the moment of inertia of the ring about this pivot?
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Chapter 9

Vector Torque and Angular

Momentum

Well, if we can rotate around an axis in the x, y, or z direction, we can rotate around an axis in any

direction. So I guess torque has to be a vector quantity! Since it already has the magnitude of the cross

product ~r × ~F , we might as well define that to be the vector torque.

That, in turn, is related to the new quantity ~L = ~r × ~p, the angular momentum (also a vector

quantity) and suddenly we can do rotational collisions that conserve angular momentum where

before we did linear collisions that conserved regular vector momentum. Or we can even do collisions

that conserve both!

The most startling thing about vector torque, however, is when we observe a spinning object precess

under the application of a vector torque. Our definitions above work perfectly to describe an in-

sanely complicated motion (if you think about it) in simple terms. Ones we can compute. Ones that

I, at least, require students to be able to solve for and understand.

Too bad Obi-wan didn’t say Use the Torque, Luke!”...

289
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9.1 Angular Momentum

9.1.1 Multiple Choice

Problem 256. problems-1/angular-momentum-mc-collapsing-star.tex

before

after

ω

ω f

i

When a star rotating with an angular speed ωi (eventually) exhausts its fuel, escaping light energy can

no longer oppose gravity throughout the star’s volume and it suddenly shrinks, with most of its outer

mass falling in towards the center all at the same time.

As this happens, does the magnitude of the angular speed of rotation ωf :

a) increase

b) decrease

c) remain about the same

Why (state the principle used to answer the question)?
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Problem 257. problems-1/angular-momentum-mc-forming-star.tex

ω f

after

ω i

before

2R
R

Gravity gradually assembles a star by pulling a cloud of rotating gas together into a rotating ball that

then gradually shrinks. The figure above represents a star at two different stages in its formation, the

first where a gas of total mass M has formed a ball of radius 2R rotating at angular speed ωi, the second

where the ball has collapsed to a radius R (compressing the nuclear fuel inside closer to the point of

fusion and ignition), rotating at a possibly new angular speed ωf .

Assuming that the mass is uniformly distributed in both cases, what is the best estimate for ωf in terms

of ωi?

ωf = ωia) ωf = 2ωib) ωf = 4ωic) ωf = ωi/2d) ωf = ωi/4e)
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Problem 258. problems-1/angular-momentum-mc-rotating-rod-sliding-beads.tex

L/2

ω

−L/2

i

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its center

at angular speed ωi. Two beads, each with mass m, are stuck a distance L/4 from the center. The

rotating system initially has a total kinetic energy Ki (which you could actually calculate if you needed

to). At a certain time, the beads are released and slide smoothly to the ends of the rod where again,

they stick. Which statement about the final angular speed and rotational kinetic energy of the rotating

system is true:

a) ωf = ωi/2 and Kf = Ki.

b) ωf = ωi/4 and Kf = Ki/4.

c) ωf = ωi/4 and Kf = Ki/2.

d) ωf = ωi/2 and Kf = Ki/4.

e) ωf = ωi/2 and Kf = Ki/2.
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Problem 259. problems-1/angular-momentum-mc-two-circular-plates-collide.tex

x

y
z

Rω0

M

M

A disk of uniformly distributed mass M and radius R sits at rest on a turntable that permits it to rotate

freely. A second uniform disk of mass M with the same radius, centered on the same axis of rotation,

is rotating at an (initial) angular speed ωi and is dropped gently onto it so that (after sliding for an

instant) they stick together and rotate together as one.

How do the final angular velocity and final kinetic energy relate to the initial angular velocity and initial

kinetic energy?

a) ωf = ωi, Kf = Ki

b) ωf = 2ωi, Kf = Ki/2

c) ωf = ωi/2, Kf = Ki/2

d) ωf = ωi/4, Kf = Ki/4

e) We cannot tell from the information given.
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9.1.2 Short Answer

Problem 260. problems-1/angular-momentum-sa-bug-on-rotating-disk.tex

A disk of mass M and radius R is rotating about its axis with initial angular velocity ω0. A rhinoceros

beetle with mass m is standing on its outer rim as it does so. The beetle decides to walk in to the very

center of the disk and stand on the axis as it feels less pseudoforce there and it is easier to hold on.

What is the angular velocity of the disk when it gets there?

(Ignore friction and drag forces).
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Problem 261. problems-1/angular-momentum-sa-conserved-quantities.tex

For each of the collisions described below, say whether the total mechanical energy, total momentum,

and total angular momentum of the system consisting of the two colliding objects are conserved or not.

Indicate your answer by writing “C” (for “is definitely conserved”) or “N” (for “not necessarily

conserved”) in each box. You may write a brief word of explanation if you think there is any ambiguity

in the answer.

Total Linear Angular

Energy Momentum Momentum

A hard ball (point particle) bounces off of a rigid

wall that cannot move, returning at the same

speed it had before the collision.

A piece of space junk strikes the orbiting space

shuttle and sticks to it.
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Problem 262. problems-1/angular-momentum-sa-rotating-rod-sliding-beads.tex

L/2

ω

−L/2

i

In the figure above, a massless rod of length L is rotating around a frictionless pivot through its center

at angular speed ωi. Two beads, each with mass m, are stuck a distance L/4 from the center. The

rotating system initially has a total kinetic energy Ki (which you could actually calculate if you needed

to). At a certain time, the beads are released and slide smoothly to the ends of the rod where again,

they stick.

A) What quantities of the system (rod plus two beads) are conserved by this process? (Place a Y or N

in the provided answer boxes.)

Total Kinetic Energy

Total Linear Momentum

Total Angular Momentum

B) Determine the ratio of the following quantities:

If

Ii
=

ωf

ωi
=

Kf

Ki
=



9.1. ANGULAR MOMENTUM 297

9.1.3 Long Problems

Problem 263. problems-1/angular-momentum-pr-circular-orbit-on-table.tex

rm

F

v

This problem will help you learn required concepts such as:

• Torque Due to Radial Forces

• Angular Momentum Conservation

• Centripetal Acceleration

• Work and Kinetic Energy

so please review them before you begin.

A particle of mass M is tied to a string that passes through a hole in a frictionless table and held. The

mass is given a push so that it moves in a circle of radius r at speed v. We will now analyze the physics

of its motion in two stages.

a) What is the torque exerted on the particle by the string? Will angular momentum be conserved if

the string pulls the particle into “orbits” with different radii?

b) What is the magnitude of the angular momentum L of the particle in the direction of the axis of

rotation (as a function of m, r and v)?

c) Show that the magnitude of the force (the tension in the string) that must be exerted to keep the

particle moving in a circle is:

F =
L2

mr3

This is a general result for a particle moving in a circle and in no way depends on the fact that

the force is being exerted by a string in particular.

d) Show that the kinetic energy of the particle in terms of its angular momentum is:

K =
L2

2mr2

Now, suppose that the radius of the orbit and initial speed are ri and vi, respectively. From under the

table, the string is slowly pulled down (so that the puck is always moving in an approximately circular

trajectory and the tension in the string remains radial) to where the particle is moving in a circle of

radius r2.

e) Find its velocity v2 using angular momentum conservation. This should be very easy.
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f) Compute the work done by the force from part c) above and identify the answer as the work-kinetic

energy theorem. Use this to to find the velocity v2. You should get the same answer!

Note that the last two results are pretty amazing – they show that our torque and angular momentum

theory so far is remarkably consistent since two very different approaches give the same answer. Solving

this problem now will make it easy later to understand the angular momentum barrier, the angular

kinetic energy term that appears in the radial part of conservation of mechanical energy in problems

involving a central force (such as gravitation and Coulomb’s Law). This in turn will make it easy for us

to understand certain properties of orbits from their potential energy curves.
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Problem 264. problems-1/angular-momentum-pr-collapse-of-sun.tex

R

R

i

f

before

after

m

m

The sun reaches the end of its life and gravitationally collapses quite suddenly, forming a white dwarf.

Before it collapses, it has a mass m, a radius Ri, and a period of rotation Ti. After it collapses, its radius

is Rf ≪ Ri and we will assume that its mass is unchanged. We will also assume that before and after

the moment of inertia of the sun is given by I = βmR2 where R is the appropriate radius.

a) What is its final period of rotation Tf after the collapse?

b) Evaluate the escape velocity from the surface of the sun before and after its collapse.

For 2 points of extra credit, evaluate the numbers associated with these expressions given β = 0.25,

m = 2×1030 kg, Ri = 5×105 km, Rf = 100 km, and Ti = 108, 000 seconds. These numbers are actually

quite interesting in cosmology, as the escape velocity from the surface of the white dwarf approaches the

speed of light...
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Problem 265. problems-1/angular-momentum-pr-disk-collides-with-pivoted-rod.tex

L

L/4

ω

v = 0f

f
ω = 0

0

0

M

m
v

initial final

A steel rod of mass M and length L with a frictionless pivot in the center and moment of inertia 1
12ML2

sits on a frictionless table at rest. The pivot is attached to the table. A steel disk of mass m approaches

with velocity v0 from the left and strikes the rod a distance L/4 from the lower end as shown. This

elastic collision instantly brings the disk to rest and causes the rod to rotate with angular velocity ωf .

a) What quantities are conserved in this collision?

b) Find the angular velocity ωf of the rod about the pivot after the collision.

c) Find the ratio m/M such that the collision occurs elastically, as described.
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Problem 266. problems-1/angular-momentum-pr-marble-and-rod.tex

L/2

L
m

m

v0

In the figure above, a marble with mass m travelling to the right at speed v0 collides with a rigid rod of

length L pivoted about one end, also of mass m, . The marble strikes the rod L/2 down from the pivot

and comes precisely to rest in the collision. Ignore gravity, drag forces, and any friction in the pivot.

a) What is the rotational velocity ωf of the rod after the collision?

b) What is the change in linear momentum in the x direction ∆px (to the right) during this

collision?

c) What is the change in kinetic energy ∆K in this collision? The sign of your answer should

indicate whether energy was gained or lost.
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Problem 267. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod-gravity.tex

v
m

d

L

M

A rod of mass M and length L is hanging vertically from a frictionless pivot (where gravity is “down”).

A blob of putty of mass m approaches with velocity v from the left and strikes the rod a distance d from

its center of mass as shown, sticking to the rod.

a) Find the angular velocity ωf of the system about the pivot (at the top of the rod) after the collision.

b) Find the distance xcm from the pivot of the center of mass of the rod-putty system immediately

after the collision.

c) After the collision, the rod swings up to a maximum angle θmax and then comes momentarily to

rest. Find θmax.

All answers should be in terms of M , m, L, v, g and d as needed. The moment of inertia of a rod pivoted

about one end is I = 1
3ML2, in case you need it.
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Problem 268. problems-1/angular-momentum-pr-putty-sticks-to-pivoted-rod.tex

v
m

d

L

M

A rod of mass M and length L rests on a frictionless table and is pivoted on a frictionless nail at one

end as shown. A blob of putty of mass m approaches with velocity v from the left and strikes the rod a

distance d from the end as shown, sticking to the rod.

a) Find the angular velocity ω of the system about the nail after the collision.

b) Is the linear momentum of the rod/blob system conserved in this collision for a general value of

d? If not, why not?

c) Is there a value of d for which it is conserved? If there were such a value, it would be called the

center of percussion for the rod for this sort of collision.
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Problem 269. problems-1/angular-momentum-pr-putty-sticks-to-unpivoted-rod.tex

m
v

M

L

d

This problem will help you learn required concepts such as:

• Angular Momentum Conservation

• Momentum Conservation

• Inelastic Collisions

• Impulse

so please review them before you begin.

A rod of mass M and length L rests on a frictionless table. A blob of putty of mass m approaches with

velocity v from the left and strikes the rod a distance d from the end as shown, sticking to the rod.

• Find the angular velocity ω of the system about the center of mass of the system after the collision.

Note that the rod and putty will not be rotating about the center of mass of the rod!

• Is the linear momentum of the rod/blob system conserved in this collision for a general value of

d? If not, why not?

All answers should be in terms of M , m, L, v and d as needed. Note well that you should clearly indicate

what physical principles you are using to solve this problem at the beginning of the work.
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Problem 270. problems-1/angular-momentum-pr-spinning-cups-catch-balls.tex

ω0

m

m

M

L

In the figure above, a bar of length L with two cups at the ends is freely rotating (in space – ignore

gravity and friction or drag forces) about its center of mass with angular velocity ω0. The bar and cups

together have a mass M and a moment of intertia of I = βML2. When the bar reaches the vertical

position, the cups catch two small balls of mass m that are at rest, which stick in the cups. The balls

have a negligible moment of inertia about their own center of mass – you may think of them as particles.

a) What is the velocity of the center of mass of the system after the collision?

b) What is the angular velocity of the bar after it has caught the two balls in its cups? Is kinetic

energy gained or lost in this process?
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Problem 271. problems-1/angular-momentum-pr-swinging-rod-strikes-putty.tex

L

m

m

A uniform rod of mass m and length L swings about a frictionless peg through its end. The rod is held

horizontally and released from rest as shown in the figure. At the bottom of its swing the rod strikes

a ball of putty of mass m that sits at rest on a frictionless table. In answering the questions take the

magnitude of acceleration due to gravity to be g and assume that gravity acts downward (in the usual

way). The questions below should be answered in terms of the given quantities.

a) What is the angular speed ωi of the rod just before it hits the putty?

b) If the putty sticks to the rod, what is the angular speed ωf of the rod-putty system immediately

after the collision?

c) What is ∆E, the mechanical energy change of the system in this collision (be sure to specify its

sign).
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Problem 272. problems-1/angular-momentum-pr-two-circular-plates-collide.tex

R

M

x

y
z

0ω

A disk of mass M and radius R sits at rest on a turntable that permits it to rotate freely. A second

identical disk, this one rotating around their mutual axis at an angular speed ω0, is dropped gently onto

it so that (after sliding for an instant) they rotate together. In terms of the givens M,R, ω0 and known

constants:

a) Find the final angular speed ωf of the two disks moving together after the collision:

ωf =

b) What fraction of the original kinetic energy of the system K0 is gained (+) or lost (-) in this

rotational collision?

∆K = ×K0
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Problem 273. problems-1/angular-momentum-pr-rotating-bar-elastic-collision-balls.tex

(out of page)Ω 0

vf

vf

L/2

M

m

m

bar at rest after collision

rotation direction

In the figure above, a unpivoted solid rod of length L and mass M is rotating around its center of mass

with an angular velocity Ω0 out of the page. It simultaneously strikes two hard balls of mass m sitting

at rest a distance L/2 from the center of rotation as shown, causing them to recoil to the left and right

respectively. After the collision the rod is at rest.

a) Is momentum conserved in this collision?

b) Find the final speed of either ball, vf .

c) Find the ratio of masses m/M such that the collision as described is elastic.
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9.2 Vector Torque

9.2.1 Multiple Choice

Problem 274. problems-1/torque-vector-mc-rotational-collision-two-disks.tex

R

M

x

y
z

0ω

Two identical disks with mass M and radius R have a common axis and frictionless bearing. Initially,

one disk is spinning with some angular velocity ω0 and the other is rest. The two disks are brought

together quickly so that they stick and rotate as one without the application of any external torque.

Circle the true statement below:

a) The total kinetic energy and the total angular momentum are unchanged.

b) The total kinetic energy and total angular momentum are both reduced to half their original values.

c) The total kinetic energy is unchanged, but the total angular momentum is reduced to half of its

original value.

d) The total angular momentum is unchanged, but the total kinetic energy is reduced to half of its

original value.

e) We cannot tell what happens to the angular momentum and kinetic energy from the information

given.
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9.2.2 Short Answer

Problem 275. problems-1/torque-vector-sa-direction-of-precession-1.tex

b)a) d)c)

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very rapidly in

the direction shown, and is suspended/pivoted from one end as shown at the big arrow (gravity points

down). For each figure a-d indicate whether the gyroscope will precess in or out of the page at the

other (non-pivoted, free) end at the instant shown.



9.2. VECTOR TORQUE 311

Problem 276. problems-1/torque-vector-sa-direction-of-precession-2.tex

b)a) d)c)

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very rapidly in

the direction shown, and is suspended/pivoted from one end as shown at the big arrow (gravity points

down). For each figure a-d indicate whether the gyroscope will precess in or out of the page at the

other (non-pivoted, free) end at the instant shown.
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Problem 277. problems-1/torque-vector-sa-direction-of-precession.tex

In the figure above four symmetric gyroscopes are portrayed. Each gyroscope is spinning very rapidly

in the direction shown, and is suspended from one end as shown (at the big arrow). For each figure

indicate whether the gyroscope will precess in or out of the page at the other (free) end at the instant

shown.
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Problem 278. problems-1/torque-vector-sa-evaluate-the-torque-1.tex
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xF
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y

In the figure above, a force
~F = 2x̂− 1ŷ

Newtons is applied to a disk at the point

~r = 2x̂+ 2ŷ

as shown. (That is, Fx = 2 N, Fy = −1 N, x = 2 m, y = 2 m). Find the total torque about a pivot at

the origin.

Don’t forget that torque is a vector, so either give the answer in cartesian coordinates or otherwise

specify its direction!
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Problem 279. problems-1/torque-vector-sa-evaluate-the-torque-2.tex
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In the figure above, a force
~F = 2x̂+ 1ŷ

Newtons is applied to a disk at the point

~r = 2x̂− 2ŷ

as shown. (That is, Fx = 2 N, Fy = 1 N, x = 2 m, y = −2 m). Find the total torque about a pivot at

the origin. Don’t forget that torque is a vector, so specify its direction as well as its magnitude (or give

the answer as a cartesian vector)! Show your work!
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Problem 280. problems-1/torque-vector-sa-precession-of-top-1.tex

direction
rotation

Draw the direction of ~L onto the spinning top in the figure above, and circle the direction that the

upper tip of the top will precess:

in out

of the page. Draw this direction onto the figure as well.
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Problem 281. problems-1/torque-vector-sa-precession-of-top-2.tex

L

ω

Clearly show the direction that the spinning top will precess on the figure above, given the direction of

its angular momentum as indicated.
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9.2.3 Long Problems

Problem 282. problems-1/torque-vector-pr-crane-boom.tex
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sin(30◦) = cos(60◦) =

1

2

cos(30◦) = sin(60◦) =

√
3

2

sin(45◦) = cos(45◦) =

√
2

2

A crane with a “massless” boom (the long support between the body and the load) of length L holds a

mass M suspended as shown. Note that the wire with the tension T is fixed to the top of the boom,

not run over a pulley to the mass M .

a) Find the torque (magnitude and direction) exerted by the tension in the wire on the boom, relative

to a pivot at the base of the boom.

b) Find the torque (magnitude and direction) exerted by the hanging mass, relative to a pivot at the

base of the boom.
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Problem 283. problems-1/torque-vector-pr-precessing-bicycle-wheel.tex
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A bicycle wheel (basically a ring) of mass M and radius R has massless spokes and a massless axle

of length d. The other end O of the axle rests on a conical support as shown. The axle is held in a

horizontal position and the wheel is spun with a large angular velocity ~Ω that points towards O, and

then released so that the wheel precesses about O.

(Note: To specify the direction of vectors you may use up, down, towards O, away from O, into the page,

out of the page as shown.)

a) What is the angular momentum ~L of the wheel about its center of mass?

b) What is (find, with any argument) the angular frequency of precession ~ωp of the wheel? Don’t

forget to give the direction!

c) What is the kinetic energy K of the wheel in the frame of O (i.e., the lab frame) including the

contribution from the motion of the center of mass as it precesses! This is one of the

factors we ignored in our elementary treatment in class.
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Problem 284. problems-1/torque-vector-pr-precession-of-equinoxes.tex
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The Earth revolves on its axis. Its north (right handed) axis is significantly tipped relative to the

“ecliptic” pole of the Earth’s revolution around the Sun. It is currently aligned with Polaris, the pole

star, but because the Sun exerts a small torque on it due to tides acting on its slightly oblate spheroidal

shape, it also precesses around the ecliptic north once every (approximately) 26,000 years!

a) Assuming that the average torque on the earth over the course of any given year remains perpendic-

ular to its angular momentum in the direction/handedness shown, derive an algebraic expression

for the angular frequency of precession in terms of the magnitude of the torque. You may use I as

the moment of inertia for the earth about its rotational axis as that quantity is given below.

b) Given the data that the moment of inertia of the Earth about its axis of rotation is roughly 8×1037

kg-m2, that its axis is tipped at roughly 20 degrees relative to the ecliptic and that its period of

revolution about its own axis is one day, estimate the approximate magnitude of the average torque

exerted by the Sun on the Earth over the course of a year.

(You may find it useful to know that 1 day = 86400 seconds, and 1 year = 3.15× 107 seconds – you can

remember the latter as approximately π × 107 seconds.)
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Problem 285. problems-1/torque-vector-pr-precession-of-spherical-top.tex
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A top is made from a ball of radius R and mass M with a very thin, light nail (r ≪ R and m ≪ M)

for a spindle so that the center of tha ball is a distance D from the tip. The top is spun with a large

angular velocity ω, and has a moment of inertia I = 2
5MR2.

a) What is the angular momentum of the spinning ball? Indicate its (vector) direction with an arrow

on the figure.

b) When the top is spinning at a small angle θ with the vertical (as shown) what is the angular

frequency ωp of the top’s precession?

c) Does the top precess into or out of the page at the instant shown?
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Problem 286. problems-1/torque-vector-pr-precession-of-top-3-parts.tex
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A top is made of a uniform disk of radius R and mass M with a very thin, light (assume massless) nail

for a spindle so that the center of the disk is a distance D from the tip. The top is spun with a large

angular velocity ω with the nail vertically above the y-axis as shown above.

a) Find the vector torque ~τ exerted about the pivot at the instant shown in the figure. You may

express the vector however you wish (e.g. magnitude and direction, cartesian components).

b) What is the axis of precession?

c) Derive the precession frequency ωp. Any of the derivations used in class or discussed in the textbook

are acceptable.

Express all answers in terms of M,R, g,D, and θ as needed.
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Problem 287. problems-1/torque-vector-pr-precession-of-top.tex

M.R

ω

θ

ωp

D

This problem will help you learn required concepts such as:

• Vector Torque

• Vector Angular Momentum

• Geometry of Precession

so please review them before you begin.

A top is made of a disk of radius R and mass M with a very thin, light nail (r ≪ R and m ≪ M) for a

spindle so that the disk is a distance D from the tip. The top is spun with a large angular velocity ω.

When the top is spinning at a small angle θ with the vertical (as shown) what is the angular frequency

ωp of the top’s precession?



Chapter 10

Statics

Ah, time for a rest. We’ve spent a lot of energy (now that we know what it is) learning how to solve

problems where lots of stuff moves and accelerates and does all kinds of dynamical things. Let’s think

about systems where the interesting thing is that nothing happens.

We actually really need a lot of these systems, and yeah, they involve a fair bit of physics. Engineers

do better if they build bridges and buildings that don’t fall down. Physicians like for their patients not

to fall over. Human beings like to hang pictures, see-saw with their kids, arm wrestle, put things on

tables, carry around glasses full of beer, balance things on their heads, build houses of cards and so

much more where they idea is that these things should not move, or tip over, or fall down, or snap a

suspending wire.

In order to sit still, an object has to start out sitting still and not accelerate (linearly or angularly). So

a necessary condition for static equilibrium is that the total vector force and torque must vanish

on the object(s) in question. Sounds simple!

But of course this is as many as six conditions, one for each of the possible vector components of force

and torque. All of which have to be zero at the same time. Which means as many as six simultaneous

equations per object have to be satisfied. Urp.

Maybe not so simple?

323
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10.1 Statics

10.1.1 Multiple Choice

Problem 288. problems-1/statics-mc-elephant-mouse.tex
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An elephant and a mouse sit at either end of a really long, really strong see-saw. The elephant, whose

mass is m1, sits so that its center of mass is a distance L1 from the pivot. The mouse, whose mass is

m2, sits at L2. The see-saw is balanced so the mouse and elephant are not moving up or down. Which

is the following must be true:

a) m2 = m1 b) m2 = m1(L2/L1)

c) m1 = m2(L2/L1) d) m1 = m2(L2/L1)
2 e) The mouse can never balance the

elephant!
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Problem 289. problems-1/statics-mc-hanging-rope.tex

a

gravityM,L

b

In the figure above, a rope of mass M , length L is hanging from the ceiling in static equilibrium. Select

the correct rank order of the tension in the rope at the points a and b:

a) Ta < Tb

b) Tb < Ta

c) Ta = Tb

d) Insufficient information given to determine the answer.
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Problem 290. problems-1/statics-mc-leaning-bar-reaction-pairs.tex

m

In the figure above, a board is sitting on a rough floor and leaning against a wall. Circle three action-

reaction pairs in the list below:

a) The ladder top pushes against the wall; the wall pushes back against the ladder top.

b) The floor pushes up on the ladder base; gravity pulls the ladder base down towards the floor.

c) Static friction from the floor pushes the ladder base towards the wall; the wall pushes back on the

ladder.

d) The floor pushes down on the ground; the ground pushes back on the floor.

e) The Earth pulls down on the ladder via gravity; the ladder pulls up on the Earth via gravity.
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Problem 291. problems-1/statics-mc-pick-reaction-pairs-2.tex

Which of the following list are not action-reaction force pairs? (More than one answer is possible.)

a) A hydraulic piston pushes on the fluid in its cylinder; the fluid pushes back on the hydraulic piston.

b) The earth’s gravity pulls a pendulum bob at rest down; the string pulls it up.

c) My finger pushes down against a grape I’m squeezing; my thumb pushes up against the grape.

d) My hammer pushes on a nail as it hits it; the nail pushes back on the hammer.

e) A bathroom scale pushes up on my feet as I stand on it; my feet push down on the scale.
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Problem 292. problems-1/statics-mc-pick-reaction-pairs.tex

(3 points) Which of the following list are not action-reaction force pairs? (More than one answer is

possible.)

a) The earth’s gravity pulls down on an apple; the stem of the apple holds it up.

b) Water pressure pushes out against a glass, the glass holds in the water.

c) I push forward on a bow; the bowstring pulls forward on me (as I draw an arrow).

d) I lean my head on the wall; the wall pushes back on my head.

e) I pull down on the rope with my hand; the rope pulls up on my hand.
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Problem 293. problems-1/statics-mc-plank-mass-rod.tex
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mm

(3 points) In the figure above, a very light (approximately massless) plank supports a mass m. The

plank is resting on (not attached to) a sawhorse that can support as much weight as you like, and a rod

is attached to the plank as shown (where the other end is firmly attached to the ceiling or floor as the

case may be). The rod, however, will break if it is compressed or stretched with a force Fb = mg, the

weight of the mass.

Circle all of the configurations where the plank and mass will not move and the rod will not break.
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Problem 294. problems-1/statics-mc-plank-mass-string.tex

m m

mm

In the figure above, a very light (approximately massless) plank supports a mass m. The plank is resting

on (not attached to) a sawhorse/pivot that can support as much weight as you like, and a massless

string is attached to the plank as shown (the other end is tied to the ceiling or floor as the case may

be). The string, however, will break at a force Fb = mg, the weight of the mass.

Circle all of the configurations where the plank and mass will not move and the string will not break.
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Problem 295. problems-1/statics-mc-string-and-bar.tex

M

L

T
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o

A bar of mass M and length L is pivoted by a hinge on the left and is supported on the right by a string

attached to the wall and the right hand end of the bar. The angle made by the string with the bar is

θ = 30◦. Select the true statement from the list below.

a) T = Mg/2

b) T = Mg

c) T =
√
3
2 Mg

d) T = 2Mg

e) There is not enough information to determine T .
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Problem 296. problems-1/statics-mc-support-the-picture.tex

θθ

m

A picture of mass m has been hung by a piece of thread as shown. The thread will break at a tension of

mg. Find the smallest angle theta such that the thread will not break. FYI: sin(30◦) = cos(60◦) = 1/2,

cos(30◦) = sin(60◦) =
√
3/2, sin(45◦) = cos(45◦) =

√
2/2, sin(90◦) = cos(0◦) = 1.

a) 30◦

b) 45◦

c) 60◦

d) 90◦
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Problem 297. problems-1/statics-mc-tipping-blocks.tex

A B C D

In the figure, four blocks are placed on an inclined plane that has sufficient static friction that the blocks

will not slip. The dots in the figures indicate the center of mass of each block. Which of the following

is/are true?

a) A and D will tip.

b) A B and D will not tip.

c) B and C will tip.

d) C and D will tip.
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Problem 298. problems-1/statics-mc-torque-direction-block-held-to-wall-friction.tex

FP
g

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal force
~F as shown. Gravity is down as usual as shown. What is the direction of the torque about the point

P due to the force of friction exerted by the wall on the block?

a) Left.

b) Right.

c) Up.

d) Down.

e) Into the plane of the figure.

f) Out of the plane of the figure.

g) The torque is zero, so the direction is undefined.
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Problem 299. problems-1/statics-mc-torque-direction-block-held-to-wall-normal.tex

FP
g

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal force
~F as shown. Gravity is down as usual as shown. What is the direction of the torque about the point

P due to the normal force exerted by the wall on the block?

a) Left.

b) Right.

c) Up.

d) Down.

e) Into the plane of the figure.

f) Out of the plane of the figure.

g) The torque is zero, so the direction is undefined.
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Problem 300. problems-1/statics-mc-torque-direction-block-held-to-wall.tex

FP
g

A cube of mass M is held at rest against a vertical rough wall by applying a perfectly horizontal force
~F as shown. Gravity is down as usual as shown. What is the direction of the torque about the point

P due to the force of friction exerted by the wall on the block?

a) Left.

b) Right.

c) Up.

d) Down.

e) Into the plane of the figure.

f) Out of the plane of the figure.

g) The torque is zero, so the direction is undefined.

Now, what is the direction of the torque about the point P due to the normal force exerted by the

wall on the block?

a) Left.

b) Right.

c) Up.

d) Down.

e) Into the plane of the figure.

f) Out of the plane of the figure.

g) The torque is zero, so the direction is undefined.
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10.1.2 Ranking/Scaling

Problem 301. problems-1/statics-ra-board-and-pivot-force.tex

b

c

a

In the three figures above, a massless board is held in static equilibrium by a hinge at the left end

and a trestle. A mass M is placed on the board at the three places shown. For each figure:

a) Draw an arrow at the hinge indicating the direction of the force (if any) exerted by the hinge

for all three figures. If the force is zero please indicate this.

b) Rank the three figures in the order of the magnitude of the force exerted on the board by the

trestle, from least to greatest.
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Problem 302. problems-1/statics-ra-chain-of-hanging-monkeys.tex
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m

m

m

m

In the figure above four monkeys, each of mass m, are shown holding very still as they hang from a pole

at the top of a circus tent. The top monkey (a) is holding a strap attached to the pole above, and the

bottom monkey (d) is holding a mass 5m above with his foot. Which monkey (a-d) is pulling up with

the largest force with its feet?
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Problem 303. problems-1/statics-ra-holding-up-the-bar.tex

Fc

Fb

Fa

A bar of mass M is pivoted by a hinge on the left and has a wire attached to the right as shown. The

wire can be attached to the ceiling on eyebolts on any one of the three angles shown to suspend the

rod so that it is in static equilibrium. Rank the force F exerted on the rod by the wire when the wire

comes off in the a, b, c directions (where equality is a possibility). That is, your answer might look like

Fa < Fb = Fc (but don’t count on this being the answer). Note well: The arrows in the figure above are

not proportional to the forces, they indicate only the directions.



340 CHAPTER 10. STATICS

Problem 304. problems-1/statics-ra-stack-of-standing-monkeys.tex
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a

(3 points) In the figure above four monkeys, each of mass m, are shown holding very still in a tower

they’ve made at the circus. The bottom monkey (d) is standing on the floor, the top monkey (a) is

holding a mass 5m above his head. Which monkey is pushing up with the largest force with its arms?
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Problem 305. problems-1/statics-ra-tipping-shapes-2.tex
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θ

In the four figures above, the coefficient of static friction is high enough that the uniform objects shown

will not slip before they tip. Rank the angles at which each mass will tip over as the right end of the

plank they sit on is raised, from smallest (tipping angle θ) to the largest (for example, A,B,C,D):

, , ,
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Problem 306. problems-1/statics-ra-tipping-shapes.tex

In the figure above, three shapes (with uniform mass distribution and thickness) are drawn sitting on

a plane that can be tipped up gradually. Assuming that static friction is great enough that all of these

shapes will tip over before they slide, rank them in the order they will tip over as the angle of the board

they are sitting on is increased. Be sure to indicate any ties.
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10.1.3 Short Answer

Problem 307. problems-1/statics-sa-balance-the-mobile-1.tex

T?

M M B

M A

d2d

d 2d

A static mobile suspends three beautifully patterned blocks over a baby’s bed. The lengths of the

supporting rigid rods (of negligible mass) are given in the figure above, as is the mass of the central

block, M . You must find MA and MB (in terms of/units of M as shown) so that the mobile perfectly

balances, and you must also make sure that the string you are using to hang the mobile is strong enough

to support its weight. Note well that the unknown blocks are not necessarily drawn to scale!

a)
MA

M
=

b)
MB

M
=

c) What is the total tension T in the top supporting string when the mobile perfectly balances?

T =
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Problem 308. problems-1/statics-sa-balance-the-mobile-2.tex
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A static mobile suspends three patterned blocks over a baby’s bed. The lengths of the supporting rigid

rods (of negligible mass) are given in the figure above, as is the mass of the central block, M . Find MA

and MB in terms of M so that the mobile perfectly balances. Note well that the unknown blocks are

not necessarily drawn to scale!

a) MA =

b) MB =
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Problem 309. problems-1/statics-sa-balance-the-mobile-reversed.tex
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A static mobile suspends three patterned blocks over a baby’s bed. The masses of the blocks and the

lengths of the supporting rigid rods (of negligible mass) are given in the figure above (although the

relative distances may not be correctly to scale). Find x and y in terms of d so that the mobile perfectly

balances when:

M1 = 1 kg, M2 = 3 kg, M3 = 1 kg

x =

y =
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Problem 310. problems-1/statics-sa-balance-the-mobile.tex
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A static mobile suspends three patterned blocks over a baby’s bed. The masses of the blocks and the

lengths of the supporting rigid rods (of negligible mass) are given in the figure above. Find x and y in

terms of d so that the mobile perfectly balances when M1 = 1 kg, M2 = 4 kg, M3 = 1 kg.

x =

y =
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Problem 311. problems-1/statics-sa-diving-board.tex

Albert tries to make a diving board for his backyard swimming pool by attaching the board firmly to

two vertical supports. The perfectly rigid uniform board has a length of 6 m and a mass of 40 kg. The

left hand support is attached to the left end, and the right hand support is attached 3 m to the right of

the left support (at the center of the board).

a) What force (magnitude and direction) does the middle support exert on the board when Albert

(whose mass is 80 kg) stands on the right hand end of the board as shown?

b) What force (magnitude and direction) does the left support exert on the board at this time?

c) Which support needs to be bolted down?
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Problem 312. problems-1/statics-sa-leaning-bar-reaction-pairs.tex

m

In the figure above, a board is sitting on a rough floor and leaning against a wall. Identify three action-

reaction force pairs in the figure.
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Problem 313. problems-1/statics-sa-pendulum-bob.tex

4 N

θ

F = 3 N

A 4 N pendulum bob supported by a massless string is held motionless at an angle θ from the vertical

by a horizontal force F = 3 N as shown. The string used to hang the mass will break at any tension

T > Tc = 4
√
2 N.

a) What is the angle θ (expression OK).

b) The force F is slowly increased (while keeping the force horizontal). At what value will the string

break?

c) What is the angle θ at which the string breaks?
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Problem 314. problems-1/statics-sa-suspended-food-bag.tex

m

θ θ

F

A gold prospector living in a rustic cabin mounts a sturdy wooden peg and three (approximately massless

and frictionless) pulleys in fixed positions on the wall and rafters as shown in the diagram so he can

suspend his food bag up off the floor and away from mice. He hangs a bag of food of mass m so that

the rope makes an angle θ with the central pulley as shown.

Help him find the magnitude of the force F that his rafter must exert downward on the pulley when he

has hung his bag of food.
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Problem 315. problems-1/statics-sa-which-mass-breaks-string.tex
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x

x

In the figure above, a massless plank supports a massive block m placed at the locations shown. The

plank is supported by a wedge shaped support and a string that will break at the same tension Tmax (in

all three cases) positioned as shown.

a) Suppose the mass m is gradually increased (in all three figures). In which configuration (A, B, or

C) will the string break first?

b) For that configuration (that you picked in part a), what is the value of the upward support force

Fs exerted by the wedge right as (just before) the string breaks?
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10.1.4 Long Problems

Problem 316. problems-1/statics-pr-arm-with-barbell.tex

M

F?
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m

d

θ

T?

An exercising human person holds their arm of mass M and a barbell of mass m at rest at an angle θ

with respect to the horizontal in an isometric curl as shown. The muscle that supports the suspended

weight is connected a short distance d up from the elbow joint. The bone that supports the weight has

length D.

a) Find the tension T in the muscle, assuming for the moment that the center of mass of the forearm

is in the middle at D/2. Note that it is much larger than the weight of the arm and barbell

combined, assuming a reasonable ratio of D/d ≈ 25 or thereabouts.

b) Find the force ~F (magnitude and direction) exerted on the supporting bone by the elbow joint.

Again, note that it is much larger than “just” the weight being supported.
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Problem 317. problems-1/statics-pr-bar-and-pulleys.tex
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m

2L/3

L/3θ

m1?

M

Find the components of the pivot force ~F = (Fx, Fy) and find m1 in terms of M and m as givens in

the figure above, if the bar of mass m is in static equilibrium.



354 CHAPTER 10. STATICS

Problem 318. problems-1/statics-pr-bear-seeking-goodies.tex

A bear of mass MB walks out on a beam of mass mb to get a basket of food of mass of mass mf . The

beam has length L, and is supported by a wire at an angle of 60 degrees, as in the sketch.

a) Draw a free-body diagram for the beam that shows all forces. Include an indication of a coordinate

system and also indicate the origin of that coordinate system.

b) Using that origin (as a pivot), write down all the force and torque balance equations, assuming

that the bear is located a distance x from the left end of the beam.

c) Solve these equations to find the (vector) force that the wall exerts on the left end of the beam.

d) Find the tension in the wire.

e) Suppose that the bear is too heavy to reach the basket without breaking the wire. If the maximum

tension that the wire can support without breaking is Tmax, find an expression for the largest

distance from the wall xmax that the bear can walk without breaking the wire.
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Problem 319. problems-1/statics-pr-brace-against-house.tex
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N

In the figure above, a “massless” rigid beam of length L that makes an angle of θ with the ground is

leaned against a frictionless wall at the upper end, which exerts a normal force only N as shown on

the beam. A mass M is suspended vertically from a point 2/3 of the way from the pivot attached to the

ground. Find:

a) The magnitude of the normal force N exerted by the wall on the beam when the entire beam

is in static equilibrium.

b) The vector force ~F p exerted by the pivot on the ground on the beam to hold the beam in place.

It is probably easiest to express this answer as Fpx and Fpy.
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Problem 320. problems-1/statics-pr-crane-boom.tex
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sin(30◦) = cos(60◦) =

1

2

cos(30◦) = sin(60◦) =

√
3

2

sin(45◦) = cos(45◦) =

√
2

2

A crane with a boom (the long support between the body and the load) of mass m and length L holds

a mass M suspended as shown. Assume that the center of mass of the boom is at L/2. Note that the

wire with the tension T is fixed to the top of the boom, not run over a pulley to the mass M .

a) Find the tension in the wire.

b) Find the force exerted on the boom by the crane body.
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Problem 321. problems-1/statics-pr-crane-vertical-support.tex
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In the figure above, a “massless” rigid beam of length L that makes an angle of θ with the ground is

braced with a piece of wood a distance L/4 from the end on the ground. This piece of wood is attached

at right angles to the beam as shown. At the upper end of the beam a mass M is suspended. Find:

a) The magnitude F of the force exerted by the support bar when the entire beam is in static

equilibrium.

b) The vector force ~F p exerted by the pivot on the ground on the beam (not the support bar) to

hold the beam in place. It is probably easiest to express this answer as Fpx and Fpy .
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Problem 322. problems-1/statics-pr-cylinder-and-corner-2.tex
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A cylinder of mass M and radius R sits against a step of height h = R/2 as shown above. A force ~F is

applied parallel to the ground as shown. All answers should be in terms of M , R, g.

a) Find the minimum value of |~F | that will roll the cylinder over the step if the cylinder does not

slide on the corner.

b) What is the force exerted by the corner (magnitude and direction) when that force ~F is being

exerted on the center?
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Problem 323. problems-1/statics-pr-cylinder-and-corner.tex
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A cylinder of mass M and radius R sits against a step of height h = R/2 as shown above. A force ~F is

applied at right angles to the line connecting the corner of the step and the center of the cylinder. All

answers should be in terms of M , R, g.

a) Find the minimum value of |~F | that will roll the cylinder over the step if the cylinder does not

slide on the corner.

b) What is the force exerted by the corner (magnitude and direction) when that force ~F is being

exerted on the center?
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Problem 324. problems-1/statics-pr-dangling-bar.tex
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In the figure above, a rod of length L with mass m is suspended by a hinge on the left and a horizontal

string on the right. A second mass 2m is suspended from the rod a distance L/4 from the hinge end.

Find:

a) The tension T in the horizontal string.

b) The vector force ~F exerted by the hinge, in any of the acceptable forms we use to completely

specify a vector.
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Problem 325. problems-1/statics-pr-disk-in-corner.tex
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b

Find the magnitude of the normal forces Na and Nb exerted by the two walls on the disk of mass M

and radius R at the points a and b such that it sits in static equilibrium in the picture above:

• Na =

• Nb =
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Problem 326. problems-1/statics-pr-double-diagonal-pulleys.tex
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In the figure above, two massless pulleys and a massless unstretchable string support a mass M in static

equilibrium as shown. The pulleys are fixed on unmoveable frictionless axles.

a) (3 points) Draw a force diagram for the mass M and both pulleys.

b) (5 points) Find the vector force ~F exerted by the axle of the upper pulley at equilbrium.

c) (1 point) If the angle θ is increased (by lowering the lower pulley, for example) is there more or

less force exerted by the upper axle to keep the pulley in place?
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Problem 327. problems-1/statics-pr-floating-buoy.tex

water
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A round buoy at the beach floats in fresh water when it is exactly half submerged. Its spherical volume

is 1 cubic meter. If it is pulled all the way underwater and suspended from the bottom by means of an

anchored rope, what is the tension in the rope?
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Problem 328. problems-1/statics-pr-hang-a-stable-T.tex
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The “T” shaped object above has mass M , and has both a height and width of W . Assume that this

mass is uniformly distributed in the long arm and the crossbar, that is, that the center of mass of the

long arm is at W/2 and the center of mass of the crossbar is also at W/2 and that the long arm and

crossbar each has mass M/2 (and hence gravity exerts a downward force at their centers of mass of

Mg/2 as shown).

Find the tension T1,2,3 in each of the three ropes that support the T above. Note that the ropes all

pull straight up (they are vertical) and the T is completely horizontal.
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Problem 329. problems-1/statics-pr-hanging-ball-2.tex
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(9 points total) In the figure above, a mass m is hanging from two massless, unstretchable ropes. Gravity

pulls straight down on the mass with a force of magnitude mg. Assume that the tension in both ropes

has the equal magnitude T . The mass is hanging 4 meters beneath the ceiling, and each rope is fastened

to the ceiling offset by 4 meters from where the mass hangs as shown.

a) (3 points) Draw a coordinate system and free body diagram representing all the forces acting on

the hanging mass. Label any angles that might be of use to you.

b) (3 points) Write the algebraic equations for the total force in the x and y directions that are the

conditions for static equilibrium.

c) (3 points) Find the tension T in terms of mg.



366 CHAPTER 10. STATICS

Problem 330. problems-1/statics-pr-hanging-ball.tex
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In the figure above, a mass m is hanging from two massless, unstretchable ropes. Gravity pulls straight

down on the mass with a force of magnitude mg. Assume that the tension in both ropes has the equal

magnitude T . The length of the each rope is 5 meters, and the mass is hanging 4 meters beneath the

ceiling as shown

a) Draw a coordinate system and free body diagram representing all the forces acting on the hanging

mass. Label any angles that might be of use to you.

b) Write the algebraic equations for the total force in the x and y directions that are the conditions

for static equilibrium.

c) Find the tension T in terms of mg.
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Problem 331. problems-1/statics-pr-hanging-door.tex
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A door of mass M that has height H and width W is hung from two hinges located a distance d from

the top and bottom, respectively. Assuming that the weight of the door is equally distributed between

the two hinges, find the total force (magnitude and direction) exerted by each hinge. (Neglect the mass

of the doorknob. The force directions drawn for you are NOT likely to be correct or even close.)
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Problem 332. problems-1/statics-pr-hanging-tavern-sign.tex
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In the figure above, a tavern sign belonging to a certain home-brewing physics professor is shown sus-

pended from the middle of a massless supporting rod of length L (at L/2). Find the tension in the

(massless) wire, T , and the total force exerted on the suspending rod by the wall, ~F , in terms of

m, g, L, and θ.

Please indicate the coordinate system you are using on the figure and the location of the pivot point

used, if any.
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Problem 333. problems-1/statics-pr-inclined-plane.tex
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T

This problem will help you learn required concepts such as:

• Newton’s Third Law

• Momentum Conservation

• Fully Inelastic Collisions

so please review them before you begin.

In the inclined plane problem above all masses are at rest and the pulley and string are both massless.

Find the normal force exerted by the inclined plane on the mass M and the mass m required to keep

the system in static balance in terms of M and θ.
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Problem 334. problems-1/statics-pr-ladder-on-glacier.tex

m

L θ

An ultralight (assume massless) ladder of length L rests against a vertical block of (frictionless) ice

during a hazardous ascent of a glacier at an angle θ = 30◦ as drawn. A mountaineer of mass m climbs

the ladder. When the mountaineer is standing at rest at the very top of the ladder and about to reach

over the cliff edge, what is the net force exerted on the base of the ladder by the glacier?
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Problem 335. problems-1/statics-pr-ladder-on-wall.tex
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In the figure above, a ladder of mass m and length L is leaning against a wall at an angle θ. A person

of mass M begins to climb the ladder. The ladder sits on the ground with a coefficient of static friction

µs between the ground and the ladder. The wall is frictionless – it exerts only a normal force on the

ladder.

If the person climbs the ladder, find the height h where the ladder slips.
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Problem 336. problems-1/statics-pr-mass-two-strings.tex
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A ball of mass m hangs from the ceiling on a massless string. A second massless string is attached to

the ball and a force ~F is applied to it in the horizontal direction so that the system remains in static

equilibrium in the position shown, where θ is the angle between the first string and the vertical. Gravity

acts down as usual. Each string can support a maximum tension Tmax = 2mg without breaking.

a) If ~F is slowly increased while keeping its direction horizontal, which string will break first? Explain

your reasoning.

b) Find the maximum value θmax that the hanging string can have when the system is in static

equilibrium with both strings unbroken. (You may express this angle as an inverse sine, cosine, or

tangent if you wish – you do not need a calculator.)

c) Find the force magnitude Fmax that produces the maximum angle θmax in static equilibrium.

Express this answer in terms of m and g.
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Problem 337. problems-1/statics-pr-pendulum-bob-pulley.tex
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A pendulum bob of mass m is attached both to the ceiling and to a mass M hanging over a pulley by

unstretchable massless strings as shown. The pulley is fixed on an unmoveable frictionless axle.

a) (3 points) Draw free body diagrams for both mass m and mass M .

b) (3 points) Find an expression for the angle θ at which the system is in static equilibrium.

c) (3 points) Find the total tension T in the string connecting the pendulum bob to the ceiling.
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Problem 338. problems-1/statics-pr-pushing-down-wall.tex
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Tom is a hefty construction worker (mass M = 100 kilograms) with a good sense of balance who wants

to push down a brick wall. The wall, however, is strong enough to withstand any horizontal push up to

2000 N and Tom can only exert a sideways equal to his weight with his muscles.

Fortunately, Tom has a perfectly rigid 4 × 4 beam (of negligible mass), and there is a solid rock (that

can withstand essentially any push) a distance D = 5 meters from the wall to brace it on. Even more

fortuitously, Tom has taken introductory physics! He therefore cuts the beam to lean against the wall a

height H as shown and proceeds to walk up the beam towards the wall..

a) Assuming that the beam is frictionless where it presses against the wall what is the largest value

of H that will permit him to knock down the wall if he walks to the end of the beam so that his

horizontal distance x = D?

b) Suppose that he has cut the beam so that it rests a height H = 1 meter above the ground against

the wall. What is his horizontal position x when the beam knocks down the wall (if it does at all)?

c) Of course the beam is not frictionless where it rests against the wall. Does this fact mean that,

for any given value of H , the wall is easier to knock down (happens when he has walked a smaller

horizontal distance x toward the wall), harder to knock down (happens when he has walked a

greater horizontal distance x), or just the same (it falls at the same horizontal distance x) as it is

without friction?
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Problem 339. problems-1/statics-pr-rod-mass-on-hinge.tex

M

L

L/2

θ

T

m

P

A small round mass M sits on the end of a rod of length L and mass m that is attached to a wall with a

hinge at point P . The rod is kept from falling by a thin (massless) string attached horizontally between

the midpoint of the rod (L/2 from either end) and the wall. The rod makes an angle θ with the ground.

Find:

a) the tension T in the string;

b) the vector force ~F exerted by the hinge on the rod.
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Problem 340. problems-1/statics-pr-supporting-a-disk.tex

M

R

R/2

R/2

Find the force exerted by each of the two rods supporting the disk of mass M and radius R as shown.

Note that the two triangles shown are both 30-60-90 triangles with side opposite the small angle of R/2.
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Problem 341. problems-1/statics-pr-tipping-vs-slipping.tex

θ

µ

3cm

s = 2/3
4cm

M

A block of mass M with width 3 cm and height 4 cm sits on a rough plank. The coefficient of static

friction between the plank and the block is µs = 2/3. The plank is slowly tipped up. Does the block

slip first, or tip first?
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Problem 342. problems-1/statics-pr-vector-torque-plexiglass-table.tex
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m

Top view
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2F

3F

The figure below shows a mass m placed on a table consisting of three narrow cylindrical legs at the

positions shown with a light (presume massless) sheet of Plexiglas placed on top. Find the vertical forces

F1, F2, F3 exerted on the Plexiglas by each leg when the mass is at rest in the position shown.



Chapter 11

Fluids

Fluids have statics too! Water can sit still in a drinking glass, held in by normal forces exerted by the

glass, held down by gravity, and internally held in place by – water. Even air is static (when their is no

wind.

But the really interesting things are what happens when fluids move. We barely scratch the surface in

this course – fluid dynamics is arguably one of the most difficult theories in all of physics, especially in

the general, nonlinear, chaotic, turbulent regime. Which is where we, and a whole lot of everyday stuff,

live.

Fluid statics and dynamics is once again useful to everybody from physicians to engineers to physicists

to physicians to boat captains to airline pilots to physicians, to...

Did I mention that the human body, from one point of view is a big, walking, talking, thinking bag of

water (complete with pumps and plumbing) with a few very important contaminants in it?

No?

379
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11.1 Fluids

11.1.1 Multiple Choice

Problem 343. problems-1/fluids-mc-boat-catches-fish.tex

?

?

?

I go fishing in a pond where there is a big, fat fish perfectly suspended by buoyant forces in the water

under the boat. I catch him and reel him in up into the boat. As I do so, the level of the water in the

pond will:

a) Rise a bit.

b) Fall a bit.

c) Remain unchanged.

d) Can’t tell from the information given (it depends, for example, on the kind of fish...).
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Problem 344. problems-1/fluids-mc-boat-floats-wood.tex

?

?

?

A person stands in a boat floating on a pond and containing several pieces of wood. He throws the wood

out of the boat so that it floats on the surface of the pond. The water level of the pond will:

a) Rise a bit.

b) Fall a bit.

c) Remain unchanged.

d) Can’t tell from the information given (it depends on, for example, the shape of the boat, the mass

of the person, whether the pond is located on the Earth or on Mars...).
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Problem 345. problems-1/fluids-mc-boat-lowers-anchor.tex

?

?

?

I go fishing in a pond and spot a big, fat fish in the water under the boat and decide to anchor for a bit

to try to catch it. As I lower the anchor into the water (so that it hangs suspended under the boat as

shown) level of the water in the pond will:

a) Rise a bit.

b) Fall a bit.

c) Remain unchanged.

d) Can’t tell from the information given (it depends, for example, on whether the anchor is made of

iron or lead...).
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Problem 346. problems-1/fluids-mc-boat-releases-balloons.tex

?

?

?

The fish aren’t biting, so a person standing in a boat floating on a pond and inflates a bunch of helium

balloons instead. Then an enormous fish jumps nearby and he is so startled that he accidentally releases

the balloons. As he does so, the water level of the pond will:

a) Rise a bit.

b) Fall a bit.

c) Remain unchanged.

d) Can’t tell from the information given.

(Ignore the fish!)
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Problem 347. problems-1/fluids-mc-boat-sinks-rocks.tex

?

?

?

A person stands in a boat floating on a pond and containing several large, round, rocks. He throws the

rocks out of the boat so that they sink to the bottom of the pond. The water level of the pond will:

a) Rise a bit.

b) Fall a bit.

c) Remain unchanged.

d) Can’t tell from the information given (it depends on, for example, the shape of the boat, the mass

of the person, whether the pond is located on the Earth or on Mars...).
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Problem 348. problems-1/fluids-mc-buoyant-boxes.tex

Two wooden boxes with the same shape but different density are held in the same orientation beneath

the surface of a large container of water. Box A has a smaller average density than box B. When the

boxes are released, they accelerate up towards the surface. Which box has the greater acceleration when

they are initially released?

a) Box A.

b) Box B.

c) They are the same.

d) We cannot tell from the information given.
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Problem 349. problems-1/fluids-mc-density-of-fluid-from-stone.tex

m = 10 kg

fluid

90 N

A block of lead has a mass of m = 10 kg (that weighs 100 Newtons in air) and a density of ρ = 1.1× 104

kg/m3 is hung from a scale and immersed in an unknown fluid. The scale then reads 90 Newtons. What

is the approximate density of the fluid? (Use g = 10. m/sec2)

ρf = kg/m3
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Problem 350. problems-1/fluids-mc-density-of-stone-underwater.tex

m = 10 kg

60 N

water

A stone of mass m = 10 kg (that weighs 100 Newtons in air) is hung from a scale and immersed in

water. The scale reads 60 Newtons. What is the density of the stone? (Use g = 10 m/sec2)

a) ρ = 1000 kg/m3

b) ρ = 4000 kg/m3

c) ρ = 6000 kg/m3

d) ρ = 1667 kg/m3

e) ρ = 2500 kg/m3
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Problem 351. problems-1/fluids-mc-floating-mass-on-spring-different-rho.tex
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A
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g

B

ρ/2

In the figures above, two identical springs (with spring constant k) are attached to the bottoms of

two identical containers filled with two different fluids with densities (A) ρ and (B) ρ/2 respectively.

Wooden blocks that would ordinarily float are attached to these springs, which stretch out to total

lengths DA and DB and suspend the blocks so that they are fully immersed as shown.

Circle the true statement:

DA > DB DA < DB DA = DB
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Problem 352. problems-1/fluids-mc-floating-mass-on-spring-elevator.tex
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In the figures above, two identical springs (with spring constant k) are attached to the bottoms of two

identical containers filled with water (density ρ). At the other end, the springs are attached to identical

wooden blocks that would ordinarily float on the water so that they are completely submerged.

The container on the left (A) is located at rest on the ground, and ∆xA is the total distance that its

spring is stretched from its equilibrium length when the block is stationary relative to container A. The

container on the right (B) is located on the floor of an elevator accelerating upwards with an acceleration

a, and ∆xB is the total length that its spring is stretched from its equilibrium length when the block is

stationary relative to container B (accelerating upwards with the elevator).

Circle the true statement:

∆xA > ∆xB ∆xA < ∆xb ∆xA = ∆xB
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Problem 353. problems-1/fluids-mc-floating-mass-on-spring-moon.tex
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B)

In the figures above, two identical springs (with spring constant k) are attached to the bottoms of two

identical containers filled with water (density ρ). At the other end, the springs are attached to identical

wooden blocks that would ordinarily float on the water so that they are completely submerged.

The apparatus on the left (A) is located on the Earth’s surface, where the acceleration due to gravity

is g. The apparatus on the right (B) is located on the moon, where the acceleration due to gravity is

g/6. De is the total length of the stretched spring on the Earth, Dm is the total length of the stretched

spring on the moon.

Circle the true statement:

De > Dm De < Dm De = Dm
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Problem 354. problems-1/fluids-mc-flow-constricted-pipe-reverse.tex

v1 v2r/2 r

Water flows at speed v1 in a pipe with radius r/2 and passes into a pipe with radius r through a smooth

constriction as shown. Neglect viscosity. Select the statements that correctly describes v2, the speed in

the wider section of pipe, and the relative pressure in the narrower and wider segments of pipe

a) v2 = 4v1

b) v2 = 2v1

c) v2 = v1

d) v2 = 1
2v1

e) v2 = 1
4v1

a) P1 > P2

b) P1 = P2

c) P1 < P2

d) We cannot tell from Bernoulli’s equation without knowing the fluid’s density ρ.
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Problem 355. problems-1/fluids-mc-flow-constricted-pipe.tex

d d/2v2v
1

Water flows at speed v1 in a pipe with diameter d and passes into a pipe with diameter d/2 through a

smooth constriction as shown. Select the statement that correctly describes v2, the speed in the narrower

pipe.

a) v2 = 4v1

b) v2 = 2v1

c) v2 = v1

d) v2 = 1
2v1

e) v2 = 1
4v1
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11.1.2 Ranking/Scaling

Problem 356. problems-1/fluids-ra-archimedes-objects-2.tex

Four large identical beakers are filled with water and also contain objects in static equilibrium with the

water and beaker (they are not attached to or supported by anything outside of the beaker. The objects

are, listed in the order of strictly decreasing density :

a) A solid gold coin that has a mass of 100 grams;

b) A cast aluminum frog that has a mass of 100 grams;

c) An ice cube that has a mass of 100 grams;

d) A wooden carved monkey that has a mass of 100 grams.

You remove each object from the water in its beaker and measure the drop in water depth ∆di,

i = a, b, c, d.

Rank the ∆di you expect to observe in this experiment from smallest to largest. As always, in the

case that some of the ∆di are equal to neighbors, indicate that explicitly.
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Problem 357. problems-1/fluids-ra-archimedes-objects.tex

A large beaker is filled to a marked line with water. You have the following objects (in order of de-

creasing density):

a) A solid gold coin that has a mass of 100 grams.

b) A cast aluminum frog that has a mass of 100 grams.

c) An ice cube that has a mass of 100 grams

d) A 100 gram chunk of shipping styrofoam.

You drop each item, one at a time, into the beaker in the water and record di, the change in water

depth, and then remove it.

Rank the expected results for di for i = a, b, c, d. Indicate whether di is positive (so that the water in

the beaker rises) or negative (falls). As always, in the case that some of the di are equal to neighbors,

indicate that explicitly.
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Problem 358. problems-1/fluids-ra-four-utubes-venturi.tex

A DC

air air

B

In the four u-tubes pictured above, only one of the two cases in each pair (A vs B and C vs D) make

sense. In A vs B, a can of compressed air is blowing air across the top of one of the tube tops and

the tube contains only a single fluid. In C vs D, the density of the immiscible fluids is indicated by the

shading where the darker fluid has the greater density.

Which two u-tubes DO make physical sense? (Circle one of each pair.)

A B C D
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Problem 359. problems-1/fluids-ra-poiseiulles-law-2.tex
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In the figure above, several circular pipes carry fluids with the same viscosity. Rank the pipes in the

order of their resistance to laminar flow, from least to greatest. Equality is a possible answer. Think

carefully about the dependence on r in Poiseuille’s Law! This is why obstructions in arteries increase

the resistance so dramatically!
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Problem 360. problems-1/fluids-ra-poiseiulles-law.tex
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Rank the volume flow I from the lowest to highest in the boxes below by filling A, B, C, and D into

the large boxes and putting “<” or “=” signs into the small boxes in between for the four circular pipes

illustrated in the figure above, assuming that in all cases that the flow, from left to right, is maintained

by the same ∆P = Pleft − Pright > 0 and that the same fluid (with the same viscosity µ) is flowing

through the pipes.
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Problem 361. problems-1/fluids-ra-three-crowns-density.tex

A B C

Three crowns are shown above. Crown A is made of solid lead (specific gravity 11.3) covered with a

thin veneer of gold leaf. Crown B is made of platinum (specific gravity 21.5), also covered with a thin

veneer of gold leaf. Crown C is made of pure gold (specific gravity 19.3). The scale suspending the three

crowns in water all read a weight of 5 newtons. Rank the crowns in order of their true weight as

measured in air from lowest to highest.
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Problem 362. problems-1/fluids-ra-three-crowns.tex

A B C

Three crowns are shown above. Crown A is made of solid lead (specific gravity 11.3) covered with a thin

veneer of gold leaf. Crown B is made of platinum (specific gravity 21.5), also covered with a thin veneer

of gold leaf. Crown C is made of pure gold (specific gravity 19.3). All three crowns weigh exactly 500

grams in air. Rank the crowns in the order of effective weight while immersed in the water (what the

three scales will read) lowest to highest.
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11.1.3 Short Answer

Problem 363. problems-1/fluids-sa-aneurism-pressure-flow.tex
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Normal

Obstruction

Aneurism

Consider the models above of a normal blood vessel (A), an obstructed blood vessel (B) and an aneurism

(C). In case (A) blood is flowing from left to right at a “normal” fluid velocity vn and pressure Pn. Assume

that the blood pressure right before and after the obstruction or aneurism is also Pn. Neglect viscosity

while answering the following questions:

a) Is the blood pressure in the obstructed region Po in (B) higher or lower than Pn?

b) Is the blood pressure in the aneurism Pa in (C) higher or lower than Pn?
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Problem 364. problems-1/fluids-sa-balloon-in-car.tex

A small boy is riding in a minivan with the windows closed, holding a helium balloon. The van goes

around a corner to the left. Does the balloon swing to the left, still pull straight up, or swing to the

right as the van swings around the corner?
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Problem 365. problems-1/fluids-sa-breathing-underwater-through-a-tube.tex

In adventure movies, the hero is often being chased by the bad guys and escapes by hiding deep under-

water and breathing through a tube of some sort. Assuming that you can barely manage to breathe if

a 500 Newton person is standing directly on your chest while you are lying on the floor, estimate the

maximum depth (of your chest) where one is likely to have the muscular strength to be able to breathe

through a rigid tube extending to the surface. Your estimate should be quantitative and you should

support it with both a very short piece of algebra and a picture clearly showing the forces you must

work against to breathe underwater.
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Problem 366. problems-1/fluids-sa-four-utubes-1.tex

b da c

Two different incompressible fluids separated by a thin (massless, frictionless) piston so that they cannot

mix are open to the atmosphere and are in static equilibrium in each of the four U-tubes pictured above.

a) One of the four U-tubes makes no sense (cannot be in equilibrium). Circle it and label it

”impossible”.

b) Underneath each u-tube that does make sense indicate whether the fluid at the top of the left-

hand side of the “U” is denser than, less dense than, or the same density as the fluid at

the top of the right-hand side.
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Problem 367. problems-1/fluids-sa-four-utubes-2.tex

b da c

(6 points) Two different incompressible fluids separated by a thin (massless, frictionless) piston so that

they cannot mix are open to the atmosphere and presumably in static equilibrium in each of the four

u-tubes pictured above. One of the four u-tubes makes no sense (cannot be in equilibrium). Circle it.

Underneath each u-tube that does make sense indicate whether the fluid at the top of the left-hand side

of the “u” is denser than, less dense than, or the same density as the fluid at the top of the right-hand

side. Briefly indicate your reasons.
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Problem 368. problems-1/fluids-sa-horizontal-necked-pipe.tex

B
A

3 r
r

An incompressible, non-viscous fluid flows from the left to the right through a pipe of varying radius as

shown in the figure. Let us compare the fluid at point A and the fluid at point B.

Answer questions (a) to (c) below by entering the letters “A”, “B”, or if the same magnitude, “=” in

the provided boxes.

[Showing your work is recommended, but not mandatory.]

a) The speed of the fluid is larger at point ;

b) Volume flow rate (Q) is higher at point ;

c) Pressure is higher at point ;

d) Write down the ratio of the flow speed at two points:
vB
vA

= .
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Problem 369. problems-1/fluids-sa-hydraulic-lift-2.tex

A a

Fluid

fM

A piston of small cross sectional area a is used in a hydraulic press to exert a force f on the enclosed

liquid. A connecting pipe leads to the larger piston of cross sectional area A, so that A > a. The two

pistons are at the same height. The weight w = Mg that can be supported by the larger piston is

(a) w > f

(b) w < f

(c) w = f

(d) depends on whether the liquid is compressible or not.
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Problem 370. problems-1/fluids-sa-hydraulic-lift.tex

M

A a

m

Fluid

The pair of coupled piston-and-cylinders shown above are sitting in air and filled with an incompressible

fluid. The entire system is in static equilibrium (so nothing moves). The cross-sectional area of the large

piston is A; the cross-sectional area of the small piston is a. In this case we know that:

a) M = A
am

b) M = a
Am

c) M =
√

A
am

d) M = m

e) We cannot tell what M is relative to m without more information.
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Problem 371. problems-1/fluids-sa-poiseiulles-law-2.tex
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In the figure above, fluids of the given viscosities flow through circular pipes A-E with the given dimen-

sions. The resistance to fluid flow of circular pipe A is known to be RA. What are the resistances of

the other four pipes in terms of RA?

RB

RA
=

RC

RA
=

RD

RA
=

RE

RA
=
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Problem 372. problems-1/fluids-sa-poiseiulles-law-3.tex
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In the figure above, fluids of the given viscosities flow through circular pipes A-E with the given dimen-

sions. In all cases the volumetric flow through the pipes is held constant at Q by varying the pressure

difference ∆Pi = Phigh − Plow across each (i = A,B,C,D,E) pictured pipe segment.

The pressure difference that maintains flow Q fluid flow of circular pipe A is defined to be ∆PA. What

are the pressure differences across the other four pipes in terms of ∆PA?

∆PB

∆PA
=

∆PC

∆PA
=

∆PD

∆PA
=

∆PE

∆PA
=
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Problem 373. problems-1/fluids-sa-poiseiulles-law.tex
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Use Poiseuille’s Law to answer the following questions:

a) Is ∆Pa = Pleft − Pright greater than, less than, or equal to zero in figure a) above, where blood

flows at a rate Iv horizontally through a blood vessel with constant radius r and some length L

against the resistance of that vessel?

b) If the radius r increases (while flow Iv and length L remain the same as in a), does the pressure

difference ∆Pb increase, decrease, or remain the same compared to ∆Pa?

c) If the length increases (while flow Iv and radius r remains the same as in a), does the pressure

difference ∆Pc increase, decrease, or remain the same compared to ∆Pa?

d) If the viscosity µ of the blood increases (where flow Iv, radius r, and length L are all unchanged

compared to a) do you expect the pressure difference ∆Pd difference across a blood vessel to

increase, decrease, or remain the same compared to ∆Pa?
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Problem 374. problems-1/fluids-sa-siphon.tex

H

A siphon is a device for lifting water out of one (higher) reservoir and delivering it another (lower)

reservoir as shown above. Estimate the probable maximum height H one can lift the water above the

upper reservoir’s water level before the tube descends into the lower reservoir. Explain your reasoning

– how, and where, will the siphon fail?
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Problem 375. problems-1/fluids-sa-utube-fluid-height.tex

yR

y
L

A vertical U-tube open to the air at the top is filled with oil (density ρo) on one side and water (density

ρw) on the other, where ρo < ρw.

a) Make your own diagram of the problem and clearly label the oil and the water.

b) Find (derive) an expression for ∆y = yL − yR, the difference in the heights of the two columns

in terms of yL.
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Problem 376. problems-1/fluids-sa-walking-in-a-pool.tex

People with vascular disease or varicose veins (a disorder where the veins in one’s lower extremeties

become swollen and distended with fluid) are often told to walk in water 1-1.5 meters deep. Explain

why.
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11.1.4 Long Problems

Problem 377. problems-1/fluids-pr-bernoulli-beer-keg-horizontal.tex
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a

In the figure above, a CO2 cartridge is used to maintain a pressure P on top of the beer in a beer keg,

which is full up to a height H above the tap at the bottom (which is obviously open to normal air

pressure) a height h above the ground. The keg has a cross-sectional area A at the top. Somebody has

pulled the tube and valve off of the tap (which has a cross sectional area of a) at the bottom and it is

spurting out onto the ground.

a) Find the speed with which the beer emerges from the tap. You may use the approximation A ≫ a,

but please do so only at the end of your algebra, not at the beginning. Assume laminar flow and

no resistance.

b) Find the value of R at which you should place a pitcher (initially) to catch the beer.

c) Evaluate the answers to a) and b) for A = 0.25 m2, P = 2 atmospheres, a = 0.25 cm2, H = 50

cm, h = 1 meter and ρbeer = 1000 kg/m3 (the same as water).
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Problem 378. problems-1/fluids-pr-bernoulli-constricted-pipe.tex

d d/2

1P P2

v2v
1

Water flows at a pressure P1 and a speed v1 in a circular storm culvert pipe of diameter d. The pipe

narrows smoothly to a second pipe section where the diameter is only d/2.

a) Find v2, the speed in the second pipe.

b) Find P2, the pressure in the second pipe.

c) Write an algebraic expression in terms of the givens for the current (flow) I, the volume of water

per second that passes through the pipe(s).

d) Evaluate your answer(s) given the data: P1 = 1.075 × 105 Pa, v1 = 1 m/sec, d = 2/
√
π meters.

No calculator should be needed.
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Problem 379. problems-1/fluids-pr-bernoulli-constricted-pipe-vertical.tex
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A drain pipe in a house starts out at a diameter of d and narrows smoothly to a second pipe section

where the diameter is only d/2. It is filled with water to a height H above the exit point of the lower

pipe where it empties into a storm sewer. Both ends of the pipe are open to the air.

a) Find v1 and v2, the speed of the flowing fluid in both pipe sections.

b) Write an algebraic expression in terms of the givens for the current (flow) Q, the volume of water

per second that passes through the pipe(s). Give the expression in terms of d and v1 and/or v2 so

that your answer does not depend on your answer to a).

c) How long ∆t will it take for the water level in the top pipe to drop a distance ∆x ≪ H?
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Problem 380. problems-1/fluids-pr-bernoulli-emptying-iced-tea-time.tex
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In the figure above, a big jug of iced tea with cross-sectional area A1 is open to the air on top. A tap on

the bottom has a hole with a cross-sectional area A2. The surface of the iced tea is a height H above

the tap.

a) Find the rate at which the height of the iced tea drops – dH/dt – when the tap is opened.

b) How long does it take for all the iced tea to run out?

You may assume that A1 ≫ A2 and use any approximations that may suggest.
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Problem 381. problems-1/fluids-pr-bernoulli-irrigation-pipe.tex
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In the figure above, a pump maintains a pressure of P in the air at the top of a tank of water with

a cross sectional area A. An irrigation pipe at the bottom leads up a slope to a farmer’s field. The

vertical distance between the top surface of water in the tank and the opening of the pipe is H . The

cross-sectional area of the pipe is a. The top pipe is open to air pressure P0 = 1 atm. Recall that the

density of water is ρ = 103 kg/m3.

a) What is the velocity of the water coming from the pipe? (Find this algebraically from the

appropriate law(s).)

b) Is the pressure at the bottom of the tank greater inside the main vessel (point 1 on figure above)

or inside the pipe (point 2)? Briefly explain.

c) After finding the answer to a) algebraically and answering b), evaluate v numerically using:

P = 2.5 atm, A = 10 m2, H = 10 m, and a = 4 cm2. You shouldn’t need a calculator for this.
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Problem 382. problems-1/fluids-pr-bernoulli-IV.tex
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Although mechanized and precise in modern first-world medicine, IV fluid delivery in the rest of the

world is an imprecise gravity-driven system. A bag or bottle filled with a saline solution, plasma, blood,

or medicine is hung above a patient’s bed and a tube delivers that fluid directly into a patient’s vein. A

physician practicing medicine in many clinics or hospitals around the world may well need to be able to

estimate things like the time of delivery of a bolus of fluid by a gravity-driven IV line for a given needle

size.

Make such an estimate below, assuming that the bag of cross-sectional area A holds a fluid of density

ρ, is effectively open to air pressure in the room P1, and is suspended a height H above the level of the

patient as shown. Use a as the cross-sectional area of the needle. Ignore viscosity and the fluid flow

resistance of the tubing. Express all your answers algebraically in terms of A, a, ρ, P1 and P2

for full credit.

a) What is the minimum height Hmin such that flow is from the bag to the patient instead of from

the patient back towards the bag? (We don’t want the patient to inadvertently donate blood!)

b) Suppose you raise the bag height to H = 2Hmin. With what velocity does the fluid flow into the

patient?

c) If the bag holds a fluid volume V estimate how long does it will take to deliver all of the fluid in

the bag into the patient at this new height. Assume that H does not change (much) while the bag

empties.

d) If one included viscosity and the drop in fluid height as the bag empties, would it increase or

decrease the time from this rough estimate?

After finding the algebraic answers, you may estimate the numerical values of these quantities without

a calculator for one point of EXTRA credit per answer for a maximum of three extra points. Assume

that the fluid is water, V = 500 cubic centimeters, P1 = 1 atm, P2 = 1.1 atm, A = 2 × 10−3 m2, and

a =
√
5× 10−7 m2. (Note that leaving radicals like

√
5 in your answers is OK).
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Problem 383. problems-1/fluids-pr-bernoulli-range-arc.tex
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A sealed tank of water (density ρ) is shown above. Inside it is pressurized to a pressure Pt = 3Pa (where

Pa is the pressure outside of the tank, one atmosphere). The water escapes through a small pipe at

the bottom where the stream is angled up at an angle θ with respect to the ground as shown. The

cross-sectional area of the tank A is much larger than the cross-sectional area a of the small pipe at the

bottom, A ≫ a. (Picture is not necessarily to scale.)

a) What is the (approximate) speed va with which the water exits the small pipe? Express your

answer (for this part only) in terms of ρ, g, Pt, Pa and possibly A and a.

b) What is the horizontal range of the stream of water, R, measured from the tip of the spout as

shown. Express your answer (for this part only) in terms of va.
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Problem 384. problems-1/fluids-pr-bernoulli-range-horizontal.tex
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A sealed tank of water (density ρw) is shown above. Inside the air is pressurized above the water to a

pressure Pt = 2Pa (where Pa is the air pressure outside of the tank, one atmosphere). The water escapes

through a small pipe at the bottom where the stream emerges parallel to the ground as shown. The

cross-sectional area of the tank A is much larger than the cross-sectional area a of the small pipe at the

bottom. Neglect viscosity and flow resistance. Picture is not necessarily to scale.

a) Find the (approximate) speed va with which the water exits the small pipe. You may assume

A ≫ a.

b) Find the horizontal range of the stream of water, R, measured from the tip of the spout as

shown. Express your answer in terms of va, so that it needn’t depend on getting a) correct.



422 CHAPTER 11. FLUIDS

Problem 385. problems-1/fluids-pr-bernoulli-sipping-through-straw.tex
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When you drink through a straw, you create a pressure Pm in your mouth that is less than atmospheric

pressure. Suppose Pm = 9× 104 Pa, and the end of the straw in your mouth is 10cm above the surface

of your 40cm high drink as shown above. You may assume that the cross-sectional area of the straw a

is much less than the cross-sectional area A of the fluid at the top of your glass.

a) At what speed will the fluid in the straw be moving into your mouth? (Use P0 = 105 Pa for the

pressure of the air, ρ = 1000 kg/m3, g = 10 m/s2 and compute a number after showing how

you obtained an algebraic expression for the answer.)

b) Find an algebraic expression for how long it will take to sip a small volume ∆V of your drink

through the straw. Assume that the fluid height in the container makes a negligible change during

this sip.
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Problem 386. problems-1/fluids-pr-bernoulli-syringe.tex
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You are in a room at normal air pressure Pa and are given a hypodermic syringe full of medicine that

we will treat as a zero-viscosity fluid with the density of water. The syringe tube has length L and

cross-sectional area A and hence contains a volume AL of fluid. The cross-sectional area of the needle

aperture is a ≪ A. Holding the syringe horizontally as shown, you press on the (frictionless) plunger

to inject the medicine into a patient’s vein where the (given) blood pressure is Pv > Pa.

a) What force Fmin (magnitude) do you have to exert on the plunger to hold the fluid in static

equilibrium once the needle is in the patient?

b) Suppose you push with a force F > Fmin on the plunger. Find an expression for the speed vv with

which the fluid flows through the needle into the vein. Don’t forget the pressure of the air in the

room!

c) Find an expression for the time required to empty the syringe in terms of vv (so you do not have

to use the results for b) or get b) correct to get full credit for c)).
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Problem 387. problems-1/fluids-pr-bernoulli-vertical-pipe-fountain.tex
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A small fountain used in a zen rock garden is pictured above. A pump (not shown) maintains a given

pressure P1 at the base of a pipe of diameter d that lifts the water and narrows to a diameter of d/2 at

the top to speed it up. The water exits into air at pressure P0 = 1 atm. The overall pipe has height H

between the pump and the exit.

a) Find v1 and v2, the speed of the flowing fluid in both pipe sections.

b) Write an algebraic expression in terms of the givens for the current (flow) Q, the volume of water

per second that passes through the pipe(s). Give the expression in terms of d and v1 and/or v2
so that your answer does not depend on your answer to a).
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Problem 388. problems-1/fluids-pr-city-water-supply-tank.tex
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The figure above represents the water distribution system of a typical city or town. An elevated tank

is filled with water from a purified source. Sealed pipes descend from the tank and extend through the

ground to your house, where your closed water tap holds in the pressure. When you open the tap, water

flows from the tank, through the pipe, and out into your glass.

Suppose that the top of the tank has a cross-sectional area A ≫ a, where a is the cross-sectional area of

your spigot. A pump (not shown) maintains the water height in the tank so that it remains a height H

above your spigot as shown whether the tap is open or closed. The tank is filled with water of density

ρ, and both the top of the tank and the spigot are open to air at the same pressure (one atmosphere).

Assume laminar flow and zero viscosity.

a) When your tap is closed, what is the pressure of the water just inside the tap?

b) When the tap is opened, with what speed does water flow out of the tap?

c) How long will it take to fill the cup of volume ∆V shown with water?
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Problem 389. problems-1/fluids-pr-flow-between-containers.tex
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In the figure above, water (density ρ) is being pushed through a pipe of cross-sectional area a from

a small (sealed) tank to a larger one open to the air at normal pressure P1 = Patm by the pressure

difference when P2 > Patm. The cross-sectional areas of the two containers are given in terms of the

cross-sectional area of the pipe by A1 = 400a and A2 = 100a.

The givens are: a, ρ, P1, and the various heights yi labeled in the figure that may or may not be of

interest . Neglect viscosity and drag/resistance in the containers or pipe.

a) Find the smallest pressure P2,min that will cause water to flow from the smaller container to the

larger one instead of the other way around.

b) Suppose the pressure P2 is larger than this minimum pressure (so water does flow from the smaller

to the larger container). What is the speed vp of the fluid in the pipe as this happens? Hint: the

velocity in both containers is negligible compared to the velocity in the pipe! What is the (nearly

static) force that drives water one way or the other through the pipe?

c) What are the speeds v1 with which the water rises in the first container and v2 falls in the

second?
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Problem 390. problems-1/fluids-pr-flow-between-containers-soln.tex
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First, this is a hard problem. Full credit will be given for any solution attempt that gets a) correct and

indicates that you know both Bernoulli’s formula and the equation for conservation of flow. A five point

bonus of extra credit will be given if you have the insight that you need to neglect both tank velocities

compared to the velocity in the pipe!

Indeed, this problem can only consistently be solved by applying Bernoulli’s formula across the pipe.

This is because there are three velocities, and v1, v2 ≪ vp, so that only the kinetic energy term in the

pipe (also called the “dynamical pressure”) is not negligible compared to that in either tank. Neglecting

the kinetic energy terms in both tanks is equivalent to using the the static pressure difference at the

bottom of the two tanks at the entrance and exit of the pipe as the source of the “work” that drives the

water through the pipe. This makes sense! If you actually get this point, you will get a bonus of five

points on the problem and the exam! If you don’t, you will encounter serious difficulties (e.g. imaginary

numbers) trying to apply the Bernoulli formula to tanks 1 and 2 while ignoring the pipe.

We start, then, by evaluating the (approximately!) static pressure in the bottoms of both tanks at the

height of the pipe. On the left end of the pipe (tank 1) is:

Pb1 = P1 + ρg(y1 − y3)

on the right (tank 2) it is:

Pb2 = P2 + ρg(y5 − y3)

For part a), Fluid will not flow if this static pressure matches across the pipe! This result is exact, and

everybody should be able to get it.

Pb1 = P1 + ρg(y1 − y3) = P2 + ρg(y5 − y3) = Pb2

or (with P1 = Patm):

P2,min = Patm + ρg(y1 − y5)

and:

P2 > Patm + ρg(y1 − y5)

will make the fluid flow uphill into the larger container. This makes complete sense. It also suggests, if

you think about it, that the work (per unit volume) that speeds the water up effectively from “rest” is:

(P2 − Patm)− ρg(y1 − y5) =
1

2
ρv2p
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To answer both b) and c) we need to use Bernoulli where the pipe pressure equals the static pressure

at the bottom of tank 1 (the tank the water is flowing into), and where we equate the formula to the

static pressure on the bottom of tank 2:

Pb1 + ρgy3 +
1

2
ρv2p = Pb2 + ρgy3

Note that even if there is a small contribution from the motion of the fluids in tanks 1 and 2, it is a

negligible correction to Pb1 and Pb2 respectively compared to the 1
2ρv

2
p term! Then (cancelling the ρgy3

bits):

P1 + ρgy1 +
1

2
ρv2p = P2 + ρgy5

and indeed:

(P2 − Patm)− ρg(y1 − y5) =
1

2
ρv2p

as we guessed above. Solving for vp:

vp =

√

2 ((P2 − Patm)− ρg(y1 − y5))

ρ

As you can see, as long as P2 > Patm + ρg(y1 − y5), the pressure at the bottom of tank 2 will be higher

than the pressure at the bottom of tank 1, and the pressure difference will drive water from tank 2 to

tank 1 at speed vp in the pipe. If we go the other way, the role of starting and ending height reverse

(changing sign) and we’ll only get a real answer if P2 < P2,min.

To get the speeds at the top of the tanks is now simple. From flow conservation:

A1v1 = avp = A2v2

or

v1 =
a

A1
vp = 0.0025

√

2 ((P2 − Patm)− ρg(y1 − y5))

ρ

and:

v2 =
a

A2
vp = 4v1 = 0.01

√

2 ((P2 − Patm)− ρg(y1 − y5))

ρ
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Problem 391. problems-1/fluids-pr-compare-barometers.tex
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The idea of a barometer is a simple one. A tube filled with a suitable liquid is inverted into a reservoir.

The tube empties (maintaining a seal so air bubbles cannot get into the tube) until the static pressure

in the liquid is in balance with the vacuum that forms at the top of the tube and the ambient pressure

of the surrounding air on the fluid surface of the reservoir at the bottom.

a) Suppose the fluid is water, with ρw = 1000 kg/m3. Approximately how high will the water column

be? Note that water is not an ideal fluid to make a barometer with because of the height of the

column necessary and because of its annoying tendency to boil at room temperature into a vacuum.

b) Suppose the fluid is mercury, with a specific gravity of 13.6. How high will the mercury column

be? Mercury, as you can see, is nearly ideal for fluids-pr-compare-barometers except for the minor

problem with its extreme toxicity and high vapor pressure.

Fortunately, there are many other ways of making good fluids-pr-compare-barometers.
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Problem 392. problems-1/fluids-pr-crane-2.tex
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A barge with a crane mounted on it has a cross sectional area A, a total mass M , and straight sides. It

is very slowly winching up a one of Blackbeard’s treasure chests (of total mass m) from the ocean floor

near Beaufort.

a) As the chest comes out of the water, does the boat sink or rise? Justify your answer with an

equation or two and/ or a before and after figure.

b) Just before the crane turns to put the chest on the deck, Blackbeard’s Ghost appears and cuts

the cable of the crane so that the chest plunges back into the briny deep. Find an expression for

the distance d the boat rises up in the water (after it stops bobbing) when this happens. Use the

symbol ρs for the density of sea water.
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Problem 393. problems-1/fluids-pr-dangerous-drain.tex
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It is dangerous to build a drain for a pool or tub consisting of a single narrow pipe that drops down a

long ways before encountering air at atmospheric pressure. This was demonstrated tragically in 1993 in

an accident that occurred (no fooling!) within two miles from where you are sitting. A baby pool was

built with just such a drain and one day a little girl sat down on the drain and was severely injured. In

2008 another young girl in Minneapolis was killed!

In this problem you will analyze why.

Suppose the mouth of a drain is a circle five centimeters in radius, and the pool has been draining long

enough that its drain pipe is filled with water (and no bubbles) to a depth of ten meters below the top

of the drain, where it exits in a sewer line open to atmospheric pressure. The pool is 50 cm deep. If

a thin steel plate is dropped to suddenly cover the drain with a watertight seal, what is the force one

would have to exert to remove it straight up?

Note carefully this force relative to the likely strength of mere flesh and bone (or even thin steel plates!)

Ignorance of physics can be actively dangerous.



432 CHAPTER 11. FLUIDS

Problem 394. problems-1/fluids-pr-firefighters-pump.tex
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Firefighters arrive at a fire in the country and have to use water from the farm pond to try to battle

the blaze. Their pump firetruck takes in water from the pond at one atmosphere (P0) and increases the

pressure at the bottom of the hose to an adjustable pressure P0 +∆P that can be set at any value of

∆P from 0 to 2 atmospheres of pressure. What is the minimum value ∆Pmin one can set the pump to

that will lift the water as high as the second floor (ten meters up above the ground, two meters above

the fire)? Show all work and justify your answer with a physical principle or two!
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Problem 395. problems-1/fluids-pr-floating-freighter.tex
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A rectangular ocean barge with horizontal area A (viewed from the top) floats in fresh water (ρw). It

floats downriver and enters the ocean (ρs = 1.1ρw). As it does so, the ship bobs up an additional

distance d from its earlier (freshwater) waterline. Find the total mass of the ship in terms of A, ρw, ρs
and d. Hint – since you don’t know either the height of the ship or its displacement in fresh water as

given, concentrate on the difference in the forces (and the displacement) as it sails from fresh to salt.
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Problem 396. problems-1/fluids-pr-helium-balloon.tex
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In the figure above, a helium balloon (ρHe = 0.18 kg/m3) is suspended in air (ρa = 1.28 kg/m3) by a

string.

a) Assuming that the volume of the helium balloon is approximately 4000 cubic centimeters (4×10−3

m3), find the total ‘lift’ of the balloon (the tension in the string). Neglect the mass of the balloon

itself and the string.

b) In the movies, humans are shown grabbing a few dozen helium balloons and being pulled up into

the sky. Assuming that a reasonable human payload (including the mass of all of the balloon

rubber and strings) is 100 kg, approximately how many balloons would really be required to lift a

person?



11.1. FLUIDS 435

Problem 397. problems-1/fluids-pr-hot-air-balloon.tex
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A hot air balloon is drawn in the figure above. Estimate its total ‘lift’, assuming that the density of

cool air is approximately constant at ρa = 1.28 kg/m3, the density of hot air in the baloon is ρh = 0.64

kg/m3, and that the balloon proper has a (filled) volume of 1000 m3 (corresponding to a spherical balloon

roughly 13 meters in diameter). If the balloon, basket, and rigging have a mass of 340 kg, what is the

maximum payload it can carry?
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Problem 398. problems-1/fluids-pr-hydraulic-lift.tex
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The figure above illustrates the principle of hydraulic lift. A pair of coupled cylinders are filled with an

incompressible, very light fluid (assume that the mass of the fluid is zero compared to everything else).

a) If the mass M on the left is 1000 kilograms, the cross-sectional area of the left piston is 100 cm2,

and the cross sectional area of the right piston is 1 cm2, what mass m should one place on the

right for the two objects to be in balance?

b) Suppose one pushes the right piston down a distance of one meter. How much does the mass M

rise?
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Problem 399. problems-1/fluids-pr-piston-pump-1.tex
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A piston and weight has a total mass M and is pressing on water confined in a cylinder of cross sectional

area A. The water is then pushed into a pipe with a cross sectional area of a that is open to the air at

the same height as the piston. Neglect viscosity.

a) What does M have to be to make the water spurt from the pipe with a speed v? You should use

the approximation a ≪ A to develop your algebraic answer.

b) Find the numerical value for M that will produce a speed v = 5 m/sec for the following data:

A = 100 cm2, a = 1 cm2. The density of water is ρw = 103 kg/meter3.
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Problem 400. problems-1/fluids-pr-piston-pump-2.tex
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A piston is pressed with a force ~F on a hydraulic cylinder containing water (ρ = 103 kg/m3). The cross

sectional area of the cylinder is A = 400 cm2. The water therein is forced into a pipe with a cross

sectional area of a = 2 cm2 that rises vertically a height H = 40 meters. Both the end of the pipe (at

the top) and the back of the piston (at the bottom) are open to atmospheric pressure.

What does F have to be to make the water spurt from the pipe with a speed of 10 meters/sec at the

top? Solve this problem beginning from (stated) physical principles, showing all work.
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Problem 401. problems-1/fluids-pr-pump-water-up-cliff.tex
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This problem will help you learn required concepts such as:

• Static Pressure

• Barometers

so please review them before you begin.

A pump is a machine that can maintain a pressure differential between its two sides. A particular pump

that can maintain a pressure differential of as much as 10 atmospheres of pressure between the low

pressure side and the high pressure side is being used on a construction site.

a) Your construction boss has just called you into her office to either explain why they aren’t getting

any water out of the pump on top of the H = 25 meter high cliff shown above. Examine the schematic

above and show (algebraically) why it cannot possibly deliver water that high. Your explanation should

include an invocation of the appropriate physical law(s) and an explicit calculation of the highest distance

the a pump could lift water in this arrangement. Why is the notion that the pump “sucks water up”

misleading? What really moves the water up?

b) If you answered a), you get to keep your job. If you answer b), you might even get a raise (or at least,

get full credit on this problem)! Tell your boss where this single pump should be located to move water

up to the top and show (draw a picture of) how it should be hooked up.
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Problem 402. problems-1/fluids-pr-romeo-and-juliet.tex
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Romeo and Juliet are out in their boat again when Juliet’s Salvatore Ferragamo heels poke a circular

hole of radius r in the bottom of the boat. The boat has a draft of D (this is the distance the boat’s

bottom lies underwater as shown).

a) Romeo tries to cover the hole with his hand. What is the minimum force he must apply to keep

it covered?

b) Juliet convinces Romeo that a little water fountain would be romantic, so he moves his hand. How

fast does the water move through the hole?

c) To what height H does Juliet’s fountain spout up from the bottom of the boat? (The height drawn

is to illustrate the quantity H only and may not be at all correct.)
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Problem 403. problems-1/fluids-pr-siphon-two-tank.tex
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In the figure about two tanks are partly filled with fluid to the heights indicated. A siphon tube of a

certain height H at its heighest point is started between them. The fluid is assumed to have a density

ρ (which could well be “water”, for example) and viscosity and fluid resistance are to be ignored. You

may also assume that the surface area at the top of either tank is large compared to the cross-sectional

area of the tube.

a) Find the velocity v of the fluid in the siphon tube at the instant shown.

b) Find the pressure PH at the heighest point of the siphon tube.

c) Find the maximum height obstacle Hmax that a siphon tube can go over (relative to the geometry

shown) and still function.
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Problem 404. problems-1/fluids-pr-siphon-two-tank-soln.tex
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In the figure about two tanks are partly filled with fluid to the heights indicated. A siphon tube of a

certain height H at its heighest point is started between them. The fluid is assumed to have a density

ρ (which could well be “water”, for example) and viscosity and fluid resistance are to be ignored. You

may also assume that the surface area at the top of either tank is large compared to the cross-sectional

area of the tube.

a) Find the velocity v of the fluid in the siphon tube at the instant shown.

b) Find the pressure PH at the heighest point of the siphon tube.

c) Find the maximum height obstacle Hmax that a siphon tube can go over (relative to the geometry

shown) and still function.

Solution

It is useful to consider points 1 through 4 in the figure above. If we write Bernoulli’s formula for points

1, 2 and 3, all three formulas must be equal for the fluid moving through the “pipe” represented by the

two tanks and intermediary tube. Note that P1 = P4 = P0, atmospheric pressure at the top of both

tanks. Thus

P0 + ρgz1 +
1

2
ρv21 (1) = P0 + ρgz2 +

1

2
ρv2 (2)

= P3 + ρg(0) +
1

2
ρv2 (3)

where v is the desired velocity in the tube. We will assume that v1 ≪ v and v2 ≪ v and throw them

both out relative to v.

In our previous tank problems like this, P3 is the pressure in the fluid at the point where the system

exits the fluid. The reason the fluid flows in the tube at all is that the pressure at this height is different

on the dashed line in the two vessels. Within the two tanks (not in the tube) the fluid is nearly static,
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so the pressure P3 = P0 + ρgz4. This is the key to solving the problem, because if you naively write

Bernoulli’s formula for points 1 and 4 and equate them, you get a contradiction. For all values of z less

than the top of the fluid, the pressure in the second tank is less than the pressure in the first at the same

height.

We can now do some algebra between points 1 and 3:

P0 + ρgz1 +
1

2
ρv21 (1) = P0 + ρgz4 +

1

2
ρv2

1

2
ρv2 = ρg(z1 − z4)

v =
√

2g(z1 − z2)

We get an answer that looks “like” Torricelli’s Law even though the tube exit per se is no longer the

relevant height and even though the fluid at the tank tops is moving slowly compared to this in both

tanks! The force that pushes the fluid from the first to the second tank is evidently the pressure in the

first tank at the depth of the surface of the second tank, ∆z = z1 − z4.

Now let’s equate the Bernoulli formulas for points 1 and 2 and solve for P2:

P0 + ρgz1 +
1

2
ρv21 = P2 + ρgz2 +

1

2
ρv2

P2 = P0 + ρg(z1 − z2)−
1

2
ρv2

= P0 + ρg(z1 − z2)− ρg(z1 − z4)

= P0 − ρg(z2 − z4) = P0 − ρghmax

where we have substituted our answer for v in. This answer leads us to some ”issues”. If we start at the

outflow pressure (inside the tube) and go uphill, the pressure must decrease. The pressure at point 2

must be lower than P0 by ρghmax, the decrease in static pressure with height, because the speed of the

fluid in the tube does not change.

If, however, we keep lowering the second tank (increasing ∆z between the surfaces of the two tanks) and

thereby making v larger, we also make P2 smaller until eventually it becomes zero! If we lower it any

further, the pressure in the tube cannot be negative, as before it ever reaches 0 (a vacuum) nearly any

real fluid will ”come apart” at the molecular level in a process called cavitation. But what if we consider

just the first line of 1 = 2:

P0 + ρgz1 = P2 + ρgz2 +
1

2
ρv2

and suppose we set P2 = 0, the point where cavitation occurs. This equation then becomes:

P0 + ρgz1 = ρgz2 +
1

2
ρv2

and we can solve for v this way as well:

v =
√

2 (P0 − ρg(z2 − z1)) /ρ

This equation seems to imply that as we increase z2 holding z1 constant, we decrease the maximum

speed of flow in the tube until it is zero and the pressure is zero, but be careful. This is increasing z2
holding P2 = 0, which is to say, maintaining z2 − z4 = P0/(ρg)!

We must therefore carefully think about the conditions for cavitation. Will the fluid cavitate at zero

pressure while in uniform motion in the tube with v 6= 0? Or does the fluid both have to be stationary in

the tube to cavitate? If we reach zero pressure at the top with z2 − z1 too small to make v zero, then if
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we increase hmax we lower the point on the right hand side of the tube where zero pressure exists and we

have a serious problem. There is no longer any downward directed pressure gradient above that point

because the pressure cannot go below zero. Gravity is pulling down fluid elements in the tube. If there

were no pressure gradient to oppose gravity, those elements would speed up. But they cannot speed up

and maintain a uniform flow (just as a uniformly falling stream of water splits up into droplets).

So when does the siphon “break” and e.g. water stop flowing? I think that the answer is best understood

by considering that uniformly falling stream. If z2 − z4 > 10 meters, there is a stretch at the top where

the velocity entering the vicinity of P2 from a solution to Bernoulli’s equation on the left hand side only

(1 = 2 above) is smaller than v for the collective tube (1 = 3 above). There is a false continuity

implied by 1 = 3 through pressures that are implicitly less than zero, but this is impossible. The fluid in

the tube cavitates continually, basically breaking up into drops that accelerate as they fall freely under

gravity from right where the top of the tube bends down on the right until they match the flow velocity

implied on the lower part of the tube continuously matched to the pressure at the bottom of the right

hand side. Fluid flows, but it is no longer the case that it is flowing uniformly or that the tube itself

remains continuously full.

As z2 − z1 is separately increased to 10 meters, v (now dominated by z2 − z1 at zero pressure at point 2

and P0 at z1) decreases to zero and the fluid on both sides of the tube stops flowing forming two “water

barometers” on either side. Not so obvious!
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Problem 405. problems-1/fluids-pr-siphon.tex

d

h

Water is being drained from a large container by means of a siphon as shown. The highest point in the

siphon is distance d above the level of water in the container, and the total height of the long arm of

the siphon is h. The distance h can be varied. The mass density of water is ρw, and air pressure is P0.

Express all answers in terms of d, h, ρw, P0, and g.

a) What is the maximum possible value of h for which the siphon will work? (Hint: The pressure

cannot be negative anywhere in the siphon, in particular, in the long arm of the siphon.)

b) For that maximum value of h, what is the speed of the water coming out of the siphon?
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Problem 406. problems-1/fluids-pr-static-crane.tex

m

D

d

M

The crane above has a nearly massless boom. It is being used to salvage some of Blackbeard’s treasure

– a chest of mass m filled with very dense gold.

a) Find the maximum weight that the crane can lift, assuming that all of the weight of the crane

itself acts downward at its center of mass to counterbalance it at the position shown, a horizontal

distance d to the left of the bottom right corner of the crane. The crane’s boom is fixed so that its

moment arm (shown) is always D. Your answer should be expressed in M , g and the given lengths

d and D.

b) Suppose that Blackbeard’s treasure is so massive that the crane is almost tipping over as it very

slowly lifts it up through the water. What will happen when the crane tries to lift the mass out

of the water, and why? “Why” should involve certain forces and a good before and after picture.



11.1. FLUIDS 447

Problem 407. problems-1/fluids-pr-static-hole-in-a-boat.tex

2m

Fresh water

patch (10 cm  )

screws, bracing

Air

Boat

Your yacht has a hole in it! Oh, no! The hole is 2 meters below the waterline, and has a cross-sectional

area of 10 cm2 (that’s ten square centimeters, not ten centimeter’s squared!). You patch it, and need

to brace the patch with screws that can each hold at most a force of 5 Newtons. How many screws (at

least) should you use to be sure of being able to withstand the force of the ocean pressing in against

your patch?
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Problem 408. problems-1/fluids-pr-tension-suspends-immersed-mass.tex

T

W

M
o

ρ
ρ

A floating block of density ρ and volume V is suspended, fully immersed, by a thin thread attached to

the bottom in a jar of oil (density ρo > ρ) that is resting on a scale as shown. The total mass of the oil

and jar (alone) is M .

a) What is the buoyant force exerted by the oil on the block?

b) What is the tension T in the thread?

c) What does the scale read?
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Problem 409. problems-1/fluids-pr-time-to-empty-open-vat.tex

0

0
H

AP

a

P

This problem will help you learn required concepts such as:

• Bernoulli’s Equation

• Torricelli’s Law

so please review them before you begin.

In the figure above, a large drum of water is open at the top and filled up to a height H above a tap at

the bottom (which is also open to normal air pressure). The drum has a cross-sectional area A at the

top and the tap has a cross sectional area of a at the bottom.

a) Find the speed with which the water emerges from the tap. Assume laminar flow without resistance.

Compare your answer to the speed a mass has after falling a height H in a uniform gravitational

field (after using A ≫ a to simplify your final answer, Torricelli’s Law).

b) How long does it take for all of the water to flow out of the tap? (Hint: Start by guessing

a reasonable answer using dimensional analysis and insight gained from a). That is, think about

how you expect the time to vary with each quantity and form a simple expression with the relevant

parameters that has the right units. Next, find an expression for the velocity of the top. Integrate

to find the time it takes for the top to reach the bottom.) Compare your answer(s) to each other

and the time it takes a mass to fall a height H in a uniform gravitational field. Does the correct

answer make dimensional and physical sense?

c) Evaluate the answers to a) and b) for A = 0.50 m2, a = 0.5 cm2, H = 100 cm.
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Problem 410. problems-1/fluids-pr-weight-of-immersed-mass.tex

W?

T?

A block of density ρ and volume V is suspended by a thin thread and is immersed completely in a jar of

oil (density ρo < ρ) that is resting on a scale as shown. The total mass of the oil and jar (alone) is M .

a) What is the buoyant force exerted by the oil on the block?

b) What is the tension T in the thread?

c) What does the scale read?



Chapter 12

Oscillations

And now for one of the most important physical topics ever. We have seen that statics is pretty

important. Atoms bond together to make molecules or solids that are in a sort of static equilibrium.

Objects are glued, or stapled, or nailed together into bigger objects in static equilibrium. Anything that

has persistent stable structure lives in, or near, a state of static equilibrium.

Did I just say near? I did. If you pull any system a little bit out of a stable equilibrium, it will usually

be pushed back towards its equilibrium position because it is stable. Furthermore, our friend the Taylor

Series tells us that most often the restoring force (or torque) will be linear in the displacement for

sufficiently small displacements from equilibrium. And what happens when you displace any mass from

a stable equilibrium so that it experiences a linear restoring force?

It oscillates. Harmonically.

That doesn’t mean it plays the harmonica – it means that the oscillation can be described by the

harmonic functions”, sine, cosine, and the (complex) exponential.

Oooo, I just used a bad word – complex exponential. Sorry, but in order to master a variety of concepts

associated with oscillation and (very soon) waves, it really helps if you know something about complex

numbers. And, of course, harmonic functions. And some trig identities that you almost certainly

have forgotten. Time to go brush up on all of this stuff, or (if necessary) learn it for the first time.

451
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12.1 Oscillations

12.1.1 Multiple Choice

Problem 411. problems-1/oscillation-mc-change-resonance-3.tex

P

ωω0

∆ω

avg

In the figure above, the curve shows the (average) power Pavg(ω) delivered to a damped, driven oscillator

with equation of motion:

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos(ωt)

Recall that the “width” of the curve ∆ω is the full width at half maximum power. Suppose the

damping constant b is doubled while k of the spring, m, and the driving force magnitude F0 are kept

unchanged. What happens to the curve?

a) The curve becomes narrower (smaller ∆ω) at the same frequency;

b) The curve becomes narrower at a higher frequency;

c) The curve becomes broader (larger ∆ω) at the same frequency

d) The curve becomes broader at a different frequency;

e) The curve does not change;

f) There is not enough information to determine the changes of the curve.



12.1. OSCILLATIONS 453

Problem 412. problems-1/oscillation-mc-increase-k-m-resonance-curve.tex

P

ωω0

∆ω

avg

In the figure above, the curve shows the (average) power Pavg(ω) delivered to a damped, driven oscillator

with equation of motion:

m
d2x

dt2
+ b

dx

dt
+ kx = F0 cos(ωt)

Recall that the “width” of the curve ∆ω is the full width at half maximum power. If both k of

the spring and m are doubled while the damping constant b and driving force magnitude F0 are kept

unchanged, what happens to the curve?

a) The curve becomes narrower (smaller ∆ω) at the same frequency;

b) The curve becomes narrower at a higher frequency;

c) The curve becomes broader (larger ∆ω) at the same frequency

d) The curve becomes broader at a different frequency;

e) The curve does not change;

f) There is not enough information to determine the changes of the curve.
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Problem 413. problems-1/oscillation-mc-stride-resonance.tex

You have to take a long hike on level ground, and are in a hurry to finish it. On the other hand, you

don’t want to waste energy and arrive more tired than you have to be.

Your stride is the length of your steps. Your pace is the frequency of your steps, basically the number of

steps you take per minute. Your average speed is the product of your pace and your stride: the distance

travelled per minute is the number of steps you take per minute times the distance you cover per step.

Your best strategy to cover the distance faster but with minimum additional energy consumed is to:

a) Increase your stride but keep your pace about the same.

b) Increase your pace, but keep your stride about the same.

c) Increase your pace and your stride.

d) Increase your stride but decrease your pace.

e) Increase your pace but decrease your stride.

(in all cases so that your average speed increases).

Note well that this is a physics problem, so be sure to justify your answer with a physical argument. You

might want to think about why one answer will probably accomplish your goal within the constraints

and the others will not.
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Problem 414. problems-1/oscillation-mc-two-damped-oscillators.tex

m 2m

same

A B

Two identical springs support two masses of the same size and shape in the same damping fluid.

However, mB = 2mA.

Both systems are pulled to an initial displacement from equilibrium of X0 and released, and the expo-

nential decay times τA and τB required for the initial amplitude of oscillation of each mass to decay to

X0e
−1 is measured. We expect that:

a) τA = 2τB

b) 2τA = τB

c) τA = τB

d) 4τA = τB

e) We cannot predict the relative decay times without more information.
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12.1.2 Ranking/Scaling

Problem 415. problems-1/oscillation-ra-compressed-rods-youngs-modulus-scaling.tex

r r

L

2L

A B

2r

L

2r

C D

F

F

L/2

Rank the magnitude of the compression ∆L of the rods (made of the same material) above when a force

with magnitude F is exerted between the ends as shown in case A. Equality is a possibility. Your answer

should look something like C = D > A > B.
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Problem 416. problems-1/oscillation-ra-compression-three-rods-1.tex

m

r

L

L/2

2L

2r

r/2

cba

In the figure above three rods made out of copper are shown with the dimensions given. In (a), a mass

m is placed on top of the rod (which rests on a rigid table) and the rod is observed to be compressed

and shrinks by a length ∆L. By what length ∆Li do you expect rods (b) and (c) to be compressed by

if the same mass m is placed on top of them? (Express your answer as a pure number times ∆La.)

∆Lb = ∆Lc =
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Problem 417. problems-1/oscillation-ra-mass-spring-double-displacement.tex

Two identical masses are attached to two identical springs. The first mass is pulled to a distance x0

from equilibrium. The second one is pulled to a distance 2x0 from equilibrium. At time t = 0 they are

released. The first mass reaches its equilibrium point at time t1, the second one at time t2.

What is the ratio t2/t1?

t2
t1

=
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Problem 418. problems-1/oscillation-ra-mass-swing-double-displacement.tex

Two kids are sitting on swings of equal length. One of them has about twice the mass of the other

(but they are about the same height). The lighter one is pulled back to an initial (small) angle θ0. The

heavier one is pulled back to a (still small!) angle 2θ0. At t = 0 they are both released. It takes the

lighter one a time tl to reach the lowest point of his trajectory, and the heavier one a time th.

What is the ratio th/tl?



460 CHAPTER 12. OSCILLATIONS

Problem 419. problems-1/oscillation-ra-physical-pendula-periods.tex

A B C D

In the figures above, four physical pendulums are drawn. All consist of a light (massless) rod of length

L to the center of mass of different shaped masses connected to the end. All of the shapes have the

same mass M and the same primary length scale R. Rank the periods of the physical pendulums from

lowest (highest frequency!) to the highest (lowest frequency!). Equality is a possibility.

The moments of inertia of the round objects (about their centers of mass) are:

A) I = 1
2MR2 (disk)

B) I = MR2 (hoop)

C) I = 2
3MR2 (hollow ball)

D) I = 2
5MR2 (solid ball)
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Problem 420. problems-1/oscillation-ra-physical-pendulums-1.tex

L/2

L/4

L

M

a b c

In the figure above, three pendulums are suspended from frictionless pivots. The first is a rod of mass

M and length L. The second is a “point” mass M with negligible radius. The third is a disk of mass

M and radius L/2. In all three cases, the center of mass of the pendulum is a distance L/2 from the

pivot and the mass is constrained to rotate around the pivot (physical pendulum). Rank the angular

frequencies (where equality is allowed) so that an answer might be (but probably isn’t) ωa > ωb = ωc.
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Problem 421. problems-1/oscillation-ra-physical-pendulums-2.tex

M

a b c

L

L/4

In the figure above, three pendulums are suspended from frictionless pivots. The first is a thick rod of

mass M and length L. The second is a “point” mass M with negligible radius on a thin (massless) rod

of length L. The third is a disk of mass M and radius L/4 on the end of a thin (massless) rod of so

that its center of mass is a distance L away from the pivot. In all three cases, the mass is constrained

to rotate around the pivot as a physical pendulum.

Rank the angular frequencies in increasing order (where equality is allowed) so that an answer

might be (but probably isn’t) ωa > ωb = ωc.
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Problem 422. problems-1/oscillation-ra-rank-the-damped-frequency.tex

CA B
(air)(vacuum) (water)

In the figure above identical masses are connected to identical springs and located in three different

labelled containers. All three masses are pulled to the same distance from equilibrium and are released

from rest. The container A contains a vacuum, container B is filled with ordinary room-temperature air

at 1 atmosphere of pressure, and container C contains water.

Rank the frequencies of the oscillation of the three masses by their container letter, where (precise)

equality is a possibility. That is, a possible answer might be fA = fC < fB (but probably isn’t). (It is

wise to explain your answer with a few words or an equation.)
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Problem 423. problems-1/oscillation-ra-rank-the-damped-periods.tex

CA B
(air)(vacuum) (water)

In the figure above identical masses are connected to identical springs and located in three different

labelled containers. All three masses are pulled to the same distance from equilibrium and are released

from rest. The container A contains a vacuum, container B is filled with ordinary room-temperature air

at 1 atmosphere of pressure, and container C contains water.

Rank the period of the oscillation of the three masses by their container number, where (precise) equality

is a possibility. That is, a possible answer might be Ta = Tc < Tb (but probably isn’t). Explain your

answer with a few words or an equation.
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Problem 424. problems-1/oscillation-ra-rank-the-periods.tex

m

2m

k
k

C

D

m mk

k
k k

A B

g

In the figure above, rank the periods of each pair of oscillators shown (where equality is allowed). That

is, fill in the boxes in the two expressions below with a <,>,= sign as appropriate.

TA TB TC TD
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Problem 425. problems-1/oscillation-ra-series-parallel-frequency-easy.tex

m
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D

Rank the oscillation frequencies of the identical masses m connected to the springs in the figure

above from lowest to highest with equality a possibility. The springs have spring constant k, and you

should neglect damping. A possible answer is (as always) D < A = B < C or the like.
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Problem 426. problems-1/oscillation-ra-series-parallel-frequency.tex
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Rank the frequencies of the masses on the spring arrangements in the figure above, from lowest to

highest with equality a possibility. Neglect damping. A possible answer is (as always) D < A = B < C

or the like.
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Problem 427. problems-1/oscillation-ra-series-parallel-period.tex
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Rank the period of oscillation of the masses on the spring arrangements in the figure above, from

lowest to highest with equality a possibility. Neglect damping. A possible answer could be (as always)

D < A = B < C but probably isn’t.
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Problem 428. problems-1/oscillation-ra-shear-three-rods-1.tex
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F F

a b c

In the figure above, three light wooden boards and their relative dimensions are shown. The boards are

each fixed in a vise (not shown) on the left hand side so that the left end of each board cannot move. A

downward force ~F is applied at the right hand end of each board. The first board is bent by this force

so that its right hand end is displaced downward by a distance ∆h. By how much are the right hand

ends of the other two boards displaced downward? (Express your answer in terms of ∆h.)

b:

c:
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12.1.3 Short Answer

Problem 429. problems-1/oscillation-sa-damped-oscillation.tex

m 2m

k 2k

A B

Two springs with different spring constants (k and 2k, respectively) support two blocks of the same size

and shape, but different masses, mB = 2mA. The blocks are fully submerged in the same damping

fluid, therefore, they have the same coefficient of damping.

Both systems are pulled to an initial displacement from equilibrium and released to undergo damped

oscillations with the blocks remaining fully submerged in the fluid at all times. The natural frequencies

of two systems are ωA and ωB, respectively. The measured exponential decay times of the oscillation

amplitude are τA and τB , respectively.

a) Write down the ratio for natural frequencies:
ωB

ωA
=

b) Write down the ratio for damping times:
τB
τA

=

c) Which oscillator will damp out its initial energy faster/sooner (A or B): .
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Problem 430. problems-1/oscillation-sa-damping-variation.tex

k

b
m

The damped oscillator above is set in motion at time t = 0. Fill in the following table with x’s in the

provided boxes. τ is the exponential damping time of the amplitude, and ω0 is the natural frequency.:

If b increases: τ increases decreases remains unchanged. ω0 increases decreases remains unchanged

If m increases: τ increases decreases remains unchanged. ω0 increases decreases remains unchanged

If k increases: τ increases decreases remains unchanged. ω0 increases decreases remains unchanged
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Problem 431. problems-1/oscillation-sa-estimate-Q-resonance-curve.tex
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a)

(a)

(b)

(c)

In the figure above, three resonance curves showing the amplitude of steady-state driven oscillation A(ω)

as functions of ω. In all three cases the resonance frequency ω0 is the same. Put down an estimate of

the Q-value of each oscillator by looking at the graph. It may help for you to put down the definition of

Q most relevant to the process of estimation on the page.

a)

b)

c)
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Problem 432. problems-1/oscillation-sa-match-the-waveform.tex

You are presented with three identical simple harmonic oscillators, A,B,C, which oscillate with a known

harmonic frequency ω. They differ only in their initial conditions. At time t = 0, the attached

masses have an initial position and velocity (x, v) given by:

A (xA = x0vA = 0)

B (xB = 0, vB = v0)

C (xC = x0, vC = x0 ∗ ω)

where x0 and v0 are positive numbers not equal to zero in the appropriate units.

Match each set of initial conditions to the corresponding solution from the list of possible solution forms

(put A, B or C in three of the four boxes) below:

x(t) = A cos(ωt)

x(t) = A cos(ωt− π/4)

x(t) = A sin(ωt)

x(t) = A cos(ωt+ π/4)

Consider one of oscillator solutions, x(t) = Asin(ωt). Find the velocity and acceleration at t = T/4,

where T is the period of oscillations: that is, please evaluate vx(t = T/4) and ax(t = T/4).
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Problem 433. problems-1/oscillation-sa-roman-soldiers-bridge-resonance.tex

Roman soldiers (like soldiers the world over even today) marched in step at a constant frequency –

except when crossing wooden bridges, when they broke their march and walked over with random

pacing. Why? What might have happened (and originally did sometimes happen) if they marched

across with a collective periodic step?
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Problem 434. problems-1/oscillation-sa-series-parallel-frequency.tex
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Find the ratio of the angular frequencies of each spring-mass combination above to ω0 =
√

k/m.
ωA
ω0

=

ωB
ω0

=

ωC
ω0

=

ωD
ω0

=
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Problem 435. problems-1/oscillation-sa-sho-true-facts.tex

The one-dimensional motion of a mass m is described by x(t) = A sin(ωt). Identify the true and false

statements among the following by placing a T in the provided box for true statements and an F in the

provided box for false statements:

a) If A and ω are constant (i.e. – independent of time t) the motion is simple harmonic

motion.

b) The mass m starts at t = 0 with zero velocity.

c) If the motion of mass m is simple harmonic oscillation, the potential energy of the mass

can be written U(x) = 1
2mω2x2.

d) If the motion of the mass m is simple harmonic oscillation, the total force acting on the

mass can be written Fx = −mω2x.
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Problem 436. problems-1/oscillation-sa-sketch-damped-oscillation.tex

t
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(b)

(a)

(c) (inset)

A mass m is attached to a spring with spring constant k and immersed in a damping fluid with linear

damping coefficient b as shown in the inset figure above. Equilibrium is at x = 0 meters. At time t = 0

seconds the mass is pulled to x(0) = 1 meters and released from rest. The period of the oscillator in

the absence of damping is T = 2 seconds. On the provided axes with integer tick-marks above, sketch

the following:

a) x(t) in the absence of damping.

b) x(t) if b/2m = 1/3 (underdamped, assume that ω′ ≈ ω0).

c) x(t) in the case where b/2m = π (critically damped).

The second two curves only need to be qualitatively correct (you don’t have to plot them exactly), but

they should also not be crazily out of scale. You may use e = 2.72 ≈ 3 to make drawing the curves easier

without needing a calculator.
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Problem 437. problems-1/oscillation-sa-sketch-oscillation-plus-damping.tex
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(inset)

A mass m is attached to a spring with spring constant k as shown in the inset figure above.

On the provided axes above, sketch x(t), v(t) and a(t), given that at time t = 0 the mass is pulled

to x(0) = X0 = 1 meter (relative to equilibrium) and released from rest, assuming no damping. The

period is T = 1 second, and you should use the tic-marks on the t axis as seconds. Your graphs should

have the correct sign, phase, period, and you should label the peak positive value in terms of the givens

on the ordinate axes.

Suppose that the block is then placed in a damping fluid. On the axes labelled d) below, sketch the

position as a function of time for an oscillator with period T = 1 seconds and damping time τ = 4

seconds, again assuming that x(0) = X0 = 1 meter.
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(d)
t(sec)

x(m)

Problem 438. problems-1/oscillation-sa-sketch-oscillation.tex
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(inset)

A mass m is attached to a spring with spring constant k as shown in the inset figure above. There is

no damping.

On the provided axes above, sketch x(t), v(t) and a(t), given that at time t = 0 the mass is pulled to

x(0) = X0 = 1 (relative to equilibrium) and released from rest. The period is T = 2 seconds, and

you should use the tic-marks on the t axis as seconds. Your graphs should have the correct sign, phase,

period, and you should label the peak positive value in terms of the givens on the ordinate axes.
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12.1.4 Long Problems

Problem 439. problems-1/oscillation-pr-bar-and-spring-1.tex

θ

L
M

k s

In the figure above a rigid rod of mass M and length L is pivoted in the center with a frictionless bearing.

Its lower end is attached to a spring with spring constant k as shown that is unstretched (at equilibrium)

when the rod is vertical and θ = 0.

For small displacements s ≪ L (where one can use the small angle approximation), the spring will exert

a restoring force Fs = −ks ≈ −k(L/2)θ along the arc of motion of the end of the rod. It is pulled to an

initial small displacement angle θ0 and released at time t = 0.

a) What is the period of this oscillator for small oscillations?

b) What is the angular velocity Ω of the rod when it reaches its equilibrium position at θ = 0?

(Note well: Do not confuse ω0, the angular frequency of oscillation, and Ω = dθ
dt , the angular

velocity of the rod! Don’t forget direction!)
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Problem 440. problems-1/oscillation-pr-bar-and-spring-2.tex
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In the figure above a rigid rod of mass m and length L is pivoted at the end with a frictionless bearing.

Its lower end is attached to a spring with spring constant k as shown that is unstretched (at equilibrium)

when the rod is vertical and θ = 0.

For small displacements s ≪ L (where one can use the small angle approximation), the spring will exert

a restoring force Fs = −ks along the arc of motion of the end of the rod. It is pulled to an initial small

displacement angle θ0 and released at time t = 0, at which point it will begin to oscillate with angular

frequency ω0.

a) Neglecting damping, find the period T0 of this oscillator for small oscillations and sketch

a qualitatively correct graph of θ(t) for the rod. (Note well: both the spring and gravity

contribute to the motion of the rod!)

b) What is the angular velocity of the rod ω = dθ
dt when it reaches its equilibrium position at θ = 0?

Do not confuse the angular velocity of the rod with its angular frequency.

c) Suppose one compares the predicted motion θ(t) to the motion one would actually observe in the

real world, where the system surely would be at least weakly damped. Sketch a graph that is

qualitatively correct illustrating what θ(t) might really look like when weak damping is taken

into account.

(Hint: The moment of inertia of a rod pivoted about one end is 1
3ML2.)
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Problem 441. problems-1/oscillation-pr-block-on-vertically-oscillating-plate.tex
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A block of mass m is sitting on a plate of mass M . It is supported by a vertical ideal massless spring

with spring constant k. Gravity points down.

a) When the system is at rest, how much is the spring compressed from its completely uncompressed

length?

b) The spring is pushed down an extra distance A and released. Assuming that the mass m remains

on the plate, what is its frequency of vertical oscillation?

c) What is the maximum value of A such that the small mass m will not leave the plate at any point

in the motion?

Express all answers in terms of m,M, k, g.
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Problem 442. problems-1/oscillation-pr-box-of-springs.tex
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You are given a mass m, a box full of identical springs each with spring constant k, and a bunch of stiff

wire you can bend and use to fasten the springs together to the wall and the mass in any combination

of series and parallel you like.

I’ve drawn one such arrangement for you, one that will cause the mass m to oscillate harmonically on a

smooth surface at angular frequency ω. Your job is to design an arrangement of springs that will make

the mass oscillate at an angular frequency of
√

3k
2m , using only the (uncut) springs in the box.

a) Find the angular frequency of the four-spring oscillator I’ve drawn.

b) Draw a new arrangement on the bar underneath (or elsewhere on your paper) that will have an

angular frequency of
√

3k
2m . Note well that there is more than one way to get the right answer,

but some ways need (a lot) more springs than others. Try to get an answer with no more than six

springs

c) Prove/show that your answer is correct.
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Problem 443. problems-1/oscillation-pr-car-on-springs-resonance.tex

A car with a mass of M = 1000 kg rests on shock absorber springs with a collective spring constant of

k = 105 N/m. It is driving down a road which has raised expansion joints every 5 meters that bounce

the car. At what speed would you expect the ride to be roughest?
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Problem 444. problems-1/oscillation-pr-damped-oscillation.tex
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A mass m is attached to a spring with spring constant k and immersed in a medium with damping

coefficient b. (Gravity, if present at all, is irrelevant as shown in class). The net force on the mass when

displaced by x from equilibrium and moving with velocity vx is thus:

Fx = max = −kx− bvx

(in one dimension).

a) Convert this equation (Newton’s second law for the mass/spring/damping fluid arrangement) into

the equation of motion for the system, a “second order linear homogeneous differential equation”

as done in class.

b) Optionally solve this equation, finding in particular the exponential damping rate of the solution

(the real part of the exponential time constant) and the shifted frequency ω′, assuming that the

motion is underdamped. You can put down any form you like for the answer; the easiest is probably

a sum of exponential forms. However, you may also simply put down the solution derived in

class if you plan to just memorize this solution instead of learn to derive and understand it.

c) Using your answer for ω′ from part b), write down the criteria for damped, underdamped, and

critically damped oscillation.

d) Draw three qualitatively correct graphs of x(t) if the oscillator is pulled to a position x0 and released

at rest at time t = 0, one for each damping. Note that you should be able to do this part even if

you cannot derive the curves that you draw or ω′. Clearly label each curve.
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Problem 445. problems-1/oscillation-pr-disk-with-rim-weight.tex
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A uniform disk of radius R and mass 2m can freely rotate about a fixed frictionless horizontal axis passing

through its fixed center P as shown. It has a point mass m fixed on its rim, so that in equilibrium, the

disk is oriented such that θ = 0. At time t = 0, the disk is gently rotated by the small, postive angle

θ0 as shown and released from rest.

a) Just after it is released, what is the net torque vector ~τ about P acting on the disk (as a function

of θ and the givens)?

b) After the disk is released, it oscillates. What is the angular frequency ω of the oscillation?

c) Find θ(t), i.e., the angular position of the point mass as a function of time.
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Problem 446. problems-1/oscillation-pr-inelastic-collision-mass-on-spring.tex
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A bullet of mass m, travelling at speed v, hits a block of mass M − m with a pre-drilled hole resting

connected at the equilibrium position to a connected spring with constant k and sticks in the hole.

The block is sitting on a frictionless table (i.e. – ignore damping). Assume that the collision occurs at

t = 0. All answers below should be given in terms of m,M, k, v.

a) What is the maximum displacement X0 of the block?

b) What is the angular frequency ω of oscillation of the combined bullet-block system?

c) Write down x(t), the position of the block as a function of time.
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Problem 447. problems-1/oscillation-pr-inelastic-collision-mass-on-spring-soln.tex

a) What is the maximum displacement X0 of the block?

First, momentum conservation in the inelastic collision:

p = pi = mv = Mvf = pf

Second, energy conservation after the collision:

Ei = Kf =
p2

2M
=

1

2
kX2

0 = Uf = Ef

b) What is the angular frequency ω of oscillation of the combined bullet-block system?

It’s just the usual angular frequency for the combined bullet+block mass M :

ω =

√

k

M

c) Write down x(t), the position of the block as a function of time

This is a simple harmonic oscillator. It starts at the origin at time t = 0, so:

x(t) = X0 sin(ωt)



12.1. OSCILLATIONS 489

Problem 448. problems-1/oscillation-pr-mass-on-spring-damped.tex
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A mass m is attached to a spring with spring constant k and immersed in a medium with damping

coefficient b. The net force on the mass when displaced by x from its equilibrium position is thus:

Fx = max = −kx− bvx

Convert this equation (Newton’s second law for the mass/spring/damping fluid arrangement) into a

second order linear homogeneous differential equation and solve it, finding the damping rate and the

shifted frequency ω′. You may leave the final answer in exponential form or convert it to cosine as you

wish.

Also Draw a qualitatively correct graph of x(t) if the oscillator is pulled to a position x0 and released

at rest at time t = 0. Note that you should be able to do this part even if you cannot derive the curves

that you draw or ω′.
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Problem 449. problems-1/oscillation-pr-minimize-period-of-disk.tex
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A uniform disk of mass M and radius R has a hole drilled in it a distance 0 ≤ x < R from its center.

It is then hung on a (frictionless) pivot, pulled to the side through a small angle θ0, and released from

rest to oscillate harmonically.

a) What is the moment of inertia of the disk about this pivot?

b) Write τ = Iα for this disk, make the small angle approximation, and turn it into the differential

equation of motion.

c) Write an expression for T , the period of oscillation of the disk, as a function of d.

d) 5 point extra credit bonus question! What value of d minimizes this period? That is, if we

wanted to make a disk oscillate with the shortest possible period, how far from the end would we

drill a pivot hole?



12.1. OSCILLATIONS 491

Problem 450. problems-1/oscillation-pr-minimize-period-of-rod.tex
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A rod of mass M and length L is pivoted a distance x from the center as shown above. Gravity acts on

the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

b) Write τ = Iα for this rod, make the small angle approximation, and turn it into the differential

equation of motion. Use this to write an expression for T , the period of oscillation of the rod, as

a function of x.

c) What value of x minimizes this period? That is, if we wanted to make a rod oscillate with the

shortest possible period, how far from the end would we drill a pivot hole?
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Problem 451. problems-1/oscillation-pr-pendulum-with-spring.tex
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In the figure above a mass m on the end of a massless string of length L forms a pendulum. A light

(massless) spring of spring constant k is attached to the mass so that for small oscillations s ≪ L (where

one can use the small angle approximation), Fs = −ks where s is the distance along the arc of motion

from the equilibrium position in the center. When released, both gravity and the spring contribute to its

motion, with the force exerted by the spring remaining approximately tangent to the trajectory

throughout.

a) Find the period of this oscillator for small oscillations.

b) If it is started at an angle θ0 and released, how fast is the mass m moving as it crosses equilibrium

at θ = 0?
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Problem 452. problems-1/oscillation-pr-physical-pendulum-ball-on-stick.tex
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A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform ball of

mass M and radius R. The rod has length L from the pivot point to the center of the ball. At time

t = 0 the ball is released from rest when the rod is at an initial small angle θ0 with respect to its vertical

equilibrium position.

Answer all the questions below in terms of M,R,L, g, θ0. You may make the small angle approximation

where appropriate.

a) Determine the equation of motion for the system, solving for α = d2θ
dt2 .

b) Determine the angular frequency of oscillation ω and write down θ(t) for the ball.

c) Find the maximum speed v of the ball. Is this larger or smaller than it would have been if the ball

had been a point mass M at the end of the rod? Why?
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Problem 453. problems-1/oscillation-pr-physical-pendulum-disk-on-stick-1.tex
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A physical pendulum is constructed from a thin rod of negligible mass rigidly inserted into a uniform

disk of mass M and radius R. The rod has length L from the pivot point at the top of the rod to the

center of the disk. At time t = 0 the disk is released from rest when the rod is at an initial small angle

θ0 with respect to its vertical equilibrium position.

Answer all the questions below in terms of M,R,L, g, θ0. You may make the small angle approxima-

tion where appropriate.

a) Find the vector torque ~τ about the pivot point at the instant the ball is released, assuming θ0 > 0

(positive) as drawn.

b) Determine the period T of the resulting oscillation.

c) Find the maximum speed v of the center of mass of the disk as it oscillates.
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Problem 454. problems-1/oscillation-pr-physical-pendulum-disk-on-stick.tex
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A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform disk of

mass M and radius R. The rod has length L from the pivot point to the center of the disk. At time

t = 0 the disk is released from rest when the rod is at an initial small angle θ0 with respect to its

vertical equilibrium position. You may make the small angle approximation where appropriate.

a) Determine the equation of motion for the system, solving for α = d2θ
dt2 .

b) Determine the angular frequency of oscillation and write down the harmonic motion solution θ(t)

for the disk.

c) Find the maximum speed v of the disk.

d) Is this larger or smaller than it would have been if the disk had been a point mass M at the end

of the rod? Why?
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Problem 455. problems-1/oscillation-pr-physical-pendulum-disk-on-stick-v0-only.tex
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A physical pendulum is constructed from a thin rod of negligible mass inserted into a uniform disk of

mass M and radius R. The rod has length L from the pivot point to the center of the disk. At time

t = 0 the disk is sitting in its equilibrium position θ = 0 and is given as sharp blow so that it has an

initial speed of v0 to the right. The resulting oscillation is “small”: you may make the small angle

approximation where appropriate.

a) Draw the situation at a time that the pendulum has swung through an arbitrary angle θ. Determine

the equation of motion for the system, solving for α = d2θ
dt2 .

b) Determine the angular frequency of oscillation and write down the harmonic motion solution

θ(t) for the disk. (Hint: What is the maximum angular velocity of the pendulum?)

c) Find the maximum angle θmax that the disk reaches.

d) Is angle θmax larger or smaller than it would have been if the ball had been a point mass M at the

end of the rod started with the same initial velocity? Why?
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Problem 456. problems-1/oscillation-pr-physical-pendulum-disk.tex
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A disk of mass M and radius R is pivoted at the rim and hung from a wall as shown above. Gravity

acts on the disk, pulling its center of mass down (as usual).

a) What is the moment of inertia of the disk about this pivot?

b) Find the differential equation of motion for this system.

c) Write an expression for T , the period of oscillation of the disk.

d) Write down θ(t) for the disk, assuming that it starts at time t = 0 with angular position θ(t = 0) = 0

and angular velocity
dθ

dt
= ω(t = 0) = ω0.
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Problem 457. problems-1/oscillation-pr-physical-pendulum-disk-with-hole.tex
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A uniform disk of mass M and radius R has a hole drilled in it a distance 0 ≤ x < R from its center.

It is then hung on a (frictionless) pivot, pulled to the side through a small angle θ0, and released from

rest to oscillate harmonically.

a) What is the moment of inertia of the disk around this pivot?

b) Write down the differential equation of motion for this physical pendulum. Circle ω2.

c) Find the period of the physical pendulum as a function of (possibly) x, M , R, and g.

d) Write down the solution to the equation of motion, θ(t).
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Problem 458. problems-1/oscillation-pr-physical-pendulum-grandfather-clock.tex
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A Grandfather clock’s pendulum is constructed from a thin rod of negligible mass inserted into a uniform

disk of mass M = 1.0 kg and radius R = 5.0 cm. The rod has a length L from the pivot point to the

center of the disk that can be adjusted from 0.20 m to 0.30 m in length so that the clock keeps the

correct time. When the clock runs, its pendulum oscillates through a maximum angle of θ0 = 0.05

radians, which is a “small angle”. Use g = 10 m/sec2 and neglect drag.

a) Algebraically determine the (differential) equation of motion for the system, making the small

angle approximation to put it in the form of a simple harmonic oscillator equation.

b) Write down the algebraic function that describes θ(t), the angle that the pendulum makes as a

function of time, assuming it starts from rest at θ(0) = θ0 at t = 0.

c) The clock keeps correct time when the period of its pendulum is T = 1 second. What should L

be (to 2 significant digits) so that this is true. (Use the algebraic form for ω2 from your answer to

part a to solve for L.)

d) Suppose one replaces the disk at the end with an identical mass concentrated in a very small

(point-like) sphere. Will the clock run fast or slow?
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Problem 459. problems-1/oscillation-pr-physical-pendulum-rod.tex
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A rod of mass M and length L is pivoted at one end, a distance L/2 from the center as shown above.

Gravity acts on the rod, pulling it down (as usual) at its center of mass.

a) What is the moment of inertia of the rod about this pivot?

b) Find the differential equation of motion for this system.

c) Write an expression for T , the period of oscillation of the rod.

d) Write down θ(t) for the rod, assuming that it starts at time t = 0 with angular position θ(t = 0) = 0

and angular velocity
dθ

dt
= ω(t = 0) = ω0.
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Problem 460. problems-1/oscillation-pr-rolling-wheel-1.tex
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A spring with spring constant k is attached to a wall and to the axle of a wheel of radius R, mass M ,

and moment of inertia I = βMR2 that is sitting on a rough floor. The wheel is stretched a distance

A from its equilibrium position and is released at rest at time t = 0. The rough floor provides enough

static friction that the wheel rolls without slipping.

a) When the displacement of the wheel from its equilibrium position is x and the speed of center of

mass of the wheel is v, what is its total mechanical energy?

b) What is the maximum velocity vmax of the wheel?

c) What is the angular frequency of oscillation, ω, for the axle of the wheel as it rolls back and

forth? (Note that this is not the angular velocity of the rolling wheel!)
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Problem 461. problems-1/oscillation-pr-rolling-wheel-and-spring.tex
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A spring with spring constant k is attached to a wall and to the axle of a wheel of radius R, mass M ,

and moment of inertia I = βMR2 that is sitting on a rough floor. The wheel is stretched a distance

A from its equilibrium position and is released at rest at time t = 0. The rough floor provides enough

static friction that, for this value of A, the wheel rolls without slipping.

a) Assuming that the figure above illustrates the position x of the wheel right after being released

(before it reaches the equilibrium position of the spring the first time) draw and label arrows on

the diagram representing the force of static friction ~fs, the force exerted by the spring, and the

direction of its center of mass motion and its rotation.

b) Show that the motion of the wheel is simple harmonic, and find its period.

c) What is the total energy of the wheel? From this or from the solution to the equation of motion,

what is the maximum speed vmax of the wheel and where does it occur?

d) Challenge! Find the largest amplitude Amax that the wheel can have before it starts to slip.



12.1. OSCILLATIONS 503

Problem 462. problems-1/oscillation-pr-three-block-inelastic-collision.tex
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Two blocks of mass m and 2m are resting on a frictionless table, connected by an ideal (massless) spring

with spring constant k at its equilibrium length L. A third block of mass m is moving to the right with

speed v0 as shown. It collides with and sticks to the block of mass m connected to the spring (forming

a new “block” of mass 2m on the left hand end of the spring).

We wish to find the position of both the left and the right hand blocks as functions of time. This is a

challenging problem and will require several steps of work. Hints: Think about what is conserved

both during the collision and during the subsequent motion of the blocks. Try to visualize this motion.

Finally, the motion of the blocks is simplest in the center of mass frame.

The following questions will guide you through the work:

a) Let the origin of the laboratory frame be the location of the center of mass of the system at the

instant of collision. Write an expression for xcm(t), the position of the center of mass as a function

of time.

b) What is the total kinetic energy of the system immediately after the collision?

c) What is the kinetic energy of the system at the instant (some time later) that the blocks are

travelling with the same speed? (This is the kinetic energy of the center of mass motion alone.)

d) At this instant, the total compression of the spring is maximum with some magnitude xmax. Find

xmax.

e) Write expressions for x′
l(t) and x′

r(t), the position of the left hand and right hand blocks relative

to the center of mass of the system.

f) Add these functions to xcm(t) to find xl(t) and xr(t), the position of the two blocks as a function

of time.

g) Differentiate these solutions to find vl(t) and vr(t), and verify that your answer obeys the initial

condition vl(0) = v0/2, vr(0) = 0. Your overall solution should describe an “inchworm” crawl of

the spring as first one mass momentarily moves at speed v0/2 with the other momentarily at rest,

then vice versa.
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Problem 463. problems-1/oscillation-pr-torsional-oscillator-collision.tex
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The torsional oscillator above consists of a disk of massM and radiusR connected to a stiff supporting

rod. The rod acts like a torsional spring, exerting a restoring torque:

τz = −κθ

if it is twisted through an angle θ counterclockwise around the z axis (see inset above). κ is the

positive torsional spring constant. This torque will make any object with a moment of inertia that is

symmetrically attached to the rod rotationally oscillate around the z axis of the rod as shown.

A second identical disk also of mass M and radius R, rotating around their mutual axis at an angular

speed Ω0, is dropped gently onto the stationary first disk from above and sticks to it (so that they

rotate together after the collision). At the instant of this angular collision, the disks have zero angular

displacement (i.e. are at the equilibrium angle, θ0 = 0)1.

a) Find the final angular speed Ωf of the two disks moving together immediately after the collision

(and before the disks have time to rotate).

b) Find the energy that was lost in this (inelastic) rotational collision.

c) From the torque equation given above, find the differential equation of motion for θ(t) for the

two disks moving together after the collision. Identify ω2 (the angular frequency of the oscillator

after the collision) in this equation, and write down the solution θ(t) in terms of Ωf , κ, M and R.

You do not have to substitute your answer to a) for Ωf .

1Note that I’m using a capital omega Ω = dθ/dt to help you keep track of the angular speed Ω of the disks and angular

frequency ω of the oscillator separately below. If you cannot remember the moment of inertia of a disk in terms of M and

R, use the symbol Id for the moment of inertia of a single disk where appropriate in your answers (and lose 2 points).
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Problem 464. problems-1/oscillation-pr-torsional-oscillator-spring-hard.tex
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In the figure above, a disk of radius R and mass M is mounted on a nearly frictionless axle. A massless

spring with spring constant k is attached to a point on its circumference so that it is in equilibrium

as shown. The disk is then lightly struck at time t = 0 so that it is given a small instantaneous

counterclockwise angular velocity of ω0 while it is still at the equilibrium position, and it subsequently

oscillates approximately harmonically through a small maximum angle θ0. Note: Idisk = 1
2MR2 about

its center of mass.

a) Find the angular frequency ωf of its oscillation, assuming that the axle is frictionless and exerts

no torque on the disk. (Note well that this is not the same thing as the initial angular velocity

of the disk!)

b) Find the angle θ0 through which it will rotate before (first) coming momentarily to rest in this

frictionless case.

c) Suppose that the axle exerts a weak “drag” torque on the disk when the disk rotates. Do you

expect the frequency of oscillation to be larger, smaller, or the same as ωf once drag is taken into

account? (Note that you do not have to derive an answer, but you should justify it on intuitive

grounds.)

d) Draw a qualitatively correct graph of θ(t), the angle the disk has rotated through (relative to

equilibrium) as a function of time when drag/friction is included as in c).

(Continued workspace on next page)
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(Continuation of oscillator problem)
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Problem 465. problems-1/oscillation-pr-torsional-oscillator-spring-init-omega0.tex

M

R
axle

k

0 (out)

Frictionless table and axle looking down

x eq

fixed bar

In the figure above, a disk of radius R and mass M is mounted on a frictionless axle. A massless

spring with spring constant k is attached to a point on its circumference so that it is in equilibrium

as shown. The disk is then lightly struck at time t = 0 so that it is given a small instantaneous

counterclockwise angular velocity of Ω0 while it is still at the equilibrium position, and it subsequently

oscillates approximately harmonically through a small maximum angle θ0.

a) Find the angular frequency ω of its oscillation. You may want to obtain the differential equation

of motion first.

b) Find the angle θ0 through which it will rotate before (first) coming momentarily to rest.

c) Write down (or find) θ(t), the angle the disk rotates through (relative to equilibrium) as a function

of time.
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Problem 466. problems-1/oscillation-pr-torsional-oscillator-spring-init-theta0.tex

M

R
axle

k
x eq

fixed bar

θ0

Frictionless table and axle looking down

(out +)

In the figure above, a disk of radius R and mass M is mounted on a vertical frictionless axle. A massless

spring with spring constant k is attached to a point on its circumference so that it is in equilibrium as

shown. The disk is then rotated through a small angle θ0 and is released, from rest, at time t = 0. It

subsequently oscillates approximately harmonically. (Use out of the page for positive θ.)

a) Find the angular frequency ω of its oscillation. You may want to obtain the differential equation

of motion first.

b) Write down (or find) θ(t), the angle the disk rotates through (relative to equilibrium) as a function

of time.

c) Find the maximum rotational angular velocity Ω0 of the disk as it rotates.
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Problem 467. problems-1/oscillation-pr-vertical-bar-and-spring-2.tex

L
θ

k
L/3

A uniform vertical bar of mass M and length L is pivoted at the bottom. A spring with spring constant

k is attached a height L/3 over the pivot. This spring is strong enough that the bar will oscillate

harmonically about the vertical if it is tipped over to a small angle θ and released.

Find:

a) The total torque (magnitude and direction, where θ is positive into the page as shown) due to

both gravity and the spring as a function of θ.

b) What is the angular frequency ω of the bar as it oscillates? Recall that the moment of inertia of

a uniform bar is 1
3ML2.

c) What is the smallest value that k can have such that the bar is in stable equilibrium in the vertical

position? [If the spring constant is larger than this smallest value of k, the spring can sustain

oscillations of the bar and does not fall over if perturbed from equilibrium.]
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Problem 468. problems-1/oscillation-pr-vertical-bar-and-spring.tex

L/2

L

k

θ

A uniform vertical bar of mass M and length L is pivoted at the bottom. A spring with spring constant

k is attached a height L/2 over the pivot. This spring is strong enough that the bar will oscillate

harmonically about the vertical if it is tipped over to a small angle θ and released.

Find:

a) The total torque (magnitude and direction, where into the page is positive θ as shown) due to

both gravity and the spring as a function of θ.

b) What is the angular frequency ω of the bar as it oscillates? Recall that the moment of inertia of

a uniform bar is 1
3ML2.

c) What is the smallest value that k can have such that the bar is in stable equilibrium in the vertical

position? [If the spring constant is larger than this smallest value of k, the spring can sustain

oscillations of the bar and does not fall over if perturbed from equilibrium.]
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Problem 469. problems-1/oscillation-pr-youngs-modulus.tex

A
L ∆L

FF
Y

A cylindrical bar of material with cross-sectional area A, unstressed length L, and a Young’s Modulus

Y is subjected to a force F that stretches the bar as shown. The bar behaves like an elastic “spring”,

pulling back with a force F = −k∆L.

a) Show that the “spring constant” of the bar is k = AY/L.

b) Show that the energy stored in the bar when it is stretched by length ∆L is U = 1
2F∆L. This will

be easiest if you assume that the bar is a “spring” with the spring constant k determined in part

a).
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Chapter 13

Waves

What do you get when you cross an owl with a bungee cord? Ooo, wrong riddle1.

We’ll try again. What do you get when you stretch out a bungee cord and pluck it like an owl?

A wave. A wave is basically what you get when you have a whole bunch of harmonic oscillators all

coupled together so each one can push on its neighbors. Or when one part of a string can pull on its

neighbors. Or when one piece of matter can push on its neighbor. Or when one studies any of the fields

that are the basic laws of nature. Or when one studies quantum wave mechanics.

But wait! Wave mechanics is chemistry, chemistry is biology, and biology is us. Does that mean that

we are, basically, a very complex wave phenomenon?

Damn skippy it does. It also means that if you drill down to the fundamentals of nearly any science

you’re gonna find waves down there, tormenting you with their perplexity and complexity, unless you

master them now. And understanding waves on a humble guitar string, or the wave pulses you can put

on a slinky or garden hose is the very first baby step in that direction.

1Interested parties might want to google up Kung Pow Owl Bungee Cord” or the like and watch a youtube clip from

the movie to learn the highly politically incorrect but hilarious answer.
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13.1 Waves

13.1.1 Multiple Choice

Problem 470. problems-1/waves-mc-fixed-and-free-fundamental-review.tex

Consider a vibrating string of length L = 2 m. It is found that there are successive standing wave

resonances at 50 Hz and 70 Hz. Then the standing wave with the lowest possible frequency (i.e. the

first mode or fundamental mode) has frequency:

a) 10 Hz.

b) 20 Hz.

c) 30 Hz.

d) 40 Hz.

e) 50 Hz.

and the string has (check one):

Either both ends fixed or both ends free

One end (either end) fixed and the other free



13.1. WAVES 515

Problem 471. problems-1/waves-mc-fixed-and-free-fundamental-review-soln.tex

Let’s do this one with verbal/conceptual reasoning and not get lost in algebra. The difference between

two successive frequencies is clearly 20 Hz. The frequencies themselves are not integer multiples of 20

Hz. Therefore this must be the odd harmonic series corresponding to a string fixed at one end (either

end!) and free at the other. We count backwards in our heads by 20’s: 70, 50, 30, 10 – and conclude

that the fundamental frequency must be 10 Hz. Note that the length of the string is irrelevant, although

it might be important in some other problem. You will often have more information than you need in

any given problem! Make sure that you know how to pick out what is important!

Hence:

a) 10 Hz

and

�
�❅
❅

One end (either end) fixed and the other free
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Problem 472. problems-1/waves-mc-unknown-fixed-and-free-bcs-fundamental.tex

You are given the following information resulting from measurements of the resonant modes of a string

of length L with unknown boundary conditions. You are told that two successive resonant frequencies

are fi = 125 Hz and fi+1 = 175 Hz where mode index i counts the frequencies from the bottom. Select

the true statement from the following list:

a) The fundamental frequency is 25 Hz, the string is definitely fixed at both ends, and 125 Hz is the

m = 5 fifth harmonic (fifth multiple of the fundamental frequency).

b) The fundamental frequency is 25 Hz, the string is definitely free at both ends, and 125 Hz is the

m = 5 fifth harmonic.

c) The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at the other,

and 125 Hz is the m = 3 third harmonic.

d) The fundamental frequency is 25 Hz, the string is definitely fixed at one end and free at the other,

and 125 Hz is the m = 5 fifth harmonic.

e) None of the above are correct. We cannot tell whether the string is fixed at both ends or free at

both ends and/or what harmonic 125 Hz is from this data.
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Problem 473. problems-1/waves-mc-unknown-fixed-bcs-fundamental-1.tex

You are given the following information resulting from measurements of the resonant frequencies of a

string of length L with unknown boundary conditions. You are told that two successive frequencies

are fi = 200 Hz and fi+1 = 250 Hz for some index i that just counts the frequencies observed from the

lowest one (principle harmonic) and is not necessarily a harmonic index. Select the true statement from

the following list:

a) The fundamental frequency is 50 Hz, the string is definitely free at both ends, and i = 4.

b) The fundamental frequency is 50 Hz, the string is definitely fixed at one end and free at the other,

and i+ 1 = 5.

c) The fundamental frequency is 50 Hz, the string might be fixed at both ends or free at both ends

and i = 4.

d) The fundamental frequency is 25 Hz, the string might be fixed at both ends or free at both ends,

and i = 8.

e) The fundamental frequency is 100 Hz, the string might be fixed at both ends or free at both ends,

and i+ 1 = 2.5.
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Problem 474. problems-1/waves-mc-unknown-fixed-bcs-fundamental.tex

You are given the following information resulting from measurements of the resonant modes of a string

of length L with unknown boundary conditions. You are told that two successive resonant modes have

frequencies of fm = 350 Hz and fm+1 = 400 Hz for some mode index m. Select the true statement from

the following list:

a) The fundamental frequency is 50 Hz, the string is definitely fixed at both ends, and m = 7.

b) The fundamental frequency is 50 Hz, the string is definitely free at both ends, and m = 7.

c) The fundamental frequency is 50 Hz, the string is definitely fixed at one end and free at the other,

and m = 4.

d) The fundamental frequency is 50 Hz, the string might be fixed or free at both ends, and m = 7.

e) The fundamental frequency is 100 Hz, the string might be fixed or free at both ends, and m = 3.
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13.1.2 Short Answer

13.1.3 Short Answer

Problem 475. problems-1/waves-sa-breaking-guitar-string.tex

A certain guitar string is tuned to vibrate at the (principle harmonic) frequency f when its tension is

adjusted to T . The string will break at a tension 3T .

a) Can you double the frequency of the string by increasing the tension (only) without breaking the

string?

b) What is the maximum frequency that you can make the string have, in terms of f , without (quite)

breaking the string?
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Problem 476. problems-1/waves-sa-heavy-to-light.tex

v µsmallerµ larger

One end of a heavy rope is tied to a lighter rope as shown in the figure. An upright wave pulse is incident

from then left and travels to the right reaching the junction between the ropes at time t = 0, so that,

for time t > 0, there are two pulses - a transmitted pulse in the light rope and a reflected pulse in the

heavy rope.

Compare the transmitted and reflected pulses to the incident pulse by filling in the table below (each

answer is “relative to the same property of the incident pulse”):

Transmitted Reflected

speed (greater, lesser, equal)

orientation (upright, inverted)

energy (greater, lesser, equal)
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Problem 477. problems-1/waves-sa-reflected-wave-energy.tex

A string of some mass density µ is smoothly joined to a string of greater mass density and the combined

string is stretched to a uniform tension Ten (the same in both wires). The speed of a wave pulse on

the thinner wire is twice the speed of a pulse on the thicker wire. A wave pulse reflected from the

thin-to-thick junction has half the amplitude of the original pulse. Assuming no loss of energy in the

wire:

a) What fraction of the incident energy is reflected at the junction?

b) Is the reflected pulse upside down or right side up?
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Problem 478. problems-1/waves-sa-reflection-transmission-at-junction.tex

a

b

va

vb

Two combinations of two strings with different mass densities are drawn above that are connected in

the middle. In both cases the string with the greatest mass density is drawn darker and thicker than

the lighter one, and the strings have the same tension T in both a and b. A wave pulse is generated on

the string pairs that is travelling from left to right as shown. The wave pulse will arrive at the junction

between the strings at time ta (for a) and tb (for b). Sketch reasonable estimates for the transmitted

and reflected wave pulses onto the a and b figures at time 2ta and 2tb respectively. Your sketch should

correctly represent things like the relative speed of the reflected and transmitted wave and any changes

you might reasonably expect for the amplitude and appearance of the pulses.
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Problem 479. problems-1/waves-sa-string-fixed-both-ends.tex

T, µy

x

0 L

A string of mass density µ is stretched to a tension T and fixed at x = 0 and x = L. The transverse

string displacement is measured in the y direction. All answers should be given in terms of these

quantities or new quantities (such as v) you define in terms of these quantities.

Write down kn, ωn, fn, λn for the first three modes supported by the string. Sketch them in on the axes

below, labelling nodes and antinodes. You do not have to derive them, although of course you may want

to justify your answers to some extent for partial credit in case your answer is carelessly wrong.

y

x

0 L

y

x

0 L

y

x

0 L
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Problem 480. problems-1/waves-sa-two-string-densities-frequency.tex

Two identical strings of length L, fixed at both ends, have an identical tension T , but have different

mass densities. One string has a mass density of µ, the other a mass density of 16µ

When plucked, the first string produces a (principle harmonic) tone at frequency f1. What is the

frequency of the tone produced by the second string?

a) f2 = 4f1

b) f2 = 2f1

c) f2 = f1

d) f2 = 1
2f1

e) f2 = 1
4f1
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Problem 481. problems-1/waves-sa-wave-energies.tex

A wave on a string with mass density µ travels to the right (+x) according to the formula:

y(x, t) = A sin(kx− ωt)

Suppose this wave has an average energy per unit length E0. Identify all of the changes one can make

to this wave that will produce a wave with a average energy per unit length of 4E0. In all cases the

changes indicated are the only changes in the string or wave formula.

a) Change A → 2A and change µ → 2µ.

b) Change A → 2A.

c) Change µ → 2µ.

d) Change µ → 2µ and k → 2k.

e) Change µ → 2µ and ω → 2ω.

f) Change ω → 2ω.

g) Change k → 2k.



526 CHAPTER 13. WAVES

Problem 482. problems-1/waves-sa-wave-facts.tex

Answer the five short questions below:

a) Suppose you are given string A with mass density µ that is stretched until it has tension TA.

You are given a second string B with the same mass density stretched to twice the tension,

TB = 2TA.

What is the speed of a wave vB on string B relative to vA, the speed on string A?

vB = × vA

b) Suppose you are given string A with mass density µA that is stretched until it has tension T . You

are given a second string B with four times the mass density of A µB = 4µA but at the same

tension.

What is the speed of a wave vB on string B relative to vA, the speed on string A?

vB = × vA

c) Suppose you are given string A with mass density µ that is stretched until it has tension TA. You

are given a second (identical) string B with mass density µ that is stretched to twice the tension,

TB = 2TA. Both strings are carrying a travelling harmonic wave at the same frequency.

What is the wave number kB on string B in terms of the wave number kA on string A?

kB = × kA

d) Suppose you are given string A with mass density µA that is stretched until it has tension TA.

You are given a second string B with four times the mass density of A µB = 4µA but at the same

tension. Both strings are carrying waves with the same wavelength λ.

What is the (regular) frequency fB on string B in terms of the frequency fA on string A?

fB = × fA

e) Suppose you are given string A with mass density µA that is stretched until it has tension TA. You

are given a second string B with four times the mass density of A µB = 4µA and a tension four

times the tension of A TB = 4TA. Both strings carry a wave with the same frequency f .

What is the wavelength λB in terms of the wavelength λA?

λB = × λA
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Problem 483. problems-1/waves-sa-wave-speed-vary-mu.tex

4T 4T

a

b

c

d

µ

2µ

3µ

4µ

In the figure above, the neck of a stringed instrument is schmatized. Four strings of different thickness

and the same length are stretched in such a way that the tension in each is about the same (T ) for a

total of 4T between the end bridges – if this were not so, the neck of the guitar or ukelele or violin would

tend to bow towards the side with the greater tension. If the velocity of a wave on the first (lightest)

string is v1, what is the speed of a wave of the other three in terms of v1?
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Problem 484. problems-1/waves-sa-wave-speed-vary-T.tex

m 4m 9m

a b c

Three strings of length L (not shown) with the same mass per unit length µ are suspended vertically

and blocks of mass m, 4m and 9m are hung from them. The total mass of each string µL ≪ m (the

strings are much lighter than the masses hanging from them). If the speed of a wave pulse on the first

string (a) is v0, what is the speed of the same wave pulse on the second (b) and third (c) strings?
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13.1.4 Long Problems

Problem 485. problems-1/waves-pr-accelerating-wave-pulse.tex

µ

2α tv T(t) = T  e0

A wave pulse is started on a string with mass density µ with an applied tension that increases like

T0e
2αt.

a) Find the initial velocity of the wave pulse at time t = 0.

b) Find the acceleration of the wave pulse as a function of time.
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Problem 486. problems-1/waves-pr-construct-transverse-travelling-wave-1.tex

A very long string aligned with the x-axis is being shaken at the ends in such a way that there is

a travelling harmonic wave on it. y is the vertical direction perpendicular to the string in the

direction of the string’s displacement. Given the following data (note units):

Amplitude A = 1 cm

Wavelength λ = 0.5 m

Period T = 0.001 sec

a) Write down the formula for a transverse wave travelling in the −x direction (that is, to the

left) corresponding to these numerical parameters. You may use π in your answer as a symbol as

needed.

b) What is the speed of the wave on the string in terms of the givens?

c) Suppose one wished to double the power transmitted by the string. Enter T or F in the provided

boxes if the stated change to one of the givens would accomplish this assuming no other change

to the givens is made.

• Increase the amplitude from 1 cm to 2 cm.

• Decrease the period of the wave to 0.000707.

• Increase the wavelength of the wave to 1 meter.

• Increase the amplitude from 1 cm to 1.414 cm.
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Problem 487. problems-1/waves-pr-fixed-both-ends.tex

A string with mass density µ and under tension T vibrates in the y-direction. The string is fixed at

both ends at x = 0 and x = L. Answer all questions in terms of these givens.

a) What are the two lowest frequencies f1 and f2 that a standing wave can have for this string?

b) Write down an equation for y(x, t), the y-displacement of the string as a function of position x along

the string and time t for the standing wave corresponding to the second lowest frequency

f2 (the second mode) that you just computed. Assume that the standing wave has a maximum

vertical displacement of y = A.

c) On the graph below, plot the y-displacement for the second mode versus horizontal position x at

an instant when the the string achieves its maximum displacement. Indicate the positions on the

x-axis of any nodes or antinodes.

L x

y

−A

A

0
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Problem 488. problems-1/waves-pr-fixed-one-end.tex

A string with mass density µ and under tension T vibrates in the y-direction. The string is fixed at

x = 0 and free at x = L. Answer all questions in terms of these givens.

a) What are the two lowest frequencies f1 and f2 that a standing wave can have for this string?

b) Write down an equation for y(x, t), the y-displacement of the string as a function of position x along

the string and time t for the standing wave corresponding to the second lowest frequency

f2 (the second mode) that you just computed. Assume that the standing wave has a maximum

vertical displacement of y = A.

c) On the graph below, plot the y-displacement for the second mode versus horizontal position x at

an instant when the the string achieves its maximum displacement. Indicate the positions on the

x-axis of any nodes or antinodes.

L x

y

−A

A

0
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Problem 489. problems-1/waves-pr-speed-on-hanging-string.tex

L

A string of total length L with a mass density µ is shown hanging from the ceiling above.

a) Find the tension in the string as a function of y, the distance up from its bottom end. Note that

the string is not massless, so each small bit of string must be in static equilibrium.

b) Find the velocity v(y) of a small wave pulse cast into the string at the bottom that is travelling

upward.

c) Find the amount of time it will take this pulse to reach the top of the string, reflect, and return

to the bottom. Neglect the size (width in y) of the pulse relative to the length of the string.
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Problem 490. problems-1/waves-pr-standing-wave-mode-energy.tex

0 L

A string of total mass M and total length L is fixed at both ends, stretched so that the speed of waves

on the string is v. It is plucked so that it harmonically vibrates in its n = 4 mode:

y(x, t) = A4sin(k4x)cos(ω4t).

Find (derive) the instantaneous total kinetic energy in the string in terms of M , L, n = 4, v and A4

(although it will simplify matters to use k4 and ω4 once you define them).

Remember (FYI):
∫ nπ

0

sin2(u)du =

∫ nπ

0

cos2(u)du =
nπ

2
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Problem 491. problems-1/waves-pr-string-and-hanging-mass.tex

ω

L

m

µ

In the figure above, a string of length L and mass density µ is run over a pulley and maintained at

some tension by a stationary hanging mass m. The string is driven with tiny oscillations at a tunable

frequency ω by a speaker attached to one end as shown. You may neglect the weight of the string

compared to the weight of the mass m.

a) For a given mass m, write an expression for the velocity of waves on the string.

b) Find the frequency of the third harmonic of the string (expressed in terms of the givens).

c) What is the angular frequency of the sound wave that the string will produce when it is driven

in resonance with its third harmonic frequency?

d) What is the wavelength of the sound wave produced by the string vibrating at this frequency? You

may express your answer algebraically in terms of va (the speed of sound in air).
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Problem 492. problems-1/waves-pr-travelling-wave-analysis.tex

A travelling wave on a string of mass µ = 0.01 kg/meter is given by the expression:

y(x, t) = 2.0 sin(0.02πx+ 2πt) (meters)

Answer the following questions about this wave. All of the arithmetic should be doable without a

calculator, but if you have any doubt feel free to leave arithmetical expressions of the algebra unevaluated.

a) What is the amplitude of this wave?

b) What is its wavelength?

c) What is its period?

d) What is the velocity of this wave (include direction!)?

e) Write an algebraic expression for the kinetic energy per unit length in the string as a function of

time.



Chapter 14

Sound

What’s that again? Did you say something? I couldn’t hear you, because the sound of your voice

wasn’t intense enough for me to hear. This isn’t your fault – I’m aging and hence growing deaf(er). And

besides, you’re probably not even in the same room with me.

In any event, understanding sound seems once again like it would be very useful to physicians, engineers,

physicists, musicians, communications specialists, and maybe even ordinary people who want to learn a

bit about waves in what is still a relatively simple and ubiquitous application before tackling some bit

of science that has some difficult wave mechanics in it.

In the problems below we will have our first encounter with 3 dimensional waves (the symmetric pretty

easy kind), 1/r2 laws, the idea of decibels” and the use of logarithmic scales to describe things that vary

over many orders of magnitude efficiently. We’ll also get our first very tiny taste of interference arising

from wave superposition, although the main course is put off until you cover electromagnetic waves and

the interference and diffraction of light waves.

Ping.
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14.1 Sound Waves

14.1.1 Multiple Choice

Problem 493. problems-1/sound-mc-car-horn-decibels.tex

You are stuck in freeway traffic and need to get home. So does the driver next to you – she starts

blowing the horn of her car, which you hear as a sound with a sound level of 90 dB. Not to be outdone,

the driver behind you, in front of you, and to the other side of you all lean on their horn as well, so that

now you are hearing all four horns (which reach your ears with equal intensities) at once. The sound

level you now hear is:

a) 93 db

b) 96 dB

c) 180 dB

d) 360 dB

e) Unchanged.
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Problem 494. problems-1/sound-mc-exam-noise-in-dB.tex

200 students are taking an examination in a room, and the sounds of pens scratching on paper, sighs,

groans, and muttered imprecations has created a more or less continuous sound level of this noise of 60

dB. Assuming each student contributes equally to this noise and nothing else changes or adds to it, what

will the sound level in the room be when only 50 students are left?

a) 50 dB

b) 15 dB

c) 66 dB

d) 54 dB

e) 57 dB



540 CHAPTER 14. SOUND

Problem 495. problems-1/sound-mc-measuring-speed-of-sound.tex

water reservoir

tuning
fork

test gas

resonating tube

L

hose

microphone

A simple method for measuring the speed of sound in a reservoir filled with gas is to hold a tuning fork

at a fixed, known frequency above a tube connected with a flexible hose to a reservoir such that the

height of the water in the tube can easily be varied. The sound one detects with a microphone is then

the loudest when the tuning fork is in resonance with standing wave modes in the tube.

If you hold a 2000 Hz tuning fork above the tube when it is completely full and then lower the reservoir

slowly to drop the water level in the tube, you hear the fork resonate most loudly when the water is

L = 2.5, 7.5, and 12.5 cm beneath the end of the tube. The speed of sound in the gas is therefore:

a) 50 m/sec

b) 100 m/sec

c) 200 m/sec

d) 500 m/sec

e) 750 m/sec
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Problem 496. problems-1/sound-mc-shooting-a-gun-dB.tex

A 30-06 rifle makes a bang that peaks at 170 decibels 1 meter away from the muzzle. If you are standing

100 meters away (approximately) what sound level do you hear in decibels?

a) 120 dB

b) 130 dB

c) 140 dB

d) 150 dB

e) 160 dB
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Problem 497. problems-1/sound-mc-siren-in-dB.tex

A siren radiates sound energy uniformly in all directions. When you stand a distance 100 m away from

the siren you hear a sound level of 90 dB. If you move to a distance of 10 m from the siren, the sound

level is:

a) 90 dB, no change.

b) 100 dB.

c) 110 dB.

d) 120 dB.

e) 130 dB.
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Problem 498. problems-1/sound-mc-sound-level-to-pressure-1.tex

You measure the intensity level of a single frequency sound wave produced by a loudspeaker with a

calibrated microphone to be 80 dB. At that intensity, the peak pressure in the sound wave at the

microphone is P0 + Pa, where Pa is the baseline atmospheric pressure and P0 is the pressure over that

associated with the wave. The loudspeaker’s amplitude is turned up until the measured intensity level

is 120 dB. What is the peak pressure of the sound wave now?

a) 4P0 + Pa

b) 10P0 + Pa

c) 40P0 + Pa

d) 100P0 + Pa

e) 100(P0 + Pa)
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Problem 499. problems-1/sound-mc-sound-level-to-pressure-2.tex

You measure the sound level of a single frequency sound wave produced by a loudspeaker with a calibrated

microphone to be 80 dB. At that intensity, the peak pressure in the sound wave at the microphone is

P0 +Pa, where Pa is the baseline atmospheric pressure and P0 is the pressure over that associated with

the wave. The loudspeaker’s amplitude is turned up until the measured sound level is 100 dB. What is

the peak pressure of the sound wave now?

a) 4P0 + Pa

b) 10P0 + Pa

c) 40P0 + Pa

d) 100(P0 + Pa)

e) 100P0 + Pa
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14.1.2 Ranking/Scaling

Problem 500. problems-1/sound-ra-sound-resonances-pressure.tex

ba
L L

dc

L L/2

a) Rank the fundamental harmonic resonant frequencies (n = 1) of the four open/closed pipes

drawn above, where equality is a possible answer. An answer might be (but probably isn’t)

fa < fb = fc < fd.

b) Draw into each pipe a representation of a the pressure wave associated with each resonance.

c) Label the nodes (in your representation of the waves) with an N and antinodes with an A.
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Problem 501. problems-1/sound-ra-sound-resonances.tex

d

ba

c

L

L L/2

L

a) Rank the fundamental harmonic resonant frequencies (n = 1) of the four open/closed pipes

drawn above, where equality is a possible answer. An answer might be (but probably isn’t)

fa < fb = fc < fd.

b) Draw into each pipe a representation of a the displacement wave associated with each resonance.

c) Label the nodes (in your representation of the waves) with an N and antinodes with an A.
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14.1.3 Short Answer

Problem 502. problems-1/sound-sa-alarm-clocks.tex

Wal Mart had a special on alarm clocks, and you bought ten of them just to make sure that you will wake

up in time for your physics final exam. Each alarm clock produces an incoherent sound level in your

ears of 90 dB when you place the clock on the nightstand one meter from your head. Ignore reflection

of sound energy from walls, etc and treat the clocks like point sound sources.

a) If you put 4 clocks on the nightstand one meter from your head, you will hear a sound level of

(approximately to the nearest integer): dB

b) If you put 8 clocks on the dresser 2 meters from your head, you will hear a sound level of:

dB

c) If you put all 10 clocks in the far corner of the room 4 meters from your head, you will hear a

sound level of: dB
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Problem 503. problems-1/sound-sa-beats.tex

Two identical strings of length L have mass µ and are fixed at both ends. One string has tension T .

The other has tension 1.21T . When plucked, the first string produces a tone at frequency f1. What is

the beat frequency produced if the second string is plucked at the same time, producing a tone f2? Are

the beats likely to be audible if f1 is 500 Hz?
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Problem 504. problems-1/sound-sa-decibels-sun-human-body.tex

Sunlight reaches the surface of the earth with roughly 1000 Watts/meter2 of intensity. What is the

“intensity level” of a sound wave that carries as much energy per square meter, in decibels? In table

15-1 in Tipler and Mosca, what kind of sound sources produce this sort of intensity? Bear in mind that

the Sun is 150 million kilometers away where sound sources capable of reaching the same intensity are

typically only a few meters away. Hmmm, seems as though the Sun produces a lot of (electromagnetic)

energy compared to terrestrial sources of (sound) energy.

While you are at it, the human body produces energy at the rate of roughly 100 Watts. Estimate the

fraction of this energy that goes into my lecture when I am speaking in a loud voice in front of the class

(loud enough to be heard as loudly as normal conversation ten meters away).
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Problem 505. problems-1/sound-sa-principle-harmonic-series.tex

Two pipes used in different musical instruments have the same length L, but the fundamental

frequency (frequency of the principal harmonic, m = 1) of one is twice that of the other. Explain

how this could be, illustrating your answer with a drawing of two pipes and the principle modes such

that this is true. Make sure you indicate which pipe has the higher frequency and which pipe has the

lower one, and whether your diagram is illustrating pressure or displacement standing waves!
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Problem 506. problems-1/sound-sa-scaling-thunder-dB.tex

Lightning strikes one kilometer away, and the resulting thunderclap has an intensity of 5 × 10−3

Watts/meter2. What is the intensity level in decibels? If one is instead 10 kilometers away, approxi-

mately how many decibels lower would the intenstity level be?
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Problem 507. problems-1/sound-sa-scaling-time-thunder-dB.tex

You see the flash of lightning and three seconds later you hear a thunderclap with a peak sound level of

120 dB. A few minutes later you see a second flash of lightning and twelve seconds later you hear the

thunderclap.

a) Approximately what peak sound level do you hear in the second (presumably “identically pro-

duced”) thunderclap?

Second thunderclap is: dB

b) Roughly – to the nearest kilometer – how far away are the two lightning flashes?

First (three seconds): km

Second (twelve seconds): km
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Problem 508. problems-1/sound-sa-sound-speed-decibels.tex

(12 points) Some short questions about sound:

a) Show that doubling the intensity of a sound wave corresponds to an increase in its intensity level

or loundness by about 3 dB.

b) I sometimes work as a timer at my son’s swim meets. We are told to start our watches when we

see a light flash on the starter’s console, not when we hear the starting horn. If I am timing a lane

on the far side of the pool some 17 meters away from the starter and start when the sound of the

horn reaches me, how much will the times I measure (on average) change? Will the swimmer have

an advantage or a disadvantage relative to a swimmer timed by someone that starts on the flash

of light?

c) Suppose I turn the knob on my surround-sound amplifier and decrease the loudness where I’m

listening by 6 dB. By roughly what fraction has the amplitude of oscillation of the speakers changed?
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Problem 509. problems-1/sound-sa-tube-open-both-ends-1.tex

λ   = 1

L L

λ   = 2

+s

+x

A tube open at both ends used as a “panpipe” musical instrument. It has length L = 34 centimeters.

a) Sketch the first two displacement modes (or harmonics) in the provided tubes.

b) Label the nodes and antinodes, and underneath each tube indicate the wavelength of the mode/harmonic.

c) What is the frequency of the second harmonic of the tube (an actual number, please, in Hertz

or cycles per second).
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Problem 510. problems-1/sound-sa-tube-open-both-ends-2.tex

λ   = 1

L L

λ   = 2

A tube open at both ends used as a “panpipe” musical instrument. It has length L = 34 centimeters.

a) Sketch the first two displacement modes (or harmonics) in the provided tubes.

b) Label the nodes and antinodes, and underneath each tube indicate the wavelength of the mode/harmonic.

c) What is the frequency of the principle harmonic of the tube (an actual number, please, in

Hertz or cycles per second).
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Problem 511. problems-1/sound-sa-two-wave-speeds-frequency.tex

Two identical pipes, both closed at both ends, are filled with two different gases. In the first gas, the

speed of sound is v1 =
√

B1/ρ1, in the second the speed of sound is v2 =
√

B2/ρ2 = 2v1. Both pipes are

driven by speakers in resonance with their fundamental harmonic frequency, f1 and f2 respectively.

If f1 is the fundamental frequency in the first pipe, what is the fundamental frequency f2 in the second

pipe?

a) f2 = 4f1

b) f2 = 2f1

c) f2 = f1

d) f2 = 1
2f1

e) f2 = 1
4f1
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14.1.4 Long Problems

Problem 512. problems-1/sound-pr-bill-and-ted-double-doppler-1.tex

aaaaaaaaaa = fo

Lava

Bill and Ted are falling at a constant speed (terminal velocity) into hell, and are screaming at a frequency

f0. They hear their own voices reflecting back to them from the puddle of molten rock that lies below

at a frequency of 2f0. How fast are they falling relative to the speed of sound?
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Problem 513. problems-1/sound-pr-bill-and-ted-double-doppler-2.tex

aaaaaaaaaa = fo

Lava

Bill and Ted are falling at a constant speed (terminal velocity) into hell, and are screaming at a frequency

f0. They hear their own voices reflecting back to them from the puddle of molten rock that lies below

at a frequency of 1.21f0. How fast are they falling relative to the speed of sound?
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Problem 514. problems-1/sound-pr-doppler-electrocardiograph.tex

HEART Descending Thoracic Aorta

ultrasound beam pulse

blood

beam reflection

Aorta

brachiocephalic
carotid subclavian

emitter/beat detector

During a cardiac cycle, blood is ejected by the heart into the aorta with a typical peak speed around

0.5 m/sec for a healthy adult. However, in a patient with an obstruction, the peak speed can be much

higher. The peak blood speed can be detected noninvasively using a pulsed ultrasound beam.

Let us model this process as a simple highly directional ultrasound beam of frequency f0 that is being

directed through a patient’s descending thoracic aorta parallel to the artery as shown. We will assume

that the ultrasound beam is reflected off of just one small (shaded) section of the flowing blood fluid

that is travelling at a speed v in the direction shown the same way it would be reflected off of a moving

object. Use vus for the speed of ultrasonic sound in blood or living tissue.

patient

a) Write an expression for the the frequency f we expect the detector to detect in terms of f0, vus,

and v. Is f higher than or lower than the beam frequency f0?

f =

b) The detector measures f , but we wish to know v. Solve for v/vus in terms of f0, and f .

v

vus
=

The next two questions involve actual numbers. Suppose f0 = 2 × 106 Hz and vus = 1.5 × 103

m/sec.

c) What is the wavelength of the incident beam? λ =
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d) Extra Credit (2 points): If a beat detector detects a beat frequency of ∆f = 8×103 Hz between

the incident and reflected ultrasound beams, find the blood speed and then determine whether the

patient is likely to have an obstructed descending thoracic aorta based upon information provided

above. (The speed of the blood is expected to be much smaller than that of the ultrasound so that

beats can be detected comparing the outgoing to the incoming doppler shifted wave.)
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Problem 515. problems-1/sound-pr-doppler-moving-receiver-derive.tex

v

sourcereceiver

r

A microphone mounted on a cart is moved directly toward a harmonic source at a speed of vr = 34

m/sec. The harmonic source is emitting sound waves at a frequency of f0 = 1000 Hz.

a) Derive an expression for the frequency of the waves picked up by the moving microphone.

b) What is that frequency?
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Problem 516. problems-1/sound-pr-doppler-moving-source-derive.tex

sv

source receiver

A speaker mounted on a cart is moved directly toward a stationary microphone at a speed vs = 34

m/sec. It is emitting harmonic sound waves at a source frequency of f0 = 1000 Hz. va = 340 m/sec is

the speed of sound in air.

a) Derive an algebraic expression for the frequency f ′ of the waves picked up by the stationary

microphone, beginning with a suitable picture of the wave fronts. Limited partial credit will be

awarded for just correctly remembering it if you cannot derive it.

b) What is the frequency f ′ in Hz? You should be able to do the arithmetic without a calculator.
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Problem 517. problems-1/sound-pr-doppler-moving-source.tex

sv

source receiver

A speaker mounted on a cart is moved directly toward a stationary microphone at a speed vs = 34

m/sec. It is emitting harmonic sound waves at a source frequency of f0 = 1000 Hz. va = 340 m/sec is

the speed of sound in air.

a) What is the frequency f ′ of the waves picked up by the microphone in Hz? You should be able to

do the arithmetic without a calculator.

b) Suppose a second source with the same frequency f0 was located at rest an identical distance to

the right of the microphone receiver. What would be the frequency of the beats recorded by the

microphone?
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Problem 518. problems-1/sound-pr-lithotripsy-decibels.tex

100 MPa

A = 1 cm 2

kidney stone

Modern lithotripsy machines create a focused acoustical shock wave (SW) pulse with an overpressures

that range from P0 = 4×107 to over 108 Pascals1. A harmonic wave in water with this amplitude would

have an intensity I ∼ P 2
0 × 104 when P0 is expressed in atmospheres of pressure and I is the usual

watts per square meter. Although this expression will not be exact for a non-harmonic shock wave

pulse, it should give the right order of magnitude for the average intensity in the initial peak.

a) Estimate I for an acoustical pulse with a peak amplitude of 108 Pascals. Algebra first! Careful

with the units!

b) Express this intensity in decibels. Use the usual reference intensity for sound waves (the threshold

of hearing).

c) Estimate the “instantaneous” peak force (rise time on the order of nanoseconds) exerted by the

shock wave overpressure on the front face of a cylindrical kidney stone with an area of 1 square

centimeter.

d) Assuming that this primary pulse lasts for ∆t = 10 nanoseconds (or 10−8 seconds), what is the

total impulse imparted to the front face of the kidney stone by this force?

1This dynamic pressure is comparable to the static pressure in the deep ocean trenches ten kilometers beneath the

surface, where even “incompressible” water compresses by around 4 or 5%.
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Problem 519. problems-1/sound-pr-standing-waves-organ-pipe.tex

Resonant Sound Waves

Tube closed at one end

An organ pipe is made from a brass tube closed at one end as shown. The pipe is 3.4 meters long. When

driven it produces a sound that is a mixture of the first, third and sixth harmonic (mode).

a) What are the frequencies of these modes?

b) Sketch the wave amplitudes for the third harmonic mode (only) in on the figure, indicating the

nodes and antinodes. Be sure to indicate whether the nodes or antinodes are for pressure/density

waves or displacement waves!

c) The temperature in the church where the organ plays varies by around 30◦ C between summer

and winter. By how much (approximately) does this vary the frequency of the fundamental

harmonic? (Indicate why your answer is what it is, don’t just put down a guess).
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Problem 520. problems-1/sound-pr-train-double-doppler-shift-2.tex

A train approaches a tunnel in a sheer cliff at speed vtrain. The train blows a whistle of frequency 1000

Hz. A listener on the train hears a beat frequency of 10 Hz between the original whistle and the reflected

sound.

a) What is the frequency of the reflected wave as heard by the passengers on the train?

b) Find the speed of the train relative to the speed of sound in air:

vtrain
vair

=
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Problem 521. problems-1/sound-pr-train-double-doppler-shift.tex

A train approaches a tunnel in a sheer cliff. The train is moving at 34 m/s, and it blows a horn of

frequency 900 Hz. The speed of sounds is 340 m/s.

a) What frequency would a listener at the base of the cliff hear?

b) What frequency do the train passengers hear from the echo (the reflection from the cliff face)?
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Chapter 15

Gravity

We began this book and the study of mechanics and dynamics with gravity. It is only fitting that we

end it with gravity as well, but this time gravity done right!

What, the force of gravity is not really mg? Sadly, no, it’s not. This is only its form near the surface of

the earth, at least for the g = 10 m/sec2 we’ve grown to know and love.

Newton’s Law of Gravitation is, at long last, our very first force law of nature, not a composite of

other force laws (like normal forces, springs, and so on). It is also our first inverse square law, and is an

excellent preview of Coulomb’s Law (which will start out our studies of electromagnetism shortly).

But the story of gravity is the story of the Universe itself. It is also the story of the Enlightenment,

the discovery/invention of the scientific method, the systematic process by which we build up reliable,

reproducible knowledge and reject mythology, lies, errors, fantasies, and just plain (probably) incorrect

hypotheses of all sorts. Its importance thus goes far beyond its direct content or direct utility.

Physicians probably don’t need to know much about the laws of gravitation other than that it holds

us down to the Earth and holds the solar system and galaxy together. But gravity is so cool that

personally, I think everybody should know a bunch of what is covered in this chapter if only so that they

can understand a little bit of what they see when they go outside on a cold, clear night and look up at

the stars.

That’s a very human thing to do, and trust me – it is better when you can understand a tiny bit of the

enormously beautiful structure of what you see.

569
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15.1 Gravity

15.1.1 Multiple Choice

Problem 522. problems-1/gravitation-mc-drag-changes-orbit.tex

A satellite in a low-Earth (circular) orbit will slowly lose energy to frictional drag forceswhile remaining

in an approximately circular orbit. What happens to its orbit radius and speed?

a) Its orbit radius increases and its speed increases;

b) Its orbit radius increases and its speed decreases;

c) Its orbit radius decreases and its speed increases;

d) Its orbit radius decreases and its speed decreases;

e) There is no enough information to determine the change to its orbit radius and speed.

Briefly explain or justify your answer.
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Problem 523. problems-1/gravitation-sa-escape-condition.tex

Answer the following short questions about escaping from a planet’s gravitational field at its surface to

“infinity”. The answer to each is best given as an equation or short derivation or by a single sentence

that correct captures the concept involved and explains or answers the question.

a) What is the condition for an object sitting on a planetary surface to escape to infinity?

b) Use the condition from part a) to derive (in a couple of lines of algebra) the escape speed from a

planet of mass M and radius R. This is the smallest speed the object be moving with to escape

to infinity.

c) Does it matter what direction the object leaves the surface (that is, does it have to leave travelling

straight up or can it leave at an angle) as long as its path doesn’t intersect the surface itself?

d) Assume that the planet is Earth, with mass Me and radius Re. Show that the escape speed from

Earth can be written ve =
√

2gRe where g is the usual gravitational field (acceleration) near the

surface of the Earth.
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Problem 524. problems-1/gravitation-sa-escape-condition-soln.tex

a) The escape condition is fundamentally Etot = U +K = 0, so that the object can reach r → ∞ and

arrive there at rest. This (Etot ≈ 0) is also a good assumption to make for any object that falls

to an attractor from far far away, for example for a falling asteroid or comet, for the purposes of

estimation.

Hence:

Etot =
1

2
mv2e −

GMm

R
= 0

b)

ve =

√

2GM

R

is both the (minimum) escape speed and a good estimate for the speed of e.g. a falling asteroid as

it enters the Earth’s atmosphere.

c) No. This is an energy condition, and does not depend on direction, as long as one doesn’t run into

something (like the planet itself) along the way!

d) Use g =
GMe

R2
e

as follows:

ve =

√

2GMe

Re
× Re

Re
=

√

2

(

GMe

R2
e

)

Re =
√

2gRe



15.1. GRAVITY 573

Problem 525. problems-1/gravitation-mc-kepler-and-scaling.tex

True or False:

a) Kepler’s law of equal areas implies that gravity varies inversely with the square of the distance.

T F

b) The planet closest to the sun on average (smallest semimajor axis) has the shortest period of

revolution about the sun. T F

c) The acceleration of an apple near the surface of the earth, compared to the acceleration of the

moon as it orbits the earth, is in the ratio of Rm/Re, where Rm is the radius of the moon’s orbit

and Re is the radius of the earth. T F
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Problem 526. problems-1/gravitation-mc-period-of-missing-planet.tex

The Kepler project is surveying the night sky for stars with planets (and so far 1800 “exoplanets” have

been discovered, with more being found every day). Suppose the Kepler telescope discovers that a gas

giant similar to Jupiter (the easiest kind of planet to detect) is orbiting a particular star at a distance of

4 astronomical units (the radius of the Earth’s orbit around the Sun). The period of the planet’s orbit

is determined to be 16 Earth years. What would the period of a possible Earth-like planet that was

orbiting that star at 1 astronomical unit be?

a) 1/2 Earth year

b) 1 Earth year

c)
√
2/2 Earth years

d) 2 Earth years

e) 3 Earth years
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Problem 527. problems-1/gravitation-mc-scaling-moon-orbit.tex

Planet Bongo has a moon, Mongo, that orbits it in a circular orbit much like the Moon orbits the Earth.

You are told that

MBongo = 3MEarth RBongo = 2REarth rMongo = 2rEarth

where M is each planet’s mass, R is its planetary radius, and r is the orbital radius of the respective

moon about the center of its planet.

a) Compared to the speed of the Moon, the moon Mongo’s speed is:

A) larger;

B) the same;

C) smaller;

D) unknown, as there is not enough information to decide;

b) Find the ratio of the period of the circular motion between the two:

TMongo

TMoon
=
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Problem 528. problems-1/gravitation-mc-surface-gravity-scaling.tex

R 2R R

ρ
ρ

2ρ

m m m

(a) (b) (c)

In the figure above, a small mass m is sitting on the surface of three planets. The density and radius of

the planets are as shown:

a) ρ,R

b) ρ, 2R

c) 2ρ,R

If the force on m due to gravity for the first planet is Fa, find and express Fb and Fc in terms of Fa.

Fb =

Fc =
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15.1.2 Ranking/Scaling

Problem 529. problems-1/gravitation-ra-four-planets.tex

M,R

M,2R

M,R/2
c (hollow)

M,3R/2
d

a

b

m,3R m,3R m,3R m,3R

(6 points) Four planets of mass M are drawn to scale above, each exerting a gravitational force of

magnitude Fi (for i = a, b, c, d) on the small mass m at the position 3R from the center of each planet as

shown. Rank the Fi from least to greatest including possible equalities. Indicate why you are answering

the way that you answer in words or an equation or two.
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15.1.3 Short Answer

Problem 530. problems-1/gravitation-sa-circular-orbit-vs-escape.tex

It is very costly (in energy) to lift a payload from the surface of the earth into a circular orbit, but once

you are there, it only costs you that same amount of energy again to get from that circular orbit to

anywhere you like – if you are willing to wait a long time to get there. Science Fiction author Robert

A. Heinlein succinctly stated this as: “By the time you are in orbit, you’re halfway to anywhere.”

Prove this by comparing the total energy of a mass:

a) On the ground. Neglect its kinetic energy due to the rotation of the Earth.

b) In a (very low) circular orbit with at radius R ≈ RE – assume that it is still more or less the same

distance from the center of the Earth as it was when it was on the ground.

c) The orbit with minimal escape energy (that will arrive, at rest, “at infinity” after an infinite

amount of time).
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Problem 531. problems-1/gravitation-sa-force-and-torque.tex

P

O x

y

R

R

M

m

(z out of page)

In the figure above, a mass M is located at the origin, and a mass m is located at (0, R) as drawn. The

z-axis in the figure comes out of the page. All vector answers below may be indicated in any of the

permissible ways.

a) Find the gravitional force acting on mass little m.

b) Find the torque around the origin O.

c) Find the torque on mass m relative to the pivot P . Draw and label an arrow symbol onto the

figure above to explicitly indicate its direction
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Problem 532. problems-1/gravitation-sa-identify-four-orbits.tex

0 1 2 3 4 5

-200

-100

0
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r

U
ef

f(r
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The effective radial potential of a planetary object of mass m in an orbit around a star of mass M is:

Ueff(r) =
L2

2mr2
− GMm

r

The total energies E0, E1, E2, E3 of four orbits are drawn as dashed lines on the figure above for G = 1,

M = 100, m = 1 and L = 5 (in some system of units). Name the kind of orbit (circular, elliptical,

parabolic, hyperbolic) each energy represents and mark its turning point(s) in on the graph.

E0

E1
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E2

E3
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Problem 533. problems-1/gravitation-sa-kepler-3-circular-orbits.tex

In your homework, you studied several different cases of a mass m in a circular orbit around (or inside)

another mass M , with different radial force laws. Suppose you are given a radial force law of the form:

~F = − A

rn
r̂

Prove that (for circular orbits in particular):

rn+1 = CT 2

where T is the period of the orbit and r is the radius of the circle, and find the constant C. (A = GMm,

n = 2 then leads to Kepler’s third law, and A = GMm/R3, n = −1 leads to the relation you derived for

the mass in the tunnel through the death star).
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Problem 534. problems-1/gravitation-sa-period-of-saturn.tex

The earth’s orbit is “one astronomical unit” (AU) in radius (this turns out to be about 150 million

kilometers). The period of its orbit is one year. The mean radius of Saturn’s orbit is (roughly) 10 AU.

What is its “year” (period of revolution around the sun) in years? (You may express your answer as a

power of a number without a calculator.)
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Problem 535. problems-1/gravitation-sa-speed-of-jupiter.tex

The Earth’s approximately circular orbit about the Sun is “one astronomical unit” (AU) in radius (this

turns out to be about 150 million kilometers). The mean radius of Jupiter’s approximately circular orbit

is (roughly) 5 AU. What is the average speed of Jupiter vjupiter in terms of the average speed of the

Earth vearth as it moves around the Sun?

vjupiter =
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Problem 536. problems-1/gravitation-sa-two-orbits-scaling.tex

ba

R

2R

Two satellites are in circular orbits around the earth, one at radius R and the other at 2R.

a) Circle the satellite that is moving faster.

b) How much faster is it moving? (Express the faster satellite’s speed in terms of the speed of the

slower satellite.)
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15.1.4 Long Problems

Problem 537. problems-1/gravitation-pr-cavendish-torsional-oscillator.tex
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In the Cavendish experiment, the gravitational force is measured between two big masses M (not shown)

acting on two small masses m on a rod of length L (assumed to be of negligible mass in this problem,

although it isn’t really) attached to a thin thread such that it makes a torsional pendulum (as drawn

above). The twisting thread exerts a restoring torque of magnitude τ = −κθ on the rod connecting the

small masses, where theta is measured from the equilibrium angle of the rod as shown.

In the experiment the two large masses are placed symmetrically so that they exert a torque on the

small mass arrangement aligned with the torsional thread. The two small masses twist the thread

toward the big masses until the gravitational torque is balanced by the torque of the thread. If κ is

known, a measurement of the angle of deviation θ0 suffices to determine the gravitional torque, hence

the gravitational force, hence the gravitational constant G.

There’s only one catch – one needs κ, and most spools of thread don’t come labeled with their torsional

response properties.

Show and tell how you can do a simple experiment to measure κ with nothing but an accurate stop

watch, a measurement of the mass(es) m, and a measurement of the length L of the connecting rod.

(Describe the experiment and derive the relation between the quantity you choose to measure and the

desired result, κ).
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Problem 538. problems-1/gravitation-pr-dangerous-tides.tex
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Tides can be dangerous. You are a scientist in orbit around a neutron star with a mass M = 1030 kg

and a radius of 8 km. Your center of mass moves in a perfect circle 10 km around the center of the star.

You have just enough angular momentum that your feet always point “down” toward the center of the

star and your head points away. Your feet are therefore also in a circular trajectory around the center

of the star, but they cannot also be in orbit (free fall).

Assuming that your feet have a mass of approximately 2 kg and are located approximately 1 meter closer

to the star than your center of mass, how much force do your legs have to provide to keep your feet from

falling off? Do they fall off?

Hints: Proceed by finding the centripetal acceleration/force of your center of mass in terms of the

gravitational field/force of the star at that location. Repeat this for your feet separately, assuming that

they have the same angular frequency of circular motion as your center of mass but are in a (much!)

stronger gravitational field. The difference in the force required to keep the feet in a circular orbit

(the total centripetal force) and the actual gravitational force must be provided by your legs. Also, the

binomial expansion might well be useful here...
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Problem 539. problems-1/gravitation-pr-dinosaur-killer-asteroid.tex
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Estimate the total energy released when a spherical “Dinosaur Killer” asteroid with a density ρ = 10

kg/m3 and radius R = 1000 meters falls onto the surface of the earth from “outer space” (far away).

Obviously your answer should be justified by a good physical argument.

Note that this is a lot of energy – more than enough to wipe out all life within perhaps 1000 km of the

point of impact (or more) and to change the climate of the planet.
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Problem 540. problems-1/gravitation-pr-equatorial-weight.tex
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In the figure above, a planet with uniform mass density ρ and radius r rotates at a constant angular

velocity ~ω around its N-S axis. A small block of mass m is located on the planet’s equator and at the

instant shown is at rest relative to the surface (meaning that it too is rotating around the axis with

constant angular velocity ~ω). Express all answers in terms of G, ρ, m and ω as needed or appropriate.

a) Draw the forces acting on the block into the picture, assuming that the planet’s rotation is slow

enough for the block to remain on the surface.

b) Derive an expression for the apparent weight of the block as a function of ω (the magnitude of the

angular velocity).

c) If the planet’s rotational speed is very slowly increased, at some point the normal force will go to

zero. Find T0, the period of the planet’s rotation when this occurs.
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Problem 541. problems-1/gravitation-pr-escape-velocity-linear-accelerator.tex
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One way to reduce the cost of lifting mass into orbit is to use a linear accelerator to drive a payload up

to escape velocity (or thereabouts) and then let it go. This way one doesn’t have to lift the fuel used to

lift the fuel used to lift the . . . (almost all the fuel used in a rocket is used to lift fuel, not payload).

Assume that fusion energy has been developed and electricity is cheap, and that high temperature

superconductors have made such a mass driver feasible. Your job is to do a first estimate of the design

parameters.

A proposed plan for the mass driver is shown above. The track is 100 kilometers long and slopes gently

upwards. The payload capsule has a mass of 2× 103 kg (two metric tons). The head of the track is high

in the Andes, R = 6375 kilometers from the center of the earth.

a) Neglecting air resistance, find the escape velocity for the capsule. Although bound orbits will

not require quite as much energy, air resistance will dissipate some energy. Either way, this is a

reasonable estimate of the velocity the driver must be able to produce.

b) Assuming that the capsule is started from rest and that a constant tangential force accelerates it,

find the tangential force necessary to achieve escape velocity at the end of the track. Note: Ignore

the normal force that the track must exert to divert it so that it departs at an upward angle.)

From this find the acceleration of the capsule, in multiples of g. Is this acceleration likely to be

tolerable to humans?
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Problem 542. problems-1/gravitation-pr-escape-velocity-neutron-star.tex
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Cool stuff about gravity. A neutron star has a mass M = 1030 kg and a radius R of 8 km. Answer the

following problems algebraically using the variables M , m, G, R first, then (if you have a calculator

handy or can do the arithmetic by hand) do the arithmetic and put down numbers. You can get full

credit from the algebra alone, but the number answers are pretty interesting.

a) What is the escape velocity from the surface of the neutron star? (If you do the arithmetic, express

the result as a fraction of c, the speed of light: c = 3× 108 m/sec).

b) A comet with a mass m = 1014 kg falls from infinity into the neutron star. What is the energy

liberated as it (inelastically) hits?

c) Compare this energy to the total (rest) mass energy of the comet, mc2.
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Problem 543. problems-1/gravitation-pr-escape-velocity-of-baseball.tex
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Suppose that planetary rock has an average density ρp. Assuming that you can throw a fastball in

baseball at vf find an expression (in terms of G, ρ, ve and known constants) for he radius R of the

largest spherical planet where you can stand on the surface and throw a baseball away to “infinity”

(so that it never comes back)?

If you want to have fun or “check” your algebra, try evaluating this expression for vf = 40 m/sec (nearly

90 mph) and ρp = 104 kg/m3. I get around 17 km, making the planet just about 10 miles in radius.

The same expression could be used to find the largest planet you could jump off of (assuming you have

a vertical leap of 1 meter on Earth).
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Problem 544. problems-1/gravitation-pr-geosync-orbit.tex

The Duke Communications company wants to put a satellite into a circular geosynchronous orbit over

the equator (this is a satellite whose period is exactly one day, so that it stays over the same point of

the rotating Earth).

Ignoring perturbations like the Moon and the Sun, find the radius Rg of such an orbit as a multiple of

the radius of the Earth Re. Although as always you should solve for the result algebraically first you may

wish to know some of the following data: The radius of the Moon’s orbit is Rm = 384, 000 kilometers, or

Rm = 60Re. The period of the Moon is Tm = 27.3 days compared to Tg = 1 day. Re = 6400 kilometers.

Me = 6× 1024 kilograms. One day contains 86400 seconds.
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Problem 545. problems-1/gravitation-pr-half-tunnel-escape.tex
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In the figure above a spherical planet of uniform density ρ and total radius R is shown. A small tunnel

is drilled from the surface to the center.

a) Find the magnitude of the gravitational field g(r) in the tunnel as a function of r.

b) How much work is required to lift a mass m at a constant speed from the center of this planet to

the surface?

c) Suppose the mass m has reached the surface of the planet and is at rest. What upward-directed

speed must you give the mass m at the surface so that the mass escapes from the planet altogether?
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Problem 546. problems-1/gravitation-pr-planet-with-spherical-hole.tex
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Above is pictured a spherical mass with radius R and mass density (mass per unit volume) ρ. It has a

spherical hole cut out of it of radius R/2 as shown. Find the gravitational field in the hole in terms of

G, R, and ρ, proving that it is uniform and points to the left.
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Problem 547. problems-1/gravitation-pr-spherical-cow.tex

There is an old physics joke involving cows, and you will need to use its punchline to solve this problem.

A cow is standing in the middle of an open, flat field. A plumb bob with a mass of 1 kg is suspended

via an unstretchable string 10 meters long so that it is hanging down roughly 2 meters away from the

center of mass of the cow. Making any reasonable assumptions you like or need to, estimate the angle

of deflection of the plumb bob from vertical due to the gravitational field of the cow.
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Problem 548. problems-1/gravitation-pr-thick-shell-force.tex

b

a

ρ

m

r

A “thick” shell of mass with uniform mass density ρ, inner radius a, and outer radius b is shown. A

small (frictionless) hole has been drilled at the top along the z axis, and a mass m is at a distance r

from the center of the shell along the z axis so that it can be moved vertically up or down from outside

of the shell to the inside by means of the tunnel.

Find an expression for the magnitude of the radial force Fr acting on m when the mass is:

a) Outside of the shell of mass entirely, at some r > b.

b) In the tunnel, where a < r < b.

c) Inside the shell, at some point r < a.
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Problem 549. problems-1/gravitation-pr-tides-moe-and-joe.tex
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Moe and Joe, who have identical masses m, are in a circular orbit around a black hole about the size

of a marble, which contains roughly the same mass M as the earth, in the orientation shown above. The

radius of the orbit of their center of mass is R (which we’ll assume is much larger than the BH). Moe

and Joe and tied with a very strong rope 2d meters long (with d ≪ R) that keeps them moving around

the Black Hole at the same angular speed as their center of mass. Alas, this means that neither Joe

nor Moe are actually in orbit (free fall) so the rope has to exert a force to keep them moving with their

center of mass. Find:

a) The speed vc of their center of mass in the circular orbit, as well as its angular speed ωc, as a function

of G, M , and R. This is just an ordinary circular orbit problem, don’t make it overcomplicated.

b) If Joe (closer to the BH) is moving in a circular trajectory with radius R−d and the same angular

velocity that you obtained in a) as the orbital angular velocity correct for radius R, what is the

net force that must be exerted on Joe by the BH and the rope together?

c) What is the force exerted on Joe by the BH alone at this radius?

d) Therefore, what must the tension T be in the rope (still as a function of G, M , m, R and d)?

This “force” (opposed by the tension T ) is the tide.



15.1. GRAVITY 599

Problem 550. problems-1/gravitation-pr-tunnel-through-death-star-orbit.tex
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A straight, smooth (frictionless) transit tunnel is dug through a spherical asteroid of radius R and mass

M that has been converted into Darth Vader’s death star. The tunnel is in the equatorial plane and

passes through the center of the death star. The death star moves about in a hard vacuum, of course,

and the tunnel is open so there are no drag forces acting on masses moving through it.

a) Find the force acting on a car of mass m a distance r < R from the center of the death star.

b) You are commanded to find the precise rotational frequency of the death star ω such that objects

in the tunnel will orbit at that frequency and hence will appear to remain at rest relative to the

tunnel at any point along it. That way Darth can Use the Dark Side to move himself along it

almost without straining his midichlorians. In the meantime, he is reaching his crooked fingers

towards you and you feel a choking sensation, so better start to work.

c) Which of Kepler’s laws does your orbit satisfy, and why?
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Problem 551. problems-1/gravitation-pr-tunnel-through-planet-oscillator.tex
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A straight, smooth (frictionless) transit tunnel is dug through a planet of radius R whose mass density

ρ0 is constant. The tunnel passes through the center of the planet and is lined up with its axis of rotation

(so that the planet’s rotation is irrelevant to this problem). All the air is evacuated from the tunnel to

eliminate drag forces.

a) Find the force acting on a car of mass m a distance r < R from the center of the planet.

b) Write Newton’s second law for the car, and extract the differential equation of motion. From this

find r(t) for the car, assuming that it starts at r0 = R on the North Pole at time t = 0.

c) How long does it take the car to get to the center of the planet starting from rest at the North Pole?

How long does it take if one starts half way down to the center? Comment.

All answers should be given in terms of G, ρ0, R and m (or in terms of quantities you’ve already defined

in terms of these quantities, such as ω).
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Problem 552. problems-1/gravitation-pr-two-densities-difficult.tex
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In the figure above a spherical planet of total radius R is shown that has a spherical iron core with radius

R/2 and density 2ρ surrounded by a (liquid) rock mantle with density ρ.

a) Find the gravitational field ~g(r) as a function of the distance from the center.

b) Suppose a small, well-insulated tunnel were drilled all the way to the center. How much work is

required to lift a mass m from the center to the surface?
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Problem 553. problems-1/gravitation-pr-two-spherical-shells.tex
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A hollow spherical mass shell of mass M1 and radius R is inside another hollow spherical mass shell of

mass M2 and radius 2R. The shells are concentric and of negligible thickness.

a) A small mass m is placed on the outer surface of the bigger shell M2. Calculate its acceleration

due to gravity g2 in terms of the shell masses M1 and M2, G and R.

b) The mass m is placed on the outer surface of the smaller shell M1. Its acceleration due to gravity

g1 is measured and found to be the same as the value of g2 from part (a). Use this equality of g1
and g2 to express M2 in terms of M1, G and R.

c) With the relationship you have just derived between M1 and M2, compute the gravitational po-

tential energy P1 of a mass m on the outer surface of the bigger shell. Express P1 in terms of G, m,

M1 and R, using the convention that the gravitation potential is defined as zero at infinite radius.

d) Compute the change in gravitational potential energy ∆P as the mass m moves from its position

on the outer surface of M2 to a position on the outer surface of of M1 (being lowered through the

small hole in the outer shell). Is the potential energy larger (more positive) at R or 2R?

e) If an object is dropped from rest through the hole in the bigger shell, what is its speed when it hits

the smaller shell? You may give this answer in terms of ∆P so that you can get it right even if

you get (d) wrong.
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Problem 554. problems-1/gravitation-pr-vector-field-two-masses.tex
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The large mass above is the Earth, the smaller mass the Moon. Find an expression for the vector

gravitational field acting on the spaceship on its way from Earth to Mars (swinging past the Moon at

the instant drawn) in the picture above, in terms of M , m and d. Remember, magnitude and direction!
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