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Preface

This introductory text on thermodynamics, relativity theory, and quantum mechan-

ics is intended to be used in the third semester of a three-semester series of

courses teaching introductory physics at the college level. This course is most

often taken only by physics majors, math majors, and/or engineers. The text is in-

tended to support teaching the material at a rapid, but advanced level – it was

developed to support teaching introductory calculus-based physics to potential

physics majors, engineers, and other natural science majors at Duke University

over a period of more than twenty-five years.

Students who hope to succeed in learning physics from this text will need, as

a minimum prerequisite, a solid grasp of mathematics. It is strongly recommended

that all students have mastered mathematics at least through multivariable differ-

ential and integral calculus by the time they take this third semester course and

hence are familiar with e.g. the concept of the partial derivative and have some

knowledge of simple first and second order differential equations.

To help students who are, perhaps, a bit shaky in their math preparation, A

separate supplementary text intended specifically to help students of introductory

physics quickly and efficiently review the required math is being prepared as a

companion volume to all semesters of introductory physics. Indeed, it should really

be quite useful for any course being taught with any textbook series and not just

this one.

This book is located here:

http://www.phy.duke.edu/∼rgb/Class/math for intro physics.php

and I strongly suggest that all students who are reading these words preparing to

begin studying introductory physics pause for a moment, visit this site, and either

download the pdf or bookmark the site.

It is also strongly suggested that (new) students using this volume in the series

as their first visit and look over Part 1 of Introductory Physics I, the first volume

of this series. It is devoted not to physics or math but to how to learn physics

effectively and rapidly, in particular how to work towards mastery of the material

instead of just “getting through it” a single time. Mastery is important, whether your

ultimate goal is to stop after this class or proceed on with a major, minor, or other

iii
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physics-intensive study in another discipline.

Textbook Layout and Design

This textbook has a design that is just about perfectly backwards compared to most

textbooks that currently cover the subject. Here are its primary design features:

• All mathematics required by the student is reviewed in a standalone, cross-

referenced (free) work at the beginning of the book rather than in an appendix

that many students never find.

• There are only twelve chapters. The book is organized so that it can be

sanely taught in a single college semester with at most a chapter a week.

• It begins each chapter with an “abstract” and chapter summary. Detail, espe-

cially lecture-note style mathematical detail, follows the summary rather than

the other way around.

• This text does not spend page after page trying to explain in English how

physics works (prose which to my experience nobody reads anyway). In-

stead, a terse “lecture note” style presentation outlines the main points and

presents considerable mathematical detail to support solving problems.

• Verbal and conceptual understanding is, of course, very important. It is ex-

pected to come from verbal instruction and discussion in the classroom and

recitation and lab. This textbook relies on having a committed and competent

instructor and a sensible learning process.

• Each chapter ends with a short (by modern standards) selection of challeng-

ing homework problems. A good student might well get through all of the

problems in the book, rather than at most 10% of them as is the general rule

for other texts.

• The problems are weakly sorted out by level, as this text is intended to sup-

port non-physics science and pre-health profession students, engineers, and

physics majors all three. The material covered is of course the same for all

three, but the level of detail and difficulty of the math used and required is a

bit different.

• The textbook is entirely algebraic in its presentation and problem solving re-

quirements – with very few exceptions no calculators should be required to

solve problems. The author assumes that any student taking physics is ca-

pable of punching numbers into a calculator, but it is algebra that ultimately

determines the formula that they should be computing. Numbers are used
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in problems only to illustrate what “reasonable” numbers might be for a given

real-world physical situation or where the problems cannot reasonably be

solved algebraically (e.g. resistance networks).

This layout provides considerable benefits to both instructor and student. This

textbook supports a top-down style of learning, where one learns each distinct

chapter topic by quickly getting the main points onboard via the summary, then

derives them or explores them in detail, then applies them to example problems.

Finally one uses what one has started to learn working in groups and with direct

mentoring and support from the instructors, to solve highly challenging problems

that cannot be solved without acquiring the deeper level of understanding that is,

or should be, the goal one is striving for.

It’s without doubt a lot of work. Nobody said learning physics would be easy,

and this book certainly doesn’t claim to make it so. However, this approach will (for

most students) work.

The reward, in the end, is the ability to see the entire world around you through

new eyes, understanding much of the “magic” of the causal chain of physical forces

that makes all things unfold in time. Natural Law is a strange, beautiful sort of

magic; one that is utterly impersonal and mechanical and yet filled with structure

and mathematics and light. It makes sense, both in and of itself and of the physical

world you observe.

Enjoy.
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Let us begin our actual week by week, day by day progress through the course

material. For maximal ease of use for you the student and (one hopes) your in-

structor whether or not that instructor is me, the course is designed to cover one

chapter per week-equivalent, whether or not the chapter is broken up into a day

and a half of lecture (summer school), an hour a day (MWF), or an hour and a half

a day (TTh) in a semester based scheme. To emphasize this preferred rhythm,

each chapter will be referred to by the week it would normally be covered in my

own semester-long course.

A week’s work in all cases covers just about exactly one “topic” in the course.

A very few are spread out over two weeks; one or two compress two related topics

into one week, but in all cases the homework is assigned on a weekly rhythm to

give you ample opportunity to use the method of three passes described in the first

part of the book, culminating in an expected 2-3 hour recitation where you should

go over the assigned homework in a group of three to six students, with a mentor

handy to help you where you get stuck, with a goal of getting all of the homework

perfectly correct by the end of recitation.

That is, at the end of a week plus its recitation, you should be able to do all

of the week’s homework, perfectly, and without looking or outside help. You will

usually need all three passes, the last one working in a group, plus the mentored

recitation to achieve this degree of competence! But without it, surely the entire

process is a waste of time. Just finishing the homework is not enough, the whole

point of the homework is to help you learn the material and it is the latter that is the

real goal of the activity not the mere completion of a task.

However, if you do this – attempt to really master the material – you are almost

certain to do well on a quiz that terminates the recitation period, and you will be

very likely to retain the material and not have to “cram” it in again for the hour

exams and/or final exam later in the course. Once you achieve understanding and

reinforce it with a fair bit of repetition and practice, most students will naturally

transform this experience into remarkably deep and permanent learning.

Note well that each week is organized for maximal ease of learning with the

week/chapter review first. Try to always look at this review before lecture even

if you skip reading the chapter itself until later, when you start your homework.

Skimming the whole week/chapter guided by this summary before lecture is, of

course, better still. It is a “first pass” that can often make lecture much easier to

follow and help free you from the tyranny of note-taking as you only need to note

differences in the presentation from this text and perhaps the answers to questions

that helped you understand something during the discussion. Then read or skim it

again right before each homework pass.
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Week 1: The 0th Law of

Thermodynamics

0th Law of Thermodynamics Summary

• Thermal Equilibrium

A system with many microscopic components (for example, a gas, a liquid, a

solid with many molecules) that is isolated from all forms of energy exchange

and left alone for a “long time” moves toward a state of thermal equilibrium.

A system in thermal equilibrium is characterized by a set of macroscopic

quantities that depend on the system in question and characterize its “state”

(such as pressure, volume, density) that do not change in time.

Two systems are said to be in (mutual) thermal equilibrium if, when they are

placed in “thermal contact” (basically, contact that permits the exchange of

energy between them), their state variables do not change.

• Zeroth Law of Thermodynamics

If system A is in thermal equilibrium with system C, and system B is in ther-

mal equilibrium with system C, then system A is in thermal equilibrium with

system B.

• Temperature and Thermometers

The point of the Zeroth Law is that it is the basis of the thermometer. A

thermometer is a portable device whose thermal state is related linearly to

some simple property, for example its density or pressure. Once a suitable

temperature scale is defined for the device, one can use it to measure the

temperature of a variety of disparate systems in thermal equilibrium. Tem-

perature thus characterizes thermal equilibrium.

• Temperature Scales

a) Fahrenheit: This is one of the oldest scales, and is based on the coldest

temperature that could be achieved with a mix of ice and alcohol. In it

the freezing point of water is at 32◦ F, the boiling point of water is at 212◦

F.

5



6 Week 1: The 0th Law of Thermodynamics

b) Celsius or Centigrade: This is a very sane system, where the freezing

point of water is at 0◦ C and the boiling point is at 100◦ C. The degree

size is thus 9/5 as big as the Fahrenheit degree.

c) Kelvin or Absolute: 0◦ K is the lowest possible temperature, where the

internal energy of a system is at its absolute minimum. The degree size

is the same as that of the Centigrade or Celsius scale. This makes the

freezing point of water at atmospheric pressure 273.16◦ K, the boiling

point at 373.16◦ K.

• Thermal Expansion

∆L = αL∆T (1.1)

where α is the coefficient of linear expansion. If one applies this in three

dimensions:

∆V = βV∆T (1.2)

where β = 3α.

• Ideal Gas Law

PV = nRT = NkT (1.3)

where R = 8.315 J/mol-K, and k = R/NA = 1.38×10−23 J/K.
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Week 2: The First Law of

Thermodynamics

First Law of Thermodynamics Summary

• Internal Energy

Internal energy is all the mechanical energy in all the components of a sys-

tem. For example, in a monoatomic gas it might be the sum of the kinetic

energies of all the gas atoms. In a solid it might be the sum of the kinetic and

potential energies of all the particles that make up the solid.

• Heat

Heat is a bit more complicated. It is internal energy as well, but it is internal

energy that is transferred into or out of a given system. Furthermore, it is

in some fundamental sense “disorganized” internal energy – energy with no

particular organization, random energy. Heat flows into or out of a system in

response to a temperature difference, always flowing from hotter temperature

regions (cooling them) to cooler ones (warming them).

Common units of heat include the ever-popular Joule and the calorie (the

heat required to raise the temperature of 1 gram of water at 14.5◦ C to 15.5◦

C. Note that 1 cal = 4.186 J. Less common and more esoteric ones like the

British Thermal Unit (BTU) and erg will be mostly ignored in this course; BTUs

raise the temperature of one pound of water by one degree Fahrenheit, for

example. Ugly.

• Heat Capacity

If one adds heat to an object, its temperature usually increases (exceptions

include at a state boundary, for example when a liquid boils). In many cases

the temperature change is linear in the amount of heat added. We define the

heat capacity C of an object from the relation:

∆Q = C∆T (2.1)

where ∆Q is the heat that flows into a system to increase its temperature

by ∆T . Many substances have a known heat capacity per unit mass. This

9



10 Week 2: The First Law of Thermodynamics

permits us to also write:

∆Q = mc∆T (2.2)

where c is the specific heat of a substance. The specific heat of liquid water

is approximately:

cwater = 1calorie/gram−◦ C (2.3)

(as one might guess from the definition of the calorie above).

• Latent Heat As noted above, there are particular times when one can add

heat to a system and not change its temperature. One such time is when the

system is changing state from/to solid to/from liquid, or from/to liquid to/from

gas. At those times, one adds (or removes) heat when the system is at fixed

temperature until the state change is complete. The specific heat may well

change across phase boundaries. There are two trivial equations to learn:

∆Qf = mLf (2.4)

∆Qv = mLv (2.5)

where Lf is the latent heat of fusion and Lv is the latent heat of vaporiza-

tion. Two important numbers to keep in mind are Lf (H2O) = 333 kJ/kg, and

Lv(H2O) = 2260 kJ/kg. Note the high value of the latter – the reason that

“steam burns worse than water”.

• Work Done by a Gas

W =

∫ Vf

Vi

PdV (2.6)

This is the area under the P (V ) curve, suggesting that we draw lots of state

diagrams on a P and V coordinate system. Both heat transfer and word

depend on the path a gas takes P (V ) moving from one pressure and volume

to another.

• The First Law of Thermodynamics

∆Eint = ∆Q−W (2.7)

In words, this is that the change in total mechanical energy of a system is

equal to heat put into the system plus the work done on the system (which is

minus the work done by the system, hence the minus above).

This is just, at long last, the fully generalized law of conservation of energy. All

the cases where mechanical energy was not conserved in previous chapters

because of nonconservative forces, the missing energy appeared as heat,

energy that naturally flows from hotter systems to cooler ones.

• Cyclic Processes Most of what we study in these final sections will lead us

to an understanding of simple heat engines based on gas expanding in a
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cylinder and doing work against a piston. In order to build a true engine, the

engine has to go around in a repetitive cycle. This cycle typically is repre-

sented by a closed loop on a state e.g. P (V ) curve. A direct consequence of

the 1st law is that the net work done by the system per cycle is the area

inside the loop of the P (V ) diagram. Since the internal energy is the same

at the beginning and the end of the cycle, it also tells us that:

∆Qcycle = Wcycle (2.8)

the heat that flows into the system per cycle must exactly equal the work

done by the system per cycle.

• Adiabatic Processes are processes (PV curves) such that no heat enters

or leaves an (insulated) system.

• Isothermal Processes are processes where the temperature T of the sys-

tem remains constant.

• Isobaric Processes are processes that occur at constant pressure.

• Isovolumetric Processses are processes that occur at constant volume.

• Work done by an Ideal Gas: Recall,

PV = NkT (2.9)

where N is the number of gas atoms or molecules. Isothermal work at (fixed)

temperature T0 is thus:

W =

∫ V2

V1

NkT0

V
dV (2.10)

= NkT ln(
V2

V1

) (2.11)

Isobaric work is trivial. P = P0 is a constant, so

W =

∫ V2

V1

P0dV = P0(V2 − V1) (2.12)

Adiabatic work is a bit tricky and depends on some of the internal properties

of the gas (for example, whether it is mono- or diatomic). We’ll examine this

in the next section.
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Week 3: The Second Law of

Thermodynamics

Second Law of Thermodynamics Summary

• Heat Engines

A heat engine is a cyclic device that takes heat QH in from a hot reservoir,

converts some of it to work W , and rejects the rest of it QC to a cold reservoir

so that at the end of a cycle it is in the same state (and has the same internal

energy) with which it began. The net work done per cycle is (recall) the area

inside the PV curve.

The efficiency of a heat engine is defined to be

ǫ =
W

QH

=
QH −QC

QH

= 1− QC

QH

(3.1)

• Kelvin-Planck statement of the Second Law of Thermodynamics

It is impossible to construct a cyclic heat engine that produces no other effect

but the absorption of energy from a hot reservoir and the production of an

equal amount of work.

• Refrigerators (and Heat Pumps)

A refrigerator is basically a cyclic heat engine run backwards. In a cycle it

takes heat QC in from a cold reservoir, does work W on it, and rejects a heat

QH to a hot reservoir. Its net effect is thus to make the cold reservoir colder

(refrigeration) by removing heat from inside it to the warmer warm reservoir

(warming it still further, e.g. as a heat pump). Both of these functions have

practical applications – cooling our homes in summer, heating our homes in

winter.

The coefficient of performance of a refrigerator is defined to be

COP =
QC

W
(3.2)

It is not uncommon for heat pumps to have a COP of 3-5 (depending on the

temperature differential) giving them a significant economic advantage over

13



14 Week 3: The Second Law of Thermodynamics

resistive heating. The bad side is that they don’t work terribly well when the

temperature difference is large in degrees K.

• Clausius Statement of the Second Law of Thermodynamics

It is impossible to construct a cyclic refrigerator whose sole effect is the trans-

fer of energy from a cold reservoir to a warm reservoir without the input of

energy by work.

• bf Reversible Processes Reversible processes are ones where no friction

or turbulence or dissipative forces are present that represent an additional

source of energy loss or gain for a given system. For the purposes of this

book, both adiabatic and isothermal processes are reversible. Irreversible

processes include the transfer of heat energy from a hot to a cold reservoir

in general – heat engines and refrigerators can be constructed whose steps

in a cycle are all reversible, but the overall effect of transferring heat one way

or the other is irreversible.

• Carnot Engine

The Carnot Cycle is the archetypical reversible cycle, and a Carnot Cycle-

based heat engine is one that does not dissipate any energy internally and

uses only reversible steps. Carnot’s Theorem states that no real heat engine

operating between a hot reservoir at temperature TH and a cold reservoir

at temperature TC can be more efficient than a Carnot engine operating be-

tween those two reservoirs.

The Carnot efficiency is easy to compute (see text and lecture example). A

Carnot Cycle consists of four steps:

a) Isothermal expansion (in contact with the heat reservoir)

b) Adiabatic expansion (after the heat reservoir is removed)

c) Isothermal compression (in contact with the cold reservoir)

d) Adiabatic compression (after the cold reservoir is removed)

The efficiency of a Carnot Engine is:

ǫCarnot = 1− TC

TH

(3.3)

• Entropy

Entropy S is a measure of disorder. The change in entropy of a system can

be evaluated by integrating:

dS =
dQ

T
(3.4)
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between successive infinitesimally separated equilibrium states (the weasel

language is necessary because temperature should be constant in equilib-

rium, but systems in equilibrium have constant entropy). Thus:

∆S =

∫

Ti

Tf

dQ

T
(3.5)

has limited utility except for particularly simple processes (like the cooling of

a hot piece of metal in a body of cold water.

We extend our definition of reversible processes. A reversible process is one

where the entropy of the system does not change. An irreversible process

increases the entropy of the system and its surroundings.

• Entropy Statement of the Second Law of Thermodynamics

The entropy of the Universe never decreases. It either increases (for irre-

versible processes) or remains the same (for reversible processes).
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Week 4: Heat Transport

Heat Transport Summary

• Conduction: Fourier’s Law

~q = −κ~∇T

where ~q is the local vector heat flux in watts per meter squared, κ is the ma-

terial’s conductivity, in Watts
m2K◦

, and T is the local temperature field (temperature

as a function of position in the material) in ◦K.

• The Heat Equation

• Convection

• Radiation

17
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Week 5: The Lorentz Transformation

Here are two very simple derivations of the theory of special relativity in one di-

mension, also known as the Lorentz transformation in one dimension. The first is

given in many places, for example by Einstein in his 1920 book on relativity (as

Appendix 1). Let’s consider the usual Galilean coordinate frame transformation:

v

x,x’
z,z’

y,y’

flash of light

Figure 1: Two coordinate frames, S = (x, y, z, t) and S ′ = (x′, y′, z′, t′) that have

coincident origins at t = t′ = 0.

In figure 1, two “inertial reference frame” (IRF) coordinate systems are shown,

with the system S ′ in uniform (constant velocity) motion at speed v in the +x di-

rection. As is well known and easy to show, the Galilean (non-relativistic) trans-

formation between the frames that results in their origins coinciding at t = t′ = 0

is:

x′ = x− vt (5.1)

y′ = y (5.2)

z′ = z (5.3)

t′ = t (5.4)

where the universal assumption is that time itself is invariant in all frames, t =

t′. This coordinate transformation has the virtue of preserving Newton’s Laws of

Motion as long as all of the forces that appear in it are one member of Newton’s

Third Law pairs – no “pseudoforces” lacking a third law partner and resulting from

the acceleration of the frame are needed to solve the second law equations of

motion consistently, and all of the third-law-consistent force laws are presumed to

themselves be invariant under conversion from S to S ′ coorindates.

However, this last assumption is violated by Maxwell’s equations and the laws

of electrodynamics. As formulated in one IRF, they lead unambiguously to an elec-

21



22 Week 5: The Lorentz Transformation

tromagnetic wave equation. If one changes reference frames according to the

Galilean prescription, they do not. One is then faced with a conundrum: No matter

what, Newton’s Laws are not going to be invariant under Galilean inertial refer-

ence frame changes, because the force laws associated with the best understood

force of nature are themselves not invariant. Either we give on the invariance of

the forces of nature under Galilean IRF transformations or give up Galilean frame

transformations and search for a new IRF transformation that preserves the in-

variance of the laws of electrodynamics (and hopefully, all the other force laws as

well).

One key implication of Maxwell’s equations is that the speed of light in a vacuum

is:

c =
1

√
ǫ0µ0

=

√

ke
km

(5.5)

If this speed is empirically observed to be different when measured in different

IRFs, then we should select the first choice, however painful. If not, we should

select the second and search for a new IRF transformation that preserves the form

of Maxwell’s equations (and all of the consequences of preserving that form) as

invariant laws of nature, among them the very simple consequence that the speed

of light in a vacuum itself is invariant under all IRF transformations.

Einstein (according to self-reported legend, if not third-party history) had in-

tuitively figured this out by thinking about whether or not simple electromagnetic

experiments performed on a moving light wave could depend on whether or not

these experiments were conducted in a frame, like that of a moving train, moving

in the direction of the beam. He concluded (in agreement with the general argu-

ment above) that the invariance of the speed of light and of Maxwell’s equations

were tied together all the way back in what amounts to “high school”.

This led to him introducing what is recorded as two postulates, but is really only

one (plus the pre-existing postulate that Maxwell’s equations are laws of nature):

a) The laws of nature are invariant with respect to transformations be-

tween inertial reference frames. Note that this postulate is hardly original

to Einstein and was the original motivation for the existing Galilean transfor-

mation from the time of Newton on.

b) Maxwell’s equations and the general equations of electrodynamics are laws

of nature, and hence must be invariant with respect to IRF transformations.

To keep it simple, he reduced this to the single “postulate” that the speed of

light is invariant under all inertial reference frame transformations.

When assigning credit for all this, it is important to realize that all of this had al-

ready been worked out and applied to Maxwell’s equations by a number of “the

giants” of physics of the day years before Einstein published his 1905 paper, which
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is one reason among many that Einstein did not win a Nobel prize for relativity! He

actually was not even close to being the first person to derive the theory of rela-

tivity. The one flaw in the previous treatments and derivations of relativity from the

assumption that Maxwell’s equations would be invariant was they often made the

additional assumption of the existence of some sort of medium for the propaga-

tion of electromagnetic waves – the “luminiferous aether” which was presumed to

carry light waves the same way air carries sound waves – which led to consistency

issues and which was contradicted by the Michelson-Morley experiment in 1897.

By 1905 (the year Einstein published his theory of special relativity), Henri

Poincaré had even realized that the set of well-known coordinate transformations

that leave Maxwell’s equations invariant form a group, which he named the Lorentz

transformation, and was hot on the trail of the rest of the kinematical consequences,

but he failed to appreciate two things that Einstein’s derivation made clear. Ein-

stein’s paper, in addition to resulting in a remarkably simple statement of and

derivation of the result (the Lorentz transformation), worked out most of the impor-

tant kinematic and dynamic consequences for simple motions and frame changes,

and from the beginning established the symmetry of frame transformations and

the consequent necessary abandonment of the concept of simultaneity and uni-

versal time, which Poincaré at that time still preserved. Finally, Einstein’s paper

eliminated any need for the concept of the aether as unnecessary, which meant

that it was in agreement with Michelson-Morley from the beginning.

These contributions sufficed to make the resulting derivation of the Lorentz

transformation “Einstein’s” for the rest of all time in the same way that the addition

of Maxwell’s Displacement Current to Ampere’s Law made the set of electrody-

namic equations (worked out by Franklin, Gauss, Coulomb, Ampere, and Faraday

into “Maxwell’s equations” (no doubt to the dismay of Michael Faraday, who had

made at least an equal contribution in the form of Faraday’s Law).

Let’s apply Einstein’s second postulate to both of the frame transformations

implicit in the figure above. Suppose (as shown) a single flash of light is emitted

at their coincident origins at time t = t′ = 0. Then in both frames, light must

spread out in a sphere centered on each frame’s origin. That is, if we let x be the

location(s) of the wavefront emitted at t = 0 on the ±x̂-axis of the S frame and

x′ be the location(s) of the wavefront emitted at t′ = 0 on the ±x̂′-axis (note that

the wave spreads out in a sphere in both frames, so there is an obvious symmetry

between the distance it has moved in +x̂ and −x̂, etc) we get:

x′ − ct′ = x− ct = 0 (along the + x̂ direction) (5.6)

and:

x′ + ct′ = x+ ct = 0 (along the − x̂ direction) (5.7)

These waves are illustrated in figure 2.

Note that the wave that is spreading out symmetrically in S is completely offset

relative to the (moving in S) origin of S ′, so that the wave does not appear to be
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y y’

z z’
x x’

ct ct

y y’

z z’
x x’

ct’ ct’

Spherical Light Wavefront

S frame

S’ frame

vt

vt’

Figure 2: Spherical wavefronts of light emitted at the mutual space-time origin from

figure 1, as seen by observers in frame S and S ′. Note that these observers com-

pletely disagree about what the observers in the other frame see in this (necesarily)

Galilean depiction of the frames.

spherically symmetric in S ′. But the observer in S ′ thinks that it is the wavefront

in S ′ that is spreading out in a sphere around the S ′ origin and this wavefront is

obviousl not symmetric around the (moving in S ′) origin of S! It is this picture that is

particularly difficult for a student to initially grasp and visualize, because we live in

a low-velocity v ≪ c world where the two pictures are practically indistinguishable

in either direction.

If you feel like your brain is exploding as you try to imagine both pictures to

simultaneously be true and correct depending on which frame you are sitting

in, that is perfectly normal. Relativity is famous, after all, for inducing a paradigm

shift in our view of reality, which basically means that it (like quantum mechanics)

makes everybody’s brain explode when they first encounter it. Our job now is to

put the pieces of your brain back together in such a way that you can see that the

result, however difficult to visualize, is consistent and ultimately is in agreement

with experiment (the only things that really matter in the long run). Over time

and with some hard work and luck, you’ll build up a new and improved brain that

accepts this as just the way things (seem to) work and even learns to visualize

what’s going on, using tricks I’ll illustrate as best I can below.

For the moment, let’s completely ignore any better way to visualize this and get

on with the algebra inherent in the picture and equations above to deduce the sim-

plest form of the IRF transformation that makes it true. It is completely harmless
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to multiply one side of the first of the equations above with a dimensionless con-

stant λ, and to multiply the same side of the second with a second dimensionless

constant µ. That is:

x′ − ct′ = λ(x− ct) = λ× 0 = 0 (5.8)

x′ + ct′ = µ(x− ct) = µ× 0 = 0 (5.9)

Distribute (and lose the zeros, we don’t need them any more):

x′ − ct′ = λx− λct (5.10)

x′ + ct′ = µx− µct (5.11)

Add them to eliminate ct′, subtract them to eliminate x′:

2x′ = (λ+ µ)x− (λ− µ)ct (5.12)

−2ct′ = (λ− µ)x− (λ+ µ)ct (5.13)

Divide, and rename the resulting combinations of λ and µ to simplify:

x′ =
λ+ µ

2
x− λ− µ

2
ct = γx− βct (5.14)

t′ = −λ− µ

2c
x+

λ+ µ

2
t = γt− β

c
x (5.15)

where we replace (permanently) the arbitrary λ and µ with the equally arbitrary (but

now consistently implemented):

γ =
λ+ µ

2
(5.16)

β =
λ− µ

2
(5.17)

Consider the origin of the S ′ frame, x′ = 0. At that point we must always have:

x′ = γx− βct = γ

(

x− β

γ
ct

)

= 0 (5.18)

But x = vt is the location of the S ′ origin in S! Hence, allowing for nontrivial γ 6= 0:

vt− β

γ
ct = 0 =⇒ v =

βc

γ
(5.19)

This let’s us rewrite our transformation equations in a simpler form:

x′ = γ (x− vt) (5.20)

t′ = γ
(

t− v

c2
x
)

(5.21)
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Now we implement the “startling” result that the exact same relationship has to

work in the other direction, that is, going from x′, t′ back to x, t we simply replace

v → −v as S is moving in the −x̂′ direction:

x = γ (x′ + vt′) (5.22)

t = γ
(

t′ +
v

c2
x′

)

(5.23)

Note that we have to require both of these conditions simultaneously to solve for γ,

essentially insisting that if we transform from S to S ′ and then transform back from

S ′ to S using the same transformation, we get back to where we started! This is

essentially a consistency condition. Substituting:

x = γ
{

γ (x− vt) + vγ
(

t− v

c2
x
)}

(5.24)

t = γ
{

γ
(

t− v

c2
x
)

+
v

c2
γ (x− vt)

}

(5.25)

Hence:

x = γ2

{

(x− vt) +

(

vt− v2

c2
x

)}

= γ2

(

1− v2

c2

)

x (5.26)

or:

γ2

(

1− v2

c2

)

= 1 =⇒ γ =
+1

√

1− v2

c2

(5.27)

We have ignored propagation in y and z because just requiring y = y′ and z = z′

suffices to ensure that both waves are spheres in S and S ′ respectively. One can

do a more careful job of this (and not assume anything about the direction of ~v,

for example) but there is no point in doing so using this simple framework in an

introductory work – later, in a “real electrodynamics” course you will in all probability

derive the special Lorentz group properly and such concerns will vanish once and

for all, but this is actually sufficient and one can always choose coordinates initially

so that x and x′ line up with the direction of ~v.

We conclude that to go from S to S ′ coordinates we use:

x′ = γ (x− vt) (5.28)

t′ = γ
(

t− v

c2
x
)

(5.29)

y′ = y (5.30)

z′ = z (5.31)

and to go back from S ′ to S we use the exact same transformation except that (of

course) now ~v → −~v describes the position of the S origin in S ′, so we change the

sign of v in the transformation:

x = γ (x′ + vt′) (5.32)

t = γ
(

t′ +
v

c2
x′

)

(5.33)

y = y (5.34)

z = z (5.35)
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where:

γ =
+1

√

1− v2

c2

(5.36)

There are two very important observations that I omitted in the derivation above

but that you should be aware of. First, since we managed quite well with the good

old Galilean transformation for well over a century (if not longer, as it was intuitive

from experience long before it was quantified) it is worth pointing out that when

v ≪ c, γ → 1 and the Lorentz transformation asymptotically approaches the

Galilean transformation.

The second is that I cheated just a bit when I wrote the “+” sign in the defini-

tion of γ without explaining that I was choosing it so that this would be the case!

After all, there is nothing in the math above that prohibits the minus sign solution

from working! That’s an important example of the difference between pure math

and physics. We are not just finding the set of all transformations (at this time,

anyway) that leave the speed of light invariant in all frames, because they include

things like simply inverting the coordinate axes, inverting the time coordinate, and

for that matter rotations of the coordinates. Right now we want only the subset of

all such transformations that reduce in the low velocity limit to only the Galilean

transformation, the usual transformation that lets you relate what you see throwing

a ball up and down in a moving car to what an observer on the ground sees. It

would be odd indeed1 if the ground observer saw a mirror image of the motion of

the motion they do in fact see, but from the point of view of not violating the laws of

physics per se both alternatives are possible and correspond to a simple redefini-

tion of the coordinates. Again, all of this will eventually be treated “correctly” in one

or more advanced courses, or if you are in a hurry you can visit e.g. Wikipedia:

http://www.wikipedia.org/wiki/Lorentz group and follow links, or look in a good book

on Electrodynamics.

1That’s a complex pun, by the way, based on the fact that picking up a minus sign under coordi-

nate inversion is the definition of odd functions...

http://www.wikipedia.org/wiki/Lorentz_group
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