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Ermmtions Du Joud

8 leizsurely Jowney through physics 352 with mothing but the

sscential facts and derivations on a lecture by lecture basis.

g 1. The Blectric Fipld

True Facts:

iy Charge is quentized. Charge is conserved. Charge has
(microscopic) wmits called electrostatic mits = esu which is  the
charge on a single proton or electron. Charge has TRCroscopic
units (81} called CoulonBs.

| esu = 1.6 X 10 “Coulombs

2} Pairs of charged objects are ohserved in Mature to exert
forces on one another. This foroe is oheeruved to be proportionsl
to both charges and inversely proportional to the square of the
distance separating them (if they are “swall” i.e.,——point like
objects) and acts along the straight line joining the objects. e

sy ize this as Coulowh's Law:

- ~ _ .2
oMtz o, with k = 9 X 10° %f—E—‘i-“—n
EF12
3 Forces are what we measure (with spring balances and the

Cike). Howsver, owr minds like to think that things (incluling
forces) have causes. With the electric force, there are "
strings” attached to the two charges, and it 1is difficult to
imagine what Ccauses the force. To alleviate this difficulty, we
mke up sowething that "connects” the tun charges. It is sowsthing
we imsgine to be at all points in space surrounding a2 charge, and
the effect of this something is to cause another charge, placed at
one of those points, to feel a certain force. We call this

something “The Electric Field”. Its definition is:
..§
> _F
E= lim —
g =+ @ e
Practically speaking, this definition is eguivalent to
4 Ea
= R% r for point charges.

i




EDJ 2. The Electric Field (oot bouesd ) .
BRecall from last time: Charge iz guantizsd. Charge iz conserved.

Coulowh’s Law (for point charges}
~3 - 2

Today we will cover:
1) How to draw Lin=s of Force. These are just a oconvenient

way to picture the Elec%ric Field.

23 How to ewvaluste the Eleptric Field {(or foree...? at a
point in space resulting frowm ons, twn, or more point charges.

This is done by using the superposition principle for the

electric field. The electric field at a given point in space is
the sum of the fields due to all “he charges in space:

kg, ..
B = E: 2& r.

. .
1 b

yhere r, is a unit wector from charge q; to the point of

ohservation, r. We will apply this to on2 and two point charges
located on the y-axis.
if the charge is continunusly distributed throughout somE

region of space, W2 use the integral version of this eguation:

-5 - (? - ; 3
B = kp(fg) e d3rg.
R3 7

-3 3
T"I‘gl

Hnte that p(?ak ic the ocontineous charge density dictribution
discussed below; the ?/l?|3 term is just a unit vector over r? in
the direction of 7 - ?0, We will apply this to a ring of charge, a
disk of charge, and a line of charge.

Q)



Lecture Hotes

These notes sccowpany the EDJ to desoribe physics 32. They contain
the derivations omitted from the By and an outline.

Lenture 1. The Electric Figld

i Introduction and greetings. Gyllabus, Stuly guide, Swvey.
{(¥o Lab this weskl.
23 Drop/add in Physics Bldg today.
37 Votivate study pattern/describe course, grading, etc.
4y IMotivate study of ERM. e vele e students e chag. |
al & forces
i} Nunlear forces important only on nuclear scale
(1@—15m}= Only iwportanoce to chemistry ic that wmassive, positive,

point-like nuolel exist.

i} CGravity only important on cosmological socale.
€1@B+m)g Can't sven see it unless objects of planstary wass
available.

Electric Forces dominate our gxperience. They are

& @%1®

important from 1@_1 m - i and are responsible from properties

of atoms, chemistry, biclogy (life) and light (what we see). They
are ubigui pus! e are (for all practical  purppses)
electromonetic phenomena!

So, we study Electromagnetism very carefully. In doing so we
come to wderstand the idea of “field” that frees us from the
“action at a distance” dilemna.

Lecture actumlly begins here.
3) 8n, what is Electromagnetism, where does it come from? Read
teut for history. It is forces betusen charges.
Trim Facts:
1} Charge is quantized. Charge is conserved. Charge has

(microscopic) umits called electrostatic units = esu vwhich is the

charge on a single proton or elegtron. Charge has wecroscopic
mits (81) called Coulowbs.
| esu = 1.6 X 10 Coulombs



23 Pairs of charged objects are ohserved in Hatwe to exert
forces on ons another. This force iz chesrved to be proportional
tn both ocharges and inversely proportional to the squars of the
distanne separating them (if they are “small” i.e.——point like
chjects) and acts along the straight line joining ths objects. =

summarize this as Coulowh’s Lawe

O - ERa with & = 9 K 10° N -
Brnzﬂé c

7} Forces are what we weasure (with spring balances and the
likel. However, owr minds like to think that things (including
forces) have CARUSES. With ths electric force, there are "1
strings” attached to the two charges, and it is difficult to
imegine what causes the force. To alleviate this difficulty, wa
make up something that "connects” the two charges. It is sowething
we imegine to be at all points in space surromwnding a charge, and
the effect of this sowething is to cause another charge, placed at
on= of those points, to fe=l a certain force. Ue call this

something "The Electric Field”. Its definition is:

-
% -
E = liwm —E—-n - ‘3—8-7-:%—-/" A
qo 2 @ 1° <Y
Practically speaking, this definition is eguivalent to
@ g,—o
:(".
- R ~
E = g r for point charges.
r



4} To do this, we osed the following definitions:
Charge per Unit Unlure/frea/length

Uolume charge density
- -
op= gt @

frea charge density

5 A 4@
ii} &= % “dh
Length charge density
@;&Q:EM@?L@:?@Q m@@:jk&ﬁis%%tntalmﬁmr@e
~ AV v AL A

containsd in soms vplume/area/ length of material AV AL AL,

43 In order to wderstand owe results we frequently want to
discover what our Fields look like when 7 is mch greater than or
less than the diwensions of the charge distribution. To do that we
need and should remewmber the Binomial Eipansion:

1f |y|¢1 then vwe can wite

2 3
(1 + v)n -1 + v + ni{n-1}v + n{n-1){n-3)y . .
’ ! 21 Y]

Sinne [yl(i the terws get smller rapidly. e rarely kesp wors
than the first swviving term tother than 1).

Please note that in the EDJ I will wot usumlly put down

explicitly the equations that result from, for example, the

application of E = kg r to several point charges. That is
r
hepause these results are not gensralt 1 want vou to learn

equations on the EDT and be able to apply them to any simple
problem that ocomes along, not just the ones presented in lecture.
In general the EDJ will contain laws of physics, vseful egquations

and concepts, and accasionally archetypical examples.



Lectare 2. The BEleptric Field (continsdl.
Recmll from last time: Charge is guentized. Charge is conseruved.
Coulowh’e Law (for point charges)

-3 4
Jid o~ . g N - m
F=—al2p, with k = 9 ¥ 187 ——

Efzz
The Electric Field (for point charges)
-2 T ~
E=—3__r.
=2
I

Today we will couver:
1} How to draw Lines of Force. These are Jjust a convenient

way to picture the Elecific Field.

2} Mo twn linss COross.

3) The nuwier of lines enterimg or leaving a charge is
proportional to the wagnitude of the charge.

THE BIOLE IDER is that the # of lines per wnit area passing
through a give surface is proportional to the magnitude of the
field. Remewber this ideaj it is Gauss’s Law and we will cover it
in gory detail next weel.

2} How to evaluate the Electric Field (or forge...) at a
point in space resulting from on=, two, or wore point charges.

iy Firnd E at a point on the x-axis in the diagram below.

Solution: From this we find




the components E = [Efcosg and E_ = [Efsing. But we also

v
“ s 2 - %g = =
need to Fimd ocosé = - = ] 2,172
iz a )
8 &
and sing = = 7 -
r dmz %+ é?}i!é

Putting the parts together yvields

kg kga
E = = = and B _= o
x = T2, 22,32 7= T2 4 25372

Sipme two conponents specify a vector (in the plane) we are done.
i)  Find the BE-field aon the x-axis from the diagram
helow. Note that this is a popular sort of quiz guestion.

=
£, 15> ‘ot
\ Ex s
&>
Sy ‘
Golution: First of all, chserve that E; = - E;g sp  that Ex = &

(if you don’t see this immediately work it out on your gun). MNote

further that E; = E;g <o that E_ = 2E,. Following what w= did in

4
iy, |E°] =g = kg . E; - |E'|sing, so putting it all together
el
~Zhga -~
we get E - V-
{xz + a2)3/2

) Eow to use E-= ka r to evalmte B for (arbitrary?)

charge distributions with applications. To do this we nesd to
define a few things:

Charge per Unit Vo lume/frea/length
Uolume charge density

- _ A dQ

Dop=Z0 @
frea charge density

i N, 99

ii) o= w- ¥ Tan

2.2,

a4



PN

Length charge density o
8o, 40 = g gV or 43 = jz odfh or AQ = § ndg is the total cherge
iy Ay Y

containsd in some volume/area/length of material AV/AG/AL. Got it?
Then we

i} Find B-field of ring of charge at an arbitrary point
on (its) x-axis. The ring has total charge § and radius a, SO it

has a charge density h =
e ds =@&de

. cQg = %QLQ¢

Splution: We only koow the electric field of a point charge. S0
we look at the electric field produced by the iittle "point” charge
of length df at the top of the ring. Recall df = ad¢ is the length
of an arc in terms of its subtended angle. Then the charge in the
length df is 60 = % = —=2 . Then we have

2

e} = _%_%%_ with ro = (x2 + a®) as usual. Then
dE_ = |dE| cos8 with cos 8 = —— anl

% r
4E_ = |dE| sinf. Note that E_ = }2“ dE_ = © from

p B o P

kQudd
symmetry. dEx = QQ“ 557 S0
In (" + &)
2n KQx

E = dEx = 5 573 and we are dons.

A & (2~ + &)



Z3 Fipgd the Forield of a2 symmetric disk of total charge

g at an srbitrary point on the x-axis.

JA= znede = 2Q=&zncd e

Solution: Consider a disk to be a lot of concentric rings. (2]

now  the field of a ring of radius r is (from above)

kQFi X
E = ng =, =0 we just add ‘em up (by integrating, of
® 2 2,372
(x” + 12
course). To do this, w= note that
Q . = dQ = Qdﬁ:ﬁﬂﬁ:ﬁmr
ring nﬁg

(where © is the total charge on the DISE and dft = Zurdr for the
differential ring of radius r and width dr. That is,

JE = Qs { Zardr) _ 2R Grordr
= = =
= mﬁ?(xz + r&)SfQ Rg(x2 + FQ)B/Q
and
kQu Zrdr %G | x E
E}{= ] -y .-\3«2: n\l_ oy 5 172
g? o " + 2 g2 U &+ DY
b4
= 2kn a{i - }
(xz + Rg)i/E
E% = @ (from symmetry).

e can now apply the BIROHIAL BRMSIoN and obtain the limiting
beharior of the field, i.e.-—w2 can see what it looks like vhen
¥ — 0or ¥ — @.

Recall (or learn for the first time) the Binomial Expansion.
1f |y|¢1 then we can write

3
n(n—i)yg nin~-1){n-3vy
29 3¢

(1 + y)n = 1 + my + + .. .

Since }yl(l the terms get smller rapidly. Ue rarely keep wore
than the first swviving term (other than 1).
Suppose, then, that we want to fingd Ex as ¥ — w. We look at the



{

)]
secomyd term in the brachets §§ abous:
) 3
3 . # - 01+ B ?~ﬁfﬁ
% 3 -5 - -
e+ oyt w1 + Be/u 2 2

1

Z
B i
P 3 R
s 3

= § -

(The last is pronownced “and terms of the order x_% and highsr" and

just means they are so emall we're not going to worry about them.)

Substituting this into ouwr result

E =

for EX above, we get:

This

just weans that when we are

electric field looks like that of
field look like when =x{{RY%

Ment {ime:
hard way!?

B2 ]\ k ,
-2 |

b4 ®

far away from the disk (xR} its

a point charge. Uhat doess the

The electric field of an infinite line of charge—-the

2.5



P 3., The Electric Field (ocomt inusd).
Becsll from last time: the gu@@?maai%i@ﬂAp?iﬂgipl@ for the elesctric
fimld.

kg, o
BE = %ﬁ - T {recall point charges!?

L. 2
: .
i i
or
= 5 (F - Fp)
B = J‘ Y drg. (recall ring/disk)
ERB BT’T@%
Yhere
Uplume charge density
. s d@
3 JE s, S
PR T Tav
frea charge density
. A dQ
i) o= 25 % dn
Length charge density
L. _ A do
iiiY h = 5 % AL
So, AQ = fd¥ or AQ = j cdf or AQ = j »dg is the total charge
AV A AL

contained in sowe voluve/area’ length of material NGRS AL

plso recall the Binomial Expansion:

1f {y|¢1 then we can write

n(n—i}yz N nin-i)(n—S)yS +

n
(L +v¥y =1+n¥y + 5 a7 e s s

Today we will apply the definition of the electric fisld to another
continuous charge distribution,

13 the (infinite) line of charge. WUe will use the integral rule
above, which is the “hard way”. The sasy way, as we shall see, is
to use

2y Gauss’s Law (283

@ wade S

SD - SquOCE O@!S

%;ﬁ,n df = Q. 0sed by &'

37 Before we discuss Gauss’s Law {except to let you see it for
the future, we do Dipoles. An elentric dipole consists of two

charges of egual and opposite charge separated by a {(directed)




length T g -
S fp —P70
[ = ~
0.,
here 5 {the dipole wowent) is given by
= =3
P = qlL.

Then (trus facts) the torgue on the dipple in a uwniform plectric
field E is
7 =9 nE.
The (potential) ensrgy of the dipole is
U = -pEcos8 = b
and the net force on the d
F = 0.
In =a non-umiform electric field the dipole way experience
similatanscusly a torque and a nON-ZEro force. fAtoms in electric
fields tend to p@larizé and ewperience 2 dipnle-dipole attraction

{Vann der Waals force!l.

Then, if we have time, we will start Chapter 21 (Gauss’® Law} by

defining
43 Electric Flux: The “flow' of an electric field through a

surface. It is the product of the surface area with ths cowponzsnt
the wvector electric field that is pormal, or perpimdicular to the
surfane on a point by point basis. Gererally, for oy varying in

both wagnitude and angle over an arbitrary surface,

(c@(j = Tdo = @E%\M&GQQB



lectore 3. The Elestric Field (continued).

Today we will apply the definition of the elestric field {to the
infinite line of charge. e will integrate the ecupression
containing (in this case) the charge distribution A to obtain the
sclectric field sowe distanne from the line. First; note that the wo

ot

line has two useful symetries. Any point can be the middie”, or
every point on the line splits it in haif. flso, if w are on a

point some distance ¥ away from the line, the line is cylindrically

sywretric, that is, if we welk arouwnd the line it looks the same
from all directions. Both of these cbservations will simplify the
problem considerably. &%i"f

@Q&\&EV

cﬁztkéw

fhove is pictured the “infinite” line of charge with charge per
wit length . UWe note from symetry that the field wmmist be

perpindicular to the lins. The geometry of the integral is
indicated on the figure. '

Solution: We know only that the field of a point charge is

B - kg r. We therefore select a little chunk of the line of
r
differential thickness (length dx). The charge in this (point

like) chunk is d@Q = Adx. The megnitude of the electric field
produced by this chunk is

_ kdg _ khdx
Idﬁl - 2 2 2
r (2" + v 3
and its direction is as shown above. The cowponent perpendicular
to the line of charge is dEY = IdEisosB (with 8 as drawn). since
cos8 = y/r,
{(Ihwidx
@, =5 537

(i + vy




dE = dE% sin? cancels since there is alweys an egual and opposite
5t . Lane s
contribution frowm the other helf of ths line, so @gz = E? = &. U=
want to do the integral /7 ;
as . kQ>VX¢(y
E = j\dﬁ - ‘E\ {khyidx —_ z
» = ‘) :
v v —w(xg + yQ}BISE ¢ ~
This is very difficult to do mmless we change varishles from x to
&, using the observation that
®¥ = v tanf (
2 (sec &= —
30 dx = v secgﬁdg = y%—%—} 4. cose
Substituting these valuss into the eguation above, we get
&, .. y
®, o [ igae ¥
V ” 81 . //x\_‘\__"/,,,,. ; \(~ \
where @, = 8, = tan é‘y = tan ‘(o = 98°. For the infinite lins,
then,
£ = 2
¥ ¥

W will see on Fonday that this is very much the “hard way” to get

this eguation. The “easy way” is to use (Gauss’ Law.

b
Y/

%)



Dipoles. fn eleciric dipole consists of two cha

‘e P
opposite chargegseparated by a {(directed! length L.

there ﬁ (the dipnle wowent? is given by

-5 w
B = gL.
Then (trus facts) the torgue on the dipole in a miform electric

field E is (show)

Z=px B = KJ{\E\S\%@
ard the net force on the dipole is
F = &,

The (potentizl) energy of the dipole is
U=-Wa = Eﬂd@ = -pEcosf = —p-E
Jwe \a%@ fowm 9° o 0.

In a2 nonpwniform electric figld the dlpale may - experlence

simulatansously a torgee and a non—zero force.
&1 >8]
RAF,

fitoms in electric fields tend to polarize and experience a

dipole-dipole attraction (Van der Waals foroel}.

—2
=@} =
N
=
= —7
=




Then, if we have time, we will start Chapter 21 {Gauss? Law) by
def ining

&3 Blectric Flux: The “flow” of an electric field through a

surface. 1t is the producnt of the surface area with the ocomponsnt
the wector electric field that is normal, or perp@ndicular to the

surface on = point by point basis.

For ELB, ¢ = [Eja:
;{Aﬂtjjfiffy EE

Gensrally, for B varying in both magnitude and angle over an

arbitrary surface,




B 4. CGauss® Law.

Ezcall from last tiws: the superposition principle for the slectric

field.
N I, .
By = EZ 2” r. {recall point charges?
i Fi
or
- =
B = | kp(Fg 1T~ T“)3ﬁ3r@, (recall ring/disk/lins)
JERE E; - %‘269
Today:

i3 Blectric Dipoles: On electric dipole consists of two

equal and opposite chargesseparated by a (directed) length 7.

-3
Q;;y
= e
Uhere p {(the dipole woment) is given by
P = d?.

Then {(trie facts) the torgue o
field B = Eoz is

Z=Tnaf =gl » E = qﬁgaiﬁisinﬁ = § x E .
The (potential) ensrgy of the dipole is

jg 7 lae = je .IBlIE|singde = - |5]|E]coss = —p-E
=) ap

i3

¥

y the dipole in a wmniform elentric

U=

and the nst force on the dipole is
?=®,

In a nmon-wmiform electric field the dipnle ey  experience

simualataneously a torguee and 2 oon-zero force. ftoms in electric

fields terndd to polarize and experience a dipole-dipole attraction

{(Van der Waals force).

yiﬂ EE':EQE =0

N
cC

~

T
4L
4
T
]

N
>

)

T
]
<




23 Blepiric Flou: The “flow' of an slectric field throwh a

surface. It is the product of the swface ares with the cowoonsnt

the wector electric field that is normel, or perpindicular to the

swrface on a point by point basis.

FaY

For a constant electric field B = Egz; (with A L =):

For constant & = Egg and A at sowe angle & to ;: Mﬁ‘wﬁl — i‘ (%m%, V&C%@f B ﬂ>

& ’f@‘«?&’:’s
= J}..;“ Y &@:
58 |cose "9k sy

Yo (goes %W§%g>
Generally, for E varying in both wegnitude and angle over an

arbitrary surface,

3) Gauss®s Law {ee¢)

C\_g_i_ecﬂ 303#‘%(6 S

%\Sﬁn a8 = 4g‘m{c‘;)errmh:x«s.e»d by 87

In words: The electric flux through a closed surface S is eguml to
a constant (4nok) times the total charge enclosed by 8. Note that

this is independent of the shape of § (as lur% as it is closed) and
the distribution of charge inside §. /7,




lectwe 4. Gouss® Law.
i Electric Dipoles: fm slectric dipole consists of  ftun eguml
and opposite charges separated by a (directed) length 7.

“OL
1
Q0
=l

there 5 {the dipole wowent) is given by
D = qf
- M "
In a wmiform electric field B = Egz :

The {(potential) ensrgy of the dipole is

U= J;D |Z|de = j;o |51 |E|sinsde = -|B||E|cose = B-F .

In a non-umiform electric field the dipole way experience

similatansously a torgue and a non-zero force. Atowms in electric

fields tend to polarize. Free atoms also experience a dipole-dipole

attraction (Van der bWaals force}.

7 . =
g =
(@) -

BB &m0 g

The electric field produced by a dipole drops off as A (for

r))l?[), You should be able to show this using superposition and

the Binomial Expansion.




23 Blectric Fluy: The “flow” of an electric field through a

swrface. It is the product of the suwrface area with the COWROrERTL

the wvsctor electric field that is norwal, or perpendicular to the

surfacs on 2 point by point basis.

For = constant electric field B = Eez, (with &  =):

A -

Loneu Sué&ﬂl@ is
Lo
cokated .

3) Gauss's law (9¢%)
Recall that when we discussed “lines of force” we decided that, for
a point charge, the strength of the field was roughly proportional

to the number of field lines per unit area of the swface

perpendicular to the field at a given point. That was because the
field strength dropped off 5 3/?2 and the area inpreased as
2

{(dn)r . From this (and the rule for lines of force that states

m

that the nunber of lines of force entering or leaving a charge is

proportional to the magnitude of the charge) we can dedune that:




Selecting 1§ will Prove this correct) the constant of

proportionality to be 4ok we get Gauss® Lawe

S Fas
@e = %:S§=n g =

@Hernglused by & °

In words: The eleptric flux through 2 closed surface § is egqual to

a constant (4nk} tiwmes the total charge enclosed by 5. MNote that

this is independent of the shape of § (as long as it is closed) and
the distribution of cherge inside 5.

To seg how this works (amd werify the constant of
proportionality) we will apply Gauss’ Law to a point charge with a

spherical QGaussian surface (8) with a radius r dravn symwetrically

arournyd the charge.

A
= ¢
€.=R¢
[ 4 °<~'Z
. /
~ v
PR

2 2
r r r

gﬁ:fﬁ-gda:J E‘g ronda = X2 jdﬁ:kq a2 =
S 1= s
= 4nkg.
Thus the constant is indeed 4nk, and we see that the thing that
allows wus to apply Gauss’® law is the ahility to evaluste the flux

integral. This can be done only when E is constant are]

perpendicular to a simple swface winse area we can evaluate. fs

we shall sese, there are three such geowetries, and when weiue

learned thewm, there is nothing more we can do (without resorting to

a computer’. {(Mext time? Points, lines and planes of charge!}




<, s ,?&/M'GH?\\J;%%&’Q

X1

%ypp spule

arel Gauss®s Laws izf

4 = ¢Bnda = 4nkQ = Q a k.
e Ja n - ‘enclosed by & ?é» <7 = =9
O © o

In words: The electric flux through a closed surface § is egual to

2 constant (dnk) times the total charge enclosed by 5.
. LEARN THIS LAWY

Today: We learn the THREE geowetries of charge distribution that
allow ws to evaluste the flux throuwh a symetric swrface. In
these threes cases we can use Gauss! law to evalwmte the electric
fieldt The wethod for zll three cases is the same. We:

a) DRAW the charge distribution.

B DRAV the appropriate GAUSSIAN SURFACE (this is a surface
with the symetry of ths charge distribution as noted below).

o)y EVALUATE the fluox integrsl.

d) EVRALUATE the charge inside the Gaussian surface drawn.

e) SOLVE for B algebraically.
The threes cases are:
13 Spherically symmetric charge distributions {point charge,
sphere of charge, spherical shell of charge?.

al,b}
) @2 = @Bnda = JErdQ = chm = Erénx‘z.
s 8 g
—%
d) 4nkQ_ = e. g. { = 4nkg ] or [ = 4;:1{_[ plrg¥d3ry ]
v
- e . _kg
2) Erénr = 4mkq === Er = 5 -




23 Cylimdrically sywmetric cherge distributions ("infinite” lins

; or cylindricsl shell of chergel.

= o r
&) ¢ = @Endy = j(@}ﬁ;ﬂ +| EdA = E20rf.
End Cyl e

d) @nkgéng &. g. E

14

=

e

>

B

L
[—

=}

¢}
ey

i

-3 5
@Eﬂ{j‘ P(E‘g )d:r’@ } s
v

@} ETZHT‘Q = Al (AT} —m==} E

i
o

(FMilCH easier than integral wethodi?)

o

3} Planar charge distributions ("infinite” plane of charge, slab

a),b)
g e~ o~
e ¥ = Bnda = I(@)dﬁ*#f Eda = 2EA.
s Sides BEnds”
d)  4nkQ e. g. | = dukich) | or [ - @kapqz“%m%a .
enc ! Jy
el ZEEQ = 4dnki{ch} ===) EZ = 2nko.

4} Final note on GAUSSIAN SURFRACES. These are 1) Spheres; 2)
Cylinders (of length £ with closed ends); or 3) “pillboxes”, with
closed ends and sides perpendicular to the plane of charge. The

idea behind the construction of a given Gaussian swface is that a)
The field should ke normel to amd constant on the contributing
surface arnd h) it should be parallel to all other swfaces. The
surface wmust be closed, but this method of construction eliminates
end effects.




lectore 3. GCouss’® Law {continusd).
£} Clean up loose ends from last lectwe. Reoap the definition of

glectric Fluux:

¢ = | Benan .= 585 W't P

’s N = m%

arndd Gauss®s Lawe

o
m i

= uSE-n daa = @nkgenﬁlased by & = (%22§; ¢y7 1 2:éfTT%i
, & o o
LEARN THIS LAt

Today {(following closely the EDJ!) we learn thres geocwetries of
charge distribution that allow us to evaluate the flux through a
symetric surface. In these three cases we can use Gauss?! law to

evaluate the electric fisldt

2} The wethod for all three cases is the sawe. We:

a) DRAY the charge distribution.

bl DRAYW the appropriate GAUSSIAN SURFACE (this is a swrfacs
with the symmetry of the charge distribution as noted below).

c) EVRLUATE the flux integral.

d) EVALUATE the charge inside the Gaussian surface drawmn.

&) SOLVE for E algehraically.

3) Discuss GAUSSIAN SURFRCES. These are i) Spheres; i1}
Cylinders (of length £ with closed ends); or iii) "pillboxes”,
with closed ends and sides perpendicular to the plane of charge.

The idea behind the construction of a given Gaussian surface is
that a} The field should be normel to and constant on  the
contributing swface and b) it should be parallel to all other
surfaces. The swface wmnst be clpsed, but this wethnd of

construction eliminates end effects.




T thres cases ars:

a3 Spherically symetric charge distributions ({(point charos
sphere of charge, spherical shell of charge’.
a),bl,el & = @ﬁnmﬁa - jm:m - Ejdﬁ = E dmr-.
e ™ r T
g8 8
d)  4mkQ €. g. E = dmkg E or g = @nkf p{Fg 3, j
=] v

e E @Hri =  dnkg ===} E = kq

™ r TE

3) Cylindriecally symetric charge distributions (“infinite”
of charge, cylinder of charge, or cylindrical shell of charge:}.

a),b},e) g@if = é)ﬁq’id@z = j‘(@}dﬂ% EdA = E Znre.
5 ' End Cyl
d)  4nkQ 2. g. E = 4k (A9) j or E = %E{j p{Fy %, E
S v
e) E Zmrf = 4rk(rg) ===) E = 2 .
r o )i

(MUCH easier than integral wethod?)

line=

63 Flanar charge distributions (“infinite” plans of charge, slzh

of charge, several planss of charge).

a),b),c) @2 = éﬁ-ndﬁ = J(@)«m# [ Eda = 2.
s Sides Jﬁmﬂs
d)  4mkQ e. g. [: ark (o) 1 or [: %xﬂ{j piTg)d3r, }
ens ]
® 2EA = k(o) === E_ = ko,

7y If time, discuss sphere of wniform charge density distribution

or multiple spherical shells or cylindrical ditto or planar ditto.
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EJ 6. Conduotors in electrostatic eguilibrium.

Beoall from last time Gouss's Lawe

v

g e
= » F 1 = &
e %ﬁ o an W onciosed by S

and itz application to spheres, covlinders and slabs of charge.

Today

1} e define Conduntors to he suhstancee with large wowwbers of
essentially free, wnobile charge carriers. Thess carriers are
usually electrons (in, for example, metals).

a) «~1 conduntion electron atowm.

b)Y Conduction electrons are free to nouve.

e} They respond very quickly to applied electric fields.

2) Properties of conductors (at electrostatic egquilibriwm?}
a}) There is no electric field inside a conduntor.

b} All surplus or redistributed charge lies on the surface of

a conduntor.
¢} The electric field close +to the swrface (outsidet!) a
conductor is related to the surface charge distribution o by
o

E = &nkoc = —-
n &g

and is {(as indicated) norwsl to the swface of the condootor.

3} Charging by induction.

a) PBring charged object close to conduntor(s)

b} BRewove repelled charge via growsd or second coducting object
£} BRemove ground path or object

d} Rewove charged object. The conduntor is mow also charged.




Lecture 6. Conductors in electrostatic equilibriu.

Beosll frowm last tims Gauss’s Lawe

g P '
%e - § Eonde = %@kQénzlased by §

o

and its application to spheres, cylinders and slabs of charge.

1} Today we define Conductors to b2 substances with large muwbers
of essentially fres, wobile charge carriers. These carriercs are
usually electrons (in, for example, wetals) and  the conductor
usually contributes approximately ons conduction electron peEr atom.

This weans that there are

33 - - —E
(6x197> BIECTrONS , \ gyyg19 Coulombs o4 % 16°C
male electran
of free charge in ons mle of = metal. This is a trewsndous anmoomt

of charge {(mst laboratory charges are measured in o or 0. It
is the awount of charge that flows through a powsr line carrying
onz  ampere (Coulonb/second) in 27.7 hours? fis a consequence, a
conductor has an "inexhaunstahle® suoply of condomtion electrons,
and we can treat thewm as a mobile fluid that can respond
“instantly™ to any applied electric field.

2} From this we can readily defuce annther property of comimtors

in electrostatic equilibrivm. That is: There is nn electric field

inside a conductor at eguil ibrium.

We can understamd this by imagining that there WETE 2 non-zero
electric field in a conductor. Then there wuld he a force F = —of
acting on its conduction electrons. But they are free to move, and
so they wove toward the source of the field. Eventually, they hit
the edge of the conductor, and build uwp in a surface layer of

charge. This swrface layer of (negatiue) charge produces an equal
and opposite field inside the corductor that exactly cancels the
field there, at which point charge ceases to wmove, and eguilibrium
is established.

3} Once we realize that there is no electric field inside a
conductor at equilibrium, there are several consequeances of this we

can explore with Gauss® law.




2} Suplus chorge placed on & conduntor alwavs resides on the
surfane  (otherwise G's law says that we would heve an electric
fField inside}.

B The electric field ocutside a conductor (but very close to
its swrface) points perpendicular {(or normel) to its swlface. (Iz
it didn’t, then there would be a component of E parallel to the
surface. This would exert a foree on the electrons nsar  the
surface and they would rearrange along the swface wntil the
parallel component of E disappeared).

o) Therefore (from (o) and G°s law) B in the wvicinity of the

surface of a conductor alweys exactly equals 4nke normml to  ths

surface.

Pictuwres for a), b), c}

(no e%ui\(‘:vi v

E.dA = GdA G4nk)
En= O/e. = 4mrks

4} Charging by induction.

ad Pring charged object close to conduntor(s)

b} BRewmove repelled charge via ground or second conducting object
c) ERewve ground path or object

d} Remove charged ohject.

3) End up with demonstrations of Gauss! Law or begin Potential.




iy 7. Eleptric Potential.

Today
i3 Becall thaet the elesctric force is conservative. We can  then

evaluate the Potential Energy of two point charges separated by a

distanne p:

r . e
Utr) = -t - frar - [rar --[Ium g
@ = 7] Jor Jo 2
u(r) L

23 Uz define the Electric Potential produced by a single point
charge g %o be (in analogy with the relation between force and
fieldd: .
Vir) = lim ot - M4
Qo0 g r
for a point charge g.
3) Fore gensrally, if AU = U - U is the differsnoe in notentisl

b
ensrgy of a charge gg at point a2 and the same charge at point b,

=M _y - = ~Fﬁ-d§
a2

is the potential difference between the points a and b.

3 Characteristics of Potential {(or potential difference):
al it is a scalar gquantity (NOT a vector).

Its (8I) wnits are Volts.
Joule Hewton-Meter
i = = 1 -
1 Valt 1 Coulowh - Coulomb

) AV is directly proportional to the charge produning it.

d} 4V depends on the distance frowm source charges to the point of
observation, not their direction. ‘

d} Only potential differences are physically meaningful. This is
because only differences in potential ensrgy  arsg physically
meaningful.

el The potential difference is the work per unit charge that
would be done to wove a charge beteen the initial and final

locations at constant speed.




AU

£3 e define as 2 useful energy wnit the electron-Uolt (aV

PR - ~19 R -19
1 eV = {1.6x18 Ciedl¥y = 1.6u16 Joules.

5
% u
-

5} The potential of = point charge is

Vir) = X4
)l

ardd carries the sign of the charg

1]

[

63 The field is related to the potential by
av __ 8y N ov

sum 0of the potentials of esach charge!
kg .
U ey - i
total " * 7 EZ = 2 :
= jr-r.]
) i i

\&o exmw(es e Rue

(@) oo Qwﬂﬁ czﬂfjs T 3 K==

2
= AT T

s

.

S

¥



isotwe 7. EBlectric Potential.

Today
i3 Heeall that the electric force is conservaetive. We can then

evaluate the Potential Energy of two point charges separated by a

distance r:
wry = ~afs = “fﬁ"ﬁ = —F? dr = —f”m dr
oo P "y 2
oo oG oo )

Uty = iz
™

23 e define the Electric Potential produced by a single charge g

to be {in analogy with the relation bhetween force and field):

Uilr) = 1iw1-EU£jLﬂ

q«;‘?@ Qo

It follows that

=
Vir) = lim —f*’ A7 = —fﬁ:ﬁ?: -rk_;gi_@p,
qo-@ Yo <8 oo o r
kg

Vir) =

|

£

o
b |

~

for a point charge g.

37 Vore generally, if AU = Ub - Ua is the difference in potential

ensrgy of a charge gg at point a and the same charge at point b,
£U=M=U‘U =—jb§-d§
a

To b a

is the potential difference between the points a and b.

43 Characteristics of Potential {(or potential difference):

a) It is a spalar gquantity (like ensrgy), not a2 wvector.
Furthervore, it depends only on the charge g and the scalar
distance between the charge and the point of observation. This
makes it easy to work witht

by  Its (SI) units are called Volts. From the above, it
is evident that

1 Voilt = 1 Joule i Newton-Meter

Coulowh Coulonb

c) The potential (or potential difference) depends only
on the charges producing it and points in space. Like a field, it

is a quantity that is characteristic of a point of space  rathsp

7.



than a directly msasuwrahle force or energy. It too iz & “solution™
to the problew of sction st a3 distance.

d) Only potential differences are physically rweaningful.
This is because only differences in potential energy are phvsically
meaningful .. Uz can set the zerc of potential to be any nunber we
like without affecting the physics. In gensral, for a point charge
{or any bounded charge distribution) we will choose the zero to be
at infinity. For infinite charge distributions (like the lins or
plane} we can only talk about potential differences betusen two
specific points {(as we shall ses).

&} The potential (like the potential ensrgy) is positive
or negative depending on @@@th@p the two charges have the same sign
or opposite signs. We use the convention that the potential of 2
point chargs is

Vir) kq
i

and carries the sign of the charge g.

£) The potential is the work per unit charge that would
be done to bring a charge from infinity to the position 7 at
constant speed.

gy foother wvseful and weaningful wnit is the amwount of
ensrgy gained or lost by an atomic charge (the charge on an
electron or proton) vhen it falls through a potential difference of
ong volt. e oall this energy unit the electron-Volt {(eV):

1 eV = (i.ﬁxiﬁ_igc}xilvh = l,éxiﬁ*ngnulega

This wnit of energy (wsually with a kilo, wega, giga, or tera in
front of it is frequently used to describe the energy of woving
elementary particles or the interaction ensrgies of individml
atoms. i.e.~— a 16 M=V (million electron-Volt) accelerator, a
39 keV x-ray, etc. I do expect you to be equally comfortable with
Joules and electron-Uolts as wnits in which to work different

problems.




The supsrposition principle for electric fields glsn holds for
elecitric potentiais, To find  the potential of a collection of

point charges, we add the (scalar) potentisls of sach charge:
5 f— kg
¥ ey —
gfntaliz} - 2; -
— |7 -
i

frt

’7,&,

il

BExamnlis:
&} The potentizl on the x-axis of tun charges +q located on  the
v-anis at +/- am%gfv

a

*B

Solution: The potential or a point charge at a distance r from the

charge is kg - So the potential from the top charge at x is Justs
kg .
{ = " 1
U%ap'u) 5 VL The potential of the hottom charge
(2" + a")
. _ kg . . .
is also vbattam(x) = (xz . 32)1/2 - Since potential is a sgalar,

to Find the total we Just add thew (no vector arithmetic?). The

total potential is then:

U () = g

total (XQ + 32)1/2

Pretty easy, huh?
b} Note in the problem above, if charges are g and —g, Yix) = 6

c)  Note that just as F_ = --2U = - 50 we can Find the
b4 O b Oy

electric field from the potential.
AL 2 2l

Bl = —55 2,372°

3
(2" + a%)
Just like we got (with a lot nore work) from vector decompositiont

Kote E () = "—2‘-{(—-}2— = G,
4 8y
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ENg 8. lectric Potential.

Hecall from Fondavy:

i3 AV = = (¥ - ¥ ) (by definition).
(28} b &
2} Firy = RE {for 2 point charge gJ.
kg .
v dh = ¥ i . oot
32 v%g%alys) = ) 53 {(for a collection of charges).
&R - A
Today:
i) The field is related to the potential by
av . av av
Ex - 8w ! Ey - gy * Ez - gz

(Recall relation betwsen Force and Potential.)}

23 Equipntential siwrfaces: Swrfaces drawn perpendicular to  the
lines of force. They are swrfaces of constant potential. They are
analogous (o0 contowr lines on a wep {(vhich are gravitational

eguipotential linest)

33 Since E = @ inside a2 corductor and along its swfaces, a

conductor in electrostatic equilibrium is at a constant potential.

[E _ _ _8Y(constant) —0-E <R n}
® ax v z
4} For contimeous cpllection of charge,
™
v, a kp(x‘u dPr, = J‘ kdQ ,,
£ ; R
“R r - rg] 2

Examgles Du Jour

ajl Two Point charges revisited. Find Vixl, @(x)B etc. using the
rules above.

b} A Ring of charge. Find U(x) on axis of ring. Then find BE(x)
from gradient rule.

c) f Disk of charge. Find V(x) on axis of disk. Then find B(x).
Then find limiting forms of V(x) as x - @ and x -3 oo,

23 Last, if w= have time, is to discuss electric potential and
Gauss? Law.




lectue B. Electric Potentiznl.
Becall that
Yir} = Iy
r
for a point charge g and that, nore gensrally, if AU = Hh - Ua is

the difference in potential ensrgy of a charge gy at point a2 and

the same charge at point b,

w2 v v - —f{,ﬁnci?
s b a Js

is the potential difference between the points a and b.

Toiday:
i The field is related to the potential by
B = -9 etc
w ax ° :

Wz can wnderstand this in terws of the ?elationship between Force
argdl potential energy. Suppose we examine the force hetween t&uo

positive charges separated by a distance r_:

Q\ (A &@c¢ea%€5
z:'o —— N
EG—YLe — (D) ?@%»ov g}m\f;;%
2, 22 b
EK:O EK>O
F oo Ruge 7
ﬁz.“ 2
T

Tne force pushes g, away from g;. Thus, if we release g, at rest,
it accelerates as it woves away frowm g;- Its kinetic ensrgy
therefore increases. Conservation of energy tells us that its
potential energy therefore decreases (because its total energy mist
remain the same). We see, then, that forces point in the direction
that the potential ensrgy decreases.

Field is just force/unit charge. Potential is just potential
energy/unit charge. So fields point in the direction that the

potential decreases.

3.1



2} This lets wus defins Eguipotential Swfaces as surfaces drawn
perpendicular to the fisld (lines of fores). Sinee the potential

changes only when ons wouves along = field line, the potential is

constant on these swfaces. They are anslogous to contowr linss on
a wap, whiich are actually the intersection of gravitational
equipntential swfaces (that swround the sarth) with the surf ace
of ths earth.

oteibi
3)  Recall that E is zero inside a conductor. This tells ws  that e e
8  codorctor in electrostatic eguilibritm is at a2 constant GSLAViégceg
potential. (Hecause the derivative of a constant is ZEro, i.e.--
Uﬁuhstant
E P o = & = E = E )u
H dwu Vi A

This is important in circuit design because all parts of a2 circuit
that are connected by a continuous conducting path are thus at the

same potential (asswning the conductor has negligible resistance).

Examples

43 The potential on the x-axis of two charges +g located on the

y-axis at +/- a. +% \
‘ \)cﬁ-»@

X
V(K) = Zk;
V oy (et =

Splution: The potential or a point charge at a distance r from the
o
_—

=

charge is

So the potential frow the top charge at x is just:

Ve, 0 = — 75+ The potential of the bottom charge
(¥ + a )
) = kq

5173 °

is alsn V
— 2
(" + a™)

bottam(x Since potential is a socalar,

to find the total we just add them (no vector arithmetict), The

total potential is then:

- 2kg
Viota1 ¥ = s
(st + a )




Fretty easy, huht

b} Hote in the problem above, if charges are +g and ~g, Piul = ¢
). Hote that just as 7 = ““§§~y E = "*§§;1 S0 we can find ths
® Ju ® &y
electric field from the potentizl,
- - L GViy Zhays
B lud = —— T 3573
(" + 3%}

Just like we got (with s lot wore work) from vector decomposition?

LIS
Hote: B (%) = — = &,
b4 By

G} This leads us, mnaturally enough, to guess that to Eirnd ths
potential at g paint dos to cont inunus charge distribution we add

up the contributions from each little differential chunk of charge.

kd
dv = 5 _ or
=< 3
el’""‘ﬁ"gg
—-é
v # = __§_££fﬂl_.ﬂ3rﬁ
total - -3
Vo[ - Fy

where dg = pdV or dg = odfl or dg = Adf as appropriate. This, too,

is simpler than the expression for the fimld.

More Exanples

7} Find the potential on the axis of a ring of charge with radius

QQQQ = 5%%22 (CLCQG$=: E%f%é?

"

a anl total charge Q.

do= ade

Solution: Qs usual, x = 22; v and the charge in the little chunk
of length ds = ad§ is dg = xads = gﬁe - The potential of that
little piece is
du = k dg _ kQd&
(xz R az)z/z 2n(x2 + az)ixz

fgain, there is no vector arithwetic this time,




FF
av K $

5

 UPiwui o= H
. 5

& (g~ + ag}gﬁg

This iz obvious, in retrospect. The entire ring is at the same
distanoe @i%z * @2} from the point x. The potential depends only
on the distance and charge, not the direction. 8o the potential of
the whnle ring is the same as the potential of a point charge Q at
the sawe distance.

. av

b} Exercise: Verify that the field on the axis is EX == ax

gy Find the potential on the awis of a disk of charge {radius R,

J = (ﬁﬁ%ég yrede = 2Qxde

charge Q) -

2k Qedie
QQ\J = %26}{2 - ,{:13\!1

>
X
Solution: ggain, treat the dick as a collection of rings. The
charge on a ring of differential thickness dr is
1 -~
d.{:(}ﬁﬁ = { QZ ][MF]:——%@?—%I——-,
R R
its potential is
qv = Iedg _ 2k Qrdr
- - g
(xz N F2)1/2 RZ(KE + Fﬁ}liz
and so the total potential is
~ B
von - r _Aorde 29 (2 . 2,172
@ R (x" +r) " R 2
Vi) = ng {(xz + Ri)lfi - x},
B2
or Vi) = 2nko [l.x2 R w}
. av
d} Exercise: GChow that E = - .
b4 ax

&) dso & d Vee) = = MeA X (4 constank)
¢ >0

i ooy =BG

ey
X

3.4



EnF ©. Electric Potential and Gauss’ T,

1} Spherical shalls.
Find Field (from G's law}

Find potential (by integ

Note U = consteant where E = &.

[y}

lindrical shells {(coaxial cable;

Pl
—
[y

ind field (G

F
Find potential (by  integrating EFdr) arl note wost  take

potential difference U(rb) - H(ra} hecanee U(@) = o and Viw) = o

Note that U = constant where E = &.

33 Potential difference betwsen parallel plates {capacitor)

Find fisld (G}

Yo} = o hut at

jisd

¥ Find the potential both inside and outside a sphere of wmiform
charge density Pa-
Find field (GL}

Find potential by integrating E dr from o to ¢
r

=) Find the potential of a spherical conductor with radius B and
total charge -

Fipgd field (GL and definition of conductor?.

F

ind potential of conductor by integrating in frowm « to R.




where B is the radiuvs of the sphere, the waxinm fizld that can be

built up 1s

E = 3M/C = 3/
=¥
But
)
E = kG = ¥
=S RB =934

which tells wus the maximmm potential that can be put on a sphere

hefore bhreakdown.

73 When a charge is placed on & nonspherical conductor, it
spreads out o wake it eguipotential. Birt the field is still
strongest near points on the cwrface with a smll radius of

i

curvature, L.e.-—sharp points. In fact,

= VR .

=V wax sharpest
is still approximately valid. The ionization of the air due to
strong electric fields and subsequent flow of current is called

s Oischaroe.

Van de Graaff Denpo, if time



Lectnee

Bor 9. Electric Potential and Gouss? Lawr.

i3 Spherical shells. § on shell of radius =z, 20 on shell of

radiuvs .

i) Find Field (from G's law)

EF@§T2 = Gk (30} r b
B = k3Q r b
r 2
T
E = kQ a{rd{{b
r 2
r
E = @& r¢a

ii} Find potential (by integrating E_dr) in each distinct region.

£U=~rEdz"=‘3i{9_r}h
r r
Yoo
AN = - jb—EEELdr - J§~E£—dr = LI LU
2 4 jx} r b
© br
= k29 + ko ad{r{h
b r
Ay = - Jb~§§g~dr - Ea—gg—dx = k2Q + kQ a»r
2 2 b a
w r b

Note UV = constant where E = 6.

2) Cylimdrical shells {(coaxial cable) GSame steps.
i) Find field (GL)

ii) Find potential (by integrating Erdr) and mnots wost take
potential difference U(rb) - V(ra) hecause W(O) = oo and Viw) = o

Note that UV = constant where E = 8.




23 Potential differenne betwesn parallel plates {(capacitor)
i} Find field {(GL}

iiy Find potential by integrating Ezdz from @ to d {(again,

Utew) = oo hut at least VG can egual @.

43} Find the potentizl both inside and outside a sphere of wmiform
charge density pgp-
Firngd field (G}

Firgl potential by integrating EFdr from oz to P

3} Find the potential of a spherical conductor with radius B aml
total charge Q.
Find field (GL and definition of conductor).

Find potential of conductor by integrating in from oo to R.

&} Charge sharing is & way of creating large potentials (M/). A1

Van de Graaff gensrator uses this principle. Since

. KR
Vo= m

whore R is the radius of the sphere; the maximm field that ocan

= 3MB/C = 3/ m.
=
But
kO
B = = = ¥ R
WEH 2 WaH
B

which tells us the maximm potential that can be put on a sphere

hefore hreakdovn.

7} Wen a charge is placed on a nonspherical con votor, it

spreads out to meke it equipotential. But the field is still
strongest near points on the suwrface with a small radius of
pirvature, i.e.--sharp points. In fact;

E = V_ R
WELH may sharpest

is still approximately valid. The ionization of the air de to
strong electric fields and subsequent flow of current is called

corona discharge.

Van de Graaff Dewn, if time

I,



ENT 16, Capacitancs

Today

i3 £ capacitor is a device for storing electric charge and ensrgy
in & circuit. It is made uwp of two conductors separated by an
insulator. When the plates are charged wp by, say; 2 hattery, they
develop a potential difference hetusen them as charge is wowved from

one conductor to the other. We defipe the capacitance C by

. 8
C = m

and, since the potential difference is alweys directly proportional
ta the charge, the capacitance depends only on the geowetry of the
conductors.

23 Units: S5I wnits are

i farad = 1 Coulowh/uolt.

HOT these wits are UERY LOARGE on a practical seale {(a 1 farad
capacitor would be the zize of a desk or so. . .} am 0 W
gen=rally use microfarads (uF) or plcofarads (pF) in actual

applications.

33 Exawples: Motz in the following examples that the calpulated
capacitance always depends only on the geowetry of the conductors?
The wethod for caloculating the capacitance in these exanmles is:

i} Find the field in hetueen the charged objects with,
g.g.-—Gauss’ law.

ii} Fimd the potential difference between the two
(equipotential) charged conductors by integrating the field from a
point on one to the other. We only need the magnitwle of AV, not
its sign (though you should know the sign amd its meaning?).

iiid Find the capacitance C = Q/AV. AV should always
have a Q in it, so what remains should have an £, on top and depend

only on the geowstry of the condimtor

Iy

®

|Oa



al Porallel Plate capacitor: Given tuws plates charged to + =and
-3 respectively, with area A and separated by a distance d, the

papacitanne is:

Vo= Bl o= od = Qd

' ’ Ep Egﬁ

Eoh

o c = % = Q/Qd/eqh = —2
Sinpe g = §58531®_12 F/w (from the dimensions of the resuli)

s -3
if the plates are Im x Im and are separated by 1@ wm the
capacitance is

- F 3 -1 -2
¢ = (8.8% x 16 —§rdx(1m yuli@™m ) = B8.83 x 18 T z .@lgF (%)

L]
a

hells of radii a and

vlindrical Capacitor: Show for cylindrica

i
b of length L and carrying a charge Q argd -Q that the capacitanpe

is
c Zns QL
Intb/a?
Spherical Capacitor: Show for spherical shells of radii a and b

carrving a charge +Q and -Q that the capacitance is

ab
C = dmsy —p——
* B -=a

4} fdding Capacitors.
The sywhol for capacitors is .
Then

TR

‘.tD.t i 2 2
(for cepacitors in SERTES) and

tot
(for capacitors in PARALIFET).

JOb
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iecture 1@. Capacitanne

13 o capacitor is a device for storing slectric charge and ensrgy
in a circuit. It is wede up of two conductors separated by an
insulator. Uhen the plates are charged up by, say, & hattery, they
develop a potential difference betveen thew as charge is woved from
one conductor to the other. We define the capacitance C by
ari, since the potential difference is always directly proportional
to the charge, the capacitance depends only on the geowstry of the
conlictors.
23 Units: SI wnits are

i farad = 1 Coulowbh/volt.
BUT these units are UERY LARGE on a practical secale (a 1 farad
pcapacitor would be the size of a desk or so. . ) anl 50 wE
gensrally wuse wmicrofarads (g8} or picofarads (pF} in actusl

applications.

32 Examples: Note in the following examples that the calculated
capacitance always depends only on the geowetry of the conductors!
The wethod for calculating the capacitance in these exanples is:

i} Find the field in between the charged objects with,
e.g.-—Gauss’ law.

ii} Find the potential difference between the tuo
(equipotential} charged conductors by integrating the field from a
point on one to the other. We only need the magnitude of AV, ot

its sign.(thﬁugh vou should know the si

on angd its weaning?).
111} Find the capacitance C = Q/AV. AV should always
have a Q@ in it, so what remains should have an £ On top and depend

only on the geowetry of the conduntors.




——

<

& #

ey

arallel Plate capscitor: Find the capscitance of two plates
charged to +0 and -G respectively, with area f and separated by =2

distance d. +&

Solution:

iy ¢ = E AN = gfi —s E - Efﬁ

ii} v o= - @Exdx

iii) C = g = Q/Cd/egf = Egﬁ .

Sinpe £y = 868531@—12 F/m {(from the dinensions of the result)
3

if the plates are Im x Im and are separated by 16 “m the

capacitance is

C = (B.85 x 1@'12—§r4xc1wf}x(g@3wfi> - 8.85 x 180 % .OLEF (%)

Hote that in order to make a 1 Farad capascitor we would nsed plates
ikm x  ikm (A = l&i‘yamzi separated by a distance of .81 wm (i@usm)a

That's a pretty big capacitor?

Cylindrical Capacitor: Find the capacitance of cylindrical shells
of radii a and b of length L and carrying a charge +Q and -Q.

Sulution: From Gauss’s law,

1) és = E 2rrf = Qg. ey E =
r Egl. r




— - I = - @ ] .:m

i) AV = i%ﬂ? = Fre oL m%{ =
_ @ 21"5%@3..

iiid ¢ = A Inth/al

Spherical Capacitor: Find the capacitance of two spherical shells

of radii 2 and b carrving a charge +Q and -Q.

Snlution

i} ég = E éarz = e L E - &Q L?
r £y r HEG o
P I I S

i) Ay = jaErdr drieg { b a }

Q ab ab

lll) C = —:é—v;— = E‘ln’eo 3 - B i = %EG B - a

2]
e
3
=]
)
]
"4
[m]
11
B
A
e
st
jm]
"4
g
frat
i1

Then
C'\vﬁ‘ C\ Cz 2
i R T i, i
Ctot B v Cx Cy
<
(for capacitors in SERIFS) and _“QR
-
= 4> F—
C‘\'o'\' ‘431
C‘tﬂt - Cl +C2+C3

{for capacitors in PARAIIET ).

|O.3
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By ii. Capscitanoe

Reozll

1y C o= Q/V

33y € = Egg (for parallel plate capacitor).
Today

23 Sdding Capacitors.
The sywbol for capacitors is
Then

Ciot
i _ 1 1 1
C%ot
Cl;
{for capacitors in SERIES) and
+Q -G N \}b—-V&= g - ip_}_ :gg
Va % ‘ V, _ IC? ° < €z C3
Con “Qlés = O Cy
C’to‘t = Cl + Ci’ 4+ 3 Q Q C
= Q- t+
(for capacitors in PARALIFL). X ¢ = T Qs
3} Energy stored in a Capacitor.
du = Vdg = ——dg
% g 1 cf 12 i
v faw o= | Fda = 5 = 7= 3

o} .J@"‘
ay Electrostatic Field ensrgy.

In terms of the field E, in a {(parallel plate) capacitor,

U = (/2002 = (1/2) (sof/d) (Eqdd? or
U = -—%—- EDE% ad = -—é—‘ EgE% W

(with ¥ = volune of capacitor fd). Ue define electric field ensrgy

density as

U i 2
n o= 5 = ke

1is is the energy stored in the electric field per unit volume.

It is this wechanism (as we shall see) that is responsible for the

(] o)

energy carried by light waves.




Recall
i3 C=0/V, L = Egﬁ {for parallel plate capacitori.
I i i Qz
2) U= =€V = 5V ———4—  (energy storsd in a

Today

33 Flentrostatic Field eneroy

F AR K —wi R 3 3 3 RECI LY =

In terms of the field By in 2 (ps allel plate) capacitor
o B 3

P o 2
U = (i/EiCV% = {1/2)¥{geh/dl (Egd) or
i 2 i 2
U = -—2—'— EQEQ fd = 5 Epklg v

(with V = volune of capacitor fd). WUe define glectric field ensrgy

density as

AU i .2
n o= Ty = oo (@)

This is the ensrgy stored in the electric field per wnit volums.
it is this wechanism {(as we shall see) that is responsible for the

ensrgy carried by light waves.

Exanple: What is the electric field ensrgy stored on a Spherical
conductor with radius R and total charge Q7
2
s ! O = i kO~
! =Y T TR
b) dU:qav__g-guiE;‘ (amridr) — U = — E‘;f also

43 Dielectrics. & dielectric 1s defined to be an insulator that

reduces an applied external electric field inside. The dielectric

constant, K, is related to the slectric field and the potential by

_ _Eo
a) Einside - K
b} ¥ = _EQ,
across K

E. \’“"*‘*Uj cancelled
wside

4




If =2 ozpacitor is £i 1 with a dielectric substance betwszen the

1ied
plates f{or shells; etoc.); the field, al henos  potential

difference, between the plates is redused by L/E. GBince the
capacitance is the ratic between charge arnd potential difference,
the capacitance is therefore increased by a factor of E.

‘f’@o "Qu “%’Qo "’GQC,

///

///L

AN, = AV,
o e o Q _ B =

with dielectric = U Vo = KECg.

(¥, is the potential difference betwsen the plates in the absence

of the dielectric. Cg is diﬁton)

(=4

— N Q‘f_‘ ;@;-O: E{g)‘o:KQc
= o= // VoY

agg%ox.\w{o&atn vie (.A%fak

| S
E, ~

- -Gy

4 {
’”6*&:\% 6b >k
W < —_—
> _— = kRO

= E, : Vs ‘

— b

< =] -l B ok

g = —[

the field inside a dielentric is redued because of =2

svall surface polarization charge induced by the electric field.
This surface polarization charge 1is called the “howui” surface
charge density 5 and is related to the "free” surface charge

density that would be built up on an equivalent conductor by
Eo

d) E = —-K—’* = EG - E'
, 1 B -1
E = Eo(l - T) = Eo[ H ]
7, [
or (E' = —2, Ep = ——)
€o €o
- - o E-1
b £ K




5y Three functions of a dielectric in Capacitor design.

&3 Increases capacitance (EXL)

b3 Mechanically separates plates {which are strongly
attracted together, as they have equal and opposite charges argl are
very close together).

o) Helps prevent dielectric breaskdown. Dielectric breakdown
for air ococurs at field strengths of arownd 3MF/m. Dielectric

breakdown for porcelain (for example) ocours at around 248 /m.

Finally, 2 note to interested readers of these n@teéz You ara
responsible for reading the text. Therefore you are responsible
for a gqualitative understanding of electrostatic precipitators,
weragraphy, Benjamin Franklin®s work, and stuff like that out of

the stories at the end of chapters.

(KO &9&]\&6&4@\ le cruve y@ke%
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PR 13, Eilectric Cuwrrent

i3y We define cwrrent to be the flow of charge. Specifically, it

is the guantity of charge that passes a given point {or goes

through a2 given surfacet?) per mit time.
I = lim i? = 23 .
At—iD

Units (SIy of current are therefore

i frpere = 1 Coulowh/ 1 SOOI .

fad

) Suppose one has a conductor with n free charge ocarriers per
wnit voluwe, each wmoving to the right as drawn below with some

average “drift” velocity v

fﬁizvngZR

&

N AL ¥
%%% = ? = \ng/%\/c@

Then in a time At, all the charge carriers in the volume deﬁt will

pass the surface at the point werked. if each charge carrier
carries a charge g (usmlly + or - &} then the total charoe that
passes that point will be

Ay = nqﬁvdﬁt?

spn the current will be

1 = /6t = ngu A

7} The current density is the cwrent per mmit area that orosses =

given surface. In the picture abouve it is

I -2
:? = T = m:{vd.

Since vy is properly a vector, and since the cwrent flows nost

strongly in the direction of LT ve can meke the current density a

vector quantity. Uhen we do this, the current becomes the flux of
the current density (I told you we would see wore fluxes).

o= Jfﬁzf.;g_g. = ng AN,

(2 q)




(BT) =

£} sinoe EL = AV = IR = ({RIXE =
Pre
(’ 7 = oF.
G Energy in electric circuits.
= E} - = o
AU é@(.a Jb) AN
a0
A AD L _
yxs = A = 1AV = IV
This is the powEr.
- «@—3
P = IV = IR = —




4% Thwfs  Law. n  conghmtor carrving a ocuwrent  is ot in

3
ot

slectrostatic eguilibriom.  The conduntor therefore can {and dosst
T

)
have an electric fisld inside it. This electric field is peeded ©

£

push the slectrons through the conductor against the resistance to
£ low created by “"bouncing” off of the atoms in the condustor.

Sinme the electrons have a force exerted on them ocontimmlly
by the electric field, and wove = ocertain distance through the
conductor, work is done woving them along. This work is done by
the electric force, and can therefore be viewsed as the result of

moFivgy Anrpss 2 potential differsnne

A = Ua - ¢ = FEL ({(for a wire of length L}
g

; - AV
A 0"

fn experimentally observed phenovenon is that, for most waterials
at

mst temperaturss;, the cwrent fiow in = wire is directly
proporticnal to the potential difference aCross it. The constant
of proportionality is called the resistance.
AN = IR

Thic is Ohm's Law.

53 Relations between field, current, potential, resistance and all

that.

¥
2} R = —é%——' (Tnits: 1 Ohm = 1 Uoli-second/Coulowh)
L . o pio:
bl R = P {(p is the resistivity of a congductor)
o) g = A (7 is the conduntivity of a conductor)
fal
d) E = LQ (recistivity = inverss of condontivity}
ol
e} Resistivity increases (approximately linsarly) with

temperature (for wany substances).



T i4. FElectric Current (ond  lectuce wokes)

Recall

13 The slectric current I = Lim ﬁ% = ~§%—n
At— <

2y 1 = AMYFAL = nquﬁu {In 2 0,4, T 4 conductor}.

3} The current density is the vector purrent per wnii  area:

f = —E—- = v Than
= Q{ = oy dn
43 I = jfﬁm (current is flux of current density)

Today
1y Chw's Law.
fn ewxperimentally observed phenowenon  is  that, for mst
materials at wost tenperatures, the current flow in a wire is
directly proportional teo the potential difference across it. The
constant of proportionality is called the resistance.
A7 = IR

This is Ohw's Law.

7} Relations and definitions:

al R = ﬁ? (Units: 1 Ohm = 1 Volt-second/Coulowd)
hY R = P—%—- (p is the resistivity of a conductor)
o) &5 = —%—~ (¢ is the conduntivity of a conductor)
d’ B = tﬁ (resistivity = inverse of conduntivity)
e} Recistivity increases ({(appro wimat linearly) with
temperature {(for many substances). i «}-o((-é 20 C.)] (et is sloge &
£y since FL. = AV = IR = = (ﬂJ)——— N ed)
7 = o , P=zV
Expleun Watec analoay: F =T %
¥ Jl R=R €_~ .
6} Energy in electric circuits. Ballo= C
X! — - -
A = &Q(Ua Vb) =  AQAV
80
M A L e TR
P = T = —H—ﬂ\} = IAV = iv

This is the power dissipated (as heat or work) in any element of an

(14 Q)

electric circult.




Fd in the case of resictors and resistance, the powsr dissipated

appears as heat {(Joule heating) and is related to voltsge, owrent

and/or resistance by
F o= IV = EER = -?ue
B
Recistance and dJoule heating are the analogus, in electrical

circuits and wmotion of electric charge, of friction in ordinary

1 svstewms. it (irreversibly) turns potential (ensrgy?

a3 A hattery (or other device for generating a potential

difference) is called (generically) an electromtive force (ewf).

The sywbol employed for the potential generated by an emf is & and

Pl

is drawn

£ =IR

P

The pover supplied by an end to an electric circuit is {using

identical arguments to those aboue
AW MIE

P"'ﬁfc=m=@1

Freguently an ewf produces heat when it is functioning, due to  its

ounr internal resistance. This ensrgy wmast be inclwled when

balancing the ensrgy flow of a circuit.

9) fssorted Trus Facts You fire Responsible For.

1} Classical conduction wodel “correctly” predicts Ohw's law (vd

dirently proportional to electric field). But, it giuves wrong
order of magnitude for resistivity and/or corductivity and gives

completely incorrect temperature dependence of resistance.

23 Correct (Quantum  wechanical) copduction picture views
plectrons as waves spattered through pericdic lattice of conduntor.

In addition to predicting OChm's law; this yvields correct

temperature dependence down to very low temperatuwres. R more

extended analysis correctly predicts superconductivity.




33 Superconductivity oocows in weny substances as  they approach

ahsolute zero in  temeratuwre. It is a purely guantum mechanical

phenowenon. When a superconducting suhstance is cooled below &

critical temperature, its electrical resistance becomzs zero. (Kot

"gery small”. Zeroll
a3 There are three (rather arhitrary} ocategories inteo which

mmterials way be classified. These are conductors, insulators, and

semiconductors. They are differentiated by the presence, absenge,

or size of a band gap. If a large gap ocours betuwesen the top of
the valence hand and the hottom of the conduntion band, a substance
is an insulator. If a small gap separates ths top of thse wvalence
hand and the bottom of the conduction band, a substance is a

semiconductor. If the top of the valence band ocours inside

(i.e.——with po gap) a band full of wmorownied states {conduction

hand} dus to overlap or filling, a substance is a conductar.



B 15, BC Cirouits

fd
St

Eirchoff’s Laws
a) The sum of potential differences around any  closed

circuit loop is zero. (This is energy conservation in disguise).

=
Zﬁv,=®
£ i
ioop
bl The sum of currents leading into (+) and out of (-}

any circuit junction is Zero. (This is chsrge conservation in

disguisel.

33 RC-Cirpuits

a) Discharging a capacitor (initially charged to Gp.)

Q  _ 1n . . _ 99
S = IR with I at
aQ Q
= &
or at | R
~t /B0
with solution Qity = Qge .

{The tims constant of an RC cirecuit is salled TB = BC. It is the

time required for the charge to decay to i/e = .36788 —— about one

(52)

third -— its original value.)




T=de
xﬁ + e
L )
v - IR - _g_. - @ (with I = g% y
or U=‘§'%““§T“

This is an inhowogensous first order, linear differential eguation.

We solve it by adding a constant to the solution to the howngeneous
differential eguation (see a} and evaluating the constants to match
the initial conditions.

-t/RC
(){t — (? s (} =)
© ™ h

{we substitute this intc the D. E. abouve)

u -t/re ®h -t/RC %
U=~-—,.-,——-e 'Q'(—:—-—e + )
[ 98 LW L
o
= 5 &0
Q. = CV, and
oit) = CV + Qbe—flﬁcu

gt time t = @, Q(G) = @ (the capacitor is initially wncharged).
mus Q;- = "QC = "‘CU, aﬂﬂ

Q) = CU(L - e H/EC,

is the comlete solution to the inhowogensous equation ahoue.

Hote

a) Ity = dg - _g_e-t/RC

b) V) = _Qéﬁl_ _ o - e tEC

o ey = LR = e~ t/RC (oo that U = U062 + T o020
etc,




Power, snsrgy, and all that.

F=Vi, so
Discharging,
§ 2 ~ ~
P, = By = s Qp_ ~2t/RC {(adding ensrgy to cirouit)
C C 2 -
RC
2. 92 -2t/RC
P_= ILy B = =~ - {taking ensrgy from clirouit)
R 2 e
RC
fred s0 on. Exercise: Show that as  t—m, ths total ensrgy

dissipated by the resistor eguals the total energy initially on the
&
1.2 r
capacitor, —é———QEKC. hint-- U(t} = J P{tidt
@




R 16. DC Cireuits/FhRanetism

Recall
oty = Qe (discharging)
~t /RC .
QUty = @fqi - 8 ) {charging)
Today
13 2 Galvanometer is a device for measuring small currents. It

has a scale (and a maximomm current corresponding to waximm scale

deflection) and an internal resistance (Eg and Rg respectively).

2) A galvanoweter can be used to build

al fin Arweter

Snlution: R (R , and IR = 1R
p g PP

g g
IR IR
Than: B = g9

(example, to wmke 5A full scale ameter, if Rg = 280 and

I =sxi0 Y g, I
g

il
=g
"

58, R = 2310 °) .

b) Voltme=ter

i

Spolution: R »» R and I (B +R)Y = V¥
5 ] g s g X
Umax
RS + Rg = i or
g
Uﬁax 11314
RS= I Rg ® =3
] g
4

(example: R = 200, I = 5x1®@ R/ — R_ = 20kQ for ¥ = 1gW).
g g s wax

/7N
(1L )




N

ey  Ubsatstons Bridge (Ohmoeter

St

Solution. fAdjust B, and B, (usually complementary slide resistors)

s0 that Ig = 6. Then V,

and dividing we get

or

:anx'ﬂ‘Ug:UBaxﬁ

Ian = IQRE{

IERQ = IQRQ

RL _ RE{

B, =~ “Eg
- Ry

R, = Ry T

If Ry and Ry, are complementary slide resistors, so that B; = £,p/8
ard Ry = fp/8 = (L~8,)p/8, then

R =
H

2, 2,

s Ba 77— ITEN




Magnetism

Tri= Facts time. WMoving charges exert a foroce on each other
that is different from the (coulonh) force ewxerted by stationary
charges on each other. The "new” force thus introduced is called

the Magnetic Force. As usual, the wegnetic force is to womh of a

hassle to treat directly all the time, so we invent the mgnetic
field (or wagnetic induction) B such that it describes the force on
a single woving charge.

Unfortunately (for you the student, not for wother pature)
when we go inte the laboratory to figure out how the magnetic force
on a charge g and field are related, we get sows wery peculiar
results. |

a) The force is proportional to the charge g.

h) The force is proportional to the speed of the charge w.
(287}

c) The wagnitude and direction of the force depend on the
direction of the welucitvig of the charge as follows. If the
velocity points in a certain direction (parallel to ﬁ, as it twns
out) then the force is zero. If the velocity m=kes an angle @ with
this lin=, then the force as proportional to sing and points in a
direction perpendicular to both the field arei the velocity (7777)

d) The force on negative charges is the opposite of the

force on positive charges.

Yurk—o, right? UWe summrize these empirical results as
F= q(g x B
- -3 . .
(where |¢ = B = |9||B|sing, i.e.--the vector (cross) product).
B is the magnatic field, also called the magnetic imnduction (for
obscure and unimportant historical reasons) and its relative

geonetry is drawn belown




Vhen = wire corries a owrent (ede wp of woving charges); it
therefore experiences a2 magnetic force. It is
F o= (qu; » Bm? = 17 x B.

But this iz only correct for a straight wire. For a cwwved wire,
we have to add all the little (differential, locally straight)
pieces that meke up the curve, each with force

d’f = 1d? x B.

We will only be able to do this integral in a very few cases.

%ymtﬁ@‘i @J\(‘
i
2 vt Puae .




DS 17. Megnetism

fagnetism

Tru= Facts time. [Hoving charges exert a force on each other
that is different from the (coulowb) force exerted by stationary
charges on each other. The "nsw” force thus introduned is called
the HMagnetic Force. As usual, the mgnetic force is to mxch of a

hassle to treat directly all the time, so we invent the magnetic
field (or wmagnetic induction) # such that it describes the foroce on
a simngle moving charge.

Unfortunately (for .you the student; not for mother natuwre)
when we go into the laboratory to figure out how the wagnetic force
on a charge g and field are related, we get some very peculiar
results.

al The force is proportional to the charge q.

b} The force is proportional to the speed of the charge v.
\WAYS

o) The megnitude and direction of the forece depend on the
direction of the welocity ¥ of the charge as follows. If ths
velocity points in a certain direction (parallel to gg as it tuns
out) then the force is zero. If the velocity makes an angle 8 with
this line, then the foroe as proportional to sinf and points in a
direction perpendicular to both the field and the wvelocity (7777}

d) The force on negative charges is the opposite of the

force on positive charges.

Yuck-o, right? We summrize these empirical results as
F = qtg x B)
= =2 =3 . .
(woere |¢ » B| = |9||B|sing, i.e.--the vector (cross) product).
B is the magnetic field, also called the mgnetic induction (for
obscure and unimportant historical reasons) and its relative

geometry is drawn below:

S




When o wire carries a2 cwrent (mede wp of woving charges), it
therefore exmperiences o magnetic foroce. It is

Fo= ﬁ:qi?d % Bondg = I(F 2 Bb.

But this is only correct for a straight wire. For a cwueed wire,
wz have to add all +the little (differential, Ilocally straight’

pieces that meke wp the cwve, each with force

df = I(d? x B).

We will only be abhle to do this integral in a very few cases.

thy wegnetic fields (where are the magnetis)? DBecause wagnetic
fields enert forces on wagnets (and megnets exert wagnetic forces
on woving charges). Suppose we have a bar magnet of length 7 in a

uniform mgnetic field H.

If we weke up a “charge” corresponding the the electric
charge,

F =qbB

(vihere q. is called the pole strength of a permansnt bar magnet)

then, since a bar wagnet has twp equal and opposite poles,
F = (q -q)F =0

ard Z=FuF=7x qn? = qﬁ? xB = mxB

uhere ﬁ:qm?

is called the magnetic woment.




Gauss? law for wagnetostatic fields

Maxwelli®s Bountion §2

Meaning: Uhile we can define magnetic “pole strength” or "magnetic

charge” ard wmake Op Gauss® Law for magnetism, above, the zero in

the equation says There fAre No Magnetic Monopoles In Nature. Yet.
In other words, we NEVER see (or wore prmperlyg have never sgen) a
“north” megnetic pole (the egquivalent of a pﬂsitié; magnatic
charge) without a “sputh” pole attachsd. Magnetic fields are
always (at least) dipole fields.

Ue can draw the magnetic equivalent of “lines of force™, ecalled

lines of wegeetic  induction. They look like the field of an

electric dipole for a bar wagnet.




Example: Fimd the torgee on a (rectangular? current loop placed in

a megnetic field.

Splution: Fy, = F, = IaB, Fa = Fy = IbB {with directions
shown above. F; and Fy cancel, as do Fy and Fp, but F; and F,
exert a npet torgus
|Z] = |F:|Ipjsing as drawn.
= IabBsing
or 7 = Iﬁg *xB = mubB (%vgo {Dmg@ o
with ™ = Ifn. ot abwe )

; iz a unit vector perpendicular to the plane of the loop pointing
in the direction given by the right-hand rule (the direction your
right thmb points when yowr fingers curl arcund in ¢l direction
of the current). This result is actumlly guite gensral, because a
plane figure can always be represented by little rectangular chunks
distributed arownd the curve.

In gensral, the wmagnetic mowent of such a figure with N loops is
¥ = Nifin
where n is a vnit vector whose direction is determined by the

right-hand rule.




EDF 18. Fagnstism

Motion of a Point Charge in a (Uniform) Fagnetic field.

1} Ginoe ﬁm is perpendicular to gg magnetostatic fields do mo

work .
23 If @ is perpendicular to @, a charged particle woves in a

gircle {(under a centripetal force).

3) If ¥ has a conmponent parallel to gg a charged particle wmoves in
a helical path along the B-direction.

4) The fuxianental eguation governing the wotion of point charges
in a wiform megretic field is (for the part of v perpendicular to
the field only)

From this eguation doth all others follow Enow it.

For example, the radius of a given particle’s orbit is

W

37 r = —EITB‘_g

its angular fregquency (or angular velocity) is
v gB

6) O} e T ci———
r m

(this is called the Cyclotron Freguency) and the pericd of its

orbit is

1 2n Persii]
2 = e— = = -
T T £ ) gB

You are responsible for understanding and reproducing the following
applications/examples:

8) Cyclotron: Based on AV alternating at o above (cyclotron
frequentyl.

2) Region of crossed fields: Forms a velocity selector such that
[¢] = E/B.

1®) Tass spectrograph: Used to determine unknown masses of
atomic/chemical constituents. Based on
2 2
m _ Bwr
g 2V




11y The Hall effect: Either weaswres n (charge carrvier density?
by weaswing &N across =2

or the wegnetic field (if n is knpwnl

conducting strip placed in a wegnetic field. Just a region of

orossed fields inside a conductor.
IBd

AV = Bon




lecture 18. Fagnstism

Fotion of a Point Charge in a (Uniform) Fagnetic field.

Sinoe the wegnetic force on a wving charge is perpendicular
to its direction of wotion, mgnetic fields do no work $¢¢ The
mgnetic force changed the direction of wotion of a charged
particle, not its speed.

It the velonity wector of a charged particle is perpendicular
to the wagnetic field, then the particle woves in a circular orbit:

><, e % %5(3m)

?{ = ?%’g?: g\}@
X

(because F  is perpendicular (o v and both lie in a plane

perpendicular to BY. The basic egquation of wmotion satisfied is

then one of centripetal force

war

guB = .

r

From this equation doth al® others follow Enow it.

For example; the radius of a given particle’s orbit is

YRy
r a8
its angular frequency (or angular velocity) is
v gB
Mo —— =
m
and the period of its orbit is
T = i _ Zm  _ 2mwm
TF T Ta T gB

Note that the fregquency of a given particle’s orhbit does not depend
on its velocity or the radius of its orbit? The freguency o is
called the cyclotron frequency, for reasons that will become
apparent vwhen we “"do" the cyclotron.

If the velocity of the charged particle is not perpendicular to B,
then (sinpe Fll is @), the particle describes a helix, i.e.—— it

mves uniformly along B but moves in circles perpendicular to B.




Cyelotron

f oyclotron is a device for accelerating charged particles
(protons, deuterons, alpha particles, etc.) to kinstic ensrgies in
the 1-30 W=V range. It works by trickiog a proton f{(e.g.) into
“falling” across the same, smll potential (with the potential

difference! lots of tiwes until a large kinetic ensrgy is built wp.

STuCce

E %&% whece acceleration

QCCULD .

D
ﬁ@%’ewm%{ n%
@Q‘%Ew%{qﬁ m‘?&
W= ig:%

1tg)

A particle begins at the sowce, in the center of the cyclotron.
It spirals outward from the center, passing betwsen the "D” ’s once
every half cycle. Since the time it takes to wake a revolution is
independent of its speed or the radius of its orbit, by ad justing
the freguency of an alternating potential difference between the
D’s to be the same as the {(cyclotron) freguency of its orbit, the
particle falls with the potential at every point and speeds up as
it spirals out.

A particles final speed is limited only by a) the strength of
the megnetic field, b) the radius of the cyclotron, and most
importantly, by c) relativity. Wnen the particle is woving
sufficiently rapidly, the frequency shifts relativistically and the
cyclotron condition no longer holds.




Begion of crossed fields

Xp T

This is a wvelonity selector. The Electric force (dowmn) is always
gE. The magnetic forece, Dh the other hand, depends on the velooity
and is guB (up) when the fields are perpendicular (o ons another as
shown. The two forces balance when

gf = quB,
i.e.—— when vl = ~%—,

Particles (with any non-zero charge charge!) with speeds wequml to
this speed will be deflected either up or down. MNote that since g
cancels in the selection eguation, a particle can have any wass and
any positive or negative charge and will still be undeflected only
if Jv| = E/B.

Mass spectrograph

K %%iifwuwﬂ///’//ﬁ? Ve Eﬁ%§
»

= Y= Eé}

™ V doo evrall

A wass spectrograph is comonly used to weasure the atomic and
molecular wmsses of ions produces by heating and “sparking” a
source (from, say, an organic chemistry experiment). 8s uswml, we

gtart with quB = —=




w Br
=tu) —_—
a w

Thus the ratioc of charge to wess of a particle determinss the
radius of its orbit. But it is eassy to get charged particles with
the same kinstic energy, difficult to get charged particles with a

single velosity, so

—%—-wwz = gV
is the kinstic ensrgy of a particle after it falls across a
potential UV as shown. Substituting 2qV for mwz-in the first
eguation above, we get
. _ 2qV
! - r
or v = 2V
T B
Putting this in for v in the second equation above we obtain
2 2
m _ Br
qg = 2V

Thus by weasuring r (via a photographic filwm, etc.) w2 can
determine mig. By inczluwling a reference wolecule or otherwise
calibrating ow spectrograph,; we can then determine the wasses of
the constituents of the purple glop we made in experiment 23 in
Organict! All Right?

The Hall effect.
The Hall effect is just the region of orossed fields again,

this time inside a conduntor. ggé )
o = & +~//:f/;r . ggéekmw.

%
d|l—T
= el
thickness T

Vhen we put a conducting strip carrying a current in a magnetic
field as shown, the magnetic force pushes the charges mebing up the
current up or down. But they can’t pass the edge of the strip, so
there they accumilate. In so doing, they produce an electric field
(shades of the parallel plate capacitor?}) that builds up wtil the

8,9



n=t force on a particle in the cwrent is zero.

gt = qugb

or Ezvﬁﬁu

But, the potential difference across the strip is then
AU:%:U@M?

But J = I/78 = nqug S0
. = I
d -~ fgn '’
IBd
and AV =
fomn
o ’ n-—_}f@_—
= “BaAv

The Hall effect can then be used to measure the nuwber of charge
pcarriers per umit volume of a conductor in terms of the potential
difference across it (AV can be weasured very precisely) or it can

he used to build a wagnetic field strength detector or vhatever?

Note Well: The wmegnetic field in this exanple seems to produce an
E¥F across the strip?! How peculiar? Not really. . -
fs we shall soon see, this leads us quite patuwrally to another of

Maxuwsll’s eguations. . -




BT 19. Sowces of the Fegnetic Field

(’ 13 The Biot-S8avart Law

where

Wz also define a constant g = @nkm = 4w x 1@ /2" ecalled the

permeahility of free space (analogous to €g; the permittivity of

free space).

fpplication: Magnetic field (ipducticon) of & long, straight

gurrent .
(;' Paae )
dx . dx cos&
dB = k I —5sind = k I ——"—
r r
X =y tanf — dx = y sec-@ d8 = (ro/y)d8
2
0 B:J@E{-Lcosede - H{—L—S)’.n@g-simﬁli
or, if 6, = -20° and 8, = 90,
I MoI
B= 2 — = o
mYy 2my

{direction given by r.h.r.)




Megnetic field on axis of circular cwrent loop.

§%@2
]
=4
&&ﬁ = JQSM@
laB| = kmz_.fiﬁg____:’l_ =k T Td?.__é._
g g w + R
. Rd2
dB =dB sin® = k T
b (Mz N R2)3/2
2
IR
B = 2k .
b m (XQ + R2)3/2

D=finition of fwpere and Coulowb.

If twn wery long parallel wires one weter apart carry egqual
currents, the current in each is defined to bhe one ampere if the

force per wnit length on each wire is 2 x 1@—7 N/m.

Nnte that coincidentally enpugh, the ratio

—;—; = 9 % 1@16m2/sec2 = 02? CS?@@Q WQ ‘\%\»ﬁ s’éua(e&}

i Coulowh is the charge that flows through a wire carrying 1
fArpere in 1 secomnd.

fnpere's Law (Owr third Maxwell’s eguationt?)

%Cg'd? = #olthrough ©

or, wore appropriately

B8.d7 = ug| J'nda
C 5/C

in terms of the current density 3.

.4




fpere’s law (like Gawuss’ Law) lets us caleculate the wmegnstic field
in certain symetric cases alwosy trivially. They are

1y Long straight wire.

2) Solennid.

3) Toroidal Solennid

ard we'll cover them next time. . .



FOS 2@, Ompere’s Law

Units of megnetic field. From the magnetic force law
Fo= q(g % g)g

the 8I wmits of B are

M
I Tesla = ﬁ—wu
But it turns out that the 8I wnit is rather large for typical
currents (recall sz = i®-? M/Qz) so the comwonly used wnit of

megnatic field strength is the Gauss, where
1 Tesla = i@@Gauss,
Remewber (o convert f£ields in Gauss to Tesla before doing a 51

calculation?

gmpere’s Law (Our third Maxwell’s equationt)

écg'd? = #ol (i hrouh ©

pmpere’s law (like Gauss® Law) lets us paleulate the mgnetic field
in certain symmetric cases alwbse trivially. They are

1) Long straight wire.

2) Solemoid.

3) Toroidal Solenoid

1) The megnetic field of a long straight wire is given by fwpere’s
law as follows.

al Draw an fmperian Path (C). This is a cuwrve C drawn such

that B is constant in mgnitude and tangent to the ecurve at each
point.
b) Evaluate %Ag-d? for the curve C. Since B is constant it
Cc

comes out of the integral (recall G's law). The dot product goes
away because B is tangent to d?. The integral of df is just the
length of the cuwrve C.

G Finally, figure out how wuch current geoes through C.
This may be the flux of the current density 7 (inside a wire) or it
my be a wmatter of counting up the current on owr fingers, or w2
may have to use the Maxwell Displacewent current (see below), but
we can do it. This is the only "tricky™ part of the problem, just
as it was for Gauss’ Law.

Jray Yes =1mahms =rmd +he richt hand rule to obtain the answer.



&n for the wire,

a), b) %;ﬁd? = B2nr
C
o) = pol,
_ IMOI . il
d) B = e (direction by B.H.R.D.

2) Splenpid. Ue use the same four steps, but of course we use 2

LN

uique amperian path.

QOO CO IS OQ

; & > ‘,L ko,
T v
gwaeaooaaaeooéa‘ao aéo@' \@I;—; Q

\Q “’?\ —
L
a), b) %ﬁ-d? = Bb
( C
- c) = ﬂloI%‘b
d) B = yol—%— = pgIn (r.h.r, etc.)

/\\
(3 ML)



23 Toroidal Solemnid. Ditto.

a), b) B.a7 = B
e
c) = KNI if al{rib
= @ gtherwise.
- #ozN
d) so B = o {r.h.r).




Finally, Maxwell’s Displacewent current.

wre’s law le  incorrect as

fmpere wwote it. There is a
contradiction that arises from applying it to the owrent §lowing
onto a parallel plate capacitor as shown that arises because of the
mathematical weaning of the words "through C” (vhich wean through
an arbitrary surface § bounded by C)! The problem is that the
current through € as drawn below goes through §; but mot through
S,, even though they both bound the same curve?! Bwwell fived this
by applying Gauss’ law to the closed surface formed by 5348z, and
generalizing the term “current” so that onz always gets the same

answer, regardless of vhich surface on2 uses.

é ﬁ-ndﬁ = —9;—9
5,48, €o
=te} g‘t E@j\ Bonda = -—%—%— = I
8,458,
but @E through 5, is zero (since E is confined between the plates)
. 4 _ d ndfl =
s0 Ig) = @t ° & Endd = Taiep
S
or Idisp is the Mawxwell displacewent current. For this one little

term, Maxwell got his nawe on all four equations. That is because

it unified the fields of Electricity and Magnetism and showed light

to bBe an electromagnetic phenowenon. This was (and is) iwportant?
So, fmpere’'s law should correctly read

%;ﬁ-d? = ﬂ011§é+ eo‘gigfl.

@pplication: Find the Magnetic field inside and outside a circular

parallel plate capacitor.

Soplution: Find the field, and then the flux, in terms of the
current I, through a eircular(?) amperian path. Take the time
derivative amnd solve for the displacement cuwrrent. Solve (as
usuzal) for B. B should vary linsarly with r inside the capacitor,

od etorild wary like L/ (c.f.--line of current? outside.



EJ 25. Faraday®s Law

Flectric currents are produced by changing wagnatic fields. This
is a direct consequence of the magnetic force law, vhich states
that wagnetic fields exert forces on woving charges. Eguivalently,
moving fields exert forces on stationary charges. If these foroes
are interpreted to be electric forces, then we find experimentally
that

E =§;§-d?=-—§§- B.ndn

This is Faraday’s Law, uhich relates the electric field to a
changing wagnetic §lux, just as frpere’s law with Maxwell’s

displacewent current related the magnetic field to a changing

electric £lox! This is also the fourth {and last) Mawwell

equation, and cowpletes our study of electromegnatism. Sort of.

Lenz's Law is the minus sign in Faraday’s law, which weanss " The
direction of the imﬁm current in € is that vhich produces a
magnetic wowent (due to ¢the current in C) which opposes the change
in the §flux.” it is required, as we shall see, in order that
energy be conserved.

What is induced EFFE7?
Let’s look at a "rod on rails”

8 .
EM = %\l % S\AC @
C(Aou‘%e% in rod
afe wmu%v\g-

Cooock  done Lf) Leld wwima +3 acss

- - = -HEu rod - Listance %")
q
dn
but v = -—aj-t—-g 80
wo= -8 gy = - S e - -,
dat dt -

which is just Faraday’s law. In other words, the induced EWF is
just a force which arises du= to the relative motion of the f£lux

e ay . piold =nd charoes in the conducting path C. (é;;‘\%



Sinee there is an “"EF" in the loop, I = AU/R or
I = - ZRY
I = —
Sinne there is a cwrent in the rod, there is a mgnetic forece
2~
Bl 1w B _ELR
m R

acting on the rod that slows it down. This is n=cessary because

IB., =

the rod starts with a certain amount of kinstic ensrgy and ensrgy
is continually dissipated as joule heat in the resistor. that
vould happen if the force pointed the other way?

Powsr: In the problem above,

2 2
BQL v
Proa = v = —x
2 2
BQL i R
Pwesistorz IQR = R% = Pwad

i.e.——the rate at which work is don= on the rod equals the rate at
vhich ensrgy is lost in the resistor. This is a wechine that

dissipates the Lkinetic energy of the rod as heat, or a megnetic
induction “brake”.

Z2lb



2

'0J 22. Farsday’s Law

E = %;ﬁ-dﬁ = - n@__j‘g.gﬂﬁ

at Jgsc
Faraday’s Law

Lenz’s Law is the minus sign in Faraday’s law, which w=ans: “The
direction of the induced ocuwrent in C is that vhich produnes a
magnetic moment (due to the current in C) vhich opposes the change
in the flu.” 1t is reguired, as we shall see, in order that
ensrgy be conserved.

in application:

ety

&@ '\;@'_D c«é)?f‘%m?‘;@ agé .
== = =Y .=, €9

Suppose B is increasing initially according to the rule B = B't and
points into the page. Then

& = B'at
Wi
@ = Q—§§—. - B'A
dt
-B'A ~B‘Qg
ardd AV="B'Q91=R9W!~KQ=R
Ue find the direction on I from Lenz’s Law as follows. The flux
through C is increasing. Therefore ™ (the magnetic woment of the

induned current loop) wust point opposite to B to oppose the change
in flux (it tries to cancel out part of the increase in flux). The
current must flow counter—clockwise (CCW) in order for m to point
opposite to ﬁ, out of the page.
i1f, after sowe tiwe, we choose to turn down the wmagnetic field
(still pointing into the page?) according to the rule B = By - B't,
ém = BeA - B'at

m = -B'R,

Tl ATY - DSy -

. — /
e reases R=08,- 8¢ decveases

1 2t eeqe, W i gage

72 A



The direction of I (from Lenz’s Law) is now clochwise (CUW) because
the wagnetic wowent W™ wust point in the same direction as the
diminishing
decreasing £lux as long as possible.

metic field B in order to try to maintain the

Suppose, in the example above, B = Bpoosat. Then
dB

T = ~Bgts sinwt,
and AJ = - dém - —_%B;g = B@Q@ sirnst.
dt ¢

What is the initial direction of the current for t Just greater

than zero (when B through the loop is decreasing)? fmswer: CH.

Understaﬁﬂ flux linkage and eddy currents. We’ll do transforwers
(mot the toys?) in detaih later.

Industance
Consider Cur Friemd the Solennid.

%Q Tarwn S

N
= fol—D,

or B = Mo X—igi"'u

Then @m (due to the current I in the solenpid) is

%2
%m = NBR = Mg Iﬁ—?—a

Ue see that the £lux through the solennid due to its own current is
always proportional to I. This encourages us to define the

emlf-induntance of the solenpid as

¢ N>

L = w = yq§—~—.

i [ {

22b



This is a quantity analogous to capacitance in that it can be uvsed
to Find the induced ewf in the solennid produmed by a change in the

gwrrent I,

o= -y o -=L=%,
T

Like the capacitance, L depends only on the geometry of the circuit

{in this case a solenoid).

More generally, a current loop has many contributions to its £lue.
They include its self-flux, produced by current in the loop itself
and wrtumal £lux produced by magnetic fields resulting from the flow
of current in other, nearby circuits. The mgnetic field produced
by the each other circuit is {c.f.--Biot-8Savart) proportional to
the current in that circuit, and so we can write
éiﬂ = LI ¢ Z M
J

where Li iz the self-inductance of the ith circuit element and ﬁm
is called the mrtual indictance between the jth circuit elewent and

the ith one. For example,

The Mrtual inductance of a long straight wire and a rectangular

cuwrent loop.

(see ‘h,,.)e @css @-r/\) .

Show that M = _Eﬁ_ln—?—.
25 a

in terms of the wmurtual and self inductance, the emf is

wh = - % —zﬁi.m’u
at = 27y
N
sually (not always) we will be concernad with self-indictance L
more than wmotwal inductance. ¥e begin by examining the role of

inductors in electric ecircuits next tine.




EDJ 28. Faradav®s Law

The Betatron. Beta particles are electrons, so this is a simple
electron accelerator. The electrons acoelerated by suwh a devies

are uveed (for example) to mmke x-rays.

i - dvur Sy

i

From -5 = guvi

we get ESI = mr = gRB
where B is the megnetic field at the beam pipe radius R. fis  long
as this relation is satisfied, a charged particle will wove in a

circle of radius R amd stay inside the beam pipe.

From lz] = %ﬁ-dﬁ - E2R = Pm
c dt
= HRQ dBav
dt
or E = —%—— ﬂBav
dt
-.b
we get %%—J-— = gk = —é—-qR@av,
dt

This says that the rate of change of the momentum of a charged
particle moving in a circle of radius R is proportional to half
the rate of change of the averge flux (related to the average field
through R).
The two conditions are cowpatible if

i

B (at BY = Tgawrage(tm@h Ry.

@s long as this is true, a particle will simltansously be
accelerated (due to induced EIF) and will be bent in a circle of
constant radius (since B increases as necessary to maintain this

condition).




Wz cannot increase B without bound. In order to get pulses of beta
particles (electrons) out on a regular basis, we vwvary B

sinusoidally as shown. UWe only acoelerate electrons in the first

quarter cycle. Why?

23 Recall
@m =

or E = =L,

wnere L is the %@EE—thmtance of a circuit elewent and M is the

mtual inductance b@‘m@én circuit elewents. The SI wnits of
induntance are Henries,
Y—-sec
i Henr = ] e—_T
b4 A
Last tiwe we caloculated the self inductance of a solenoid. This

time we will calculate.

The MMutual inductance of a long straight wire and a rectangular

current loop. 'Zé
dp=cdC
< e ‘,Mgg'easiv%%ﬁ
N ——
C é(
- c Which way does .
— cuwent lewo Twu loops
b
CCw)
!
_ tol
dg, = Bda = Ll cdr
#oC b
80 @m = 5 I In
and therefore H = %m = Lo inB_
"—’—'—-I a




o=

LR-sircuits

d ' ‘
i ¥y, = IR + L—:E—@ ep we solue for

dt
o = S - B
R
2) IR + Lr%%—' = O, so we solve for (exponsntial decay)
1) = Lee ML
(Time constant of LR circuit is 7_ = —%}J,
Magnetic Ensrgy
du dl
m = LI-e
ety gt ’
1,.2
S0 Um = —fi"‘g—dlé‘u
The wegnetic field ensrgy density is (c.f.~solennid)
1 2
nﬂl - 2#0 B
sp that the total electromagnetic field ensrgy density 1s
i i 2z
n o= ﬂe 4 ?\m = TEQEQ &+ 2#0 B .
solenad Nz %lemég N2 2
L. = M, A uw = Mo IQH
L 2L
_ \%NF\S - 1 BTAN
I \
\‘\ = AY % AGN L,@ @g)
= AIN ‘ ‘ £ ’a"’
v &= Aol
L - Z\’ RY (AL) = % (V).
4

o -
of ?M (Vul) 2 %
~N 2



LC circuits

dl Q

e Y ©
&0 Q(t) = Qgooslwet + &)
with [T = \I-Til.-t—— e

This is a harwonic oscillation of charge, vhere L ~ mags mand C ~

spring constant k.

But, real oscillators don’t run forever, they are dampesd by,
e.g.——friction. Similarly, LC circuits don’t have zero resistance
and don't run forever. Joule heating dawps out the charge
oscillation in time. (R acts like friction). S we oconsider the

LRC circuit:

dI Q
Lge * B+ = = &

or, in terms of Q

a’g . B
2 Lt e




is {tey Q{7 = @@@@ﬁ aryl eolve

gty = O B ensiutt + )

wnere

and looks like

Q

e

From chapter 2%, learn
1) Paramgnetism
2} Diammgnetism
3) Ferromagnetism.

well enpugh to identify a material’s property from a few pieces of

informtion.
%ﬁ)\m%%éﬁﬂi
<€
CQ = C%i,él
<9 2
= X QE) + xR Q) + L @U)I=0
L L C
2 .
o o+ K ..%.J_ O 1S clnamc&sew's‘%wc
L Le
o o= -8 +\[&_ 4 I S A\ =
L LC = 3.~ \vrd 4L
2
4 ua%l . ) \Q‘ C R
";Zzi‘ [} a“””CE‘:)'
f@;& ‘@‘\Q% conmi

- “’@ ’ ’ ~
=@, et Coswit+&) W@rwcﬁ:—%‘,)



s AN

ERY 24, £C Circuits

1. &0 gensrator (Based on Faraday®s Law).

R
N

=
The angle & = wt. So, j B.ondA = J‘B cos{at) dA = BA ocos(et) per
A 2]
loop. Thus Faraday's law reads
= -g——_t—w cos(wt) = BAMa sinfwt) = E, sintet).

Thiz is how one wakes an £C gensrator that produnes a sinuscidally

varying voltage using permanent wagnets.

2) Now that we know how to wmweke an AC wvoltage, we have to
discover how all of the components (i.e.--resistors,; capacitors,
and inductors) behave when we apply an alternating wcltage across
thewm. UWe will learn this, of couwse, from Rirchhoff’s laws.

al Resistors. fAre easy.

Ep sinet -~ IR = @, so

1ty = =% sinwt.

Note that the potential difference across a resistor is in phase
with the current through the resistor.




B Capacitor.
T= 48
d€

: : d
Egsinmt — _%_. = @, so (since I = —§%~)
1(t) = EouC coswt = Igsinlwt + 90°).

Note that the current (I) “through” a capacitor leads the potential
difference zcross the capacitor by o,

c) Inductors.

I
¢ smwt
. a1 . .
Epsinwt - L_E¥_' = @, so (integrating to I(T))
I(t) = —iﬁ coswt = iﬁ sin(wt - 90°).

Note that the current through the inductor lags the potential
difference across the inductor by 9@3,
Ue can summrize these rules as:

a) I and AV, are in phase.

R
b) 1 leads AV, by 80" .
e) 1 lags &Y by Y

2 pnewonic device to remember the last two is ELI the ICE man. E
jec ahead of I in L (ELI, in order). and I is ahe=ad of E in C (ICE,
in order) (Thanks to Meredith, to whom brownie points are
gratefully rendered. . .)




it ie wuseful +to define {twn §DB2W guantities that behave
recictance in the equmtions for EC and ILH

- E@ - @ _ E@ . 7]
c = Tk sin(et + 36 ) = Rc sinf{wt + S8 )

I

I sin(wt - 20°) = s  cin(wt - 207)

Eg
L el

fl

like

where # = i/l is called the capacitive reactance (and has units

C

of ohms) and HL = ol is cailed the inductive reactance (ditto).




EDJ 24. AC Circuits

i. LEBC circuit. A driven, dawped oscillator.

| |=
!

os\m (wf:-»@i

8 = @.
or ,
d? R d Ee _.
—E?g—'% “E’fd% + -§E~ = -Eg-sxnmt

is the differential egquation we have to solve. s wswl, the
solution to this (inhowngensous) eguation is a particular solution
(vhich just happens to be)

I(t) = Igsinfwt - ¢)
plus a solution to the howogensous equation, which we solwed in
ghapter 28. But  the howogensous solution was dawped out at the
rate E“Rt/iL, consequently we can wait a long time and this

“transient” solution will go away.
This is a roundabout wRy of saying that we will take it as
@iueﬁwthat the steady state current through the LRC circuit is
I(ty = Igsinlet - ¢).
Note that, since this is a series circuit, the sam® current goes

through all of the elements in the circuit.

= wish to both verify that this is a2 solution and understand
the properties of the solution. The easiest way to do this is
substitute I(¢), Q(t) from I(t), and di/dt into Eirchhnoff's law
above.
Egsinwt = IgBRsin{et - ¢) + IOXLsin(mt - ¢ + 39" ) +

IoN sintwt - ¢ - 90").

vhere we have used the fact that the potential difference across an
inductor leads the current (and thi/gggggiff: for capacitors) and
o
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the definitions of capacitive and induntive reactance,

KC = 1/6C and EL = @l.

This eguation is always true for some angle ¢. Unfortunately, it
is not easy to see what ¢ is as a function of Rﬁg KL and R. Ue can

easily determine it, howsver, and understand wany other things

about the solution by pictuwring the results above in a phasor
/////'gagﬂAéQtB

diagram. %f

In this diagram, the y-axis represents voltage (across the ETF or
any of the three circuit elements). Since each of these elewents
is a numher tiwes the sine of some angle, we think of it as a
ventor in this pictuwe. The potential difference across a givwen
component is just the y-cowponent of the vector. The y-components
of a vector always add up (according to EKirchhoff’s law above) if
the vectors themselves add up. 8o we draw the pictuwe in such a
way that the vector potential differences across L, C and R add wp
to the applied vector EF. From this we easily see what ¢ must be
in terms of the given quantities,
T

¢ = tan 5 .

if we divide this entire phasor diagram by Ig, we ohtain a similar
vector diagram whose components all have the units of resistance.
This allows wus to defin= a resistance-like quantity, called the
impedance, for ¢the circuit as a whole in such a way that “Chw's
law" is satisfied.

e.= 1. Z

25



From this diagram, we see that the iwpedance is given by
2 . 20172
Z = E'{XL - ;{C} + R g = E@fl@a

Note the following. Z is always greater than or egual to B. It is
equal to R (and minimum) only when KL = XCB Then

el = &%E-g or
2 1
&g = i

W= recognize this as the freguency of the resonant LL circuit.
This condition is called resonance and arises when the driving
freguency of the EXF is ihg same as the "natwal” frequency of the
circuit. At resonance, the power which goes into the circuit,

P = E(OIM) = E@sinwfugﬂsin(wi - $)

2
~%9~sin2(m%) cosé.

We are usumlly interested in the average power (averaged over wany

cycles). The average of singwt is 1/2. Thus

2
_ i Eq _ ,
Pav = 772 cos¢ = Ermgirnscosp°
The quantity
cos¢ = —%—

is called the powsr factor, and is one at resonance (when ¢ = e°).

25c



BEDJ 26. BAC Circults

i.Becall from last tiwe that at resonance, gL = 4, or

¢
i
@l = o
2 i
Gy = ic

This is the freguency of the resonant LC circuit. In a resonant LC
circuit, the potential differences across the oapacitor and
induntor exactly cancel and the circuit behaves as if there is only
a resistance in the cirpuit. This condition is called resonance
and arises when the driving frequency of the HF is the same as the
“natural” frequency of the circuit. At resonance, the power which

goes into the circuit,

ol
P = EMIY = Eosimvt—-%i‘lsin(wt - $)
2
= —%ﬂ-ainz(mt) cosé.

= are usimlly interested in the average power (averaged over TRENY

cycles). The average of sinzmt is 1/2. Thus

1 E2
- e 90 - .
Pau = 5 = cosé ErngTW@CDEé
The gquentity
GQF@—_.ER__
T T2
is called the power factor, and is one at resonance {vhen ¢ = 8.
2

At this point we can see that Z = R and P = I R as noted abouve.
av rms

But how does the average power to the circuit vary as w2 wovwe the
frequency o off of resonance (you might ask)? Uell,
2
2 2 2 L: , 2 2.2 2
YA -—(KL XC) + B = ——&-F,z-(ﬁi @y ) + R

(after some tedious algebra that you should do on your guwnl; SO

E2 Rmz
P _ rms
av Lg(wz - @02)2 + wZRL
This is a funny shaped curve (as a function of ) peaked around wg-
L0

Haﬂh Q , swall R

Low Q ) &M:B &

2 6a

Y



¥nte that as long as & is “close” to sy the power is large. W=
wicsh tc mke the concept of “close™ a little wore precise. b=
define the half-width &As to be the width (in wnits of &) of the
peak at the point where the power supplied is half its peshk wvalues.
ofter come tedious algebra (which, again, you should do on your

own) one obtains the half width in terms of the given gquantities as
R
by = ——

e define a diwensionless nunber the describes the "Quality” of the
resonance. The @ factor is

o 1)) E_Mg
G -

b R °
it indicates the relative strength and width of the resonance as
gualitatively indicated on the diagram above.

The transforwer.

v, = —m%{i—

v, = -Ng-%%‘-
or

Vy = —gf'vl

(where the flux per twn is "linked” by the iron core). If we

apply an BF, then

€.swmdL g = -V, so
U, = - g’:’ EssnwE
The currents are also linked by Faraday’s law and inductance soO
that NI, = -Npls.

a transformer is important in our culture not only so that you can
use your hair dryer in France, but because transformers weke
possible the efficient transmission of power. Consider the circuit

26%

below:



In this circuit I; = *«gz-ig argl the ratio of thes power dissipated
13

in the two egual resistances is
F 1 - Nﬁ 2
P, Mg | °

From this we see that it is desireable to transmit power at high
voltage (and low current) and then use it at low voltage (and high
pwrent) because the power dissipated through egqual resistive loads
in the twwe branches of the circuit goes like the ratio of loops
sguared {(or eguivalently, 1i¥e the vwltages sguared).

P=IR
-
= L\ = N z
é?z Z% “%\)‘%—;&I%
o BN
P.. WE 30 9 aat

%h swmall  celalive
we  want N, L?;fi valahve ‘%@%2
Tt weans we  want

oY

V,= *J_—QN,
At

E’Q__gé Cmgowecg o



Dy 27. Mawwell’s Eqmtions.

First, recall ths Wave Emumtion:
52y _ 1 @QV
ﬁwg vg @tz

To snlve this equation, we guess that y(x,t) = Fiu¥T(E) (i.e.——that
the solution is separable). Then

aYGy L 82T(t)

@xz ) W at

or (dividing both sides by Y(x)T({))

v - 1 8T

Y(x)axz vz T(t)atz

T

Sinne the left side is a function of x only, and the right side a
funntion of t only, the twn sides wust equal a constant in order
for the equation to be tru= for all »x and t. Or
82¥ (1) i 8T 2
77 % T2 5~ = ko
Y{x)0x v T(t)dt
From the equation for ¥{x),
a%y
6x2
From the equation for [(t),

) K

+ TV
at° ;ﬁ 7

But these are just "harmonic oscillator” differential eguations,

“@'RQY = 6.

"
= @.

and we know the solutions already?! For example,

Vi) = Vesin(kx + &) and T(t) = Teoos (et + ¢)
(with & = (kzlvz)llz) are possible, quite gensral solutions.
Putting them together and using a few trig identities we get a few

special solutions, though there are many others:

yix,t) = ypsinlkx - ot)
or yix,t) = vesintkr + wt)
or yix,t) = yosin(kxicos{wt)
or y{x,t) = yesin(kx)sin(at)

are 2all solutions to the wave eguation, although they satisfy very
different initial/boundary conditions. The first two are uwaves

travelling to the right and left, respectively at speed v. The

last two are "standing weves”. In all cases,
k= 22 , @ = 2nf, w = fr = —g—,

7 e \)




&y

Y

Z

The Wave Eguation for light.. Maxwell’s equations.

phove is pictured an “arbitrary” cube in space that contains
no charge, but does contain electric and magnetic fields that way
be varying in tiwe. We will worry only about the v conponent of E
and the =z component of B. Ax, 4y and Az are “symll”; they will
bhepome differentials in a wore careful treatwent.
1) From Gauss’s Law for E and B,
%ﬁ-ﬁ«m:@ and é@:ﬁ-;{cm = @
S 5

for the cubes, hecause there is no charge {elentric or wegnetic)

inside. Therefore,

Fndh = EdxAz = -| Enda
top y bBottom
and
-[ﬁ-ncm = B Axty = B.onda .
Jrar side near side

This lets us treat only two surfaces. WUWe don’t have to worry about
“losing” flux in the box in tiwme, which simplifies Anmpere’s law and

Faraday's law.

2) Faraday’s law applied to top surface.

g'd? = - gt g'n dﬁ
Cltop) top
or
[ %,
E (%,) - E (3} = Andy
By ¥ s ]AY Bn Y
d B
o dt ZAXAY
S0
BE oB
v = - Zz
ox at

e e b A




3 fgpere's Law applied to the near surface.

g“ﬁ? = HEp€g d g'ﬂ da
dt
Clnear? Emar
or
@BZ
%% {y) - B (MZ)BAz = = Auhz
= z Du
d
= @!QE@*—BTE?M
S0
a8 OE
Z = T [p€g vy
O at

Finally, w= take a space (or time) derivative or either equation,

switch the order of differentiation, and use the other egquation:

8 ©oF 8 o8B
8xu y o= 7 o =
on at
or
8°E OB
Y - - B
@xz 8t 8x
a%;y
= Fo€o 5
8t
which is the wave egquation for Ey?
e hknow iwmediately, then, that
E (2,t) = E_ sin(hx - wt)
y oy
and it can be easily shown that also
Bz(xst) = B@gsin(kx - wt).




EDJ 28. Faxwell's Egumtions.

Last tine we derived the Wave Emumtion for Electrommgnatic uwaves

(lighti:

BQEV azﬁy
—3 T Mefr—m
Ix &t
Recalling that the constant in front of the second term is i/vzg we

nnte that
1 8 m
¥ = = = = ?
Qﬂqﬁo, 3x10 =t e

It is here that we really identify the coupled E and B waves with

light. It is for this woment that Fexwell’s eguations are so
namsd .
Renall, then, that

E {(x.,t) = E_sin{kx - ot)
y @y
and
B (x,t) = B, sin(kx - et)
vihere
E
B =
@z c

The important thing to note here is that a) E argi B are in phase
and b) the amplitude of B and E are related by c.

Energy arnd Intensity of Electromgnetic waves.
First we define the Poynting Vector:
g = 1iExb.
Mg

This is a vector that a) points in the direction of propagation of
the wove and h) is the instantansous intensity (energy/(area time))
if the wave. The former is obvious. e see the latter by

considering

oGt = Mg+ N

= _E_ eoE%sinQ(kx - oty <+ 1 B%sinQ(kx - &t}
2 2#0
n{x,t) = eoE%sinQ(kx - wt).
Then
B2 .2
n = —5=sin (hn - ot)
UpC
1 .2 8
and ne = I(a,t) = —;—Eansxn (kn - ot) = |5
0

fe +he instantansous intensity as prowmised




Usunlly w2 are wore interested in the average intensity (because

£ = iz typically 2@3 to i@iﬁ Hz or morel. If »= oycle average

%imgikx - ot) we get (as uswml) -

5 Thus
_ 1 B
q@v B 2 2
gl
and
I = gn = 1 = ES Ea
2y Mg TS WS av

Then Power delivered to a swface is the flux of the Poynting

vector,

P = J‘g-ﬁ df = energy/time through A.

f
Finaily, dimensionally, worentum {of a particle) is related to its
ensrgy by ES! = C*%“w In the case of massless waves travelling

at welocity o, this relation becowes exact. The wowentum carried

by a wmwe is

Bl = =
Py = &5
From this we can deduce the radiation pressure
(momentum/ (timearea)) from the intensity (energy/{time.areal) as
- Lo Lis g
P = T = TPl

Uere donet




EDJ 29, Light.

Light, as we have Jjust seen, is 2 transverse electromgnetic wave.
Bere are some Tru2 Facts:

a) Light behaves like a “ray” aor "particle” when its
wavelenght is wwoh smller than the objects with which it
interacts.

b) Light behaves like a "vave” (exhibiting interference and
diffraction) when its wavelength is comparable to the size of the
ohjects with which it interacts.

o) Light travels af c = 33{1@8 wses in a vaccwm, but slows
down in wmatter.

d) The spectrum looks like

A
‘-’% s ket
. \ ‘g Viuc\ec\@
RAXY /(

Kwow e\ e DNEVE ?S vree shell otow)
RV ety N X Rals , ne
o e e

rxe
@‘f& ) V\S\ué X
%\W”‘\VQ Indvu-ved (et ~ ?{MW
&Q@{.}% ) | Shevt—Micvo wone \ ~ k@ OO )
- oleculae
-1V ~) ™ coadio &, \
AM } &Zueezc\eg
~lkwa
15“5 cadio wave o
13

“——

5. on

The Prodwuwtion of Light.
Light is emitted by oscillating electric dipoles (among other

thim;s}

N2 N
The light is emitted with intensity pmportmml to (W'D%'H L ‘o =8

I = I@sme QQ~ J%ﬁ)o\eﬁ)

2
r

This is called electric dipole radiation and is the predominant

source of EX radiation in almost all fregquency ranges.

(5 & \



ore True Pacts about light.
a) Uhmen light reflects from a “shiny” swrface, the angle of

incidence (relative to & norml drawn to the swface) equels the

angle of reflection.

G; =0,

b) Wnen light traverses a medium other than waccuum, it slows
down. (Because the wmedium is megnetizable and polarizable, €y — €
and gg — ). We define the index of refraction for a m=dium by

ny = e (with n > ).

Note that since the speed changes and the freguency remins the
same, the wavelength wust change.

mw o= © = £Ehp,
[ 9
sq v = fA = ' or
n
AMin wedivm) = Alin vapoumm) /n.

Fermat’s Principle: “Light takes the path that minimizes the time

of passage from one point to another.”

This is a wvariational principle. Variational principles are

important because the most important laws of physics, in either
plassical or gquantum mechanics, are expressed/derived in terms of
thew including your good friend Newton’s laws.

The implication of Fermmt’s principle is that light will

travel in straight lines in a single medium, but when going from
one wedium to another where its speed changes, it will bend at the
surface betwsen them.

This leads us to formulate

29b



Enmllis Law

N,<wn,

Na

Snell’s law is n,8in8; = mn,sind,. Its derivation is: Chserve in
the figure ahove that if the speed of light changes (via the index
of refraction) at the surface between wedium one (ny) and med ium
two (nad, the wavelength, as noted, must also change.
Geonmetrically that iwmplies that the direction of propagation of the
light must change. Ue see that ‘

A A
hl = —5;9 }\2 = “zn
From the triangles above,
dsind, = A; = —— and
Iy
dsing, = Ay = ——
2 = 2 = oo
Then n;sinfd; = —%—- = TNasinds,

and Snell's law is proven (Q.E.D., and all that).

20 n

N swd, = N, S1nE,




Critical fAngle

(
N,SIME, = N,5M7° =, = O, =i (1Y _
g VR
If a light ray is going from a dense wedium to =2 light wedium
{n, } na), then if light is. incident at a particular angle, called mie N, <N
g, or th= critical angle, it will be refracted parallel to the RS
surface. Consequently, it will never escape medium n;. If the
light ray continues to travel in n,, it can’t skim along wnder the
surface; the angle of incidence = the angle of reflection.
Therefore this ray is cowpletely internally reflected. The
critical angle is the smllest angle such that total internal
ref lection OooUrs.
(;. “Light fibers” or “fiber optics” work on this principle.

Because the light strikes the surface of the fiber at a grazing
angle in each ocollision, it is totally reflected amd hence
transmitted along the fiber.

%) vellected cud celracted
2) cvikical <, cellect el &1‘3
3 6, ve,, vellected cﬁ?‘j

n,>n




BEDJ 3B. Light.

Becall Fermmt’s Principle: “Light takes ths path
the time of passage frowm onz point to another.”

The

that minimizes

implication of Fermt’s principle is that light will
¢ravel in straight lipes in a single wedium, but when going from

one wedium to another where its speed changes, it will bend at the

surface between them.
W2 can use Fermat’s principle to derive Smell's Law as

follows:

Snell’s Law

In the picture ahove, t,; is the time it takes for light to go from

A to x along L,, t, is ths time it takes for light to go from x to
B. The total tiwme it takes light to go frowm 8 to B is thus:
t =t +ty = —%%— + —%%
where vy, = o/np and v, = ©/n, are the speeds of light in medium 1
and wedium 2, respectively. Then
t = —é—{nng + ngLQ],
Ko, Ly = (a2 + 32)1/2
and L, = ®m2 + (- w0H’?,
50
o e mem -0
at the point vhere he time t is a minimm. Substituting in the
derivatives (work it out. . .}
at _ _t [n X _ (D - .30 o
dx c | VL, 7L,
or
nysin®; = npsing,

(since u/l, sinf,, etc.) Q. E. D.

(2



Polarization

Ue derived the wave equation for light by assuming that the
electric field vector was parallel to the y-awis. Actwlly, light
emitted from atoms is as likely to hawve its electric field vector
pointing in on= direction (perpendicular to the direction of
propagation) as another. Light of this sort is called unpolarized
light. It is possible (as we shall see) to select ouwt of
wnpolarized light only that portion that bhas its electric field
vector pointing in a particular direction. Uhen we have done s0,
the resulting light (with its electric field vector pointing in
some systematic, predictable direction is called polarized light.

There are two basic kinds of polarized light.

al linsarly polarized.

B elliptically (incluwing circularly) polarized.

Linsarly polarized light is what we derived the wave equation for.
The electrin field vector pnints along a single direction in space
{like the y-axis) and has no componsnts at any tiwe in any other
direction.

Elliptically polarized light has electric field cowponsnts in (for
example) the y-direction and the s-direction simultansously, and
tl2 sine waves describing the two conponents are not generally in
phase with each other. Consegquently the electric field wvector
(vhich is the vector sum of these two componsnts) swings arouwyd the
g-axis, getting longer or shorter in the different directions
according to the time. The length and angle of the electric field
vactor trace out an ellipse if the wmwmximm amplituwde of the
components is not equal or if the phase difference is not @ or 9@”,
artl & straight line or circle otherwise. Draw some pictures to be

convinced.

Lipear polarization. Linsarly polarized light can be produced 4
ways (that you are responsible for).
al absorption (Polaroid sheets)

b} reflection (Brewster’s law, tanﬁp = —gi
!

c) scattering (same reason as b)

d) birefringence (because m is different along different
planes in a crystal).

You will only be tested in the first three, though you should
know at least what is witten above about birefringence.

>0b



Absorpt ions:

ramission axis

pblacized
Woaurswibed
EQELT?

~ ”absof@ﬁidm

Occurs !

Polarpid sheets consist of plastic with long condunting strands  in
it lined wuwp along some direction (see above). UWhen light passes
through the sheets, the electric field creates a potential
difference along the conductors when it lies parallel to the
conductors. This causes (eddy) currents to flow, heating the sheet
with energy extracted from the light and hence absorbed. But
electric field vectors perpardicular to the conducting filaments do
not produce eddy cuwrrents, and are therefore transmitted instead of
being absorbed. fs a consegquence, the light transmitted is
polarized in this direction. The direction perperdicular to the

filaments is called the transmission axis, and the transmitted

light is polerized in this direction.
True facts:

a) If wpolarized light is incident on a polarizimy
sheet, the transmitted light is polarized parallel to to the
transmission axis amnd its intensity is 1/2 the indident intensity.

b)Y 1If polarized light mekes an angle & as shown with the
transmission axis of a polaroid sheet, only that cowponent of E

parallel to the t. a. is tranmitted, i.e.-—- Et = Egcos8.

Therefore I‘t = Iocosza.

c) Since reflected glare is partially polarized
horizontally (see  pext) polaroid sunglasses have wertical

transmission axes. !




Bef lection: DBrewster®s law.

Hhen light is incident on the swface betvween twn wedia (see
abovel it is gensrally partially reflected and partially refracted.
The provess of reflection entails that the atows on the suwface
absorb the light and reradiate it. (See scattering below) then
the atowm absorbs, it is “"polarized” parallel to the electric field
of the light at that wowment; when it reradiates it, it does so as
if it is an oscillating dipole lined wp in that direction. fs a
consequance, light cannot be reflected if the induced dipole lines
up with the angle of refﬁecﬁian (see below).

é/////g : QQ%AQS%5$
W (Ta=T, %’w?@)
. /Q A\
2y

N }teec\%fm ok,

It can be reflected if its induced dipole is perpendicular to the
direction of reflection. The reflected light is thus polarized
paralliel to the suwrface and perpendicular to the direction of
propagation. In order for the reflected light to be completely
polarized, the angle of reflection most thus be perpendicular  to
the angle of refraction (so the induned dipole perpendicular to the
angle of refraction and in the plane of the page lines up exactly

with the angle of reflection).
wN allowe

)
)
}

[

bo% AI‘\ (ec - g3

ok

W= express this condition as Brewster’s law:

nl’SiMp = ﬂgSiﬂth = nZSiﬂ(Qz - %O) o= nngBP, or
tanf® = —2,
B ny

where Bp is the angle at which the reflected 1light is comletely

polarized. Note that the transmitted light is only partially

204
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Scattering:

fAs we just saw, vwhen light is abeorhed by an atom and
reradiated, or scattered, at least ons wvay that can ocour is for
the electriec field of the light ¢ induce an oscillating
polarization imn the atom, which then reradiates the field like a
dipole oscillator. (What actually happens in guantum wechanical
and wch nore complicated, but the essence of this still remmins. )
f dipole always produces light polarized in the plane of the
dipole. Since the indwed dipole points in some direction
perpendicular to the incoming ray any rays scattered in directions
perpandicular to the incoming ray wmust be polarized perpendicular
to both the incoming and the %cattered rays, as shown.

sCQﬂereﬁl
430\ aang eﬁ
§23h§

&§wé&aﬁ'4ag

fs a consequence, light scattered by air in the atwosphere is
partially polarized, as can be wverified with a polaroid sheet.
Viewed at sunrise or sunset, the light scattered from directly

overhead will be polarized in a north-south direction, as we can

see below. _ oo

qngﬂa(i?eﬁ
suwbak%

Read about Birefringence on your own, but only True Fact type

Mo

questions on a test.
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Sowetimes light behaves like a wave, and sometimes light behaves
like a particle. Generally, light behaves like a particle when its
wavelength is mwh smller than the physical diwensiocns of the
things with vhich it interacts. In those cases; as we have seen,
w2 can represent the trajectory of light with a straight line (that
can bend only at the surface betwsen media with different indices
of refraction or at a reflective swurface). The approximtion
(svmll wavelength - straight line) that allows us %oido this is

called the ray approxinaticﬁg arnd a diagram that represents those

trajectories as straight lines with arrows indicating direction

(rays) are called rav diagrams. Geometrical optics is concerned

with how to construct a ray diagram representing reflection from
and refraction throuwgh various curved and flat swurfaces. fs we
shall see, certain mirror surfaces and certain refractive surfaces
allow reconmbination of rays emitted by some sowree (the obhject)
into a form that appears to originate from some other point in
space (the imege). The formation of imeges by lenses and mirrors
is an important part of our culture and lives, as it is the imeging
process that allows us, awong other things, tu see. Control of the
imaging process allows us to extend the range of owr vision to see
the very small (with wmicroscopes) and the very distant (with
telescopes). It was the extension of the vision of mankind with
these devices that was, as mch as anything else, responsible for
the Rennaissance of Personkind following the discoveries of
Gallileo and Gregyory (inventors of the telescope, which gave Newton
the data upon which to base his theory of Gravitation), and Janssen
and Leeuwsnhoek (inventor and developer of the compowx] microscope,
vhich for the first tiwe showsd microorganisms, the eoellular
structure of life, the ocauses of disease, and the struntwe of

mtter on the microscale to Personkind).




Hirrors: Hirrors are smooth swfaces that peflect raves. fAs  loong
gs the geometry of the swiace is fairly simple, they tend to form
images, as we shall see. We will first stuly plane wirrors, and
learn to draw ray diagrams from it. e will then extend ocur
wderstanding to include spherical mirrors (concave and convex) as
well.

Plane Hirrors: .
VR

BN

A
CuA® AN

o\‘f?')‘zi%

Rules for ray diagrams. fin object emits light rays in all
directions from every point on its swrface. Ue gensrally pick only
a few from the top and/or hottom of owr "gensric” ohject ( ‘? k;
and wuse them to locate the immge. In the case of the plans mirror
above, any two rays from the top and bottom suffice to locate the
image. From the diagram it is obvious that

a) The image is located symwetrically behind the mirror

b} The light rays reflected from the mirror appear to cowe
from an imege point behind the mirror. Since no light physically
passes through this point (unless the lights are on in your closet)
we call this imge a virtwml immege.

c) The image is erect, and is as big as the object.

Definitions:

f real image is an imege where the light rays from a point on
the object physically pass through the image. A real immge is
gen=rally inverted, and can be larger or smeller than the oh ject.

& virtuml image is formed when the light rays from a point on

the object do not physically pass through the image point. (For
exawple, mno light passes throuwgh an imege behind a mirror.) 2
virtual iwege is generally erect, and is usually the same size or
swalier than the object.

2lb



Gezometry of a Spherical Hirror

£—O

The object is point P. The center of curvature of the surface is

point €. The imge forwed (determined by angle of incidence =

angle of reflection) is lopated at point P'. a, B, ¥ are angles as

shown, and r is the radius of the sphere. ¢ is the distance from

the object to the swface of the wirror, s' is the distance from

the image to the swface of the mirror, amd § is the arc length.

From the triangles drawn, we have

B=at @
ard ¥ =8 *% 8.
e eliminate &, and use the swell angle approximtion,
o % Bz 4 . &
T ~ TR T

for each of the angles, ami one obtains
28 = a + ¥

or
21 1
r - s 5’

If the object is at infinity (s = o) then the light rays
come in parallel to the mirror axis. Parallel rays are

(imaged) through a special point called the focal point.
the location of §f by

from it
ref lected
We define

2 o L.l wimilooor
r s £ o0
r
5 -—-—2--..
Then the equation we use for mirrors to locate the inmrge becones
i, 4+ _ 4
s s' =~ f




Magnification.

A littie reflection on the ray diagram above will convince one that
the image need not be the same size as the object. The ratio of

the image size to object size is ealled the wegnification. From

the geomztry of the diagram.@bmue {which is guite gensral) it is

apparent that

y' _ _s
v 5
(from the similar right triangles).

wm o=

Ray Diagraws. Finally, we peed to learn how to draw a ray diagram,
with only a few (three) of the wmany wmany rays that could be drawn,
that will help us locate and wnderstand the immeges forwed by
mirrors {(and later lenses) for various object distanpces and focal
lengths.
The Rules are: Draw three rays.

1) Draw a ray from the top of the generic object parallel to the
axis to the mirror. If the focal length is positive, this ray is
reflected through the focal point, by definition. If th=s focal

length is negative, it is reflected so that it appears to cowe from

the focal point.

2% Draw a ray from ths top of the g. object that strikes the
mirror in the center (on the axis). This ray is reflected
symmetrically undernsath the object, because the angle of incidence
equals the angle of reflection.

3 Pray a ray from ths top of the g. object that either goes
through or appears to come from the focal point of the wmirror. It
the focal length is positive, a ray that goes throuwh the focal
point is reflected parallel to the axis. If the focal length is
negative, a ray that is headed towsrd the focal point behind the
mirror is reflected parallel to the axis. KNote that these rays are
drawn with a rule exactly opposite to that of ray 1. This 1is
because if you reverse the direction of the light rays, the mirror
functions identically, with the role of dincident and reflected ray

changing piaces. T%>§¢1§3
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EDJ 22. Ceowstrical Optics.

Lenses. Light rays can be focused by anything that can change
thzir trajectory aml 15 suitably shaped. ¥We have just examined one
case of that: the mirror, which reflects incident light into a
new, but related, trajectory. Another commn case is the lens.

The principle behind the lens i3 that of refraction, which can
also alter the trajectory of incident light according to Snellis
law. e will wderstand lenses by first examining refraction off
of a spherical suwrface, and then deducing the lens mkers formla,
the thin lens equation, and finally by learning to draw ray
diagrams for lenses in wmwany useful configwations, e.g.—— the

microscope and telescope and the humn eye.

Geonetry of a Spherical fracting Surface {lens)
wediawy n,

Th= object is point P. The center of cwwvature of the surface is
point €. The iwege forwed (determined by Snell’s law n;sinfd; =
n,sinf,} is located at point P'. a, B, ¥ are angles as shown, amd
r is the radius of the sphere. s is the distance from the object
to the surface of the mirror, s' is the distance from the iwage to
the surface of the mirror, argd £ is the arc length. For swmll
angles, sinf, ~ &, and Bnell’s law becones:
N8 = n8,.
From the triangles drawn, we have
B=6, +v=—Lg +v
Ny

and 8, =at+ A
¥ eliminate &, to get

nmya + ne¥ = {np - nyl8,
arl use the smll angle approximation,

o = —5“3 B = ~£—3 ¥ o= L

s




to get

iy g - {n, - nl)

ost lenses are not forwed out of a solid cylinder of glass, but
rather out of a (relatively) thin piece with tvwo swfaces that sits

in air (ny = 1, 0y = ng), = generalize the results of refracting

through two surfaces by making the image from the first swrface the

phject of the second swwface. For a lens of thickness t,

Nzl (0w

{(First swface) 1 + n. = n -1
s = i

and

(S8econd surface) LU 1." . L-n
s s e

Soluing the first for s°, using the distance t - ' as the object
distance (s”) for the second surface (Note: s” is negative. This
is one of the few cases where "pbject distance” can be negative,
i.e.—— uhen the "object” for a given lens or mirror is the image of
another, and is located on the virtusl side.) and substituting it
in the second equation, we get:

n + 1 I - n n - 1

-5'+ t g T ry s

This is too hard to desl with this way {(there is actumlly ancther
whole metrix-based technique for solving this kind of problem that
ve are not learning now) so we consider only t{{s, t{{s'; the thin

lens:

ry 5
or

SO (n—u[._}__-_}__],
s s ™y e

This is known as the lenswekers eguation, and you are responsible

for it. This eguation obtains a simple form that you should
recognize when we note that the focal length of the thin lens is




given by

.__%__. = {n - j}}g_.%__n- LEG
£ ry Ty
This inmlies the thin lens eguation,
i 1 1
& =
S 5° £’

with the geometry given by

£
=

N—all ce@chin srcucs om olaae”

True facts about lenses.

Since the trajectories of light rays are reversible (Bnell's
law works both ways) the focal length of a lens is the same on both
sides of the lens.

@ Shaped lenses have positive fonal lengths and concentrate
light,

shaped lenses have negative focal lengths and spread
light rays apart.

Distances (s', £, r) are positive on the real image side of
the lens (opposite the always-positive object distance} and

negative on the virtuwml inmge side.

Ray diagrame are formed just as they are for mirrors,; sort of. We

first find t}m ﬂngaiL .';.C-at.i.on:
.6(/{ V’l 0‘ = = y

SI

- ) s’ . - . s
As before, w = —%—- = - —g——€rom the simiiar triangles (once we

have located the iwage).
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fherrations. We mede & nuwber of approximations in deriving the

thin lens, lens mbkers and wmirror eguations. Becall that they are:
Parazial rays, n constant for different h, and reys considered are
all close to the axis as well as being paraxial. In reality, non
of these things are gensrally true. The resulting deformetion of
the images produced by lenses and wmirrors due to failuwres of these
approximations are called aberrations.

Below are listed the fiwe kinds of aberration you are
responsible for, the c&ué@ and the effect.
i Spherical aberration. This arises because a spherical surface
does mot foocus all ravs parallel to the axis through one point
(specifically it fails for rays far from the axis). It can be
*oured” by using a parabolic swface instead.
2} Coma . fArpther spherical aberration, it results when
non-paraxial rays are uséﬁ and the swall angle approxiwation breaks
down. 1t is nawed conm hecause it distorts a point into a point
with a blurry tail, like that of a cowet.
3) fstigmatism. This is caused by a lack of axial symmetry in
the lens, i.e. =-— the focal lengths in different planes are
different. It is a fairly common defect of the humen eye.
43 Distortion. This is a property of all imeging devices that is
caused by the m (the magnification) depending on s (the object
distance). For an extended object, different points are different
distannes from the lens/mirror, apd thus they have different
magnifications. Instead of seeing a wniformly magnified iwege, one
then sees a distorted imege where some points are wmagnified wore
than others. This produces, e.g.-- a "hig nose” when the camera is
ton close, etoc.

3 Chrometic aberration. This ococwrs only in  lenses (all the

others ooccur in both mirrors and lenses). It results fromn (the
index of refraction) being a function of A (the wavelength of the
incident light). Thus different wavelengths have different focal
lengths, which produces a little "rainbow” around the immge.




The Bye. Below is drawn a representation of 2 "norml” eve.

X
R

iy e

accswm @A)q%w y (8 sliocte c§

f properly functioning eye forms a real iwage upon the retina. The

image is inverted. The "size” of the iwage (psychologically)y is
determined by how wxh 5£ the retina is covered, i.e.-— by how big
an angie the imege subtends. A normal, relaxed eye is focused on
infinity, i.e.-— it focuses parallel rays to a point.

Iy fBoeomndation is the wey the eye focuses on objects at

different distances. The relaxed eye in focused on infinity. By
using muscles in your eye, the lens becomes rounder, shortening the
focal length and focusing objects closer than infinity.

23 fn the pear point the lens is as bulged as it can be and the
focal length is as short as it can be. The eye sees objects at
this distance (around 16-235 cm) as clearly as it can see anything.

This is alsp called thv distance of wmost distinct vision. We will

asgsune it to be 23 om, though the lens stiffens with age, and in
older or farsighted people it can be a weter or so.
Note: fccomodation can only shorten the focal length of the eye.

When the eye is relaned its focal length is as long as it gets.

Bbnnrwalities:

Nearsighted Eye Correction lens

celaped -

\ Q AL! verg (
(§ Yoo short) 6‘/‘8&\2‘4 -7 qtngq leas
Farsighted BEye Correction lens

Sa\f{'w ' 67 Comoerqug lens




Siwple Magnifier

Unaided eye e 25 €y =

Eye with magnifier

The sinple magnifier lets one bring an object closer to the eye and
see  its inmage at infinity. One can thus view a n=arby objiect with
a relaxed eye. This increases the angle subtended by the iwmge on

the retina, i.e.—— magnifies it.

Ficraoscope

tand = ;z_o: -

2 lenses, called objective and ocular {(or eyepiece). The first

creates a real imege a distance (£ ¢+ fo) from the lens; at the

focal point of the eyepiece, which then acts as a simple megnifier
to view the immge. # is called the “"tube length” of the

microscope. Its wmagnification is moo= -y'/y = —E/Eo for the
objective times ﬂe = QS/EE for the eyepiece (acting as a simple

magnifier). Its total megnification is

m = wmH - —-__g_.._g?——.
oe £

£
oe

The image is inverted, wvirtual, and located at oo

(329




Telescope

éQgﬁi‘tAamﬁ§@==ﬁfi
§e

=4

flso two lenses, but now object is close to o (s }? ?G or EE), Bs

a result, the first lens forms real iwege at its focal point. The
second lens (as before) acts as a simple magnifier to view the
image of the first lens. The total (angular) megnification of the

virtual image from the two-lens systewm is,

QE §‘D
M= 5 = -5
[»] (=]

For ewxam, be able to do any and every lens/mirror ray diagram.
Understand the eye, the sinple wagnifier, the wmicroscope, the
telescope, aberrations, the Ilensmker formula and megnification.
It's all very easy but you must practice to be able to do it

correctly amd guickly.
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Light is, after all, a wavwe in the electromagnetic field. If light
is

al) Fonochrometic (one freguency) and

b)) Coherent (frequency constant in time owver many
cycles)
then we can observe the effects of interference and diffraction.
Recall that these effects arise frow the systemmtic addition, wvia
the superposition principle for the electric field, of the waves

from several cobsrent “sowces”.

by Prdition of harmonic waves
E(u,t) = Egsin(ky - ot) + Egeinlks - wt + &)
Edu,t? = 2Egsin(ky -~ et + 5/2)cos{b/2
so (I, proportional to E%)
E(x)au = @190052(6/2)

In terms of phasors

2E, sy o s

2} Sowces of a phase shift.

al Path difference (thin film, twn, three, N slits)

b) phase shift of 7 on reflection off of a wedium with
larger n.

We wmmst learn to discover when constructive and destructive

interference occur. Constructive interference occuws when the

vaves from the two sowees are in phase as they reach the point of

ohservation. Destructive interference ococouwrs when the waves are

out of phasze as the reach the point of observation. In terms of &,
& =@, 2n, &n, 6n (or -2m, -4n, ). . . for constructive

. & =m, 3n, 5n (or -w, -3m). . . for destructive.

This is for the interference of {ws sownes.

]




Thin Filwm Interference

n=t
ﬁml%l% %
n=1L% %

S= W&szmgmﬁ

There are two sources of phase shift in thin film interference.
The FIRST is, every time light reflects from a denser (higher n)
medium, its phase is shifted by = (the wave flips owver). The
SECOMD is that the light that 1is r@fiected off of the second
surface ahove travels a distance 2t farther. If x is the distance
of the chserver from the first swface, we are thus adding
E(x,t?> = E;sin(kx - @t ¢+ ) + Epsintkx + R (2t) - et + m).

e will assume that E, and E, are approximately equal. The phase

shifts of 7 cancel. Thus

B = k'Ax = k'(2t},
which arises from ths extra distance travelled in the second
medium. (NOTE WEILY k' = nk = QZ n is the wavenunber of the wave

in the medium). We thus expect constructive interference (waxiwa

in reflected intensity) uwhen
2n n

5=2t)\ = @, 2p, A, . . -
or
2t = m2— (for m= . . .=2,-1,0,1,2. . .).
n
We would (similarly) get destructive interference when
& = Q‘t-—z%z}—— = m, 3, Sn;. . .
or
2t = {m + —£~J~§—m
2 ' n

These results can easily be understood. WUhen the path difference
(2¢) contains an integral nunber of wavelengths (m'; in the
medium) then the waves recowbine in phase and add. Uhen the path
dif ference (2t contains an odd-half-integral number — of

vavelengths, the waves reconbine exactly out of phase and cancel.




Soap Bubble.
In the ocase of a soap bubble, there iz a phase shift of # at

the firet swface but oot at the second swface, o there iz an
puverall phase difference of n added to the phase difference dus to

path difference. Ue then get

5 = 2622 s q, ang
2t = (m - —%—J~g— for construotive interference,
2t = ww%—-fur destructive interference.

Az a conseguence, uwhen the soap bubble gets wvery thin dee to

evaporation (t — @) we get a reflection minimm in all wavelengths

dus to the phase shift of w at o swface, followsd by a
negligible path difference. GSoap bubbles (as you have seen) get
very clear right before they pop (light that isn’t reflected is

transmitted).

Ax= 2t€

S= Rax 4T

5 = 2¢ (21n) +9T
A

-3 b~ je—

f\l:O gb\ase "Q'\\? d‘gﬁ/

5“—"0’22’?1’) T4 %@f comstvuchve '\M“{‘fzr@z?/vzce , ©f

lé(zgfyl)‘%ﬁ/: O} t2M... e¥e, ocC
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2 8lit Interference

Ax = dsinB, so b = kax

i}

P-4

I =

2Zndsin&
PN
dsinf = wh

dsinf =

, ) N
im ¥+ —z—iA

= w{Zn) at waxinwm, SO

{wax imwom)

{minivm), and

&1 OC:DSQ(BI'Q)

(from addition of twe harnmonic weuves and I proportionzl to Ez).,

In terns of phasors, two slit

E= Zgbcasg)l
(&= RrAax = Rds1ne)

interference looks like:
WO K U WA

E=2%F,

T=4T1,

Miui




Example Problem: Suppose h = 680 nm, d = 1860 nm = 3x. Then

d sinf = wh {(mmuim) or
@m@x = gén‘g! mz ] = Sin_ig—gllg for m=@&, 1, 2, 3.

Note that m cannot be larger than 3 in this case bepavse £ cannot
be larger than 20" ¢ Similarly,

d siné = (m+ ~%—JA {(minima} or
g n T i
e . = sin | o } for m= @, 1, 2
min ]
e explicitly get
= @°, 19.47°, a1.81%, 9¢”
WELX
and g . = 9.59°, 30", 56.44 .
mix
The interference nattern is semi-gentitatively sketched helow.
Recall that the "exact” solution is I = &I 0052(6/2)

41
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La, =410
iw«’m = O
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3 8lit Interference

A A

dsin® S= Rax = kdsive

W iw phuse whem
dsing= mh M=o,

How we can’t (easily) use trig identities to obtain the desired

ot

°

answers, which are: Where do interference wexim occw? How
bright are they (relative to the intensity of a single slit)?
there do the minima ocowr? UWhat does the interference pattern look
like, qualitatively? But ve can use the phasors to answer these

guestions. Thats why we used them for twp slits, where we didn’t

really need them.

Phasor Diagrams for Three Slits

?&‘w\ c\@o\% Max, muw

';'ﬁﬁ.sme £
E, & =o0p2% 241..,

" Ry-w€

Genersl &




-

M %éﬁm&ﬁa%_%&% WU

Afﬁ ; 3V, 5T, .

Uz can sumarize the results of these diagrams as follows: Ue get

a (principal) wmaximon when

dsinf = vh (m=@;, 1, 2, . . .).
e get a secondary maxivm when

dsinf = —5 (mnot multiple of 2).
W= get a minivom when

dsinf = -—%——}\ (m not mualtiple of 3.

The Interference pattern (as a function of &) looks like:

E’%’ia% = ? A”O

sewchcw& My imu wm L\e/ia‘«d T,

25
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4 5lit Interference

\A5in0 = AX

S= kax= Rdswo

Phasor Diagraws for Fow Slits

A Geneval & & @z{ﬂv@\c\g”m\ %ax’\{mum

S0 @5»%6 Wlx wax




%ec&wﬁa@& YACLK A LA W

| T2T.
| (betwoeen wiwie )

: | (v
dewer g Coisete

A 2.

We can sunmarize the results of these diagrams as follows: Ue get

a (principal) maximm when

dein® = wn (m=@, 1, 2, . . ).
We get a secondary mmximm when
dsinf = -;3"‘—ﬁ (m not multiple of 3).
e get a minimum when
dsind = —p» (mnot multiple of 4).
(}, ' The Interference pattern (as a function of &) looks like:




Hoslits. The diffrection Grating.

Phasor Diagram for Pricipal Meximmn and First Minimm

4 -
My s wum % Mivimum

/ %@A el v,y
&‘5'\ wB = @_}_};
| N

\ sed
P

[

1=0

W= 1,201, N,

S= zg, %ﬁ*gg.} ete .

2=

o= 0N 24T,
‘hy-wt

From this we see that we get (principal) maxim when
d sinf = wh {(m= 01,2, . .}
as usual. Ue get the first miniwom when
d sing = ——}-\-—, or

N
. i A
A8 ~ sinf = —-g—-a——n

This is the "angular width” of the central meximm. In general the
width of a wmaximm is about 1/N times the separation of the orders,
vhich goes like »/d. We can thus resolve tuwo closely separated
vavelengths in the wth order if

- A
61 = mg-
8, = m—%l, s0
4 = 8, - 6, =m-‘§-}-

is greater than the angular separation of the first minimum past




the wth order:

- S S
T T W Td -

The resolving power of a diffrection grating is a2 weaswe of its

ability to resolve closely separated lines. UWe define it to be
A

E:-«-—T!&zmn
(Becall the definition of § in driven oscillators, which serves a

similar function)’.

Diffraction

He assmme that the slit is mede up of N “point souwrces”™ of the
field. In this respect the problen greatly resenbles a diffraction
grating. BUT, while we clearly get a waiinam vhen & = @&, ths
conditions for wminime and secondary maxima are gquite different.

Consider the wave originating from the top of the slit and
interfering only with the wave originating from the middle. If we
treat these as a two slit problew, we expect cancellation to ococur
uhen

. i
—-2—— sinf = {m + —-:2—-)% or

i, 3, 9,. . ).
Similarly, the interference of waves from the top arnd a/4 result in

a sinf = (2, 6, 1@. . )X,

w
0
%
]

Proceeding in this way, we expect to get diffraction minima when
asind = w, m=1,23;. . . (ROT m = 0!).




This is not very rigorous, and doss oot predict vhere mexinme should

goour. Jo do that, we have to resort to a Phasor diagram

%%@% = Zeswng,

- S\ @
A%ﬁmg "’@ZZ @2 ?ﬂ)g%)éﬁ.-v

Aec &emﬁ%l’\
Awmx = ”{‘@

(@ emede \> |

o  ds b= mx
m=1,2,%...

VAR VAL 1A

From the first one, if we break the slit wp into N pieces, the
phase difference between any two adjacent souwrces is

a .
A¢ = E{—K— singd

so that the phase difference betweer the top and the bottom of the

slit is ’ ¢ = k a sinf.
(=
as ¢
. &
E"JAx—.a‘sms = = RAx=WNAY
= hkaswe

fdding up N sowrces like we do above, and letting N go to o while
we keep a concstant,; the polygon drawn above goes smothly to a

circular arc and Ad goes to dé¢. The geonetry is unaffected arnd -

sin ¢ = a 1 or
2 - 2 '’
AR = 2Zr sin($/2).

But the length of the arc is conserved (and equal to Qnmx) so0 that

MR H
= oy
¢ r

Qm:m c
— 24

"3
1]



Substituting this in the eguation for 8 sbove, we get

~ sinl{¢/2)
B o= By~ -
. . . 2
Sinoe I, iz proportional to @maxg
3
sin(g/2)1% . _
I = I@g-——%7§———i in terms of
2n .
¢ = - sind.
Clearly sin{¢/2) will equal @ and & minimum will obtain when
—g—- = W 2,3, . . O
a sinf = uwh ({(as before).
But, a waximmm ococurs at ¢ such  that —%%- = & {(and not a

minimum}. This expression reguires the solution of a trancendental
equation and hence you are not responsible for it, though I might
ask vou to find the trancedental eguation to be solved as part of

an optional problem on the €inal.

Interference and Diffraction from two slits of width a, separation
d. UWe combine the expressions for the intensities by multiplying
them,

H =y
1 = 4l E—i‘-‘;‘;;—%—'—i—j cos? (5723,
with 5 = hdsinf
and ¢ = hasind.

The result looks qualitatively like:

gt

‘1;/ &\@(mc%&ﬂ

Y \\
emu e\oge

. 2
410\‘3%5?5%% os&y)




RBesplution

e define tun sources that diffrect {hough the sawe slit to
he pesplued if the centrzl meuimmm frow ong sowes is at  least at
the winimum of the other. This is thz Bavleigh criterion for
resclution. For circular apertwres, the first minimm ocouwrs when

sin B = 1,22—%-5

where D is the diameter of the opening. Thus if

A
- 5 . L Wil
a > 1.2 )

(with a the angular separation of the tww sources) then they are

resolved.

SumEry: U= pnow are in a position to understand when (and
why!) wuwaves behave like particles and do not "bend” around corners
and cast shadows. Diffraction ococurs on a spatial scale
comensuwrate with the wavelength of the light used. When the
spales we are interested in are on the order of om or m; the
diffraction amnd interference effects of wisible light are
negligible. But, when we are looking at objects within a cell that
are nanpweters or less in size, wisible light (after passing
through the circular aperture of the lens) cannnt resolve the
details. Similarly, radar waves (A ~ lcm) are fine for detecting
objects several weters in size and up, but are useless for
detecting and resolving, say, bullets or eoins or other objects
around a centiweter or less in size. X-rays could be used to look
at cellular structure, but unfortunately we can’'t wmeke useful
lenses for X-rays and hence build microscopes (they also are too
ensrgetic and can heat up the objects being studied enpugh to alter
their structure).

Real watter doesn’t really behave like particles gither. It
turns out that it actually behaves like a wave just like light
(sort of) but its wavelength tend to be so short that we can treat
it like a particle. Mewtons laws and classiecal wechanics in
gensral is actually the “geowetrical optics” of guantin  wave
wechanics just like geowetrical optics is the smll wavelength

approximation to physical wave optics.

35\5



For that resson we use electron wmicroscopes o examineg emmll
(~1 B ohjects, because electrons have very short wavelengths and
can be focussed by electrostatic “lemses”. &t this time, howsver,
the only probes we have inte structures on the order of the size of
an atom or a wmiecules tend to be destructive, and so ong tends (o
destroy or alter that vhich one wishes to measuwre. This is the
mEnifestation of an important physical principle, ecalled the
Beisenberg Uncertainty Principle, that expresses some of the

fundawental limitations on what we can ewpect to learn from nature.



Pt

Phosims 92.1 & 32.2 95(2-31 /785
The Electric Field B. G. Brown

(1®& points) In the pictuwe below, a charge of +2g is lomated at
y = -a, and a charge of ~g is located at vy = 8.

i ™ T

—% -
?«-ng

r——

a} (6 points) Find the electric field {(wmagnitude and direction)
at an aﬁggtra%§ point on the y-axis. (You will need to do three
regions: vi@&, @ryi-a, -aly.)

by (2 points} Find a spot on the y-axis vwhere the force on a
charge placed there would be =zero. (Hint: ¥Uhere is the field
zero?) Extra credit: is this position a stable eguilibrium point?
Uhy or why not.

c) (1 point) What is the wagnitude and direction of the field
vhen o = 10, v = i@ cm, ¥ = @ om, and 2 = 10 om



97(2-3¥785
B. G. Brown

(1@ points! In the picture below, two egual and opposite cherges

(Hy amd  ~gd are lopsted on the y-axis at v = 438 and v = -8,

respectively.

<

-9 C

69
Find the electric field at an arbitrary point on
the w-axiz (mgnitwle and direction}.

a} (6 points?

b (3 pointg?

_‘B w
form B = kg when x)'a. (recall ﬁ = q? = g{2ay).)
®

Show that the electric fisld on the x-axis has the

cr (i point) What is the wmwegnitude of the electric field if

g=1pgL;, a=300cm x =40 cm vy = &7



Physins 52.1 & 32.2 Q716173785
Causs? Law and Potentisl B. G. Brown

a) (i@ points) Find the electric field for a splid sphere of
3
r density pg C/m at all points in

space. Oraph (roughly) vowr answer. E

b)Y (18 points) Using your answer(s) to part a), find the electric
potential (relative to o) at all points in space. OQraph {roughly)

yOUr RNSWET . \

4 Y




Cuig 1
Physins 52.1 & 52.2 7{16-171 /685
Gauss? Law angd Electric Potentizl B. G. Brown

a) (160 points) A solid coylindrical shell of “infinite” length and
radivs B has a uwniform charge density of pgg Cim? distributed
throughout it. Find the electric field at all points in space.
Graph (roughly) yvowr results.

b)Y (1® points) Find the potential difference between the surface
of the cylinder (r = R) and all other points in space (r inside and
outside the cylinder).

4 W
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Physics 52.1 & 32.2 1B/¢21-325 785

o-Cirpuits E. G. Browm

2} (5 points) Use fmpere’s law and find the megnetic field inside

tuwrns and carrving a cuwrent of 2 Anps. Express vow wnits in

Gauss (recall 1 Tesla = l@ﬁeausgin fnd vou thought I°d never give

you mumbers, didn’t you.

iM
[0o0 durns

- IT=2 Aaps-

b (5 points} Find the total megnetic flux through the salencid

and its self-inductance (in BEenries).




iz &
Physics 952.1 & 32.2 1A (21-32)1/785

iil

De-Cirpouits B. G. Brown

ay (5 points) Use Ampere’s law and firgd the wegnetic field as a

fumction of r inside a toroidal solenpid with a rectangular
cross-section. Its imner radius is 1@ om., its outer radius is 20
cm., and it is 1® om. high. It has 1G60® twrns and is carrving &
current of ? fips. Express your units in Gauss {recall 1 Tesla =

4 g . .
16 Gawss). O you thooght I'd never give you novhers, didn®t you.
B

1

o W [0OO Yucrns

dr s . T =2A
[T} e 4]

i A 20w ) [Ocwm

\ﬁ;?(}t—' \\ %

-
Cu:b('awoua VA e W .
B (5 points) Find the total wagnetic fiux through the solenoid

and its self-inductance (in Henries). (Wt ¢ considlex ¥(ux .%AVOM%94 %%Y%@

o wid¥h de  drawon)




Hour Exam | Name
Physics 52.1/52.2 R. G. Brown, Inst.

There are five 2 point "True Facts™ questions that can be
answered either with a formula or a short written answer. Following
that are three 10 point short problems. There is a 35 point guestion
exploring your understanding of the electric field, electric
potential, capacitance, etc. as discussed extensively in class and
recitation. Finally, choose one of two 25 point gquestions for

10 + 30 + 35 + 25 = 100 points.
Use good testpersonship. Relax. Leave no question blank; sometimes
even a picture is worth a few points. Do the ones you are best
prepared for first.

1) True Facts. (2 pts. each)

i) What is Coulomb’s Law?

ii) What is Gauss’ Law?

iii) What are Kirchoff’s Rules?

a)
iv) b)
V) Current in a metal wire flows (circle one) a) in the same
direction the electrons move. b) in the opposite direction the

electrons move. c) perpindicular to the direction the electrons move.

2) (10 pts.) Find the total resistance of the following resistance
network. 270 50 BQSL




3y (10 pts.) Below is a parallel plate capacitor with C = 0.1
microfarads when the space between the plates is empty. It is
connected to a 10V battery as shown and then a dielectric slab with
dielectric constant K=4 is inserted that completely fills the space
between the plates. The battery is NOT disconnected while this
OCCUTS.

: A
oV —

a) How much additional charge flows onto (or off of) the
capacitor as the dielectric is inserted? Note that to answer this,
one must know how much was there to start with.

b) What is the final energy stored in the electric field of the
capacitor and where did it come from (i.e.--what did the work of
moving charge around)?

4) (10 points) +5 i
a
° £
a A
a) Find the Electric field at an arbitrary point on the x-axis.
(Magnitude and Direction).
b) Find the first two terms in the binomial expansion of the field

when x>>a, in terms oF'S, the dipole moment.



5) (35 points!) Everything you ever learned about Electric field in
one painless question. Below is an (easy) spherical capacitor with a
charge +Q on the inner shell, -Q on the outer shell.

a) Use Gauss’ law to find the field at all points in space. (fég\@d$ :I,EI,ll1>

b) Use the definition of electric potential to find the potential at
all points in space, relative to zero potential at infinity.

c) From the potential difference of the shells, find the capacitance
of the spheres.

d) Now tell me the energy density, as a function of r, throughout
the region between the spheres. (]xf)

e) And finally, integrate your answer to d) to find the total energy
stored in the capacitor. If you can’t do that, at ]east tell me what
the energy stored on the capacitor is.



6) (25 points) Choose one of the following two questions and answer
it completely. Yes, we’ll look at the other one for partial credit,
but only if your total score (on the rest of the test) is below 50.
Trying both of them may keep you from failing, but otherwise don’t
waste your time.

Above is a solid insulating cylinder with a charge distribution
of gﬁ(r) = 3r (charge/unit volume).

a) Use Gauss’ law to find the Electric field at all points in space.
(inside cylinder)

{outside cylinder)

b) Find the electric potential at all points in space, relative to
zero potential on the axis of the sphere. Note that in this case the
potential on the axis is well defined.

{inside cylinder)

(outside cylinder)



I Below 1is an RC circuit. At time t=0 the switch is moved to
postition 1 and current flows, charging the capacitor. C = IQM%E
@ﬁcrofaradﬁ% V = 100 volts, Ry= .1 ML, R,= .9 tlL. (Use these

4 gwr\*d/\

&

numbers ONLY for part c).

A\ =lcoV =

E—

a) Use Kirchoff’s rules to find the charge on the capacitor as a
function of time. (Find the differential equation and show that your
answer is a solution. Hint: Find 1(t), Q(t) and substitute them into
the D. E. you obtain.)

b) The switch is moved to position Z when the charge on the capacitor
is Qu= l}&C. Find the energy stored on the capacitor as a function of
time as it discharges. Where does the energy go? (Don’t derive it,
just tell me answer.)

c) How long does it take for the charge on the capacitor to reduce
to 109 of its value at the time the switch is moved?

Good Luck.



Hour Exam 2 Hame :
Physics 52.1 & 52.2 Hovember 9, 1984
R, Brown, ILnstructor

ingtructiong: Below are seven questions. You MUST answer the first
five (worth 5,10,20,20,20 points respectively). Then answer ONE of the
two optional questions (worth 25 points).

As wusual, use good testpersgonship. Answer the familiar ones and the
“eagy” ones first, to warm up, and gradually tackle the harder ones.
Budget vyour time and make sure you at least get something down for each
problem. Remember, partial credit is (generously) awarded!

1. (5 points)

Please write down Maxwell’s equations, in integral form. Below
each one, state in a sentence or two (or even a phrase!) what the
equation means. No essays, Pleasel

a)
b)
c)
d)
2. (10 m“ti’ side view. end View
T b( "
b 2 '
a ~ =
&
=
/% * e ] >
- \ P
T X X+ X

Above is a rectangular current loop carrying current I, with sides
a and b, in a uniform magnetic field B to the right as shown. Find:
a) the net force on the loop. Don’t work too hard at it.

b) the magnetic moment of the loop. CS")uw oa';\[fC;{‘\\(J\V] b % CQ‘\CISS\(‘CJVM cﬂoov e}c

c¢) the net torque on the loop (magnitude and direction).



This page is exira workspace. Be sure to clearly indicate which problem
any work here belongs to, and note it at the problem also for Dennis to

find.

Good Luck, and RELAX! 1It’s ONLY a PHYSICS TEST. . . Rob.



Ouiz 4
9/123-24)/83

B. G. Brown

Physics 952.1 & 32.2

Capacitance

(7 points) a) Eelow is pictured a parallel plate capacitor with
cross  sectional area f and total separation d. A dielectric slab

of width a{d ard dielectric constant E has been inserted as shown.

Find the capacitance of the arrangement. (show all work. Start

| o OQ}Q.KQC’%J‘\C K
Acea A

from Gauss' Law).

b) (3 points) Find the net capacitance of the the arrangewent

belovs. C;‘ } C;L
sad | |50 9.
U, LV

Cs C
| g A
50,4 Soud

CtDtal =

¢, = Sout C, = 50ut C, = S0uf C,q = SOut




. iz 6
' Physics 52.1 & 52.2 1@/ (21-22) /85
DC-Circuits BR. G. Brown

% Mass =100 qms.
X %% X

X X as 42
Eif;§3%2%z%§$ =
(R4 au€
X X X X X // X X

fhowve is pictwed a 16 om condioting rod sliding  on

Wl

frictionless, conducting rails, through a wegnetic f£ield of 1@

Gauss (not Tesla, 1 Tesla = 1®gﬁauss), The rod is initially (at

¢ = @) woving to the left with a velocity of 16 wsec. The rails

are comnected by a 160 Q resistor. The \W& has a wass &% IOo%was.

al (6 points) Find the force on the rod as a function of

yelocity. To do this, find the BF, the current, and the force in

¢hat order. Do this part algebraically. (shaw all divecbons o diagra ) .

h? (4 points) Using Newion's senond law, show that the wvelooity
should decay exponentially (just like the BC circuit or the LC
circuit). What is the tiwe constant for the decay of the velocity

{in numbers’? {Hint: For exponential decay, —%%—- st be

proportional to -v, right?)



?
‘ Guiz 5
Physice 32.1 & 32.2 1/ (7-83/785

DC-Circuits B. G. Browm

(7 points) You are given a galvanoneter that reads (at full scale
deflentinn} 2 ocwrent of (md. Its internal resistance is 19 Q.
You wish to construct an fnmeter out of the galvanoweter and
whatever else you reguire (resistors, capacitors, etc.) that reads
currents of 20 A at full scale deflection. Draw the correct
circuit configuration below, and solue for the values of any extra
parts you way nsed (i.e.-— the values of the resistors, capacitors,
that vou use in the circuit). Be sure to show all yow work and

lahe! the various currents ard voltages that are relevant.

(3 points) Draw below the correct placement of the ameter (as a
[} L

synio 1 ) in a circuit with a voltage V = 120 Volts,

R =5 . What does the awveter read?




=

fuiz &
Physics 92.1 & S52.2 1®/¢21-223/783
DC-Circuits B. G. Brown

ay (5 points) Use

ormoere’s law and find the magnetic field as a

cunction of r inside a toroidal splennid with a rectangular
cross-section. Its inmer radius is 16 cm., its outer radius is 20
om., and it is 1@ cw. high. It has 1080 turns and is carrying a
owrrent of 2 Bips. BExpress youm mits in Gauss (recall 1 Tesla =

@.@gﬁaussh fnd you thought I°d pever give you nuwbers, didn’t you.
3

%7\(-/000 furns
( W/ T =2HA
100 1

[(~20cm | [Dewn

(
S

e

C.u.‘%-@awws YA W .

b} (5 points) Find the total magnetic £lux through the solenoid
and its self-inductance (in Henries). (hmt ¢ considlex g(ux %\!‘@A%\f\ %‘%‘*{;@

R wdvh e drawn)




Physics 352.1 & 52.2 187(21-223783
BC-Circuits R. G.

a) (S points) Use Gmpere’s law and find the magnetic field inside

a circular solencid 1@ om. long amd 1 om in radius, containing 1680
twrns and carrying a current of 2 Amps. Express youwr units in

Gauss (recall 1 Tesla = E@@@auss)s énd you thought 1°'d pever give

[0 durns

gigiﬁﬁagg-

b (5 points) Find the total wegnetic flux through the splenoid

and its self-inductance (in Benries).




Physics 52.1 Hame?®
12/3/84 Guiz 7 Scores

A

B0

Above is a concave mirror with radius of curvature r=20 cm. An
object 1 cm high is placed at £=30 cm as shown and its reflection is
viewed. Find:

a) (2 pts.) The focal length of the mirror.

b) (2 pts.) The distance from the mirror to the image. (Is it
pogitive or negative?)

ey (2 ptz.) The magnification of the image. Please indicate whether
the image is virtual or real, inverted or erect, and bigger than or
smaller than the original object.

d) (4 pts.) Draw the ray diagram in on the picture above. Draw at
leagt three rays that can be used to locate the image and pictorially
indicate its relative magnification. No sloppy drawings please! Use
a straight edge or draw very carefully.



Physice 52.2 Hame:

12/74/84 Guiz 7 Score:______
N=l (aw) ‘/,ﬂfzafg
‘ T~ C.= 10cw .
T~ Fowm -
(=-l0cr < _

Above 1ig a converging lens with radii of curvature r, = i0 em,
r. = -10 em, n=1.5. An object 1 cm high is placed at 2=5 cm as shown
ahd ite image is viewed. Find:

a) (2 pts.) The focal length of the lens. (Uze the lensmaker’s
formula)

b) (2 pts.) The distance from the plane of the lens to the image.
(Is it positive or negative?)

c) (2 pts.) The magnification of the image. Pleage indicate whether
the {mage is virtual or real, jnverted or erect, and bigger than or
emaller than the original object.

d) (4 pts.) Draw the ray diagram in on the picture above. Draw at
ljeast three rays that can be used to locate the image and pictorially
indicate its relative magnification. No sloppy drawinge please! Use
a straight edge or draw very carefully. (If you couldn’t do part a,
uge f = 15 cm.)



Physics 92.1 & 52.2 1140853785
Do-Cirouits B. G. Brown

Below is pictured a series AC-LEC pircuit. The potential
Uit) = Ssinst, R = 1860, L = 1@wH, C = JBAuf . Justify vyour
answers below with at least an equation or twn. Rewewber, partial

credit can be awarded only if we can see what you're trying to do!?

VO = S swmaC R=1c052

al (3 points) Find the inpedance Z of the gircuit drawn abowve,

as a funntion of .

bl {3 points) UWhat is the G-value of the circuit? Draw a rough
picture of the average pover delived to the circuit as a function

of frequency, based on the value of Q¢

c) (4 points) Find the phase angle ¢ and the instantansous power
delivered to the capacitor as a function of time. What is the

average power used by the capacitor?



Quiz 7

Physics 52.1 & 32.2 11/7{4-53 /785
aC-Cirouits E. G. Browm
Below is pictured a series RC-LRC cirocuit. The potential
Ut = Ssinwt Volts, R = 160, L = 56 wH, and C = .@5uf. Justify
your answers below with at least an equation or two. Rewewiber,

partial credit can be awarded if we can see what you're trying to

do?

NGy = Ssinal °

(O£

al (3 points) What is the resonant frequency for the circuit?

B (3 points} Find the Q-value of the circuit and draw a
reasonable pictuwre for the average powsr delivered to the cirocuit

as a function of frequency, based on vour answer for OF

e) (4 points) Find the phase angle ¢ anyl the instantansous power
delivered to the inductor as a function of time. What is the

average power used by the inductor?



iz B
Physics 92.1 & 32.2 TR/(LE-123785
Light B. G. Brown

fhat I fooled you! (It wms easy. . ) e to the large
mmier of guiz scores people will have by the endd of the sewester,
there will be NO QUIZ TODAY! Don’t tell the Tu=sday lab people,
though. = want them to be as surprised as you are. If I WERE to
give you a guiz today, here is what I°'d ask. |
al (5 points) Find the intensity of light | weter away from a

160 Watt light bulb. fssume that all the energy appears as light.

B) {5 points) & Radioweter is formed of four paddles each a
centimeter sguare, wounted on arms 1@ centimeters long as shown.
One side of each paddle is black (perfectly absorbing), the other
is white (perfectly reflecting). Find the waximem torgue exerted
by the 180 watt bulb above if the radioweter is placed a meter

avay.




Physics 92.1 & 52.2 11/¢81-123/85
ight R. G. Brown

Ea:s

phat I fooled vou! (Unless people from yesterday’s section
told vou. . .) De to the large number of guiz scores people will
have by the end of the semester, there will be MO QUIZ TODAYY If I
WERE to give you a quiz today, here is what I*d ask.
al (3 points) The index of refraction of glass is approximately
4

3
1.3 (—§~J= The inden of reﬁractinn af wmter is 1.33 (—§~Ja A bheam

of light is passing from the glass to the water. Fimnd the oritical

angle at which total intermal reflection ococurs. Explain (briefly)

why total internal reflection occurs at this point.

b,
=

TLu

=
P

b} {5 points) The light in the problem above just happened to be
vialet light (A = 46& o in air). Uhat is the wauvelength of the
light in glass? In water? UWnat is its frequency? After it has
passed through the water and the glass, what color do we see? Why?

(That's five one point guestions. . .)



s‘scge yrew
3 (20 pointz).

N “é,l,b[\/\‘fa

Above is pictured a rectangular toroidal golenoid with N turns. Each
turn carrieg a current I. 1Its inner radius is a, its outer radius is b,
and its height is ¢ (as drawn). Find:

a) The magnetic field inside the solenoid as a function of r (the
distance from the axis of the solenoid). Use Ampere’s Law! Do NOT just
write the answer down. Draw curves into the picture that show that you
know what you are doing.

b) The self-inductance (L) of the toroidal solenoid.



4 (20 points). &{“QST\B*OWYCC’ @) MaSS =t

“ %X/ X x o x X
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x X X
Above is pictured a “"rod on rails”. The rod has mass M, resistance R,

and length L. It is given an initial velocity ve to the right. Find:
a) the induced emf in the rod as a function of v. Use Faraday’s Law.

b) the current in the rod as a function of v. (also draw direction in
on diagram)

c) the Force on the rod as a function of v.

d) and finally the velocity of the rod as a function of time. To find
this you must integrate Newton’s 2nd Law F = M dv/dt. But you should
know how to do this by now. .



5 (20 points). é&%

|

And another easy one. Above ig the same old boring LRC circuit that we
have grown to know and love. V(t) = Vgosin(wt). I(t) = I sin(wt - #.

a) Draw the phasor diagram for the voltage gain/drop
element of the circuit.

in terms of R, L, C and w.

acrogss each
Be sure to define each quantity in the diagram

b) Express the phase angle ¢3 in terms of the given gquantities. Draw
the triangle from which we find the impedance, 2% and show g{ on the

triangle. (Al?;o/ u‘)ha‘f LZ 253

c) What is the instantaneous power into the capacitor? What is the
average power?

Choogse one of the next two problems. They are each worth 25 points.



OPTION 1 (25 points).

Derive the wave equation for the electric field from Hexwell’s
equations. Such a derivation should include: Simple diagramg that
indicate the paths of integration; a brief statement of the assumptions
(if any) involved; the algebra. DO NOT solve the wave equation once
you’ve got it, unless you want 10 extra points and have extra time.

Instead, show how you understand the solutions for the E and B fields.
What are the solutions? Are they in phase? How are the magnitudes
related? What 1is the energy density of the electromagnetic wave (in

termg of E and/or B)? What is the intensity (in terms of E and B or the
energy density)?



OPTION 2 (25 points).
Below is pictured another “Rod on Rails, but this time the
(frictionless) rails are vertical. The resistance of the rod is R, its
length ig L, and its mass is W. The magnetic field, B, is into the
paper ag drawn. At time t=0, the rod iz released from rest (at a great
height) and falls. Find: g:v

>< v
@é ny o
Jowm *
X % %
X X x
\ ﬁ»

a) The equation for its velocity as a function of time. As a hint,
what is the terminal velocity of the rod? (Use Newton’s 2nd, Faradav’s,
Ohm’g Law)

b) Show that, at terminal velocity, the power input by gravity into
the system equals the power dissipated by joule heating of the rod.
There are a variety of ways to do this. Some are easier than others,
and any valid argument will be accepted.



pPractice Quiz on Physical Optics.
please keep and do at your 1iesure before the hour exam.
Mo ecredit, do not hand in.

L .é - gQC)Vl\/V\

\ \ - — - )

S
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=/
Above is drawn a very thin clear glases (n=1.5) chrigtmag tree

ornament. Uhen viewed with white light, the ornament is irridescent
and many rainbow colors are seen playing acrose its surface. The
glags is known to be 500 nanometers thick.

1) What two wavelengths of vigible light are brightest when seen
reflected at normal jncidence as drawn above?

2) Yhat wave length of vigible light is not seen in light reflected
at normal incidence as drawn above?

Hint for both parts of the problem. First work out which equation you
want for constructive vs. destructive interference, including phase
ghifte at surfaces etc. Solve these equations for Ao - Then work
your way through m (the order) until the results 1ie in the wvisible
gpectrum. You do know where the visible gpectrum lies, don’t you?

e e

)



Practice Quiz on Two slit interference. 1®
Do on your own before Examg. Do not hend in.
Ho eredit.
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Above is pictureé a two glit interference experiment. The wavelength
of the incident light is A= 600 nm. The slit geparation d = 3000 nm.
The distance L is 1 m >> d. Find:

)

a) The angles E% at which constructive interference occurs. (A1l of

them) .
b) The angles at which destructive interference OCCUrs. (A1l of
them).
c) Draw a picture of the interference pattern produced 1(8). Do

this for & =[0,90] degrees. Urite the expression for the intensity
ag a function of the phase difference .

v\
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} Physios 92.1 & 52.2 G/ (2-32/85
€/ The Blectric Field R. G. Brown

(16 points) in the pictuwe below, a charge of +2q is located at
vy = -a, and a charge of —q is located at ¥ = @.
i I N

I

~a
< ] v
%28 <2 ?eaxi%

P

a) (6 points) Find the electric field (mgnitwie and direction)
at an a?§§tra%§ point on the y-axis. {(You will need to do three
regions: y»@, @yr-a, -ay.?

b)Y (3 points) Find a spot on the y-axris where the force on a
charge placed there would be =zero. (Hint: Uhere is the field
zero?) Extra credit: is this position a stable equilibrium point?
thy or why not.

g; c) (i point) Uhat is the magnitude and direction of the field
when q = 1¢C, v = 1@ om; X = @ cm, and 2 = 1@ om.



iz 1
G/ (233783
B, G. Brown

Physics 92.1 & 32.2
The Electric Field

(1@ points) In the picture below, two equal and opposite charges

(+g and =-g) are located on the y-axis aty = +a and y = -8,
A

respectively. ‘ %
Y.
& -@_%
= O
y%gz

a) (6 points) Find the electric field at an arbitrary point on
the x-awis (magnitude and direction).

2} (3 points) Show that the electric field on the x-axis has the

= o~
form B = kg when xyra. (recall E = q? = g{2ay).)
®

c) (1 point) What is the magnitwie of the electric field if

g=1ag; a =30 cm x= 4% cm, ¥y = @7



Physics 52.2 9/4/84
Quiz 1 Name:

~d d
-Q +Q

V
Above is a diagram showing a charge of +Q at x = d and a charge of
-Q located at % = —d. ’
a) (5 pts) Find the electric field on the wx—axis for x > d in
terms of k, Q, % and d.

b) (4 pts) Find the electric field to lowest order if x > d.
How does the field vary? (This is the dipole field).

c¢) (1 pt) Suppose Q = ZO/AC, d = 3m. Find the force (magnitude and
direction, remember) on a test charge of q = —ZOfAC placed at the
origin.



Physics 5Z.1 9/3/84

RGNS

-
-Q‘;

1) Above is a diagram showing a charge of 2Q located at y = d and
a charge of —-Q located at y = -d.

a)(5 pts) Find the electric field at an arbitrary point on the
w—axig, in terms of k, Q, X and d. Do it algebraically.

b)(4 pte) Find the electric field (to lowest order in x) if x>>d.
In which direction does it point? Does your answer make sense?

c)(1 pt) Let Q= 30/4C, d = 3m. Find the force (magnitude and
direction) that would be exerted on a test charge of 10;40 placed
at the origin. ‘



Physics 32.1 & 32.2 9/(2-33785
The Electric Field R. G. Browmn

(16 points) in the picture below, a charge of +2q is located at
y = -a, and a charge of -q is located at y = @.

s T I
o
@r’%”“%% o
%23 e ?@@%7&%
v

a) (& points) Find the electric field (wagnitwde and direction)

at an arbitrarn int on the v-axis. (You will need to do three
e i% po o Yax1s

regions: y»@, @y)-a, -ary.)

b)Y (3 points) Find a spot on the y-axis vwhere the force on a
charge placed there would be zero. (Hint: Uhere is the field
zero?) Extra credit: is this position a stable equilibrium point?
thy or vhy not.

c) (1 point) Uhat is the magnitude and direction of the field
when q = 1€, v = 1@ cm;, x = @ cm, and a = 1@ om.



Guiz L
Physics 92.1 g 52.2 B/{46-172/8D
fGauss® Law and Electric Potential R. G. Brown

a) (10 points) A solid cylindrical shell of “infinite” length and
radius R has a uwniform charge density of pg C/WP digtributed
throughout it. Find the electric field at all points in space.
Graph (roughly) your results.

b) (i¢ points) Find the potential difference betwsen the surface
of the cylinder (r = R) and all other points in space (r inside anl
outside the cylinder).

X



iz 1
Physics 92.1 & 352.2 9/{16~-17y/83
Gauss' Law andd Potential R. G. Brown

a) (10 points} Find the electric field for a solid sphere of
radius B and with a wniform charge density pg C/w? at all points in

space. Graph (roughly) youwr answer. E.

b}y (1® points) Using your answer(s) to part a), find the electric
potential (relative to o) at all points in space. Graph (roughly)

your answer. \




Quiz &
Physics 52.1 & 52.2 9/{16-17Y/89
Gauss’! Law and Electric Potential R. G. Brown

a) (1@ points) A solid cylindrical shell of "infinite” length and
radius R has a wniform charge density of pg C/m@ distributed
throughout it. Find the electric field at all points in space.
Graph (roughly) your results.

b) (1@ points) Find the potential difference between the surface
of the cylipder (r = R) and all other points in space (r inside and
outside the cylinder).

AW



Physics 52.1 or 52.2 Hame:
Quiz 3 9/25/84

1) (4 pts.) Find the capacitance of the spherical shells drawn
above in terms of Rl , R,, and éou Use whatever laws you need to
and show all work, in&%cating how you would solve for £ and V
rather than actually solving for them if you like.

2y (4 pts.) What is the total energy stored in the electric field
of the capacitor above? What is the energy density (as a function
of r)? Show all work, again, starting from the known field or

potential if you wish.

3) (2 pts.) If the capacitor above were filled with a dielectric
material with dielectric constant K=2.0, how would your answers to
1) and 2) change? (i.e.—— find the modified

field/potential/capacitance and energy)



Guiz 1 ]<
Physics 52.1 & 52.2 9/(2-3)/85 6‘3 :
The Electric Field R. G. Brown

(16 points) In the picture below, two equal and opposite charges

(+q and =-g) are located on the y-axis at y = +a and y = -3,
s~

respectively.

=0

=9 ©

69
a) (6 points) Find the electric field at an arbitrary point on
the z-axis (magnitule and direction).

\E\t.ﬁtié\ Ex: > éi s -
(Xzf(} (ﬁz-(-(f)—}/z ( \El 0365
EEZZ_\ (t{ SWE)
(%)™

So T Y _ 3
o & zo T, ~Z&5C\%\f+a’1) 7=
2] (3 points) Show that the electric field on the x-axis has the

form E = = g when x)ra. (recall p q? q(za;).)
2
Evtbzgq = -Zkgs (‘f >z -
(XY x>

_ I A

= "'% so & =- E_E (§ 2 ZO\Z%;>
%> N

c) (1 point) Uhat is the mg’ni;xﬁe of the electric field Iif

g=14, a=230cm x =40 cm y =67

9 -6 )(.* )
(ﬂxlo ){ X/O > /0 @‘%@r ?x%x(o
ok = 2P D¥3




Physics 52.1 & 52.2 Hame:
Quiz 3 9/24/84

1) (4 pts.) Find the capacitance of the cylindrical shells drawn
above in terms of L, R, , R, andéig. Use whatever laws you need
to and show all work, ~indicating how you would golve for E and V
rather than actually solving for them if you like.

2) (4 pts.) What is the total energy stored in the electric field
of the capacitor above? What is the energy density (as a function
of r)? Show all work, again, starting from the known field or
potential if you wish.

3) (2 pts.) If the capacitor above were filled with a dielectric
material with dielectric constant K=4.0, how would your answers to
1) and 2) change? (i.e.— find the modified
field/potential/capacitance and energy)



Quiz 4 . Hame:
Physics 52.1 & R 10/22/84

s

b

The current in the long straight wire above is I(t) = I, t Amps.
Express all answers in terms of Hor 1o, a, by and .
a) Find the magnetic field as a function of r due to the 1long wire
using Ampere’s law. Indicate the direction on the diagram.

b) Find the flux through the square loop due to the current in the
long wire. From this calculate ¥, the mutual inductence.

c) Find the EMF in the loop, wusing Faraday’s law. Indicate the
direction of current flow (found from Lenz’s law).

d) Find the net force on the loop.



Quiz 4 Hame:
Physics 52.2 10/23/84

svde View

ﬁg tw¢m;3 E%ﬁy e w

c,\v‘«:u\o»f’ ﬂ@@%
é@% vadius al”

Above 1is a picture of a solenoid with length L and N turns, each
carrying a current I = I_t. Express all answers in terms of /Q, I, a,
Rand @. (Ris resisiauce o« <veulay losp) ’

a) Find the field inside the solenoid (using Ampere’s law). Draw
it's direction on the picture above.

b) Find the flux through the circular loop as a function of 1I. Note
that the loop is angled with respect to the field. What is the mutual
inductance of the loop?

c) Find the EMF induced in the circular loop from Faraday’s law.
Indicate the direction of current flow (from Lenz’s law) on the diagram.

d) What is the torque on the loop? (Hint: Find the current in the
loop, and thus the magnetic dipole moment . )



Guiz 4
Physics 92.1 & 32.2 9/(23-243 785

Capacitance R. G. Browm

(7 points) Below you see drawn a spherical shell capacitor wade up
of two concentric conducting shells of radii a and b, Find the
capacitance. (Show all of youwr work. Gtart with Gauss’ Law)

hy (3 points) What is the net capacitance of the arrangement
below.

Coun=¢
Ma\ )
Ve
@M.
Cootal =
C, = 3out C, = Tout Cy = 7.90uf




Quiz 5 Hame:
Physics 52.1 10/29/84

As. promised, for one point each, for each material described below, tell
whether the material is paramagnetic, diamagnetic, or ferromagnetic.

a) At low temperature the material develops a magnetization that is
positive (parallel to the applied field) and inversely proportional to
the temperature.

a:

b) The material seems to develop a strong, "permanent” magnetic moment
after being heated and then cooled in a strong magnetic field.

b ,

c) The material repels the poles of a magnet brought near the
substance. It seems to repel either pole equally at any temperature.

c: '

V.= 100 V=

c = %o ¢ &mads .

| = 4ox%/5° hewies
R = Yoo ST

= looco vadfsec .

AR |
call S
Cecal g’m-rs
2) (7 pts.) Above is pictured an LRC circuit. R = 400 ohms, C = 1
microfarad, and L = 40 millihenries. Find:
a) the resonant frequency of the circuit.

b) the impedance (Z) of the circuit, if the angular frequency of
the the applied voltage, ¢J, is 10000 rad/sec.

c) the average power drawn by the circuit if &) = 10000 rad/sec
and V(max) = 100 volts.



