next up previous contents
Next: Parallel to Plane of Up: Dynamics and Reflection/Refraction Previous: Coordinate choice and Brewster's   Contents

$ \Vec{E}$ Perpendicular to Plane of Incidence

Figure 11.2: Polarization component of the incident (and reflected and refracted) waves perpendicular to the plane of incidence.
\begin{figure}
\centerline{\epsfbox{figures/plane_perp_inc.eps}}
\end{figure}

The electric field in this case is perforce parallel to the surface and hence $ \Vec{E}\cdot\Hat{n} = 0$ and $ \vert\Vec{E}\times\Hat{n}\vert = 1$ (for incident, reflected and refracted waves). Only two of the four equations above are thus useful. The $ \Vec{E}$ equation is trivial. The $ \Vec{B}$ equation requires us to determine the magnitude of the cross product of $ \Vec{B}$ of each wave with $ \Hat{n}$ . Let's do one component as an example.

Figure: Geometry of $ \Vec{B}_0 \times \Hat{n}$ .
\begin{figure}
\centerline{\epsfbox{figures/B_cross_n.eps}}
\end{figure}

Examining the triangle formed between $ \Vec{B}_0$ and $ \Hat{n}$ for the incident waves (where $ \theta_i$ is the angle of incidence), we note that $ B_\perp = B_0 \cos(\theta_i)$ and thus: 1&mu#mu;|\Vec{B} _0 ×\Hat{n} | & = & 1&mu#mu; B_0 (&thetas#theta;_i)
& = & &mu#mu;&epsi#epsilon;&mu#mu; E_0 (&thetas#theta;_i)
& = & &epsi#epsilon;&mu#mu; E_0 (&thetas#theta;_i).

Repeating this for the other two waves and collecting the results, we obtain: E_0 + E_0'' & = & E_0'
&epsi#epsilon;&mu#mu; (E_0 - E_0'')(&thetas#theta;_i) & = & &epsi#epsilon;'&mu#mu;' E_0'(&thetas#theta;_r) This is two equations with two unknowns. Solving it is a bit tedious. We need: (&thetas#theta;_r) & = & 1 - ^2(&thetas#theta;_r)
& = & 1 - n^2n'^2^2(&thetas#theta;_i)
& = & n'^2 - n^2^2(&thetas#theta;_i)n' Then we (say) eliminate $ E_0'$ using the first equation: &epsi#epsilon;&mu#mu; (E_0 - E_0'')(&thetas#theta;_i) = &epsi#epsilon;'&mu#mu;' (E_0 + E_0'') n'^2 - n^2^2(&thetas#theta;_i)n' Collect all the terms: E_0 ( &epsi#epsilon;&mu#mu; (&thetas#theta;_i) - &epsi#epsilon;'&mu#mu;' n'^2 - n^2^2(&thetas#theta;_i)n' ) =
E_0''(&epsi#epsilon;'&mu#mu;'n'^2 - n^2^2(&thetas#theta;_i)n' + &epsi#epsilon;&mu#mu; (&thetas#theta;_i) ) Solve for $ E_0''$ : E_0'' = E_0 ( &epsi#epsilon;&mu#mu; (&thetas#theta;_i) - &epsi#epsilon;'&mu#mu;' n'^2 - n^2^2(&thetas#theta;_i) n' ) ( &epsi#epsilon;&mu#mu; (&thetas#theta;_i) + &epsi#epsilon;'&mu#mu;' n'^2 - n^2^2(&thetas#theta;_i) n' )

This expression can be simplified after some tedious cancellations involving nn' = &mu#mu;&epsi#epsilon;&mu#mu;'&epsi#epsilon;' and either repeating the process or back-substituting to obtain : E_0'' & = &E_0 ( n(&thetas#theta;_i) - &mu#mu;&mu#mu;' n'^2 - n^2^2(&thetas#theta;_i) ) ( n(&thetas#theta;_i) + &mu#mu;&mu#mu;'n'^2 - n^2^2(&thetas#theta;_i) )
E_0' & = & E_0 2n(&thetas#theta;_i) ( n(&thetas#theta;_i) + &mu#mu;&mu#mu;'n'^2 - n^2^2(&thetas#theta;_i) )


next up previous contents
Next: Parallel to Plane of Up: Dynamics and Reflection/Refraction Previous: Coordinate choice and Brewster's   Contents
Robert G. Brown 2017-07-11