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We study experimentally the synchronization patterns in time-delayed directed Boolean networks of

excitable systems. We observe a transition in the network dynamics when the refractory time of the

individual systems is adjusted. When the refractory time is on the same order of magnitude as the mean

link time delays or the heterogeneities of the link time delays, cluster synchronization patterns change, or

are suppressed entirely, respectively. We also show that these transitions occur when we change the

properties of only a small number of driver nodes identified by their larger in degree; hence, the

synchronization patterns can be controlled locally by these nodes. Our findings have implications for

synchronization in biological neural networks.
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Introduction.—One striking dynamical phenomenon
arising in complex networks is the existence of zero-
time-lag synchronized behavior in the presence of link
time delays [1–4]. In neural networks, time delays result
from propagation of neuronal pulses along the axons,
introducing several tens of milliseconds of latency, which
is significantly larger than the duration of the action po-
tential (&1 ms) [5]. Yet, even between distant parts of the
brain, neural activity that is synchronized with zero time
lag has been observed [1,6–9] and found to be associated
with perception and neurological diseases [10,11]. These
dynamics of repeating spiking patterns are responsible for
a wide range of rhythmic motor behaviors [12–14], which
are dependent on the network refractory time [15].

Studies on neurological networks such as in C. elegans
found recurring topological structures of nodes assembled
in loops with directed connections [16]. This type of net-
work displays stable synchronization patterns with proper-
ties that can be inferred from the network topology alone.
Specifically, cluster synchronization originates from the
distribution of one initial stimulus (a pulse) in the network
via the time-delayed links. At nodes that have multiple
inputs, signals are combined and the propagation times
from their output to their input via the different loops are
given by the loop sizes and, in addition, are affected by
heterogeneity in the link time delays. If the heterogeneity is
negligible, the dynamics relaxes to a stable synchroniza-
tion pattern of zero-lag synchronized clusters, where the
number of clusters—groups of neurons that are individu-
ally zero-lag synchronized—is given by the greatest com-
mon divisor (GCD) of the number of nodes in each
network loop [17–21].

This prediction, however, relies on a separation of time
scales, such that link time delays are larger than the char-
acteristic time scale of the node dynamics. In addition,
local variations of the coupling strength and noise can
affect the synchronization patterns of the network, so that

the nonlocal criterion of the GCD can fail to describe the
synchronization state [22]. In general, stability of group
and cluster synchronization in multipartite networks, i.e.,
networks where each cluster is coupled unidirectionally to
only one other cluster, can be predicted using the master
stability approach [4]. In the special case that a network of
identical nodes consists of directed loops only, the GCD
theory can be applied to calculate the largest possible
number of clusters.
In this Letter, we study synchronization patterns in an

experimental time-delayed network of excitable nodes for
different regimes of the refractory times. First, we find a
loss of synchronization when the refractory times are
comparable to the heterogeneity of the link time delays.
Second, we find a modification in the cluster synchroniza-
tion patterns when the refractory times are larger than the
link time delays. These effects can be controlled by adjust-
ing the refractory times of only a few important nodes in
the network that have the largest in degree—a quantity that
describes the number of input connections. The observed
loss and dynamical modification of neural synchronization
patterns through a variation of the refractory time might
also appear in the brain, where it could be applied to
control rhythmic motor behaviors and neurological dis-
eases by adjusting the refractory time with chemicals in
the blood [23].
Setup.—We build Boolean networks with electronic

logic gates using a field-programmable gate array
(FPGA) because it offers a large number (�100; 000) of
logic elements with reassignable logic functions and flex-
ible interconnections. Our circuits operate autonomously
so that their dynamics are governed by the logic gate
propagation delays and connection time delays, and not
by a global clock. The continuous temporal evolution can
be described mathematically by both Boolean delay equa-
tions and ordinary differential equations [24–27].
Theoretically and experimentally, these autonomous
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Boolean networks have been found to display a large
variety of dynamical behaviors, such as chaos, periodic
oscillations, and excitability [28–30].

Here, we realize excitable nodes with a circuit design of
autonomous logic gates that is introduced in Ref. [30] and
shown schematically in Fig. 1(a). Similar to biological
neurons [31], the electronic circuit responds to above-
threshold input signals with large output signals (pulses)
and leaves its stable fixed point for a finite time [32]. It is
governed by two characteristic time scales given by its
output pulse width Tpulse and a quiescent time period after

generating a pulse, which is the refractory time Tref (mne-
monic refractory).

The two time scales Tpulse ¼ npulse�buf and Tref ¼
nref�buf can be varied by changing the numbers npulse and

nref of autonomous delaying elements (buffers, imple-
mented with two consecutive inverter gates), where �buf ¼
ð560� 20Þ ps is the propagation time through one delay-
ing element. The quantity �buf fluctuates in time by �1%
due to timing jitter. In addition, �buf has slightly different
values for different logic elements due to process variation
in the fabrication of the integrated circuits, quantified by a
heterogeneity of �3:5%. Here, we implement networks of
several excitable nodes using many logic gates on the chip.
We state average values for the properties of the nodes,
which are therefore affected by the latter error estimation.

We build networks by connecting excitable nodes with
directed time-delayed links, where link time delays � ¼
n��buf are realized with n� cascaded delaying elements.

When nodes have multiple input connections, these signals
are combined with electronic equivalents of neurological
synapses [33]. We implement electronic synapses with OR

gates so that any of the inputs can excite the node. In this
fashion, we can create large networks and study the
dynamics.
Synchronization patterns.—We study cluster synchroni-

zation in a network with a topology shown in Fig. 1(b) with
N ¼ 32 excitable nodes assembled in four directed loops
of 8, 10, 12, and 16 elements. First, we consider the case of
a separation of time scales with node refractory times of
Tref ¼ ð5:6� 0:2Þ ns. The ith loop has a propagation time
Ti associated with it, given by

Ti ¼ Lið�þ �Þ þ �i; (1)

where Li is the number of nodes in the loop, � ¼
ð16:7� 0:6Þ ns is the delay of a single link, � is the
processing delay of one node, and �i is the heterogeneity
in loop i. We measure the maximum heterogeneity in our
network to be � ¼ maxi;jðj�i ��jjÞ ¼ ð2:8� 0:1Þ ns.
With separated time scales satisfying � > Tref > �, the

experimental network displays two zero-lag synchronized
clusters as shown in Fig. 2(a). The waveforms of four
nodes, two out of each cluster, show coherent spiking
with period Tcluster � GCD � ¼ 2�. This behavior is also
predicted by the GCD theory from the number of elements
in each loop, as GCDð8;10;12;16Þ¼2 [17]. The

FIG. 1 (color online). (a) Scheme of an excitable node and its
implementation with autonomous logic gates using two pulse
generators (boxes). An OR gate combines multiple inputs. A total
number of 2ðnref þ npulseÞ þ 3 logic elements are required to

implement an excitable node with one input. (b) The network
topology, where directed time-delayed connections are indicated
by arrows, nodes are indicated by circles and labeled to identify
them in the following figures, and the node that receives the
initial pulse is also indicated.

FIG. 2 (color online). Network dynamics of a 2-cluster
state with node parameter npulse ¼ 4 [Tpulse ¼ ð2:2� 0:1Þ ns],
nref ¼ 10 [Tref ¼ ð5:6� 0:2Þ ns and link delay times n� ¼ 30
[� ¼ ð16:7� 0:6Þ ns] after initial stimulation of one node
with one pulse of width w ¼ ð1:6� 0:1Þ ns. The inset is a
replica of the topology of the network, where nodes are colored
by cluster. (a) The output waveform of four nodes in the
network. Input-output gates are used for the readout with the
oscilloscope (8 GHz analog bandwidth, 40 GSa=s sampling
rate). (b) Raster diagram of the network, where each point
represents the temporal occurrence of a spike with a 2 ns
resolution. The network is realized using an Altera Cyclone IV
FPGA (EP4CE115F29C7N).
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experimental results are consistent with numerical
simulations using a theoretical description of the excitable
node introduced in Ref. [30] (see the Supplemental
Material [34]).

The spiking dynamics of the entire network is shown in
the raster diagram in Fig. 2(b), where each dot represents a
spiking event, subject to a discretization error of �1 ns.
The first (last) 16 elements, as also shown in the inset, are
in near zero-lag synchronization and belong to a cluster.
The variation (� 4 ns) in spike generation time between
nodes is due to differences in the link time delays and
measurement error that originates from signal propagation
delays on the FPGA.

To our knowledge, this network is the largest experi-
mentally implemented complex network showing cluster
synchronization that operates without computer assistance,
which is commonly used to manage the network coupling
in experiments [20,33,35]. This illustrates that our setup is
well suited to build large networks compared to other
experimental approaches [19].

We can access network dynamics that are not predicted
by topological considerations with the GCD by changing
the separation of time scales (� > Tref > �) in our system.
Time scales are adjusted by changing the refractory time of
the excitable nodes. First, we study short refractory times
Tref on the order of the heterogeneities � of the link time
delays and, second, long refractory times Tref on the order
of the link time delays �.

When we decrease the refractory time to a value of
Tref ¼ ð2:8� 0:1Þ ns, the network dynamics change.
Instead of cluster synchronization with oscillations on the
order of �, the network displays fast, incoherent spiking
dynamics with interspike intervals on the order of Tref , as
shown in the waveform and raster diagram of Fig. 3. For
easy comparison with the previous figure, the time axis
is kept the same. The new dynamical state generates

excitations constantly, leading to pulsing dynamics with
high frequencies close to the maximum frequency allowed
by the excitable nodes, given by 1=Tref .
The breakdown is caused by heterogeneity in the loop

propagation times at the high in-degree nodes.With Eq. (1),
a maximum time difference � ¼ maxi;jðj�i � �jjÞ ¼
ð2:8� 0:1Þ ns exists in the propagation times Ti of the
network loops and leads to a mismatch of the arrival times
of pulses. When �< Tref , the refractory time can compen-
sate for the mismatch, by blocking pulses that arrive a time
� after the first pulse during every period of the clusters
Tcluster. In this case, the spiking dynamics stays coherent.
Otherwise, when �> Tref , the pulse that arrives a time
difference� after the first pulsewill trigger additional pulse
trains, leading to incoherent high-frequency spiking.
Besides the breakdown for small Tref , the cluster syn-

chronization patterns are also affected for large Tref . When
the refractory time is increased to Tref ¼ ð39� 2Þ ns �
2:3�, the network displays four synchronized clusters
(4-cluster state) instead of the 2-cluster state that is inferred
from the topology and observed in Fig. 2, as shown in the
waveforms and raster diagram in Fig. 4.
To understand this behavior, we consider the maximum

output frequency of the excitable node, given by 1=Tref .
When the predicted oscillation frequency, given by
1=Tcluster � 1=ðGCD �Þ, is above the maximum frequency
1=Tref , the network cannot show the predicted cluster state
and the dependency on Tref comes into effect. Loops that
generate pulses with periods T < Tref , as predicted from
the topology, are suppressed at nodes with high in degree
because the pulses fall into the refractory phase of pulses
from other loops. Thus, the GCD has to be recalculated by
neglecting some loops, using only the loops that lead to a
GCD larger than Tref=�. Because this pulse-blocking
mechanism is based on short oscillation periods, the loops
that are effective for the cluster dynamics and used for the

FIG. 3. Same as Fig. 2, except with nref ¼ 5 (Tref ¼
ð2:8� 0:1Þ ns), showing a desynchronized state (synchroniza-
tion breakdown) of the network dynamics.

FIG. 4 (color online). Same as Fig. 2, except with nref ¼ 70
(Tref ¼ ð39� 2Þ ns), showing four clusters in zero-lag synchro-
nization (4-cluster state).
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calculation are those that lead to the smallest value of the
GCD that is greater than Tref=�, i.e., that lead to the shortest
period greater than Tref . Therefore, with the size of loops
Li, the number of clusters is given by

min
fLig2Network

½GCDðfLigÞ�: GCDðfLigÞ> Tref=�: (2)

This extended criterion describes successfully the stable
synchronization patterns observed in Fig. 4. Because
GCDð8; 10; 12; 16Þ ¼ 2< Tref=� � 2:3, a loop needs to
be exempt from the calculation, leading to the next
larger GCD value of GCDð8; 12; 16Þ ¼ 4> Tref=� � 2:3.
Therefore, the modified GCD theory predicts the experi-
mentally observed 4-cluster state.

The constraint given by Tref depends on the network
topology. For example, a network with predicted zero-lag
synchronization (1-cluster state) transitions to a different
cluster state already when Tref=� > 1. When Tref is further
increased, more and more loops lose their effect until the
refractory time is longer than the propagation delay
through the largest loop; then, spiking dynamics is no
longer self-sustained and the network relaxes to the quies-
cent state. Surprisingly, in our topology, it is not the short-
est loop with eight nodes but the loop with ten nodes that
becomes ineffective first.

Control of synchronization patterns.—A global adjust-
ment of the refractory time Tref of all nodes influences the
network dynamics significantly. However, we can even
achieve local control of the global network dynamics by
adjusting the properties of only a small number of nodes.

The influence of the refractory time on the network
dynamics is most prominent at the nodes with high in
degree. This motivates us to only adjust the refractory
times of the nodes with in degree greater than one, which
represents a simple degree correlation [36].

First, we investigate the network dynamics for short
refractory times. We set the refractory times of nodes to
Tref ¼ ð2:8� 0:1Þ ns, a value for which the breakdown of
cluster synchronization is observed. When we now
increase the refractory times of the two nodes with an in
degree greater than one [nodes 13 and 30 in Fig. 1(b)] to
Tref ¼ ð5:6� 0:2Þ ns, the stable synchronization patterns
reappear as a solution. An initial pulse sent to this network
in the quiescent state leads to a 2-cluster synchronization
pattern similar to that observed in Fig. 2.

Second, we investigate network dynamics for large
refractory times. We set the refractory times of all nodes
to Tref ¼ ð5:6� 0:2Þ ns, a value for which a 2-cluster
synchronization state is observed. When we now increase
the time scales of the two nodes with an in degree greater
than one to Tref ¼ ð39� 2Þ ns, the stable synchronization
pattern changes to a 4-cluster state, which we have
observed in Fig. 4, when increasing the time scales of all
nodes.

Both cases allow for the control of the synchronization
patterns locally by a small fraction of the network nodes by
adjusting the refractory time of only 2 out of 32 nodes.
Conclusion.—Cluster synchronization patterns change

when the refractory time of the nodes is larger than the
link time delays or smaller than the heterogeneity of the
link time delays. For large refractory times, cluster syn-
chronization patterns are modified, and, for short refractory
times, cluster synchronization breaks down to an incoher-
ent state. In both cases, we identify the mechanism leading
to the transition and, in the first case, we put forth a
modified GCD criterion that includes the constraints
imposed by the refractory time. The synchronization pat-
terns can be controlled by the refractory time of a small
fraction of nodes, identified by their in degree.
In addition to the potential application to neuroscience

stated in the Introduction, our findings have two funda-
mental implications. First, the dynamics of neural net-
works does not solely depend on the global topology as
suggested by Kanter et al. [17]. But, depending on the time
scale of the nodes, some links are dynamically pruned,
leading to a new effective topology with altered synchro-
nization patterns, as described by Eq. (2). Second, the
driver nodes relevant for control can be identified easily
by their large in degree and allow one to control the global
network dynamics locally. This is similar to a recent study
on the controllability of networks that predicts that the
number of driver nodes is given by the network’s degree
distribution [37].
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