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I. CHAOTIC ELECTRONIC CIRCUIT

A single chaotic electronic oscillator used in our study is identical to that used by Gauthier

and Bienfang in their study of attractor bubbling [27]. Here, we summarize the properties of

the circuit for completeness, which consists of a negative resistor wired in series with a ca-

pacitor, which is coupled to an inductor-resistor-capacitor tank circuit through a nonlinear

conductance, as shown schematically in Fig. S1. Its behavior is governed by the set of dimen-

sionless equations (3-5) in the Letter, where V1 j and V2 j represent the voltage drop across the

capacitors (normalized to the diode voltage Vd = 0.58 V), I j represents the current flowing

through the inductor (normalized to Id = Vd /R = 0.25 mA for R = 2,345 Ω), g [V ] = V /R2 +
Ir

(
exp(α f V )−exp(−αr V )

)
(Eq. (6)) represents the current (normalized to Id ) flowing through

the parallel combination of the resistor and diodes, and time is normalized to τ =p
LC = 23.5

µs. The circuit displays “double scroll” behavior for Ir = 22.5 µA, α f =αr = 11.6, R1 = 1.30, R2 =
3.44, R3 = 0.043, Rdc = 0.15 (the dc resistance of the inductor), and R4 = R3+Rdc = 0.193, where

all the resistances are normalized to R. The state vector is given in terms of these variables via
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FIG. S1. Chaotic electronic oscillator with negative resistance -2,814 Ω, 10 nF capacitors, 55 mH in-

ductor (dc resistance 353 Ω) in series with resistance 100 Ω, and a passive nonlinear element (resistance

8,067 Ω, and back-to-back parallel diodes, type 1N914, dashed box).

the relation xT
j = (V1 j ,V2 j , I j ). The chaotic electronic circuits are coupled by measuring the dif-

ferences of either V1 j or V2 j in each circuit with an instrumentation amplifier, converting to a

current, and injecting the resulting signal to the slave node above one of the capacitors.

II. LOCAL LYAPUNOV EXPONENTS

Attractor bubbling occurs when the largest transverse Lyapunov exponent λ⊥ is negative

(the synchronized state is stable in the average sense), but there exist positive local transverse

Lyapunov exponents η⊥ of invariant sets embedded in the chaotic attractor. The transverse

Lyapunov exponents λ⊥ and η⊥ are determined from the variational equation

dδx⊥
d t

= {DF [s(t )]− cK}δx⊥, (S1)

where DF [s(t )] is the Jacobian of F evaluated on s(t ), and, for λ⊥, s(t ) is a typical orbit on the

chaotic attractor, while, for η⊥, s(t ) is an ergodic orbit on the invariant set of interest embedded

in the chaotic atractor. Determining the value of the largest Lyapunov exponent λ⊥ (or η⊥) in-

volves integrating Eq. (S1) for a short time, renormalizing δx⊥ to avoid computer overflow, and

continuing the integration until the attractor (or the relevant invariant set) is largely covered.

For the purpose of understanding bubbling, it is the largest local (short-time) Lyapunov ex-
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FIG. S2. Probability distribution function of the short-time, or local Lyapunov exponents for the cou-

pled chaotic oscillators.

ponents that are of interest. It is the times when η⊥ is positive that the trajectory s(t ) is near

an unstable set embedded in the attractor and a bubbling event is likely. Figure S2 shows the

probability density for η⊥ using a short integration time of 0.005 dimensionless time units. We

see that the distribution is very non-Gaussian at short times, and, most importantly, is sharply

peaked around η⊥ ∼ 0.55. Analysis shows that this large peak is associated with the unstable

saddle embedded in the attractor at x⊥ = 0. It is this unstable saddle that causes trajectories to

transition between the double scrolls of the attractor.

The analysis so far assumes that the components of the master and slave electronic oscil-

lators are identical and that there is no noise in the system. We took great care to match all

components to better than 1%, and the noise level is small. In this case, it is useful to suppose

the existence of an effective approximate invariant manifold, but these nonideal behaviors (i.e.,

noise and mismatch) are required to observe bubbling. When, at some time t0, the trajectory

gets close to an ideal unstable set (such as the unstable saddle), we can regard the nonideal

effects as acting like a transverse initial perturbation, which subsequently leads the orbit to

experience exponential growth according to

|x⊥| = |x⊥(t0)|exp
[
η⊥(t − t0)

]
, (S2)

for t − t0 smaller than the characteristic time scale over which the trajectory remains within a

neighborhood of the unstable set whose (local transverse) stability is given by η⊥. This is the

initiation of the bubble.
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III. THEORETICAL DERIVATION OF THE DISTRIBUTION

We now present a theoretical analysis for the observed power law exponent −2, and we also

give an argument to explain why the distribution is truncated at a maximum event size and

ends in a peak. In order to build the PDF of event sizes, let us follow the trajectories xM (t ) of the

master and xS(t ) of the slave subsystems when they both start, at time t0, in a volume of phase

space close to the unstable, saddle-type fixed point at the origin. If the distance to the saddle-

point is small enough, the dynamics inside this volume can be approximated by linearizing

the evolution equations (Eqs. (3-5)) around the saddle-point. The structure of the linearized

phase space depends on the values of the characteristic exponents of the saddle, which are

obtained as the eigenvalues of the 3-D Jacobians for the master (DF[0]) and slave (DF[0]− cK)

subsystems: For the master subsystem, γ1M = 0.517 is the positive exponent; γ2M and γ3M are

complex conjugates with negative real part, γ2M ,3M =−0.261±0.970i . For the slave subsystem,

γ1S = 0.491, γ2S =−0.422, γ3S =−4.47 are all real. Each subsystem j = M ,S has two eigenvalues

with real part negative, γ2 j and γ3 j , which define a stable plane, a linearization of the stable

manifold of the nonlinear dynamics close to the saddle-point. Transverse to the stable plane,

there is an unstable direction that corresponds to the direction of the eigenvector associated

to the positive eigenvalue γ1 j . The projection of each subsystem trajectory onto its respective

stable plane decreases exponentially with an exponent ℜe
{
γ2M

}
for the master and at least γ2S

for the slave. The projection of each subsystem trajectory along its respective unstable direction

grows exponentially with exponent γ1 j . This description is represented pictorially in Fig. S3.

Notice that the magnitudes of the unstable exponent γ1 j of the master and slave subsystems

are nearly equal (5% difference). Thus, for simplicity, we take both positive exponents equal,

and define η = γ1M
∼= γ1S . The 1-D projections of the trajectories xM and xS along the unsta-

ble direction are denoted by uM and uS , respectively. The dynamics along these 1-D axes are

depicted in Fig. S4. Written in terms of their initial center uË(t0) = [uM (t0)+uS(t0)]/2 and ori-

ented half-separation u⊥(t0) = [uM (t0)−uS(t0)]/2, these projections obey the solutions of the

unstable part of the linearized equations

uM (t ) = [
uË(t0)+u⊥(t0)

]
exp

[
η(t − t0)

]
, (S3)

uS(t ) = [
uË(t0)−u⊥(t0)

]
exp

[
η(t − t0)

]
, (S4)

and grow exponentially until the contribution of higher-order terms become significant in the
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FIG. S3. Manifolds of the fixed point (A) for the nonlinear flow and (B) for the linearized dynamics.

dynamics and the linear approximation of the flow near the saddle-point is no longer valid. We

call this latter phenomenon saturation of the exponential growth. After saturation, the trajec-

tories can still grow at a different, nonexponential rate, and eventually are brought back by the

nonlinear dynamics to a region near the saddle, in a process ending the burst away from the at-

tractor that we call reinjection. We want to calculate the distribution of the burst sizes B , where

B is the maximum value of the separation between the trajectory and the invariant manifold

during the burst.

-umax umax

x = 0

(unstable fixed point)

uM,S

+uu- uu

u

FIG. S4. Linearized dynamics along the unstable direction.

When the orbit is not in a bursting event, noise or parameter mismatch keeps |x⊥(t )| non-
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zero. Thus, when the chaotic dynamics places the orbit near the fixed point at some time t0,

the linear approximation to the absolute separation between the real and ideal (no noise or

mismatch) trajectories along the unstable direction is

∆(t ) = 2 |u⊥(t )| = |uM (t )−uS(t )| ∼= 2 |u⊥(t0)|exp
[
η(t − t0)

]
, (S5)

where |u⊥(t0)| is determied by the small noise and/or mismatch. In order to determine B , we

neglect the components of the trajectories in the stable plane, |x⊥(t )| ∼= |u⊥(t )|, an approxima-

tion that is justified by the strong contraction of the linear flow along the stable plane — the

stable component shrinks exponentially fast. We also assume that saturation happens when

one of the trajectories uM (t ) or uS(t ) reaches a fixed distance umax from the stable plane, at

time tsat, either on the positive or on the negative side of the plane. That is, either |uM (tsat)|
or |uS(tsat)| is equal to umax. With these approximations, the absolute values of uM (t ), uS(t ),

uË(t ), and u⊥(t ), all grow exponentially with the same exponent η, and the size of the burst that

started at t0 is B =∆(tsat).

To find an approximate value for ∆(tsat) there are two cases to consider: i) when |uË(t0)| >
|u⊥(t0)|, the trajectories for the master and slave systems remain relatively close to each other,

so they both saturate together and ii) when |uË(t0)| < |u⊥(t0)|, the distance between the trajec-

tories grows faster than their center and one of either the master or the slave trajectory saturates

before the other one does. In case i), the trajectories are on the same side of the stable plane. Let

us assume, without loss of generality, that the master trajectory saturates first, on the positive

direction, hence,

B =∆(tsat) = umax −
[
uË(t0)−u⊥(t0)

]
exp

[
η(tsat − t0)

]
. (S6)

Using the solution for the master unstable component, Eq. (S3), we can eliminate the time

exponential in Eq. (S6)

exp
[
η(tsat − t0)

]= uM (tsat)

uË(t0)+u⊥(t0)
= umax

uË(t0)+u⊥(t0)
, (S7)

to write

B = umax −umax

(
uË(t0)−u⊥(t0)

uË(t0)+u⊥(t0)

)
, (S8)

B = 2umaxu⊥(t0)

uË(t0)+u⊥(t0)
. (S9)
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Similar analysis for other possibilities in case i) gives

B = 2umax |u⊥(t0)|∣∣uË(t0)
∣∣+|u⊥(t0)| . (S10)

Notice that the maximum value of B in case i) corresponds to umax, when |u⊥(t0)|≲ |uË(t0)|.
In case ii) the trajectories are always on opposite sides of the stable plane and the distance

between them has a larger absolute value than their center, hence it grows faster (with the same

exponent, the growth rate is proportional to the initial size) and both trajectories saturate nearly

at the same time, one of them at umax and the other at −umax, so that their final separation is

B = 2umax. If saturation happens close to the edge of the 3-D chaotic attractor, 2umax is the

maximum size possible for a burst. Hence, the PDF for the burst sizes in case ii) is roughly

2umax, which can be interpreted as the narrow peak at the end of the distribution observed ex-

perimentally in Fig. 2. In principle, it is also possible that once one of the trajectories saturates

it will quickly be reinjected, before the other one has had the time to reach saturation. In this

situation the burst size is smaller than 2umax, but larger than umax for trajectories that remain

on opposite sides of the stable plane.

Using Eq. (S9) for the burst size, we find an approximate form for the distribution of bursts

that are of the type described by case i) above ( |uË(t0)| > |u⊥(t0)|). We write the probability

density for a burst of size B as

pB (B) =
Ï

δ

(
B − 2umaxu⊥(t0)

uË(t0)+u⊥(t0)

)
puË(t0)

[
uË(t0)

]
pu⊥(t0) [u⊥(t0)]duË(t0)du⊥(t0), (S11)

where δ( ) is a Dirac delta function, puË(t0)
[
uË(t0)

]
and pu⊥(t0) [u⊥(t0)] are the probability den-

sities, respectively, for the initial center and initial separation between the trajectories of the

master and slave subsystems after reinjection. Equation (S11) is equivalent to

pB (B) =
Ï

2umaxu⊥(t0)

B 2
δ

(
uË(t0)+u⊥(t0)− 2umaxu⊥(t0)

B

)
puË(t0)

[
uË(t0)

]
pu⊥(t0) [u⊥(t0)]

duË(t0)du⊥(t0). (S12)

Assuming that the distribution of the center of reinjection is a smooth and slowly varying func-

tion of the distance to the plane, and recalling that the initial separation between the trajecto-

ries u⊥(t0) is small,

puË(t0)

(
2umaxu⊥(t0)

B
−u⊥(t0)

)
∼= puË(t0)(0), (S13)
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in Eq. (S12), such that

pB (B) ∼= 2umax

B 2
puË(t0)(0)

∫
u⊥(t0)pu⊥(t0) [u⊥(t0)]du⊥(t0), (S14)

= 2umax

B 2
puË(t0)(0)u⊥(t0), (S15)

=C B−2, (S16)

where u⊥(t0) is the average value of the distance between reinjected trajectories, which is a

constant, and C = 2umaxpuË(t0)(0)u⊥(t0) is also constant. This last equation (Eq. (S16)) gives the

power law with expoenent −2 observed experimentaly.

IV. NUMERICAL RESULTS

All the results shown in this article are experimental observations, for which the model dis-

cussed in the previous section is in excellent agreement. Here we show a comparison of the

experiment and predictions of the model, obtained by numerical integration of Eqs. (3-5). In

order to induce bubbling, we modified the parameters of the slave circuit by 1%. Figure S5

shows both numerical prediction and experimental observations of the temporal evolution of

|x⊥|. Over a short time scale, we observe that the shapes of the individual pulses of desynchro-

nization events are very similar in both theory and experiment, as shown in Fig. S5(a), while

Fig. S5(b) shows that, over a longer time scale, the statistics of these pulses in the numerical

simulation also appears to be similar to the experimental observation.

In Fig. S5 colored circles show the positions and values of the largest peaks |x⊥|n detected

within each desynchronization burst, which we define as the event-size. To simplify the al-

gorithm to locate those points we run a search for local maxima over a smoothed time series,

where a maximum is defined as a point which is higher than the 3 previous and the 3 consec-

utive points. Once a maximum higher than a certain limit ( |x⊥| > 1) is located, any maximum

appearing shortly after (7 time units) is rejected, to prevent single burst from contributing with

multiple event-sizes. This procedure is applied to both experimental and numerical data to

generate the sequence |x⊥|n .

With regards to the event-size distributions, there is great similarity between experimen-

tal observations and theoretical predictions, as shown in Fig. S6. In particular, the slope of the

power law for intermediate-size events is−2.0±0.1 for both the experiment and for the theoreti-

cal model. Furthermore, both distributions show pronounced dragon-kings. When controlling
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FIG. S5. Comparison between experiment and the predictions of Eqs. (1–3) A, Temporal evolution

of |x⊥| showing the detail of a large bubble observed in the experiment (red) and resulting from the

model (blue). Circles indicate the largest peaks |x⊥|n , detected within each burst. B, The same time

series viewed over a longer time scale. The values of the model parameters fot the master oscillator are:

Vd = 0.58 V, R = 2,345 Ω, Id =Vd /R = 0.25 mA, Ir = 22.5 µA, α f = 11.60, αr = 11.57, R1 = 1.298, R2 = 3.44,

R3 = 0.043, Rdc = 0.150, R4 = R3 +Rdc = 0.193, and for the slave oscillator are: Vd = 0.58 V, R = 2,345 Ω,

Id =Vd /R = 0.25 mA, Ir = 22.4 µA, α f = 11.50, αr = 11.71, R1 = 1.308, R2 = 3.47, R3 = 0.043, Rdc = 0.152,

R4 = R3 +Rdc = 0.195, c = 4.6, Ki j = 1 for i = j = 2 and 0 otherwise, and cDK = 0.

dragon-kings, we find that precise value of the cut-off in the distribution is quite sensitive to

the value of |xM |th . We therefore take this as an adjustable parameter in the model and obtain

close agreement between the observations and the model when we take the threshold at 0.32

for the model.
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FIG. S6. Comparison of the PDFs for the maxima of |x⊥| obtained (A) in the experiment and (bf B)

numerical integration of the model (Eqs. (1–3)). The values of the model parameters are the same given

in the caption of Fig. S5 except for cDK, which is zero for the black curves and cDK = 0.55 for the red

curves, |xM |th = 0.50 in the experiment and |xM |th = 0.32 in the model, and (KDK)i j = 1 for i = j = 1 and

0 otherwise.

V. TEST OF STATISTICAL CONVERGENCE

The probability density function (PDF) of the experimental event sizes was constructed by

normalization of a histogram with a total of nearly one million events. These events will be

referred here as the “full sample” and the number of events is the full sample size. We observed

that histograms constructed with smaller subsamples, with one quarter of the total number,

deviate only slightly from the histogram constructed from the full sample. An approximate

functional form for the PDF of event sizes was derived in Sec. III. The hypothesis that we want

to test here is that the values of the normalized histograms converge to some exact PDF which

is not known from first principles with the increase of the number of points in the sample. This

happens if each value of the histogram at a given bin is a random variable with finite average.

To assess this convergence quantitatively we calculate the square of the residuals, defined as

the difference between the PDF obtained with one of the subsamples and the PDF of the full

sample, average over the samples and take the square root of this value, integrated over the

whole domain of the PDFs, as an estimate of the total error in the probability calculated with

one of the subsamples. The numerical value for this deviation in our case is 3%. This confirms

that the reported PDF is well-defined and characterizes the stationary statistical properties of
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the random variable |x⊥|n . The normalized histograms constructed with 4 subsamples and the

full sample that originated Fig. 2, and the square of the residuals and the cumulative square of

the residuals are shown here in Fig. S7.
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FIG. S7. Probability Density Functions obtained with increasing sample size converge to a stationary

value. Here the full sample has N = 106 points and produces the normalized histogram in black. The

histograms constructed with 4 subsamples comprised of N /4 points each deviate from the histogram of

the full sample with a residual whose average square value is plotted in the orange curve. The cumulative

mean-square deviation is shown the violet curve, ending in ∼ 10−3, which corresponds to a cumulative

error in probability of 3%.

VI. STATISTICAL TEST OF DISTRIBUTION

The theoretical analysis presented in Sec. III suggests that the distribution of burst sizes in

our system follows a power law with exponent −2, within a certain range of burst sizes, and

ends in a statistically significant deviation upward from a power law, that we identify as due

to the dragon-kings. There are a number of statistical tests in the literature that aim to verify

whether data observed experimentally is consistent with a given statistical model (see supple-
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mental Refs. [31, 32]). The idea behind all those tests is to check the hypothesis (called the null

hypothesis, in the language of statistics) that the empirical data was drawn from a reference

distribution, prescribed by the model. We use the method known as Kolmogorov-Smirnov

(K-S) test [31, 32], which is based on the maximum value of the absolute difference between

the cumulative reference distribution and the cumulative empirical distribution (a normalized

cumulative histogram constructed from the observed data). Figure 2 suggests the our data is

nearly a power law for event sizes in the interval 0.04 < |x⊥|n < 1.80, Thus, in order to perform

the K-S test, we first generate the normalized histogram of event sizes restricted to this inter-

val. Our hypothesis is that, for the data restricted to this interval, the reference distribution is

a truncated power law. Figure S8 shows the empirical distribution of the original, unrestricted

data (black, the same curve shown in Fig. 2); the normalized histogram constructed using only

the maxima that happen to fall within the range 0.04 < |x⊥|n < 1.80 (blue); and the reference

distribution (red) which is a truncated power law. The integral of each of these PDFs is normal-

ized to unit probability, hence all these curves show equal area in linear scale. We construct

our empirical histograms using 500 bins with uniform sizes in a linear scale, and we have no

empty bins in the resulting histograms. It is usually suggested to use logarithmic bin sizes to

avoid empty bins in heavy-tailed distributions, but this does not affect our case, because of the

large amount of bins and data points. Using a least-squares fit to a straight line in log-log scale,

we find the exponent of the truncated power law is always within the range −1.89 to −2.14, for

different choices of the endpoints of the interval of |x⊥|n , consistent with the theoretical value

−2. We fix the endpoints at the values given and use the exponent −2.0 to define the refer-

ence distribution. To check that data drawn from the reference distribution passes the test, we

produced synthetic data (false maxima) following the reference distribution and construct an

“empirical” distribution from a sample of these false maxima with the same size N as the true

data. The PDF of false maxima is shown in green in Fig. S8, where we see that it follows the

reference distribution, but with large fluctuations that appear larger at the tail of the empirical

distribution.

The one-sample K-S test uses the maximum absolute value of the vertical distance D be-

tween the empirical cumulative distributions functions (ECDF) and the reference cumulative

distribution function (RCDF) as a statistic to decide whether the data was drawn from the refer-

ence distribution, thus, we proceed by integrating the empirical and reference PDFs up to size

|x⊥|n to generate the corresponding empirical CDF (ECDF) and reference CDF (RCDF), shown
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FIG. S8. Probability Density Functions for all the experimental event-sizes |x⊥|n (black); for events only

in the range 0.04 < |x⊥|n < 1.80 (blue); the reference distribution (red), which is a truncated power law

with exponent −2; and false maxima (green), randomly drawn according to the reference distribution.

The number of data points in the truncated distributions is N ∼= 3×105.

in Fig. S9. We see in Fig. S9 that the ECDF (blue) deviates significantly from the RCDF (red)

in the range |x⊥|n ∈ [0.1,0.3]. The deviation is large enough that it enables one to reject the

null hypothesis. The p-value for the distance D observed in our ECDF (
p

N D ∼ 34) is negli-

gible (0.0). In Fig. S9 we also see that the distribution for false maxima follows the reference

distribution very accurately (
p

N D ∼ 0.72) passing the test with p-value of 68%. Synthetic data

generated from power laws with different exponents −1.5 and −2.5 are also rejected, with even

larger values of the statistics:
p

N D ∼ 124 and
p

N D ∼ 92, respectively. These results enable us

to say that the bumps and valleys seen in the empirical distributions of the experimental data

are not statistical fluctuations of a pure power law, but rather statistically significant structures

in a more complicated distribution. The large peak at the end of the distribution of unrestricted

data causes an even larger deviation.

Notice that these results do not invalidate the analytical model presented in Sec. III. The
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purpose of this model is to give a qualitative picture of the phenomenon of bubbling with a

solvable distribution. The approximations and hypothesis made, although good for most of

the events, do not take into account details of the nonlinear dynamics happening far from the

unstable saddle point, which are determinant for the details of the distribution.

In order to verify the consistency of our data with a power law we resample the raw data by

decimating the sequence. The decimated sequence discards 700 maxima for each maximum

kept. Thus we have only N ∼ 103 in the decimated sample. The K-S statistic for this decimated

sequence is
p

N D ∼ 1.3, which gives a p-value of 8%, thus passing the test. Synthetic data

drawn from power laws with exponents −1.5, −2.0, and −2.5, and the same sample sizes as

the decimated data give statistics
p

N D ∼ 5.3,
p

N D ∼ 0.60, and
p

N D ∼ 3.7, respectively, which

correspond to p-values 1.9×10−24, 86%, and 2.3×10−12, respectively. It is clear that only the

data drawn from the power law with exponent very close to −2 and our empirical data from

the decimated sequence pass the test. The resulting cumulative distributions are shown in

Fig. S10, where we can see that the typical fluctuations of the empirical CDF obtained with the

decimated data have sizes similar to the deviations observed in CDF of the synthetic data, but

the distributions with wrong exponent lie much above or below the reference distribution.
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FIG. S9. Cumulative Density Functions (CDFs) for maxima in the truncated distribution limited to the

interval 0.04 < |x⊥|n < 1.80 (black); for the reference distribution (red), which is a power law with expo-

nent -2 truncated in this interval; for the artificially generated samples following the reference distribu-

tion (blue). The number of data points in the truncated distributions is N ∼= 105.
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FIG. S10. Cumulative Density Functions (CDFs) for decimated maxima in the truncated distribution

limited to the interval 0.04 < |x⊥|n < 1.80 (black); for the reference distribution (red), which is a power

law with exponent -2 truncated in this interval; for the artificially generated samples following the ref-

erence distribution (blue); and for artificially generated samples following truncated power laws with

exponent −1.5 (orange) and −2.5 (green). The number of data points in the truncated distributions is

N ∼= 103.
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