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Experimental Control of Cardiac Muscle Alternans
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We demonstrate that alternans in small pieces of in vitro paced bullfrog (Rana Catesbeiana) myo-
cardium can be suppressed by making minute adjustments to the pacing period in response to real time
measurements of the action potential duration. Control is possible over a large range of physiologi-
cal conditions over many animals and the self-referencing control protocol can automatically adjust to
changes in the pacing interval. Our results suggest the feasibility of developing low-energy methods for
maintaining normal cardiac function.
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Alternans is a periodic cardiac rhythm in which the du-
ration of the muscle contractions alternate in a pattern
ABAB . . . [1]. This rhythm can trigger the onset of fibril-
lation [2], a state where the average heart rate is elevated
and muscle contractions at one point of the heart are un-
coordinated with other points. Fibrillation is believed to
be a manifestation of the deterministic behavior known as
spatiotemporal chaos [3], and it may be possible to prevent
its occurrence by placing controllers [4] in direct contact
with the cardiac muscle at a few or many spatial locations
[5]. One promising study suggests that in vivo human atrial
fibrillation can be stabilized by applying control at only a
single spatial location [6].

Alternans is also known to occur in re-entrant atrio-
ventricular nodal conduction. This arrhythmia occurs
when electrical signals from the atria pass through the
atrioventricular node (essentially a one-dimensional con-
duction pathway) into the ventricles and back to the atria
via an abnormal conduction pathway. Atrioventricular
nodal dynamics are known to be well described by a one-
dimensional map-based mathematical model [7] and hence
are expected to be amenable to control. Indeed, feedback
control methods have been used recently to suppress
atrioventricular nodal conduction alternans in an in vitro
rabbit heart model [8] and in an in vivo human heart
model [7].

On the other hand, controlling cardiac muscle dynamics
is expected to be more difficult because previous research
[9] suggests that the dynamics are more complicated
(higher dimensional) than atrioventricular nodal dynam-
ics. In fact, the first pioneering experiments that used
closed-loop feedback to control in vitro the dynamics of
irregular cardiac rhythms in a piece of the interventricular
septum of a rabbit heart [10] could not successfully
stabilize the desired rhythm.

The primary purpose of this Letter is to present experi-
mental results demonstrating that cardiac muscle alternans
can be suppressed in small pieces of in vitro paced bullfrog
cardiac muscle using a simple self-referencing scheme.
Once alternans is suppressed, the size of the control per-
turbations are very small, limited by noise and slight im-
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perfections in the controller. Control is possible over the
entire range of observed alternans and for a wide range of
control parameters, and we demonstrate that the controller
can automatically track changes in the pacing interval.
In addition, we repeat the experiment using several ani-
mals, demonstrating that the control protocol can handle
significant animal-to-animal variation [9]. We also point
out that such control experiments provide a new tool for
cardiac-model verification.

The key idea underlying the control of alternans is to
design perturbations that stabilize the system about one of
the unstable equilibrium states embedded in the system [4].
The corresponding unstable equilibrium state in our experi-
ments is a 1:1 (or period-1) pattern [11,12] for which the
action potential duration (APD) is the same for each stimu-
lus, denoted by APD�. The APD is the time for cells to
repolarize after depolarization by a pacing stimulus. This
state can be stabilized by making small real-time adjust-
ments to the pacing interval PI based on measurements of
the APD using the setup shown in Fig. 1a. Stabilizing any
other dynamical state requires large repeated adjustments
to PI. An example of a 1:1 response pattern for long PI
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FIG. 1. (a) Experimental setup for controlling alternans in
small pieces of paced cardiac muscle. Temporal evolution
of the transmembrane voltage displaying (b) a 1:1 response
pattern for a slow pacing interval with PI� � 850 ms and (c) an
alternans response pattern for rapid pacing with PI� � 400 ms.
The arrows in (b) indicate the action potential duration APD
and the diastolic interval DI.
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for which this pattern is stable is shown in Fig. 1b, and an
example of alternans under conditions of rapid pacing is
shown in Fig. 1c. Note that APD� is in between the two
values of APD shown in this figure.

To suppress alternans and produce a stable 1:1 pat-
tern, we adjust the pacing period by an amount given by
[8,13,14]

´n � 2g�APDn21 2 APDn22� , (1)

where APDm is the APD at the mth observation and g is
the feedback gain. The controller requires no mathematical
model, and it is self-referencing in that it uses the past
behavior of the system as an approximation APD�. Control
is initiated by adjusting PIn � PI� 1 ´n, where PI� is the
nominal pacing period. When control is successful, ´n �
0, and PIn � PI�.

The time sequence of one of our typical control ex-
periments [15] is shown in Fig. 2a where we plot APDn

and ´n�PI� as a function of the pace index n. Before
control is initiated, the APD’s alternate between approxi-
mately 100 and 220 ms. After control is turned on, APDn

undergoes a complex transient en route to the desired
1:1 state. Initially, the control perturbations are large
but diminish rapidly, as seen in Fig. 2b. Once the state
is stabilized, PIn � PI�, APDn � APD� � 159 ms, and
´n�PI� & 1023, indicating that we have stabilized a true
underlying unstable state of the system via the minute
control perturbations. After control is turned off, the
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FIG. 2. Typical control sequence in which the feedback adjust-
ments to the pacing period are applied for approximately 10 s
with g � 1.52. Action potential duration (a) and feedback error
signal (b) as a function of the beat number for PI� � 500 ms.
The dashed vertical lines indicate the moment when control is
turned on or off.
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dynamics slowly leaves the neighborhood of the 1:1 state
as the tissue returns to alternans. Observing this return
to alternans gives valuable information concerning the
stability of the 1:1 state that cannot be obtained using
typical pacing protocols. For example, we find that the
Floquet multiplier characterizing the growth of deviations
of APDn about APD� is approximately equal to 1.38 for
this data set.

We have obtained similar results over many trials. Out
of 40 animals studied, 18 displayed alternans [9]. In 2 out
of these 18 animals, technical difficulties in the experiment
prevented application of control. In 14 out of the remain-
ing 16 animals, it was possible to suppress alternans and
produce the desired 1:1 state using the feedback algorithm
over essentially the entire range of PI�’s displaying alter-
nans in the absence of control. During successful control,
the typical variation of APDn was reduced to less than 2%
of APD� from an alternation of as much as 60% of APD�

in the absence of control.
To demonstrate the control efficacy, we measure the tis-

sue response as PI� is varied. The bifurcation diagram
shown in Fig. 3a illustrates the baseline response in the
absence of feedback perturbations �g � 0�. It is genera-
ted by recording APDn while adjusting PI� from 1200 to
300 ms in 50 ms intervals. For each PI�, the response
of the tissue to the first 5–10 stimuli is discarded in or-
der to eliminate transients and the subsequent behavior is
recorded for up to 10 s. The width of each action potential
is determined at 70% of full repolarization and plotted at
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FIG. 3. The range of control of alternans (for a different animal
than the one used to collect the data in Fig. 2 but the same for the
one in Fig. 1). (a) Bifurcation diagram in the absence of control
illustrating the transition from the period-1 (or 1:1) response
pattern, to alternans (2:2), and eventually to a 2:1 pattern as the
pacing interval is decreased. (b) The domain of control (to the
right of the line) is determined by setting PI� and adjusting g
while monitoring ´n. The cutoff to determine successful control
is set at ´n�PI� � 2%. (c) Observed bifurcation diagram when
control is turned on initially at long PI� with g � 2.17 in the
presence of closed-loop feedback control with no adjustments
made to the controller during the entire experiment.
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each PI�. From the diagram, it is seen that only one value
of APD appears for long PI�, indicating a stable 1:1 pattern.
For decreasing PI�, the APD shortens consistent with the
restitution properties of cardiac muscle. At PI� � 455 ms,
a transition from a 1:1 to a 2:2 pattern occurs, known as a
bifurcation. For shorter PI� the APD’s alternate between
short and long values. At PI� � 310 ms, a transition to a
2:1 behavior occurs, where one action potential is elicited
for every two stimuli [9].

We find that the desired 1:1 pattern can be produced for a
range of feedback gains, as summarized by the “domain of
control” shown in Fig. 3b. In this plot, control is achieved
for all values of g to the high-PI side of the line. It is
seen that control is possible over a wide range of g’s until
the domain pinches down near the transition to the 2:1
behavior. Because of this wide range of g’s, control can be
initiated without precise a priori knowledge of the optimal
g for the system, and the controller can automatically track
changes in APD� as the tissue properties change. This
tracking ability is shown in Fig. 3c where we generate a
bifurcation diagram with the controller turned on. It is seen
that the 1:1 behavior is produced over essentially the entire
observed range of alternans in the absence of control.

Besides the potential clinical implications of our experi-
ments [7], we find that controlling alternans provides a new
experimental tool for assessing the veracity of mathemati-
cal models of cardiac dynamics. As an example, we
consider a one-dimensional map-based model of cardiac
dynamics that is often used to treat the bifurcation from
1:1 to 2:2 response patterns [11,12]. The model can be
expressed as APDn11 � f�DIn�, where f is known as
the restitution function, the nth diastolic interval is given
by DIn � N 3 PPn 2 APDn, PPn is the period of the
applied (nominally periodic) stimulus, N is the smallest
integer satisfying DIn . DImin, and DImin is the minimum
diastolic interval the tissue can sustain. For some tissue
preparations, including bullfrog myocardium [9,11], a
function of the form f�DIn� � A1 2 A2 exp�2DIn�t1�
gives reasonable agreement with experimental observa-
tions and displays alternans under appropriate conditions,
where A1, A2, and t1 are tissue-dependent constants.
While this simple model is known to have limitations, it
is appealing because it captures many essential features
of myocardium response without great mathematical
complexity, and hence it often forms the basis of our
intuitive understanding of cardiac dynamics.

We compare the observed and predicted bifurcation dia-
grams by adjusting the model parameters to obtain the
best fit between the observed and predicted bifurcation dia-
grams using the following procedure. We determine two
of the model parameters by forcing the predicted value of
the bifurcation from 1:1 to 2:2 response patterns to occur
at the same pacing interval and action potential duration
as observed in the experiment. The remaining parameter
governs the range of PI’s over which alternans occurs. We
chose the parameter value that maximizes this range. This
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FIG. 4. Comparison between the experimental observations
and the predictions of two map-based models of cardiac dynam-
ics. Comparison of the (a) bifurcation diagram and (b) domain
of control to the one-dimensional model with parameters
A1 � 392.0 ms, A2 � 525.3 ms, t1 � 40.0 ms, and DImin �
35.0 ms. The predictions of the model are shown as a solid line
in (a) and the black shaded region in (b). Comparison of the
(c) bifurcation diagram and (d) domain of control to the two-
dimensional model with parameters A1 � 490.9 ms, A2 �
569.0 ms, t1 � 64.0 ms, t2 � 38.0 ms, and DImin � 38.0 ms.

fitting procedure converges rapidly, and there does not exist
another set of distinct parameters that fit equally well. It
is seen in Fig. 4a that the model accurately captures the
bifurcation point but little else. The model fails because
it predicts that the 1:1 response pattern should be unstable
when df�dDI . 1, whereas the 1:1 pattern observed in
our experiment remains stable even when the dynamic
restitution curve has a slope greater than one. This ob-
servation demonstrates that the cardiac muscle dynamics
(i.e., APDn11) cannot be described by a function that is
an explicit function of only DIn. It is also seen in Fig. 4b
that the predicted domain of control (shown as the black
shaded region) is limited to PI� near the bifurcation point
or to longer values, in disagreement with the experimental
observations.

Taking our example one step further, we consider a
two-dimensional map of cardiac dynamics [16] that gen-
eralizes the one-dimensional model [11,12] by explicitly
accounting for rate-dependent changes in the tissue resti-
tution properties [17]. The mapping is given by

APDn11 � �1 2 Mn�f�DIn� , (2)

Mn11 � �1 2 �1 2 Mn� exp�APDn�t2�� exp�2DIn�t2� ,
(3)

where t2 is an additional tissue-dependent parameter, and
Mn is a “memory” variable.

We compare our observations to this model by adjusting
the parameters to force the map to undergo the transition to
alternans at the same PI� and for the same value of APD�

observed in the experiment and by a nonlinear least squares
minimization for the remaining parameters. As seen in
198102-3
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Fig. 4c, the mapping adequately predicts the observed dy-
namics �x2

n � 3.3, n � 74�. Based on this observation,
one might be tempted to conclude that the model prop-
erly accounts for the observed dynamics and hence should
also reasonably predict the observed domain of control.
As with the one-dimensional model, this fitting procedure
converges rapidly to a distinct set of parameters, and there
does not exist another set that fits equally well. Surpris-
ingly, the predicted and observed domain of control are in
poor agreement, as seen in Fig. 4d. The predicted domain
(black shaded region) is limited to PI� near the bifurcation
point and encompasses only a small range of g’s. Hence,
fitting the predictions of a model to both the observed bi-
furcation diagram and domain of control gives additional
constraints when undertaking model development. While
we have compared our experiments only to highly sim-
plified mathematical models, we suggest that this general
procedure will be useful for adjusting the parameters of
more realistic, but highly complex, ionic-based models of
cardiac dynamics.

In conclusion, we have demonstrated that alternans can
be suppressed in small pieces of cardiac muscle using a
nonlinear-dynamics-based feedback pacing protocol. Con-
trolling heart dynamics driven by internal pacemaker cells
may be possible with modifications to the protocol [6],
opening up the possibility of using it to maintain normal
heart function in humans via implantable devices [7].
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