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Experimental control of a chaotic point process using interspike intervals

G. Martin Hall, Sonya Bahar, and Daniel J. Gauthier
Department of Physics and Center for Nonlinear and Complex Systems, Duke University, Box 90305, Durham, North Carolina

~Received 3 February 1998!

A physical point process generated by passing a continuous, deterministic, chaotic signal through an
integrate-and-fire device is controlled using proportional feedback incorporating only the time intervals be-
tween events. This system is unique in that the mean time between events can be adjusted independent of the
dynamics of the underlying chaotic system. It is found that the range of feedback parameters giving rise to
control as a function of the mean firing time exhibits surprisingly complex structure, and control is not possible
when the mean interspike interval is comparable to or larger than the underlying system memory time.
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PACS number~s!: 05.45.1b, 07.05.Dz, 84.30.Ng, 87.10.1e
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Many systems evolve such that long periods of inactiv
are punctuated by brief, nearly identical bursts of activ
Typical examples of such systems include certain laser in
bilities @1# or a spontaneously firing collection of neuro
@2#. Such ‘‘point processes’’ may be characterized by
sequence of time intervals between events~interspike inter-
vals, or ISI’s! rather than a dynamical variable sampled
regular time intervals. In some instances, the ISI’s fluctu
in a deterministically chaotic manner. For example, W
kowski et al. @3# have suggested that the interbeat interv
recorded from a fibrillating heart are chaotic. Since the
currence of chaos often degrades the performance of dev
or indicates disease, it is valuable from a clinical as well a
fundamental standpoint to investigate the implementation
chaos control@4# of point process generated by vario
mechanisms.

Recently, Carroll@5# studied experimentally a system th
naturally produces pointlike events: a network of fo
coupled electronic circuits whose individual dynamics a
governed by equations similar to the FitzHugh-Nagu
model of a neuron. He demonstrated that the dynamics o
network can be controlled using proportional feedback inc
porating the ISI’s where the mean ISI time~denoted byT* )
is set approximately by the inverse of the decay rate o
‘‘slow’’ variable. In a separate investigation, Ding and Yan
@6# demonstrated theoretically control of a point process g
erated by passing a continuous chaotic signal throug
threshold-crossing device using a similar feedback proto
In this case,T* is set approximately by the characteris
time scale of the chaotic fluctuations of the underlying d
namical system.

In this article, we investigate experimentally the cont
of a point process generated by passing a continuous s
s(t)5n̂Ty(t) from a chaotic electronic circuit through a
integrate-and-fire device as shown schematically in Fig. 1~a!,
wherey is the state vector of the circuit andn̂ is the mea-
surement direction in phase space. The device genera
chaotic sequence of spikes when the value of an inte
reaches a thresholdQ, determined recursively from
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where the time interval between spikes is given byTn11
5tn112tn . The offsetf ensures that the argument of th
integral is positive definite when the dynamical system is
the neighborhood of the desired stabilized state. The in
spike intervalsTn constitute a point process, derived fro
the underlying systems(t).

Our goal is to convert the chaotic sequence of ISI’s to
periodic sequence by applying small perturbations to an
cessible variable or parameter of the underlying system u
a proportional feedback algorithm. We note that there e
two types of signalss(t) giving rise to a periodic sequenc
of ISI’s. One is a constant signal~denoted bys* ) giving rise
to a period-1 sequence whereT* 5Q/(s* 1f). For this sig-
nal, the sequence of ISI’s remains periodic even when
parameters of the underlying dynamical system or
integrate-and-fire device change slightly~e.g., from param-
eter drift!. The other type of signal is a periodic wave form
generating a periodic sequence of ISI’s only whenQ andf
are tuned precisely. Extremely small parameter changes
render this sequence quasiperiodic. Therefore, only the c
tinuous signal, corresponding to a period-1 periodic
quence of events, can be observed~and hence stabilized! in
an experimental setting.

FIG. 1. ~a! Scheme for controlling a chaotic series of interspi
intervals using negative feedback where the intervals are gene
by passing a signal from a continuous chaotic system through
integrate-and-fire device.~b! Chaotic electronic circuit.
1685 © 1998 The American Physical Society
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FIG. 2. ~a! Projection in phase space of the chaotic attractor of the electronic circuit shown in Fig. 1~b!. ~b! Reconstruction of the chaotic
attractor using the interspike intervals.
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Our experimental system differs from those of Carroll@5#
and Ding and Yang@6# in thatT* can be adjusted arbitrarily
independent of the time scales characterizing the underl
chaotic system. We note that Sauer@7# has demonstrated tha
an ISI sequence such as that generated from Eq.~1! contains
all information necessary to reconstruct the topology of
underlying chaotic system for an arbitrary setting ofT* . This
suggests that control might be possible for some range
experimental parameters. On the other hand, Racicot
Longtin @8# recently observed that nonlinear forecastabil
of the system dynamics is lost whenT* is comparable to or
larger than the characteristic memory time of the underly
system, where the memory time is given approximately
the inverse of the largest positive Lyapunov exponent.
provide experimental evidence that this loss of forecasta
ity dramatically limits the ability to control the chaotic dy
namics. In addition, we show that the range of feedback
rameters for which control is effective as a function ofT*
exhibits nontrivial structure.

The underlying chaotic system is an electronic circ
consisting of a negative resistorRn and passive linear an
nonlinear components connected as shown schematical
Fig. 1~b!. The dynamics of this system are well described@9#
by the set of dimensionless equations

dV1 /dt5V1 /Rn2g@V12V2#1q1 , ~2a!

dV2 /dt5C1~g@V12V2#2I !/C21q2 , ~2b!

dI/dt5V22RmI 1q3 , ~2c!

where V1 and V2 are the voltage drops across capacit
C1545 nF andC2545 nF, respectively, andI is the current
flowing through the inductorL5252 mH. In Eq.~2! and in
the following, all voltages are normalized to the diode vo
ageVd50.8 V, all currents toI d5(Vd /R)50.34 mA for R
5AL/C152.37 kV, all resistances toR, and time to t
5ALC151.06 ms. The current flowing through the paral
combination of the resistor and diodes~type 1N914B! is de-
noted by g@V#5(V/Rd)1I r@exp(aV)2exp(2aV)#, where
Rd53.4, I r51.6431025 is the reverse current of the diode
anda511.6. The other circuit parameters areRm5RL1Rs
50.195, whereRL50.041 is the dc resistance of the indu
tor, and Rs50.154 is a resistor placed in series with t
inductor. The elements of the vectorqn5(q1 ,q2 ,q3)T are
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the closed-loop feedback signals that attempt to stabilize
system about its fixed points. We denote the circuit st
vector in phase space byy5(V1 ,V2 ,I )T.

The circuit displays ‘‘double scroll’’ behavior as shown
Fig. 2~a! for Rn51.07~kept fixed throughout this study! and
qn50, where the unstable steady states at the center of
‘‘scrolls’’ with coordinates6y* and 0 are indicated. Our
task of stabilizing a periodic sequence of ISI’s correspon
to stabilizing the dynamics of the underlying system ab
one of these fixed points. The most unstable eigenva
characterizing the fixed points6y* are given bylu* 50.95
6 i5.88 as determined experimentally by observing the
namics of the system in a neighborhood of the fixed poin
For future reference, the ‘‘memory time’’ corresponding
these states is given approximately bytm51/Re(lu* )51.05.

Figure 2~b! shows an experimental reconstruction of t
attractor from the ISI’s withn̂5(1,0,0)T, f51.84, andQ
50.56, where the three possible ISI’s corresponding to
periodic sequencesT6* andT0* ~corresponding to6y* and0
of the underlying system! are indicated. The ISI’s are dete
mined by measuringV1(t) with a high-impedance voltage
follower, summing this voltage with an adjustable offs
voltage f, and feeding the combined signal to an anal
electronic integrator whose value is monitored by a Schm
trigger that fires when the thresholdQ is crossed, and then
resets. An analog time-to-voltage converter is initialized
the firing of the Schmidt trigger. The value of this convert
is sampled and held at a value proportional toTn when the
Schmidt trigger fires at the next threshold-crossing eve
and is then reset. This process is repeated to determine
next ISI while the previous valueTn21 is transferred to aux-
iliary sample-and-hold device. It is seen that the attrac
undergoes some deformation during the reconstruction,
general topological features appear to be preserved, co
tent with the work of Sauer@7#.

We control the sequence of ISI’s by perturbing an acc
sible system parameter using a standard closed-loop f
back protocol given by

«n5g1~Tn2T* !1g2~Tn212T* !, ~3!

whereg j ( j 51,2) are gain parameters. Note that the pert
bations vanish when the system is stabilized about the
sired stateTn5Tn215T* . For simplicity, we consider only
adjustments to the current injected into theV1 node of the
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underlying electronic circuit so thatqn5(«n,0,0)T. We note
that a protocol similar to that desribed by Eq.~3! has been
used to control the dynamics of biological systems such
the heart@4# and brain@10#.

Our primary goal is to determine the range of values
T* for which control is possible when the parameters of
underlying dynamical system remain fixed. This range c
be visualized quickly by plotting the domain of values of t
feedback parameterg1 that successfully stabilize the desire
periodic sequence as a function ofT* ~the ‘‘domain of con-
trol’’ ! for various values of the remaining feedback a
integrate-and-fire parameters. For brevity, we only cons
stabilization of the statey* with n̂5(1,0,0)T ~corresponding
to s* 50.79). We have verified that our main conclusio
described below are not affected by this choice.

Figure 3 shows the measured domain of control~solid
dots! for two values of the offsetf with g250, whereQ is
adjusted to obtain the desired value ofT* . It is seen that the
shape of the domains stretches in the vertical dimension s
that the gain required to maintain control increases with
creasingf. In addition, the domains are quite complex
that there exist multiple, isolated domains, although th
may be simply connected when considering the full spac
parameters spanned byg1, g2, f, andQ @11#. Of consider-
able interest is the observation that control is not poss
beyondT* ;0.64tm and that this maximum value is rathe
insensitive to the value of the offsetf. Similar behavior is
observed for other values off.

Figure 4 shows the effects of adding information from t
previous ISI into the control protocol; the solid dots indica
the measured domain of control for various values of
gain parameterg2 with f50.24. Inclusion of this informa-
tion shifts the domain of control along both theT* and g1
axes, in some cases limiting the range to very small value
T* . However, in no case explored in the experiment have
observed control beyondT* ;0.7tm ~only a slight increase
beyond what is observed withg250).

It is possible to motivate theoretically some of our obs
vations by considering the case of a 1D unstable sys
whose dynamics in the presence of closed-loop feedbac
governed by

FIG. 3. Experimentally observed~filled circles! and theoreti-
cally predicted~solid lines! domains of control for~a! f520.61,
and ~b! f50.24. The memory time of the unstable fixed point
given bytm51.05 ~corresponding to 1.11 ms in physical units!.
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ds/dt5ls1«n , ~4!

where the eigenvaluel51/tm is real and positive and«n is
the feedback signal at firing timetn . The goal of the feed-
back perturbations, given by Eq.~3!, is to stabilize the sys-
tem to its fixed points* 50 using only the ISI’s generated b
the protocol given in Eq.~1!.

The stability analysis is simplified considerably by dev
oping a map-based description of the system in the prese
of feedback, which allows us to predict its evolution fro
firing time tn to the next firing timetn11. Such a mapping
can be obtained by integrating Eq.~1! over a single ISI,
inserting this result into the integrate-and-fire protocol~1!,
and by considering only small deviationsdTn5Tn2T*

FIG. 5. Theoretically predicted domain of control from th
simple 1D model for~a! g250, and~b! g2 /l2f50.25.

FIG. 4. Experimentally observed~filled circles! and theoreti-
cally predicted~solid lines! domains of control for~a! g2520.26
mA/ms, and~b! g251.32 mA/ms forf50.24. Compare these fig
ures to Fig. 3~b! with g250 and the same value off.
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about the desired ISI. We find that the dynamics of the s
tem is described approximately by the mapping

F sn11 /f

dTn11l

«n11 /lf
G5F exp~lT* ! 0 2c

c 0 c1lT*

cG1 G2 ~c1lT* !G1

G
3F sn /f

dTnl

«n /lf
G , ~5!

wheresn5s(tn), Gj5g j /l2f, andc512exp(lT* ). Equa-
tion ~5! is valid under conditions when the system is in
neighborhood of the fixed point such thatsn!f, «n!lf,
anddTn!T* .

The periodic sequence of ISI’s, and hence the fixed po
of the underlying system, is stabilized by the feedback if a
only if all the eigenvalues of the matrix in Eq.~5! have
magnitude less than one. The domain~region! of control can
be determined by direct computation of the eigenvalues
application of the Schur-Cohn stability criterion. It is inte
esting to note that the offsetf does not play a role in the
stability of the system other than rescaling the gain para
eters, consistent with our experimental observations.

Figure 5 shows the theoretically predicted domains
control for two values of the feedback gain parametersg2.
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For g250, we find that control is not possible beyond pr
cisely T* 5tm ; for g2Þ0, control is not possible beyon
T* .1.6tm , which occurs wheng2.0.25. This demon-
strates that the mean firing time must be less than or on
order of the memory time of the system, consistent with o
experimental observations in the higher-dimensional syst
It is seen, however, that the domains shown in Fig. 5 exh
structure that is simpler than that observed in the experim
Indeed, the simple theoretical analysis gives only a qual
tive guide to what we find experimentally.

Our analysis may be extended to higher dimensions
describe completely the dynamics of the circuit with close
loop feedback in the neighborhood of the fixed point.
analogy to Eq.~4!, consider anM -dimensional system whos
dynamics is governed by

dy/dt5F„y…1qn , ~6!

whereF is the nonlinear flow,qn5q̂«n , and q̂ is the feed-
back direction. The goal of the feedback is to stabilize
periodic sequence of ISI’s, and hence an unstable fixed p
y* 5F(y* ) of the underlying continuous system. As befor
the stability analysis is simplified by developing a mappi
of the dynamics. Following a procedure similar to that d
scribed above and considering only small deviationsxn5yn
2y* about the fixed point, we find that the dynamics
described approximately by the mapping
F xn11 /f

dTn11l*

«n11 /l* f
G5F exp~AT* ! 0 2~ I2eATn11!A21q̂

n̂TA21l* C 0 n̂T~C1A21T* !~l* A21!2q̂

n̂Tl* A21CG1 G2 n̂T~C1A21T* !~l* A21!2q̂G1

G F xn /f

dTnl*

«n /l* f
G , ~7!

whereA[]F/]y is the Jacobian of the nonlinear flow evaluated at the fixed point,C5I2exp(AT* ), I is theM3M identity
matrix, andl* is the real part of the largest eigenvalue ofA. For our experimental system, the Jacobian is given by

A[F 1/Rn2g8@V1n* 2V2n* # g8@V1n* 2V2n* # 0

~C1 /C2!g8@V1n* 2V2n* # 2~C1 /C2!g8@V1n* 2V2n* # 2~C1 /C2!

0 1 2Rm

G , ~8!
es-

e
ry
e-

the
Y-
whereg85]g/]V152]g/]V2 , andq̂5(1,0,0)T.
As for the one-dimensional system, we determine

range of parameter values for which the system is stable,
is, when the eigenvalues of the matrix in Eq.~7! have mag-
nitude less than one. The domains of control determined
ing this procedure are shown as solid lines in Figs. 3 an
We see that the experimental measurements agree well
the theoretical predictions. Both theory and experiment d
play a surprising level of complexity in the structure of t
e
at

s-
4.
ith
-

control domains, which, our results suggest, may not nec
sarily be simply connected for some parameter values.
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