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Carrier-frequency dependence of a step-modulated pulse propagating through a weakly

dispersive single narrow-resonance absorber

Heejeong Jeong*y, Andrew M.C. Dawesz and Daniel J. Gauthier

Department of Physics, and The Fitzpatrick Institute for Photonics, Duke University, Durham,
North Carolina 27708, USA

(Received 2 February 2011; final version received 24 March 2011)

We observe interference between the optical precursors and the main signal for small optical depth �0L� 1, in
which the main signal cannot be entirely absorbed. Since the main signal oscillates at the carrier frequency of the
input pulse and precursors oscillate at medium resonance frequency, in our case carrier frequency dependence of
the total transmitted field is observed as a form of modulation patterns oscillating at the detuning frequency.
To distinguish between the Sommerfeld and Brillouin precursors for the case of weakly dispersive off-resonance
medium, we utilize asymptotic precursor theory under the assumption of small detuning.

Keywords: optical precursors; anomalous dispersion; cold atoms

1. Introduction

Many modern optical technologies, such as optical
communication and medical imaging, require an
understanding of how optical pulses propagate
through a dispersive medium. Recently, the advent of
methods for tailoring the dispersion of materials

enables exquisite control of pulse propagation charac-
teristics. For example, it is now possible to achieve an
exceedingly slow or fast group velocity �g compared
with the speed of light in vacuum c for pulses of light

propagating through a gas of atoms [1]. The achieve-
ment of slow and fast light has triggered fundamental
questions about the information velocity as it relates to
causality in Einstein’s special theory of relativity.
Over the past decade, researchers have proposed

that encoding information on a pulse is related to
non-analytic points. Because it is predicted that non-
analytic points travel at c, it follows that the informa-
tion velocity is also equal to c [2–4]. Stenner and

colleagues confirmed this in both slow- [5] and fast-
light experiments [6], where they encoded one bit of
information on a pulse by rapidly changing the pulse
intensity. By tracking when it is first possible to
identify the bit, they showed that the information

velocity is equal to c regardless of the dispersive
properties of the medium.

It is generally believed that the rapid change of
intensity on a pulse creates optical precursors [7–10],
the transient behavior of the propagated field. In the

experiment by Stenner et al. [5,6], however, it was

difficult to distinguish the precursors from the rest of

the pulse because the rapid change in pulse intensity

occurred in the middle of a time-dependent pulse

waveform. To address this shortcoming, experiments

need to be conducted that clearly tests for the existence

of optical precursors occurring at the front of a step-

modulated input pulse. We reported our first direct

observation of long-lived optical precursors in [11] for

the case when the carrier frequency of the pulse !c was

equal to the material resonance frequency !0. The

measurement was facilitated by extending the time scale

of the precursors up to the order of tens of nanoseconds

using a narrow-resonance absorber consisting of cold

potassium atoms contained in a magneto-optical trap

(MOT). Since then, optical precursors were predicted

[12–14] and observed [15,16] in an electromagnetically-

induced transparency (EIT). These series of studies,

however, mostly focus on the case of an on-resonance

and optically matured medium. Even for the recent

study of an off-resonance precursor compared with the

free induction decay [17], Sommerfeld and Brillouin

precursors could not be distinguished.
In this paper, we describe our direct observation of

interference between optical precursors and the main

signal as we tune the carrier frequency from the two-

energy-level cold atomic system. We will explain how

the carrier frequency detuning is able to change the

shape of the transmitted pulse, especially for an
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off-resonance and optically thin medium. To study this
subject and identify optical precursors, we extend the
asymptotic theory for on-resonance [18] to the case of
off-resonance excitation (!c 6¼!0). We describe the
experimental details in Section 2 to increase the
duration of the optical precursor and the amplitude,
which allows us to detect them directly using a
standard experimental apparatus. The experimental
results are described in Section 3 including interference
between optical precursors and the main signal for the
off-resonance case. In Sections 4.1 and 4.2, we com-
pare our experimental observations to two different
theories. One is based on an asymptotic analysis of the
optical wave equation and a classical model of the
dielectric, where the asymptotic analysis takes advan-
tage of the fact that the material is weakly dispersive
and has a narrow resonance [11]. The other is based on
an analytic solution of the pulse propagation equations
under the narrow-resonance, dilute-gas approxima-
tion, an approach commonly used by the quantum
optics community [19]. From these analyses, we
identify features of the experimentally observed prop-
agated field that correspond to the composition of the
Sommerfeld and the Brillouin precursors.

2. Experiments

To directly measure optical precursors, three steps are
used. The experimental set-up is schematically shown in
Figure 1. First, we prepare a cloud of cold potassium
(39K) atoms to obtain a dielectric mediumwith a narrow
resonance, which is the key to extending the precursor
duration (Stage 1 in Figure 2). The cold atoms are
optically pumped into one of the ground states of the
potassium 4S1/2 state (F¼ 1), thereby preparing essen-
tially a single-resonance Lorentz dielectric (Stage 2 in
Figure 2). Once the atoms are optically pumped,
we send a weak-intensity, step-modulated pulse (carrier
frequency !c) through the medium and measure the
intensity of the transmitted pulse. In this section,
we give further details of each experimental step.

2.1. Stage 1: preparation of a narrow resonance
medium

To achieve a narrow-resonance, we use a vapor-cell
magneto-optic trap [20]. The magneto optic-trap for
neutral potassium atoms (39K) is realized using
laser beams tuned to the 4S1/2$ 4P3/2 transition (D2

transition, 767-nm transition wavelength) and
anti-Helmholtz coils. The trapped atoms have a tem-
perature of �400mK measured by the release-and-
recapture method [21]. At such cold temperatures, the
resonance linewidth becomes of the order of the natural

linewidth (full width at half maximum) 2�/2�¼ 1/
2�tsp� 6MHz, where tsp is the spontaneous decay
time of 39K. This width is much narrower than the
resonance width of a Doppler-broadened potassium
vapor at room temperature, which is typically 800MHz.
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Figure 2. Transmission of a weak probe beam whose
frequency is scanned through the four resonance peaks of
the potassium D1 transition for the case of (a) both MOT
beams on for 80 ms, and (b) optical pumping into F¼ 1 state
with trapping beam off for 20 ms. Energy level diagrams of
the D1 transition and population distribution in the ground
states are shown in (c) and (d), explaining the origin of the
four resonances shown in (a) and the two resonances shown
in (b), respectively. Energy level diagrams of the D2 transition
and population distribution in the ground states, are shown
in (e) and ( f ) to illustrate the process of optical pumping.
(The color version of this figure is included in the online
version of the journal.)
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Figure 1. Experimental setup. EG: Edge generator, OSC:
oscilloscope, APD: avalanche photodiode, PMT: photo
multiplier tube, MZM: Mach–Zehnder modulator.
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The diameter of the MOT, which we take to be the
length L of the medium, is determined to be in the range
of �1–2mm by measuring the 1/e of the fluorescence
of the MOT. The atomic number density is
�1–2� 1010 cm�3 by measuring the absorption of a
weak continuous-wave probe beam passing through
the MOT.

The optical precursor experiment is conducted on
the 4S1/2$ 4P1/2 transition (D1 transition, 770-nm
transition wavelength), as shown in Figure 2(c) and
(d). At the D1 transition, there are two ground states
(F¼1, 2) and two excited states (F 0¼1,2). The corre-
sponding four resonance peaks are denoted as !F0F,
where F 0F denotes the 4S1/2(F)$ 4P1/2 (F

0) transition,
as seen in Figure 2(c). At Stage 1, the two MOT beams
(tuned near the D2 transition) are on, and the ground
states are equally populated so that the absorption from
the ground states to the excited states is well balanced,
as shown in Figure 2(a), (c) and (e). As discussed in the
next section, !21 will be treated as a single resonance
peak. Therefore, we let the resonance frequency of the
single-Lorentz medium !0�!21 in this paper.

2.2. Stage 2: preparation of a single-Lorentz
dielectric

To obtain a single-resonance Lorentz medium, we
optically pump the atoms into one of the ground states
4S1/2(F¼ 1). To achieve optical pumping, the repump-
ing beam (red detuned from 4S1/2 (F¼ 1)$ 4P3/2

transition) is repeatedly switched off for 20 ms so that
the remaining trapping beam optically pumps the
atoms out of the F¼ 2 state and into the F¼ 1 state
(Figure 2( f )). The repumping beam is then turned
back on for 80 ms, returning to Stage 1 (Figure 2(e)).
Once in this state, the optical precursor experiment is
conducted and the process is repeated.

The optical pumping time interval of 20 ms is
chosen to balance two conditions. One is to have
enough time for the atomic states to reach equilibrium
after optical pumping and to perform the optical
precursor experiment. At the same time, we need to
keep the total number of atoms constant in the trap
during the optical pumping time.

After optical pumping, approximately 88% of the
atoms are in the F¼ 1 state, leading to a suppression of
resonances !12 and !22, and enhancement of reso-
nances !11 and !0¼!21, as seen in Figure 2(b).
The difference in the heights of resonances !11 and
!0 is due to differences in the corresponding dipole
matrix elements. Resonance !0 is well isolated from
resonance !11 (its width is much narrower than the
spacing between the resonances) and we will use it to
approximate a single-resonance Lorentz dielectric.

The properties of a single-resonance Lorentz
dielectric are characterized by measuring the resonance
linewidth � and the line-center absorption coefficient �0
of the absorption peak near !21¼!0, as shown in
Figure 2(b). From the measurements of the frequency-
dependent steady-state probe-laser-beam transmission
T at line center (Figure 2(b)), we determine the half-
width at half-maximum � and line-center absorption
coefficient �0. From the measured values, we determine
�0 through Beer’s Law T¼ exp[��0L], and a
Lorentzian-like resonance with a width 2�/2�
�9.6MHz (full width half maximum), which is broader
than the 6-MHz natural linewidth. The broadened
linewidth consists of residual Doppler broadening
(51MHz), Zeeman splitting arising from the magnetic
field gradient (�2–3MHz), and the laser linewidth
(�200 kHz). Because the time scale of precursor decay
is of the order of 1/2�, as we discuss later, the estimated
precursor time scale is 1/2�� 26 ns.

Experimental measurements are obtained for a
single value of the on-resonance absorption path
length, set by adjusting the intensities of cooling and
trapping laser beams. At their maximum intensity
(�33mW/cm2), we achieve an atomic number den-
sity of 1.2� 1010 cm�3 and a propagation length
L¼ 0.20 cm, resulting in a transmission of T¼ 0.36,
corresponding to �0¼ 5.14 cm�1, �0L¼ 1.03. With the
trapping beams off, there are no trapped atoms and the
transmitted pulse is identical to the incident pulse,
which serves as a reference.

2.3. Stage 3: step modulated pulse propagation

The next stage is to pass a step-modulated pulse
through the medium, and measure the temporal
evolution of transmitted pulse intensity T (z, t), where
the z is the medium depth, and �¼ t� z/c is the
retarded time. The incident pulse is created by passing
a weak continuous-wave laser (frequency !c) through a
20-GHz-bandwidth Mach–Zehnder modulator (MZM,
EOSpace, Inc.) driven by an electronic edge generator
(Data Dynamics, Model 5113) whose edge is steepened
using a back recovery diode (Stanford Research
Systems, Model DG535), resulting in an edge with a
rise time of �100–200 ps. The peak intensity of the
pulse is �64 mW/cm2, which is much less than the
saturation intensity of the transition (�3mW/cm2).
A weak-intensity incident pulse is important to avoid
nonlinear optical phenomenon. The pulse is detected
with a fast-rise-time (0.78 ns) photomultiplier tube
(PMT, Hamamatsu, Model H6780-20) and the result-
ing electrical signal is measured with a 1-GHz analog
bandwidth digital oscilloscope (Tektronix, Model TDS
680B). In the absence of the atoms, we measure an edge

Journal of Modern Optics 867

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
0
7
 
1
7
 
M
a
y
 
2
0
1
1



rise time (10–90%) of �1.7 ns for the complete system,
corresponding to a bandwidth of �206MHz. This time
is short in comparison to the expected duration of the
precursors.

To calibrate!c, wemeasure its detuning with respect
to the atomic resonance frequency via the steady-
state transmission spectrum. From knowledge of the
hyperfine splitting of the 4P1/2 state (58MHz), we
calibrate the horizontal axis of the scan. The detuning
D¼!c�!0 is then determined by comparing the
steady-state transmission spectrum with the value of
the long-time intensity of the transmitted pulse in our
transient experiments with values Dð1Þ ¼ 27:1þ3:2�2:1 MHz,
Dð2Þ ¼ 5:3þ0:5

�0:4 MHz, and Dð3Þ ¼ 0þ2:3
�2:3 MHz as indicated

in Figure 2. The errors associated with these measure-
ments arise from our mapping of transmission to
frequency and are asymmetric due to the fact that the
slope of the curve is different at each point.

3. Experimental results

The black solid lines in Figure 3 show the measured
transmitted pulse intensities T(z, �) for different carrier
frequencies !c tuned near the 4S1/2(F¼ 1)$ 4P1/2

(F¼ 2) transition.
Figure 3(a) (point (1) in Figure 2(b)) shows the case

when D¼D(1)� 5�. It is seen that the transient trans-
mitted intensity immediately reaches �90% of the
incident pulse height. The transmitted intensity is
ideally 100%, but it is reduced to 90% by the
206-MHz electronics bandwidth. The transmission
intensity oscillates with a modulation frequency of
approximately D and its inverse corresponds to a
modulation period of �40 ns. The amplitude of oscil-
lations then decays to the steady-state value, which
obeys Beer’s law. The time scale for the transmitted
intensity to reach its steady-state value is similar to that
observed for D¼ 0, as shown in Figure 3(c), which
implies that the precursor time scale only depends on �
for the case of small �0L� 1. As discussed later, the
oscillation of the envelope results from the interference
between the precursors oscillating at !0 and the main
signal oscillating at !c. Consequently, the modulation
patterns decay at a rate of �.

For the case of a moderately blue-shifted carrier fre-
quency (D¼D(2)� �), as shown in Figure 3(b) (point (2)
in Figure 2(b)), the initial transmission also rises
immediately to �90%, and decays to the steady state
with a slower oscillation than the case for D¼D(1)� 5 �.

Note that, for the case of D¼D(1)� 5 �, shown in
Figure 3(a), T(z, �) oscillates after the peak until it
reaches its steady-state value. During the oscillation, it
attains values greater than unity. This phenomenon
can be explained as follows. When the medium

polarization starts to react to the incident light, the
polarization is out of phase with the incident field,
indicating that the energy of incident light is stored
temporarily by the medium. The stored energy is re-
emitted afterward at a later time, causing greater than
unity transmission.

4. Analysis: two approaches

The experimental results described in the previous
section clearly demonstrate transient behavior, yet it is
not clear which part of the waveform can be attributed
to the precursor or to the main signal parts of the field.

Consider a dispersive medium consisting of a
collection of Lorentz oscillators possessing a single
resonance. The refractive index for this medium (or a
collection of two-level atoms) is given by

nð!Þ ¼
ffiffiffiffiffiffiffiffiffi
�ð!Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

!2
p

!2 � !2
0 þ 2i!�

s
, ð1Þ

Figure 3. Experimentally obtained transient transmission
intensity (black solid lines) compared with two theoretical
analysis: the asymptotic analysis (Equations (8)–(9) and
Equation (10), red dotted lines), and the weakly dispersive
narrow resonance (Equations (13)–(17) and Equation (17),
blue dashed lines). Transient transmission taken near the
4S1/2(F¼ 1)$ 4P1/2(F¼ 2) transition for (a) D¼D(1)� 5�; (b)
D¼D(2)� �; and (c) D¼D(3)� 0. (The color version of this
figure is included in the online version of the journal.)
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where �(!) is a linear frequency-dependent dielectric

constant, !p is the plasma frequency, � is the resonance
absorption linewidth (HWHM), and !0 is the atomic

resonance frequency. The plasma frequency !p quan-

tifies the strength of the resonance and is related to the

line-center absorption coefficient through the relation

�0 ’ !
2
p=2�c, which is only true for small !p. The

temporal evolution of the transmitted scalar electric

field E(z, t) at a medium penetration depth z in the

half-space z4 0 can be written as an integral repre-

sentation given by

Eðz, tÞ ¼
1

2�

ðiaþ1
ia�1

Eð0,!Þeiðkð!Þz�!tÞd!, ð2Þ

where a is a positive definite real constant and

Eð0,!Þ ¼

ðþ1
�1

Eðz ¼ 0þ, tÞe
i!tdt ð3Þ

is the temporal Fourier spectrum of the incident beam

just inside the dispersive medium. The complex wave

number k(!) is related to the complex index of

refraction through k(!)¼!n(!)/c. If the incident

beam is taken as a step-modulated sinusoidal elec-

tric field of the form Eðz ¼ 0, tÞ ¼ E0�ðtÞe
�i!ct, where

�(t) is the Heaviside unit step function with spectrum

i/! for ={!}4 0, then the complex transmitted field is

given by

Eðz, tÞ ¼
E0

2�

ðiaþ1
ia�1

i

!� !c
ez�ð!,tÞ=cd!

� �
: ð4Þ

Here, the complex function �(!, t) appearing in

Equation (4) is defined as �(!, t)� i![n(!)� ct/z].

Equation (4) is the starting point of the theories.
The transmitted field, expressed in integral form in

Equation (4), consists of two parts: transient responses

(the precursors) and steady-state responses (the main

signal). However, this equation has no exact analytic

solution. To identify each part, we will discuss two

theoretical approaches to solve Equation (4) and

compare their predictions to our data.

4.1. The numerical asymptotic method

Equation (4) for the total transmitted field can be

evaluated using the saddle-point method, which is valid

in the limit when a distance into the medium, z, is

greater than one optical penetration depth ��10 [10]. In

the asymptotic regime, the integral has a non-zero

value when it is evaluated near the extremum value

(saddle-points) of the phase z�(!, t)/c. The extremum

values are the so-called saddle-points !sp, which are

solutions to the first derivative with respect to !,

�0ð!sp, tÞ � @�ð!, tÞ=@!j!sp
¼ 0. At each !sp, the contri-

bution to integral Equation (4) is given by

E!sp
ðz, tÞ ¼

iE0ffiffiffiffiffiffi
2�
p
ð!sp � !cÞ

ez�ð!sp, tÞ=cþi 

jz�00ð!sp, tÞ=cj
, ð5Þ

where  is the angle of steepest decent [22], and

�00(!sp, t)� @
2�(!sp, t)/@!

2, the second derivative with

respect to !.
For D¼ 0 and any optical depth �0L, the two

classes of saddle points !�sp are analytically evaluated

(see [15,23]) as

!�sp ¼ !0 � i��
ffiffiffiffiffiffiffi
p=�

p
, ð6Þ

where p � !2
pz=4c ¼ �0�z=2. These saddle points are

related to the two types of transient responses known

as Sommerfeld [ES(z, t)] and Brillouin precursors

[EB(z, t)] [12]. The total Sommerfeld–Brillouin precur-

sors, ESB(z, t)¼ES(z, t)þEB(z, t), take the form of a

modulated cosine or Bessel function [11,13,15,23]. For

off-resonance case D 6¼ 0, however, such analytic

expressions of each ES(z, t) and EB(z, t) are absent.
To obtain ES(z, t) and EB(z, t) separately, for the

first time in the optically thin �0L� 1 and off-

resonance D 6¼ 0 regime, we utilize the numerical

asymptotic theory for �0L� 1 and D¼ 0 [18] by

substituting !0 with !c based on the assumption of

the small detuning of the order of �.
The location of the saddle-points and the ampli-

tudes of each precursor are evaluated numerically. We

set the variable of integration as 	� i(!þ i�), which is

shifted by �� from the imaginary axis of complex

frequency ! and rotated by 90� [18]. The phase of the

integrand is thus simplified as z�(!, t)/c� z(	þ �)
[R1/R2� ct/z]/z0, and the saddle-point equation is

now given by

R3
1R2ct=z� R2

1R
2
2 þ ðR

2
2 � R2

1Þ	ð	 þ �Þj	sp ¼ 0, ð7Þ

where z0�!0/c, R1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	2 þ !2

0 � �
2Þ=!2

0

q
, and

R2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	2 þ !2

0 þ !
2
p � �

2Þ=!2
0

q
. Using the numerically

obtained values of four saddle points 	�sp (	�S and 	�B ),
we then evaluate the non-vanishing complex field

envelope A(z, t) using Equation (5) as

ASðz, tÞ ¼
X
	�
S

�E0ffiffiffiffiffiffi
2�
p

e
z
z0
�ð	�

S
ðz, tÞÞ, tÞ� i

2Arg½�
00ð	�

S
ðz, tÞÞ	

ð	�S ðz, tÞ þ �� i!cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
z0
j�00ð	�S ðz, tÞÞj

q ,

ð8Þ

ABðz, tÞ ¼
X
	�
B

�E0ffiffiffiffiffiffi
2�
p

e
z
z0
�ð	�B ðz, tÞÞ, tÞ�

i
2Arg½�

00ð	�B ðz, tÞÞ	

ð	�B ðz, tÞ þ �� i!cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z
z0
j�00ð	�B ðz, tÞÞj

q ,

ð9Þ

Journal of Modern Optics 869

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
0
7
 
1
7
 
M
a
y
 
2
0
1
1



where
P

	� indicates the summation over each case of
	þ on the =(	)4 0 plane and 	� on the =(	)5 0 plane.
Note that, for the resonant-carrier case, the
Sommerfeld precursor (Equation (8)) and the
Brillouin precursor (Equation (9)), shown in Figure 4
separately, can be simplified and the sum of the two is
approximated as a Bessel or cosine function, as
previously mentioned.

Blue lines denote the case of jDj � �, and the red
lines indicate the case of jDj � 5�. For D¼ 0, both
precursors have the same amplitude (black lines).
When the carrier frequency !c is higher than the
medium resonance !0, i.e. D4 0, the amplitude of the
Sommerfeld precursor (high frequency transient)
(Figure 4(a)) is larger than the amplitude of the
Brillouin precursor (Figure 4(b)). For D5 0, on the
other hand, the Brillouin precursor (the low frequency
transient) (Figure 4(d)) dominates over the Sommerfeld
precursor (Figure 4(c)). Note that jAS(z, t)/E0j for
D4 0 case (Figure 4(a)) is the same as jAB(z, t)/E0j

for D5 0 (Figure 4(d)) due to the symmetry in
the detuning parameters. The total precursor ampli-
tudes jASB(z, t)/E0j are shown in Figure 5(e) for
different D.

The saddle points are not the only source of a non-
zero contribution to the integral. Note that the saddle
points contribute the most when 1/(!�!c) varies
slowly compared with exp[z�(!, t)/c]. For !¼!c,
however, 1/(!�!c) has a singular point (pole), where
it diverges rapidly. The pole contribution to the
integral is related to the steady-state response of the

medium to the incident field [10]. The steady-state

response is known as the main signal (see Figure 5( f ))

ACðz, tÞ ¼ 2�iResð	 ¼ i!c � �Þ, ð10Þ

which is identical to the steady-state term predicted by

the analytic expression for the weakly dispersive

narrow-resonance case discussed in the next section.
The field envelope is expressed as A(z, t), such

that Eðz, tÞ ¼ Aðz, tÞe�i!c� , ES½B	ðz, tÞ ¼ AS½B	ðz, tÞe
�i!c�,

and ECðz, tÞ ¼ ACðz, tÞe
�i!0� ¼ ACðz, tÞe

iD�e�i!c�. To

compare this theory with our experimental data, the

normalized total transmitted intensities T(z, t)¼

jE(z, t)/E0j
2 are evaluated from Equations (8)–(10),

and plotted in Figure 3 (red lines) and Figure 5(d).

Near the front �¼ 0, inaccuracy become significant

especially for small �0L [23], but it has been quite

improved compared with the large error that appeared

in [11]. Besides, for our experimental parameters, the

analysis is accurate when �
 64.7 ns according to the

validity of the asymptotic analysis [23]. Therefore, the

asymptotic theory can be used for small �0L and has

confirmed our interpretation that the transients

observed in our experiment consist of Sommerfeld

and Brillouin precursors.

(a) (d )

(b)

(c) (f )

(e)

Figure 5. Comparison of two theories: the weakly dispersive
narrow resonance case ((a)–(c), Equations (13)–(15)) and
asymptotic theory ((d)–( f ), Equations (8)–(9) and Equation
(10)). The total transmission T(z, t) (a), (d), the envelopes of
total precursors jASB(z, t)/E0j (b), (e), and the main signal
jAC(z, t)/E0j (c), ( f ) are evaluated for our experimental
conditions. In each figure, the red dash-dot line denotes
D� 5�, the blue dashed line indicates D� �, and the black
solid line denotes D� 0. (The color version of this figure is
included in the online version of the journal.)

(a) (b)

(c) (d)

Figure 4. Value of the field envelopes obtained by using the
numerical asymptotic theory given by Equations (8)–(9). The
Sommerfeld precursors jAS(z, t)/E0j are evaluated for (a)
D4 0, and (c) D5 0, and the Brillouin precursors jAB(z, t)/
E0j are evaluated for (b) D4 0, and (d) D5 0. In each figure,
there are three cases for D¼ 0 (black solid lines), jDj � � (blue
dashed lines), and jDj � 5� (red dash-dot lines). (The color
version of this figure is included in the online version of the
journal.)

870 H. Jeong et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
0
7
 
1
7
 
M
a
y
 
2
0
1
1



4.2. Analytic expression for weakly dispersive,
narrow-resonance case

In the previous section, although the accuracy near

front (�¼ 0) remains the issue, Sommerfeld and

Brillouin precursors are distinguished for arbitrary D
based on the asymptotic analysis. In this section, we

compare the data to an analytic method accurately

describing the transmitted amplitude E(z, t) consisting

of a total transient contribution (the precursors,

ESB(z, t)) and a steady-state contribution (the main

signal, EC(z, t)) [24,25]. The modulation pattern

for D 6¼ 0 will be described in total transmission

intensity T(z, t).
By assuming that the medium is weakly dispersive

(!p �
ffiffiffiffiffiffiffiffiffiffi
8�!0

p
), has a narrow resonance (��!0), and

that the carrier frequency of the pulse is near the

material resonance (!.!0), the index of refraction

n(!) (Equation (1)) is approximately given as

nð!Þ ’ 1�
1

4

!2
p

!ð!� !0 þ i�Þ
: ð11Þ

With this approximation, Equation (4) becomes

Eðz, tÞ ¼
iE0

2�

ðiaþ1
ia�1

e�i!��ip=ð!�!0þi�Þ

!� !c
d!, ð12Þ

where �� t� z/c. Note that these assumptions are

also used in the SVA approximation [24], with the

additional step of assuming a slowly varying ampli-

tude, which we do not assume here. Therefore, the

assumptions used to obtain Equation (12) do not

lead to the SVA approximation [23] but instead

describe a ‘weakly dispersive, narrow-resonance

(WDNR) assumption’. It is possible to obtain a

simple analytic solution of Equation (12) by contour

integration [24,25].

Aðz, tÞ ¼ E0�ð�Þ e
p

iD�� � eðiD��Þ�
X1
n¼1

ffiffiffiffiffiffiffi
p=�
p

iD� �

� �n

Jnð2
ffiffiffiffiffi
p�
p
Þ

 !
,

ð13Þ

Aðz, tÞ ¼ E0�ð�Þe
ðiD��Þ�

X1
n¼0

�iDþ �ffiffiffiffiffiffiffi
p=�
p

� �n

Jnð2
ffiffiffiffiffi
p�
p
Þ, ð14Þ

ACðz, tÞ ¼ E0�ð�Þe
p

iD��: ð15Þ

where Equation (13) (Equation (14)) should be used

for �4 p/jiD� �j2 (�5 p/jiD� �j2). The first term of

Equation (13) corresponds to the main signal

ECðz, tÞ ¼ <½E0�ð�Þe
p=ðiD��Þe�i!c�	. The amplitude of

the main signal increases as the detuning D increases

because there is less absorption (see Figure 5(c)).

The second term is the sum of Sommerfeld and
Brillouin precursors ESB(z, t), where the peak of the
total precursor envelope decreases as the detuning
increases (see Figure 5(b)).

For the case of an off-resonance carrier frequency
(D 6¼ 0), the WDNR approximation (blue dashed lines
in Figure 3) shows that the modulation of the total
transmitted intensity depends on the detuning D (see
Figure 3(a)). This is because both precursor fields (the
second term in Equation (13)) oscillate near the
medium resonance frequency !0(¼ �Dþ!c), while
the main signal (first term) oscillates at the carrier
frequency of the incident pulse !c. The modulation
pattern is also explained by the cross term
ESB(z, t)�EC(z, t) of T(z, t)¼ jE(z, t)/E0j

2 evaluated
from Equations (13)–(15) as

Tðz, tÞ ¼ jEðz, tÞ=E0j
2 ’ jESBðz, tÞ=E0j

2 þ jECðz, tÞ=E0j
2

þ
2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
þ �2

p J1ð2
ffiffiffiffiffi
p�
p
Þffiffiffiffiffi

p�
p e�����p=ðD

2
þ�2Þ

� cos
�
D� þ

Dp

D2
þ �2
þ ’ðDÞ

�
þ . . . , ð16Þ

where we have retained the dominant first term (n¼ 1)
and dropped the higher order terms in Equation (13).
The modulation frequency is D/2�, as shown in
Equation (16). Therefore, it is confirmed that the
difference in frequencies between total precursors and
the main signal gives rise to modulation of the total
transmitted field intensity.

The modulation patterns in Figure 3 were also
observed by Hamermesh et al. (figures 6–9 of [24])
when they studied the time-dependent emission of
gamma rays propagating through an absorptive filter.
They detuned the energy of the gamma rays from the
resonant energy of the filter. (Note that, although their
analysis is based on a single-sided decaying exponential
input pulse, it can be modified to a step-modulated
pulse when we set the exponent to zero.) They also
observed transient non-exponential decay of reso-
nantly filtered gamma rays, which might be another
realization of precursors in electromagnetic pulse
propagation.

The transmitted intensity measured in our experi-
ment is smoothed out by the finite bandwidth of our
measuring system. To take into account the finite rise
time of the step-modulated pulse and detection system,
we convolve the theoretically predicted intensity trans-
mission function T(z, t) with the expression for a
single-pole low-pass filter

dyðtÞ

dt
¼ �
f ½ yðtÞ � Tðz, tÞ	, ð17Þ

where y(t) is the filtered transmission function and

f¼ 2� (206-MHz) is the 3-dB roll-off frequency in
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rad/s. The filter reduces the transmission to �95%
immediately after the front. The blue dashed lines in
Figure 3 show our predictions of the low-pass-filtered
intensity transmission function, which agree well with
the experimental observations.

5. Discussion

Carrier frequency affects the propagating transient
pulse only for the case of optically thin media, i.e.
�0L� 1, where the main signal cannot be entirely
absorbed in a two-level system. This is because only the
main signal oscillates at the carrier frequency !c of the
input pulse, and the frequencies of the precursors are
determined by the medium characteristics, in our case,
!0. By having both the precursors and the main signal,
we observe oscillatory modulations on the total trans-
mitted pulse intensity and the modulation decay
timescale inversely proportional to �. It is also inter-
preted as the interference between forced and free
oscillation [26]. Note that this interference will disap-
pear as one increases the optical depth to the point
where the main signal is entirely absorbed. Thus, for
the optically thick medium, the optical precursors are
the only part of the signal that survive in transmission.
In that case, the field envelope is dominated by the
Bessel function and the time scale is inversely related to
p¼ �0L�/2 rather than �. Despite the similar phenom-
ena, which have been observed as ‘coherent transient’
[19,24,27–30], the possibility of optical precursors was
excluded until recently [14].

To distinguish between ES(z, t) and EB(z, t) numer-
ically in the regime of �0L� 1 and D 6¼ 0, simple
modification of the existing theory [18] was performed
based on the assumption of small detuning. A recent
study combining free-induction decay and optical pre-
cursors [17] could not distinguish those two and, to our
knowledge, we first identify each precursor in the regime
of �0L� 1 and D 6¼ 0 to understand carrier frequency
dependence of the transient pulse propagation.
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