Recent work by Corron et al. [1] shows complexity in a piecewise linear system, where a nonlinear switch causes chaos in an otherwise linear LRC oscillator.

\[u - 2R \ddot{u} + (\omega^2 + R^2)(u - s) = 0, \quad R = \log(2), \quad \omega = 2\pi, \]

Guard condition: \(\dot{u}(t^*) = 0 \rightarrow s(t^*) = \text{sign}(u(t^*)) \)

Sampling \(s(t) \), rather than \(u(t) \), reduces data storage for signals used in radar. The piecewise linear nature allows for a matched filter to recover \(s(t) \) from \(u(t) \) with noise.

Goal: Increase the speed of the system by substituting the LRC oscillator with a time-delay feedback loop.

Experimental Setup

- Logic gate
- LGA (log amplifier)
- Power splitter
- VGA (variable gain amplifier)
- Feedback loop
- \(\tau_f \approx \tau_c \approx 42 \text{ ns} \)
- LGA = log amplifier
- VGA = variable gain amplifier

Experimental Results

High speed chaos maintains piecewise linear nature.

Simulation Results

Piecewise linear model shows good agreement.

Bandpass Characteristics of VGA

Bandwidth and center frequency change for different \(v_{\text{ctl}} \):

- Discrete VGA:
 \[v_{n+1} = g(x_n)v_{n-\tau}, \quad g(x_n) = \begin{cases} 1.14 & x_n \geq 0.93 \\ 0.53 & x_n < 0.93 \end{cases} \]
- Discrete LGA:
 \[w_{n+1} = \beta \left(1 - \log_{10}(\|v_{n-\tau} + \epsilon\|) \right), \quad x_{n+1} = \sum_{n-\tau}^n w_n/\tau, \]

Delay-Differential Equation Model

Time-delayed feedback loop:

\[v(t) = -\Delta_{H/L} v(t) - \omega^2_{H/L} \int v'(t') \, dt' + g(s(t-\tau_c))\Delta_{H/L} v(t-\tau_f), \]

Logarithmic amplifier:

\[a_2(t) = \omega_L(\beta \left(1 - \log_{10}(\|v(t) + \epsilon\|) \right)) - a_2(t), \]

Digital logic gate:

\[s(t) = T \left(1 - \tanh(y(a_2(t) - T)) \right) \]

Model parameters are measured from experiment.

Summary

We demonstrate high-speed piecewise linear chaos using time-delayed feedback for fast oscillations and control. In the future, we will tune model parameters for better quantitative agreement.

The authors gratefully acknowledge support of:

Aviation and Missile Research Development and Engineering Center
and Propagation Research Associates