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Time-delay signatures in broadband chaos 
generated by optoelectronic oscillators

Optoelectronic oscillators (OEOs) use nonlinear time-delayed 
feedback to produce high-speed and broadband chaos when 
operated in the highly nonlinear regime [1,2]. By this, we 
mean that the linear contribution to the nonlinearity is small 
or vanishes completely. While the nonlinearity itself is 
symmetric, we observe an interesting dynamical symmetry 
breaking in a single oscillator and a partial restoration of the 
symmetry when two nonidentical oscillators are coupled.

Despite the complexity of the dynamics, time-delay 
signatures (TDS) can easily be identified with simple methods, 
such as the normalized autocorrelation function (ACF).

Properties of TDS in a single OEO:
• simple, asymmetric relationship with operating point (m)
iiiiiiii⇒ symmetry breaking 
• can be minimized, but not completely eliminated

A plot of the (simulated) trajectories for different values of m 
in phase space relative to the periodic nullclines [3] helps 
explain the value of m where this minimization occurs.

We find that:
☆ the operating point of the nonlinearity (m) strongly 
iiiiinfluences the peak size of the TDS of a single OEO
iiiiiiii• gives rise to an asymmetric relationship
☆ in a network of two mutually delay-coupled OEOs both the  
iiiioperating point (m) and coupling strength (c) determine the 
iiiisize of the TDS
iiiiiiii• partially restores the symmetry
☆ the size of the TDS is useful for sensing changes in the 
iiiicoupling strength in a small network of OEOs

For τ1 ≠ τ2 ≠ τC and c=1: 
• dynamics are unsynchronized
• coupling nonidentical OEOs restores symmetry in the location of 
iiithe minimum TDS  

Summary:
• Symmetric nonlinearity gives rise to asymmetric TDS with 
iiirespect to m in single OEO
• Bidirectional coupling of two nonidentical OEOs partially  
iiirestores the symmetry in TDS
• Knowledge of how TDS behave allows us to extract network  
iiiparameters from limited measurements
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Delay-differential equations used to model dynamics:

Nonlinear feedback term:

The TDS is a minimum when the maximum of V is in 
between the two periodic nullclines.
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Typical experimental chaotic time series and power spectrum for m=0
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Coupled delay-differential equations:

⇒
two choices: (period = τ)

(period = 2τ)

To find nullcline:

Equations for periodic nullclines:
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By monitoring the 
dynamics and 
parameters of only 
one node, the 
coupling strength 
between the nodes 
can be infered from 
the TDS.
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Simulations show that the size of the TDS also depends on the 
coupling strength.

*preliminary experimental results
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