Time-delay signatures in broadband chaos
generated by optoelectronic oscillators
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Single OEO Two Coupled OEOs

Optoelectronic oscillators (OEQOs) use nonlinear time-delayed
feedback to produce high-speed and broadband chaos when
operated in the highly nonlinear regime [1,2]. By this, we
mean that the linear contribution to the nonlinearity is small
or vanishes completely. While the nonlinearity itself is
symmetric, we observe an interesting dynamical symmetry
breaking in a single oscillator and a partial restoration of the
symmetry when two nonidentical oscillators are coupled.
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Despite the complexity of the dynamics, time-delay
signatures (TDS) can easily be identified with simple methods,
such as the normalized autocorrelation function (ACF).
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We find that:
v the operating point of the nonlinearity (m) strongly
Influences the peak size of the TDS of a single OEO
e gives rise to an asymmetric relationship
v In a network of two mutually delay-coupled OEOs both the
operating point (m) and coupling strength (c) determine the
size of the TDS
e partially restores the symmetry
v the size of the TDS is useful for sensing changes in the
coupling strength in a small network of OEQOs
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Delay-differential equations used to model dynamics:

V(t)=A{=V () —=U@lt)+ F[V(t—1)]}

U(t) = AeV (1)
Nonlinear feedback term:

FV] = (vg/d){cos*[m + dtanh(V/g)] — cos*(m)}
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Properties of TDS in a single OEO:

e simple, asymmetric relationship with operating point (m)
= symmetry breaking

e can be minimized, but not completely eliminated
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A plot of the (simulated) trajectories for different values of m
in phase space relative to the periodic nullclines [3] helps
explain the value of m where this minimization occurs.

V=0 = Ult)=-V{t)+FV({t—r1)]
two choices: V(t—7)=+4V
Vit—71)=-V

Equations for periodic nullclines:
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The TDS is a minimum when the maximum of V is In
between the two periodic nullclines.
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/Coupled delay-differential equations:

Vi(t) = A{=Vi(t) = Ui (t) + F[Vi(t — 1) + cVa(t — 7]}

~

Ul (t) — AEVl (t)
Vo(t) = A{=Va(t) = Us(t) + F[Va(t — 7o) + cVi(t — 7))}
\UQ (t) — AEVQ (t) y

For T, # T, # T. and c=1:

 dynamics are unsynchronized

e coupling nonidentical OEOs restores symmetry in the location of
the minimum TDS
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Simulations show that the size of the TDS also depends on the
coupling strength.
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Summary:

« Symmetric nonlinearity gives rise to asymmetric TDS with
respect to m in single OEO

e Bidirectional coupling of two nonidentical OEQOs partially
restores the symmetry in TDS

« Knowledge of how TDS behave allows us to extract network
parameters from limited measurements
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