XV

Optics of metals

So far we have been concerned with the propagation of light in nonconducting,
isotropic media. We now turn our attention to the optics of conducting media, more
particularly to metals. An ordinary piece of metal is a crystalline aggregate, consisting
of small crystals of random orientation. Single crystals of appreciable size are rare, but
can be produced artificially; their optical properties will be studied in Chapter XV. A
mixture of randomly oriented crystallites behaves evidently as an isotropic substance,
and as the theory of light propagation in a conducting isotropic medium is much
simpler than in a crystal, we shall consider it here in some detail.

According to §1.1, conductivity is connected with the appearance of Joule heat. This
is an irreversible phenomenon, in which the electromagnetic energy is destroyed, or
more precisely transformed into heat, and in consequence an electromagnetic wave in
a conductor is attenuated. In metals, on account of their very high conductivity, this
effect is so large that they are practically opaque. In spite of this, metals play an
important part in optics. Strong absorption is accompanied by high reflectivity, so that
metallic surfaces act as excellent mirrors. Because of the partial penetration of light
into a metal, it is possible to obtain information about the absorption constants and the
mechanism of absorption from observations of the reflected light, even though the
depth of penetration is small.

We shall first consider the purely formal results arising from the existence of
conductivity, and then briefly discuss a simple, somewhat idealized, physical model for
this process, based on the classical theory of the electron. This model accounts only
roughly for some of the observed effects; a more precise model can only be obtained
with the help of quantum mechanics and is thus outside the scope of this book. The
formal theory will be illustrated by applications to two problems of practical interest:
the optics of stratified media containing an absorbing element, and the diffraction of
light by a metallic sphere.

A particularly attractive mathematical feature of the theory is that the existence of
conductivity may be taken into account simply by introducing a complex dielectric
constant (or complex index of refraction), instead of a real one. In metals the
imaginary part is preponderant.

14.1 Wave propagation in a conductor

Consider a homogeneous isotropic medium of dielectric constant ¢, permeability U,
and conductivity ¢. Using the material equations §1.1 (9)—(11), viz. j = 0E, D = ¢E,
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736 XIV Optics of metals

B = uH, Maxwell’s equations take the form

. 4
curl H — S8 = 26, 1)
c c
b
curlE + ;H =0, @)
4
AvE = n;—rp, 3)
divH = 0. 4

It is easy to see that for an electromagnetic disturbance, incident from outside onto
the conductor, one may replace (3) by divE = 0. For if we take the divergence of (1)
and use (3) we obtain ’

. 4o 4
_¢avE :_y_rg_ygp.
c c ¢

Also, differentiation of (3) with respect to time gives

. 4w
divE = —p.
iv =P
Eliminating div E between the last two equations one obtains
. 4no
pt—p=0 )
giving on integration
p = poe~ %, where 7 = —— (6)

dro

Any electric charge density p is thus seen to fall off exponentially with time. The
relaxation time T is exceedingly small for any medium having appreciable conductiv-
ity. For metals, this time is very much shorter (typically of the order of 10718 5) than
the periodic time of vibration of the wave. We may, therefore, assume that p in a metal
is always sensibly zero. Consequently (3) may be written as

divE = 0. (7
From (1) and (2) it follows by elimination of H and the use of (7) that E satisfies the
wave equation

VE =25+ 20 ®
[ C

The term in E implies that the wave is damped, i.e. it suffers a progressive attenuation
as it is propagated through the medium.

If the field is strictly monochromatic, and of angular frequency w, i.e. if E and H are
of the form E = Ege~@!, H = Hoe™ ', we have /0t = —iw so that (1) and (2) may
be re-writtern as

i 4
curIH+EU—(£+i—qu->E=O, )
c w
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iwp

curlE——-—c—Hzo, (10)
and (8) becomes
V2E + K*E =0, (11)
where
. 2n 4
k2=-°-"-{’-<e+ii‘9->. (12)
¢ w

These equations are formally identical with the corresponding equations for noncon-
ducting media if in the latter the dielectric constant & (which, to a good approximation,
was shown to be teal except for frequencies w that are close to a resonance — See
§2.3.4) is replaced by

g = j —. 13
E=¢+1 > (13)

The analogy with nonconducting media becomes closer still if, in addition to the
complex wave number Jc and the complex dielectric constant &, we also introduce a
complex phase velocity D and a complex refractive index 7 which, in analogy with
§1.2 (8), §1.2 (12), and §1.3 (21), are defined by

bl hme=JuE=—k (14)
UE v w
We set
i = n(l +ix), (15)

where n and x are real, and we call x the atienuation index.® The quantities n and x
may easily be expressed in terms of the material constants &, 4 and 0. Squaring (15)
we have

72 = n?*(1 + 2ik — ). (152)
Also, from (14) and (13),
4
h2=#é=y<8+i%g—>. (16)

Now o, just like &, is not a true constant of the medium, but depends on the
frequency. We will see later (§14.3) that for sufficiently low frequencies (long wave-
lengths) o is, to a good approximation, real. Assuming that ¢ is also real, we obtain in
this case, upon equating the real and imaginary parts in (152) and (16), the following
relations:

n2(1 — 1K?) = pe, (16a)
2
n*x = o 'ﬁtvf-. (16b)

From these equations it follows that

* The term ‘extinction coefficient’ is also used.
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1 42
= 5 < u2e? + iLj,z J,—,ug), (172)
1 4 2.2
i = 5 < wre? + !:20 -~ ue). (17b)

The positive sign of the square roots is taken here, since » and ni are real, and
consequentily n? and n”x? must be positive.

Eq. (11) is formally identical with the wave equation for a nonconducting medium,
but the wave number is now complex. The simplest solution is that of a plane, time-
harmonic wave

F = EO ei[/}r's—wt]. { (18)

If, in accordance with (14) and (15), we substitute for % from the relation J —
wi/c = wn(l + ix)/c, (18) becomes

E = EO e—%mcr-s eiw[fr-s—-l]

The real part of this expression, viz.
E = Eg e ers cos{a) Er-s— t}}, (19)

which represents the electric vector, is a plane wave with wavelength A = 27¢/wn and
with attenuation given by the exponential term. Since the energy density w of the wave
is proportional to the time average of E2, it follows that w decreases in accordance
with the relation

W= wye ¥, (20)
where
2 4 4 4
Xz_cczn,c:gmc:%m:%c, (1)

Ao being the wavelength in vacuum and /. the wavelength in the medium. The constant
x [denoted by a in §4.11 (6)] is called the absorption coefficient.
The energy density falls to 1/e of its value after the wave has advanced a distance d,
where
I A A

d=-= = ——
X dmnrk dox

(22)

This quantity is usually a very small fraction of the wavelength (see Table 14.1).*
Returning to (17) we see that, when o = 0, the first equation correctly reduces to
Maxwell’s relation §1.2 (14) n* = ue, and the second gives x = 0. For metals o #0
and is in fact so large that in (17) & may be neglected in comparison with 2¢ /v. To get
an idea of the orders of magnitude involved let it be remarked that for most metals the
conductivity at frequencies up to about the infra-red region of the spectrum

* This phenomenon of penetration to a depth that is a small fraction of the wavelength is well known in the
conduction of alternating currents and is known to engineers as the ‘skin effect.’
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Table 14.1. The ‘penetration depth’d for copper for radiation in three familiar regions
of the spectrum, calculated with the static conductivity ¢ ~ 5.14 X 107 s™" and y = 1.

Radiation Infra-red Microwaves Long radio waves
Ao 103 cm 10 cm 1000 m = 10° cm
d 6.1 X 1077 cm 6.1 X 1075 cm 6.1 X 1073 em

(A = 1073 cm) is of the order of 10'7 s~!. Thus, for example, with 2 = 1073 cm
(v ~ 3 X 10" s71), one then has o /v ~ 3000. The dielectric constant & of a metal
cannot be measured directly, but as we shall see it can be deduced from optical
experiments. However, as the mechanism of electric polarization in metals is not
fundamentally different from that of a dielectric, it may be assumed that £ is of the
same order of magnitude. Hence, provided the wavelength is not too short, one may
suppose that

KO _ e > ue. (23)

v

H o~ nK = 1//—49—. (24)
v

dwfﬂdz:l. Sh___°__ (25)
dx\uo 4z \lpo  /Baucw

A perfect conductor is characterized by infinitely large conductivity (¢ — o0). Since
according to (16), /0 = (1 — x*)/vk, we have in this limiting case k* — 1, or by
(16a), n — oo. Such a conductor would not permit the penetration of an electromag-
netic wave to any depth at all and would reflect all the incident light (see §14.2 below).

Whilst the refractive index of transparent substances may easily be measured from
the angle of refraction, such measurements are extremely difficult to carry out for
metals, because a specimen of the metal which transmits any appreciable fraction of
incident light has to be exceedingly thin. Nevertheless Kundt® succeeded in construct-
ing metal prisms that enabled direct measurements of the real and imaginary parts of
the complex refractive index to be made. Usually, however, the optical constants of
metals are determined by means of katoptric rather than dioptric experiments, i.e.- by
studying the changes which light undergoes on reflection from a metal, rather than by
means of measurements on the light transmitted through it.

Egs. (17) and {22) now reduce to

14.2 Refraction and reflection at a metal surface

We have seen that the basic equations relating to the propagation of a plane time-
harmonic wave in a conducting medium differ from those relating to propagation in a
transparent dielectric only in that the real constants € and k are replaced by complex

* A, Kundt, Ann. d. Physik, 34 (1888), 469.
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constants & and k. It follows that the formulae derived in Chapter I, as far as they
involve only linear relations between the components of the field vectors of plane
monochromatic waves, apply also in the present case. In particular, the boundary
conditions for the propagation of a wave across a surface of discontinuity and hence
also the formulae of §1.5 relating to refraction and reflection remain valid.

Consider first the propagation of a plane wave from a dielectric into a conductor,
both media being assumed to be of infinite extent, the surface of contact between them
being the plane z = 0. By analogy with §1.5 (8) the law of refraction is

1
sin 6, == sin 6;. §))

Since 7 is complex, so is 6, and this quantity therefore no longer has the simple
significance of an angle of refraction. §

Let the plane of incidence be the x, z-plane. The space- dependent part of the phase
of the wave in the conductor is given by Jer - s, where [see §1.5 (4)]

sg_’) = sin0,, sﬁ‘) = (), s§‘> = cos 6,. @)
From (1) and (2) and §14.1 (15)
in 6; 1 —1 .
s =sin6, = BALLA ~_sin6;, (3a)

n(l +ix)  n(l+x?)

sg’) = c086; = /1 ~— sin? 6,

1-xH ., . 2k 2
=4[] — i 8in~ O; + 15— sm" 6;.
\/1 20T 2p sin® 6; +1 T sin” 6 (3b)

It is convenient to express s. in the form

s = cos§, = qe? 4

(g, v real). Expressions for ¢ and y in terms of n, x and sin6; are immediately
obtained on squaring (3b) and (4) and equating real and imaginary parts. This gives

Zcos? 1 L -« sin® 6
“C free — e Q] .
d 4 n2(1 + k%) ? )

g*sin2y = ————=sin® 6.
It follows that
fr 50 = %n(l + i) (est? + 2500
x(1 — i)
n(1l + k%)
= %[x sin 6; + zng(cos y — xsiny) + inzq(x cosy + siny)]. (6)

=2 n(1l + ix) | ————= sin §; + z(g cos y + igsiny)
¢

We see that the surfaces of constant amplitude are given by

z = constant, Q.
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and are, therefore, planes parallel to the boundary. The surfaces of constant real phase
are given by

xsin 6; + zng(cos y — K siny) = constant, )

and are planes whose normals make an angle @; with the normal to the boundary,
where

ng(cosy — Kk siny)

\/sin2 6; + ng>(cosy — K sin e 5
sin 6; ®

/sin? §; + n2q*(cosy — 1siny)? '

Since the surfaces of constant amplitude and the surfaces of constant phase do not in
general coincide with each other, the wave in the metal is an inhomogeneous wave.

If we denote the square root in (9) by »', the equation for sin §; may be written in
the form sin 6’ = sin8;/n’, l.e. it has the form of Snell’s law. However, n' depends
now not only on the quantities that specify the medium, but also on the angle of
incidence 6.

We may also derive expressions for the amplitude and the phase of the refracted and
reflected waves by substituting for 6, the complex value given by (1) in the Fresnel
formulae (§1.5.2). The explicit expressions will be given in §14.4.1 in connection with
the theory of stratified conducting media. Here we shall consider how the optical
constants of the metal may be deduced from observation of the reflected wave.

Since we assumed that the first medium is a dielectric, the reflected wave is an
ordinary (homogeneous) wave with a real phase factor. As in §1.5 (21a) the amplitude
components 4y, 4 of the incident wave and the corresponding components Ry, K1 of
the reflected wave are related by

cos 0 =

sin @} =

Ri = tan(6; — 6;)
1= tan(6; + 6,)
sin(6; — 6;)

Tsin6; + 0y

Ay,
(10)

l =
Since 6, is now complex, so are the ratios R /Ay and Ry [Al1 ie. characteristic phase
changes occur on reflection; thus incident linearly polarized light will in general
become ellipfically polarized on reflection at the metdl surface. Let ¢y and ¢ be the
phase changes, and pj, and p the absolute values of the reflection coefficients, i.e.

Ry ig Ry i
SO i R by = e = 2 11
g A pe”t, L= pie (11)
Suppose that the incident light is linearly polarized in the azimuth a;, ie.
Ay
tana; = ——, (12)
A4

and let o, be the azimuthal angle (generally complex) of the light that is reflected.
Then™

* We write —iA rather than -HiA in the exponent on the right-hand side of (13) to facilitate comparison with
certain results of §1.5.
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R cos(6; — 8,)

tana, = E&T = —m tana; = Pe P tanay, (13)
where
p=lt A=gy-du (14)
Pl
We note that a, is real in the following two cases:
(1) For normal incidence (6; =0); then P=1 and A= —um, so that tana, =
—tan a;.

(2) For grazing incidence ( ; = m/2); then P = 1and A =0, so that tan a, = tan «;.

It should be remembered that in the case of normal incidence the directions of the
incident and reflected rays are opposed; thus the negative sign implies that the azimuth
of the linearly polarized light is unchanged in its absolute direction in space. It is also
unchanged in its absolute direction when the incidence is grazing.

Between the two extreme cases just considered, there exists an angle 0; called the
principal angle of incidence which is such that A = —z/2. At this angle of incidence,
linearly polarized light is, in general, reflected as elliptically polarized light, but as
may be seen from §1.4 (31b) (with 6 = 7t/2), the axes of the vibration ellipse are
parallel and perpendicular to the plane of incidence. If, moreover, Ptana; = 1, then
according to (13) tana, = —i, and the reflected light is circularly polarized.

Suppose that with linearly polarized incident light an additional phase difference A
is introduced between Ry and Ry by means of a suitable compensator (see §15.4.2).
The total phase difference is then zero, and, according to (13) the reflected light is
linearly polarized in an azimuth &’ such that

tan ;. = Ptana;. (15)

The angle a) is, for obvious reasons, called the angle of restored polarization, though
it is usually defined only with incident light that is linearly polarized in the azimuth™
a; = 45°. The values of a and P relating to the principal angle of incidence 6; = 0;
will be denoted by @, and P respectively. If we imagine a rectangle to be circum-
scribed around the vibration ellipse of the (uncompensated) reflected light obtained
from light that is incident at the principal angle, with its sides parallel and perpendi-
cular to the plane of incidence, then the sides are in the ratio Ptana; and the angle
between a diagonal and the plane of incidence is @) (see Fig. 14.1).
For the purpose of later calculations it is useful to introduce an angle v such that

tany = P; (16)

the value of 1 corresponding to the principal angle of incidence will be denoted by .
Using (10) and (1) we can compute the quantities P (= tan) and A in terms of 6;,
if the constants n and x of the metal are known. Fig. 14.2(a) shows their dependence
on 6; in a typical case. In Fig. 14.2(b) analogous curves relating to reflection from a
transparent dielectric are displayed for comparison. The sudden discontinuity from —7
to 0 in the value of A which occurs when light is reflected from a transparent dielectric

* Then ¢’ is equal to the angle v introduced in (16).
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Fig. 14.1 Vibration ellipse of light reflected from a metal at the principal angle of
incidence.
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Fig. 14.2 The quantities ~A = ¢ — ¢ and P =tany) = p./py, which character-
ize the change in the state of polarization of light on reflection from a typical metal
surface (a) and from a transparent dielectric (b).

at the polarizing angle is absent when light is reflected from a metal surface. The sharp
cusp when tang) becomes infinite is likewise absent, and the curve is replaced by a
smooth curve with a comparatively broad maximum. The angle of incidence at which
this maximum occurs is sometimes called the quasi-polarizing angle; it is nearly equal
to the principal angle of incidence ;. 1t is commonly assumed that this maximum is
actually at 0;, which is almost exactly true if n?(1 + x?) > 1, as is usually the case (cf.
Table 7.3). In general the two angles are, however, different; for example, in the case
of silver at the ultra-violet wavelength 3280 A; the quantity n?(1 + «?) is small; then
0; = 47.8° and v = 31.8° whereas Ymax = 29.5° and occurs at 8; = 40°, approxi-
mately.

Generally speaking the problem is not to find 1 and A from known values of » and
x, but to determine »n and x from experimental observations of the amplitude and
phase of light reflected from the metal.

As the quantities Ry, Ry, @y, ¢1, ¥ and A are all functions of 8;, and of n and ,
measurement of any two of these quantities for a specific value of the angle of
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incidence 6; will in general permit the evaluation of » and r«. Since in many
experiments one determines the last two of these quantities, we shall derive the
fundamental expressions for n and r in terms of 1 and A. From ( 13) and (1)

1 — Pe” cos 8; cos B, /7?2 — sin? 6;

[ + Pe~ib = T sin@sinf,  sin6;tan; 17
Since P = tan 1, the left-hand side of (17) may be expressed in the form
1—Pe® 1 —e®tany cos2y +isin2ysinA
[+ Pe-d  1+edtany 7 1+sin2ycosA (18)
From (17) and (18),
V2 —sin6;  cos2y +isin2ysinA
sin 0; tan 6; T T T 1 gsin2pcosA (19)
Now if, as is usually the case in the visible region,
n2(1+ 1) > 1, (20)
sin? 6; may be neglected in comparison with #* and we obtain
. i _ ?1(1—{—11‘»’) N_cosZ”tp-}Tisin%/)sinA. 1)
sinf;tand; sin6;tan G, 1 + sin2ycos A
Equating the real parts, we obtain
1o ntimieny
Equating the imaginary parts and using (22a) we find that
K ~ tan 21y sin A. (22b)

These expressions permit the calculation of the optical constants n and x from
measurements of 9 and A at any angle of incidence. In the particular case of
observation at the principal angle of incidence 6; one has A = —x/2, Yy =9 and
(22a) and (22b) reduce to

n ~ —sin B; tan 6; cos 27, (23a)
K ~ —tan 21). (23b)

Other formulae relating to 7 and i are sometimes useful. Without assuming (20) we
have, on squaring (19),

72 —sin?; _ cos?2y —sin® 2y sin® A +isindysinA

= 24
sin? 6; tan? 6; (1 4+ sin 2% cos A)? @4

If we substitute 72 = n2(l — k%) + 2in’*k and equate real and imaginary parts we
obtain
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tan? 6;(cos? 21p — sin® 2y sin? A)
(1 + sin 2y cos A)?

(1 -1 = sin 6; |1 + , (25a)

sin? 6, tan’ 6, sin 4y sin A
2t = ’ : : 25b
e (1 + sin 2y cos A)? (25b)

In particular, at the principal angle of incidence (6 = 6;, A = —m/2), these equations
reduce to™

n2(1 — %) = sin® 6;(1 + tan” 0; cos 43), (262)

212K = —sin® 0, tan® §; sin 47). (26b)

The formulae (25) do not yield # and x directly but in the combinations n2(1 — 1)
and n2x. On reference to §14.1 (16) we see that these quantities have a direct physical
significance. With p = 1 (as is always the case at optical wavelengths), (1 —x?) is
the dielectric constant, and n2k the ratio of the conductivity and the frequency. From
the magnitude of these quantities, and particularly from their variation with frequency,
information may be obtained about the structure of the metal (see §14.3 below).

So far our analysis has centred round the amplitudes of the components of the
reflected light, but, as we shall see shortly, useful information may also be obtained
from comparison of the intensity of the reflected light with that of the incident light,
especially at long wavelengths. If we consider normal incidence (6; = 0), the distinc-
tion between R and R, disappears, the plane of incidence then being undetermined,
and we may write

R R
R=I|-"] =|—]. 27
‘Au Ay 7
If we substitute from (1) and (10) (or if we replace n by 7 in §1.5 (23)), we obtain
_ ?—12:772(1+1ci)+1-2n. (28)
i1 (1 +x?)+1+2n

The optical constants of many metals have been determined from measurements of
reflected light. In Table 14.2 values of the constants as found by various observers are
given for a wavelength in the yellow region of the visible spectrum. The metals are
arranged in order offtheir reflectivity R. We note that in all cases n<ni so that
according to §14.1 (162) ue and consequently (since u ~ 1 at optical wavelengths) € is
negative. At first sight it might appear that no physical significance can be attached to
a negative dielectric constant. We shall see later that this is not the case and that the
negative value of & can be explained from certain simple assumptions concerning the
clectron mechanism of conductivity. From the table it would appear that valuest n <1
are associated with high reflectivity but in general this is not the case.

* Equations such as (23) and (26), which involve measurements only at the principal angle of incidence, are

simpler than the more general expressions (22) or (25), and for this reason alone many experimenters have
restricted themselves to measurements at this angle. At other angles of incidence experimental accuracy may
be greater. Convenient choice of the angle of incidence is discussed in P. Drude, Ann. d. Physik, 39 (1890),
504; J. R. Collins and R. O. Bock, Rev. Sci. Instr., 14 (1943), 135; 1. Simon, J. Opt. Soc. Amer., 41 (1951),
336; D. G. Avery, Proc. Phys. Soc., 65 (1952), 425; R. W. Ditchburn, J Opt. Soc. Amer., 45 (1955), 743.
When n < 1, the real phase velocity ¢/n exceeds the velocity of light in vacuum, but as explained at the
end of §1.3.3 this is not in contradiction with the theory of relativity.

—F
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Table 14.2. The optical constants of metals, for light of wavelength A = 5893 A

(sodium D lines).

Metal n AK R Observer

Sodium, solid 0.044 2.42 0.97 Duncan 1913
Silver, massive 0.20 3.44 0.94  Oppitz 1917
Magnesium, massive 0.37 442 0.93  Drude 1890
Potassium, molten 0.084 1.81 0.92  Nathanson 1928
Cadmium, massive 1.13 5.01 0.84  Drude 1890
Aluminium, massive 1.44 5.23 0.83 Drude 1890
Tin, massive 1.48 5.25 0.83 Drude 1890
Gold, electrolytic 0.47 2.83 0.82  Meier 1910
Mercury, liguid 1.60 4.80 0.77  Lowery and Moore 1932
Zinc, massive 1.93 4.66 0.75  Meier 1910
Copper, massive 0.62 2.57 0.73  Oppitz 1917
Gallium, single crystal 3.69 5.43 071  Lange 1935
Antimony, massive 3.04 4.94 0.70  Drude 1890
Cobalt, massive 2.12 4.04 0.68 Minor 1904
Nickel, electrolytic 1.58 3.42 0.66  Meier 1910
Manganese, massive 2.41 3.88 0.64  Littleton 1911
Lead, massive 2.01 3.48 0.62 Drude 1890
Platinum, electrolytic 2.63 3.54 0.59  Meier 1910
Rhenium, massive 3.00 3.44 0.57 Lange 1935
Tungsten, massive 3.46 3.25 0.54  Littleton 1912
Bismuth, massive 1.78 2.80 0.54 Meier 1910
Tron, evaporated 1.51 1.63 0.33  Meier 1910

Condensed from H. H. Landolt and R. Bérnstein, Phys. Chem. Tabellen, (5 Aufl., Berlin, 1923;
1-3 Ergiinzungsb, Berlin, 1927-1936).

The values of n and nx displayed in Table 14.2 cannot be expected to be in
agreement with calculations based on the approximate formulae §14.1 (17). These
formulae were derived on the assumption that the conductivity o is real and as we will
see in §14.3 this assumption is fulfilled to a good approximation only at low
frequencies. It will become clear from the considerations of §14.3 where we examine
the frequency dependence of ¢ from an elementary model, that at the high frequencies
(w~3.2% 10 s~1) corresponding to the sodium D lines, to which Table 14.2 refers,
o is complex, and its imaginary part is, in fact, appreciably larger than its real part.
Indeed the dependence of the optical constants of metals on the wavelength,
determined from experiments, shows a much more complicated behaviour than our
formulae predict (see Fig. 14.3).

It appears from investigations of Hagen and Rubens® and subsequent workers that
the reflectivity of many metals, calculated from the elementary theory that we outlined
and with o approximated by its static value, is in good agreement with results of
experiments, provided the wavelength of the radiation 4 is not shorter than about
10-3 cm. If we substitute for n and nx from §14.1 (24), (28) becomes (taking x4 = 1),

* E.Hagen and H. Rubens, 4nn. d. Physik (4), 11 (1903), 873.
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Fig. 14.3 The optical constants of silver as functions of the wavelength. Subscript
‘expt’ refers to data obtained from experiment. The scales are logarithmic.

22412
R=—2 . (29)
g

22 41424/
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v
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When v/o is sufficiently small, we may neglect 1 in comparison with the other terms
and may develop (29) in powers of /¥ /o . We then obtain

v
; R~1—2Jg+-~. (30)

Hagen and Rubens found that, at wavelength 4 = 1.2 X 1073 cm, one has for copper
1 — R = 1.6 X 1072, whilst on substituting for o the static value of the conductivity,
(30) gives 1 — R = 1.4 X 1072,

As the wavelength is increased further, R becomes s0 nearly equal to unity that it is
difficult to measure 1 — R with any accuracy. Hagen and Rubens obtained, however,
useful estimates by an indirect method. According to Kirchhoff’s law of heat radiation™
the ratio of the emissive power E, to the absorptive power A, of a bodyT depends only

* See, for example, M. Planck, Theory of Heat (London, Macmillan, 1932), p. 189; or A, Sommerfeld,
Thermodynamics and Statistical Mechanics, eds. F. Bopp and J. Meixner (New York, Academic Press,
1956), p. 136.

+ By emissive power is meant the radiant energy emitted by the body per unit time, by absorptive power the
fraction which the body absorbs of the radiant energy which falls upon it.
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on the frequency ¥ and on the temperature T of the body and not on the nature of the
body, i.e.

E,

4,

= K(v, T), (31)

where K(v, T) is a universal function of v and T. Evidently K is equal to the emissive
power of a body whose absorptive power is unity, a so-called black body. Now suppose
that radiation falls on a metal specimen of such a thickness that all the incident energy
that is not reflected is absorbed in its interior. Then

A, =1-TR, (32)
and from (30), (31) and (32)
4, = B _ 2ﬁ, (33)
K(v, T) o
or
VO E, =2/vK®, T). (34)

The right-hand side of this equation is independent of the nature of the metal. It is a
well-known function of v and 7, the function K(v, T) being precisely known both from
experiment and theory, and represented by the celebrated formula of Planck.”

It follows that the validity of the formula (30) may be tested even when R is very
close to unity by determining the conductivity o and the emissive power E, as
functions of the frequency and temperature and examining whether the product VOE,
satisfies (34). Hagen and Rubens confirmed that this is so at long infra-red wave-
lengths, using for this purpose the so-called residual rays. These are rays left over
from a wider spectral range after repeated reflections from certain crystals, e.g.
fluorite, rock-salt or sylvine. These substances have pronounced absorption maxima in
the spectral region A = 22.9 um to 63 um, and hence [see (28)] highly selective
reflectivity for such wavelengths.

In Fig. 14.3 curves are given, illustrating, for the case of silver, the dependence of n
and ni on the wavelength, as determined from experiment. For comparison the
theoretical curve computed from the formula §14.1 (24) is also shown. The scales are
logarithmic so that the theoretical curve is the straight line

Inn~mnnc~3inl+C,

where C = Inv/uo /c. From §14.1 (24) and from (30) we may also express 7 and nK
in terms of the reflectivity (for long waves):

2
~ (S 35
n o~ HK = (35)
The function 2/(1 — R) is also displayed in the figure for comparisor. We see that t/he
experimental curve for nx has a sharp minimum near 4 = 3000 A and that the curve
for n has a much flatter minimum near A = 5000 A. At about A= 3300 A the

reflectivity of the silver is seen to be very poor.

* See, for example, M. Born, tomic Physics (London and Glasgow, Blackie and Son, 5th ed., 1951), P- 238.
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With increasing wavelength the experimental curves approach the theoretical curve
calculated from the conductivity measured electrically.

14.3 Elementary electron theory of the optical constants of metals
/

We pointed out in the previous sections that the conductivity o, just as the dielectric
constant ¢ and the magnetic permeability u, is not a true constant of the medium, but
that it depends on the frequency w of the field. We will now present a rough,. simple
model (due to P. Drude) from which the frequency dependence of o may be derived, at
least for sufficiently low frequencies.

Let us recall first that the response of a dielectric medium to an external electromag-
netic field is largely determined by the behaviour of electrons that are bound to the
atomic nuclei by quasi-elastic forces (see §2.3.4). In a conducting medium (such as a
metal), unlike in a dielectric, not all the electrons are bound to the atoms. Some move
between the molecules and are said to be fiee electrons, to distinguish them from the
other electrons that are bound to the atoms, just as in a dielectric. In the absence of an
external electromagnetic field, the free electrons move in a random manner and hence
they do not give rise to a net current flow. When an external field is applied the free
electrons acquire an additional velocity and their motion becomes more orderly, even
though occasionally the electrons still collide with the (essentially stationary) atoms.
This more orderly motion of the electrons gives rise to the induced current flow.

We cannot enter into a detailed discussion of this process which has te be treated by
means of statistical methods of the kinetic theory of gases. The very plausible result is
that the averaged total effect is the same as that of a damping force proportional and
opposite in direction to the velocity of a model electron that represents the average
behaviour of the whole set of electrons. The equation of motion of this model electron
in an electric field E is, therefore,

mi + mfr = ek, )

where m is the mass, e the charge of the electron and f3 the damping constant referred
to unit mass. Unlike the equation of motion for a bound electron [§2.3 (33)] which
contains on the right-hand side an ‘effective field” E’, (1) contains on the right-hand
side the macrodcopic electric field E, which is believed to represent more closely the
field that acts on a free electron in a conductor.

In order to understand the meaning of the damping constant 3 in (1), consider first
the case where no electric field is present. If E = 0, we have

i+ B =0, )

with the solution
1 . _
r=ro——vpe P, f=v=uvpe (3)

we see that in this case the model electron starting with the velocity vy is slowed down
in an exponential way, with 3 as decay constant. The time 7 = 1 /B is called the decay
time, or the relaxation time. It is typically of the order of 1071 s,

Let us now assume a time-harmonic field E = Eq e ", The solution of (1) is then
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the sum of two terms, one representing the decaying motion [solution of the
homogeneous equation (2)] and the other representing a periodic motion
e

=T m(w? + iﬁa))E “

This periodic motion gives rise to a current in the medium. If there are N free electrons
per unit volume, the current density j is given by

Nei= g (5)
o=y ey — - il
! m(f — iw) ‘
Comparing (5) with the constitutive relation §1.1 (9), viz. j = o E, we see that
Ne?
= 6
= B - iw) ©

As we have already mentioned, 7 is typically of the order of 1071 s, so that f is then
of the order 10 s!. It is thus clear, from (6), that when w < B, o may be
approximated by its static value oo = Ne?/mf3 which, of course, is real. On the other
hand, when @ > 8 (which is usually the case at optical frequencies), the imaginary
part of o will become large compared to its real part. It is, therefore, evident that only
for frequencies w < f8 is one justified in separating the real and imaginary parts of the
complex dielectric constant in the manner that leads to the formulae §14.1 (16) and
§14.1 (17).

According to §14.1 (16), the frequency dependence of the complex dielectric
constant & and of the complex refractive index 7 arises from the dependence on
frequency not only of the conductivity o (contribution from free electrons), but also of
the real dielectric constant & (contribution from bound electrons). At low enough
frequencies the contribution from the bound electrons may be shown to be small
compared to the contribution from the free electrons. Under these circumstances we
may replace € by unity and o by the expression (6) in §14.1 (16). We then obtain, if we

assume the conductor to be nonmagnetic (1 = 1), the following expression for &:

.2 47 Ne* 1

‘=1 . 7
" m  w(w—ip) M
On separating the real and imaginary parts in (7), and on making use of §14.1 (15a),
viz. 2 = n*(1 + 2ix — k%), we obtain the formulae

g

ili

AnNe?
m(w? + %)’
27tNe?/p
mé = nk = —————.
mé ==

Red=n*(l - =1

(8a)

(8b)

We may readily deduce from (3a), that if B is sufficiently small, the real part of & is
negative for low enough frequencies, but is evidently positive when w is large. The
critical value w, of the frequency at which the real part of & changes sign is given by

47 Ne?
0l = B ©)

m

We may re-write (8) in terms of this critical value and obtain
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2 2
w? + p*

Reé51121-1c2 =] — =, 10a

Q- =1-25rp (102)

2 Bw? + )

Imeé=nK=s—""35
' 20(w?* + %)

(10b)
We shall now assume that w? is much larger than /32, so that in place of (9) we may
write
” 45t Ne?

=~ . 11
We m an

If we also restrict ourselves to sufficiently high frequencies (w* > %), we obtain, in
place of (10), the simpler formulae

2
Red = (1 — 1) ~1— (9—> : (122)

w

2
Imé = n’kc ~ s (“’-—> . (12b)
2w\ W

It follows from (12a) that when w? < w? (but still w? > B?), the real part of & is
negative and K > 1. The negative value of the real part of & reflects the fact that under
these circumstances the vibrations of the electrons are out of phase by a quarter of a
period with the exciting field, as is evident from (5). For sufficiently low values of w,
the attenuation index K becomes large compared to unity and the reflectivity [given for
normal incidence by §14.2 (28)] 18 readily seen to have a value close to unity. On the
other hand, when w® > w? (but w® > j?), the real part of 2 is evidently positive, 80
that 1 < 1, and, when @ is sufficiently large, i becomes small compared to unity and
the imaginary part of & becomes small compared to its real part. The metal must then
be expected to behave essentially as a dielectric.

The alkali metals exhibit precisely these phenomena, for in the long wavelength
region they are opaqueé and highly reflecting, whereas at some critical wavelength in
the visible or ultra-violet they become transparent, and have comparatively low
absorption. Table 14.3 shows in-the second row the experimentally determined
wavelengths at which this transition occurs. The third row contains these critical
wavelengths A, = 271¢ Jwe determined from the approximate formula (11), where the
number of free electrons is taken to be the same as the number N of atoms in the unit
volume. It is seen that the values in the two rows are different, except for sodinm. The
last row gives the ratio of number Ness of electrons that are ‘effective’ and the number
of atoms, determined from the formula

_]\%fi _ A (13)
(Ae)obs
Tt is seen that this number is of the order of unity though (except for sodium)
considerably smaller. Thus the elementary theory gives the correct order of magnitude
of the parameters, but does not describe the phenomena in detail.
The theory can be somewhat improved by using in place of the crude approxima-
tions (12) the more accurate formulae (10), which contain the decay constant S.
However, because of the complexity of the physical processes involved in the inter-
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Table 14.3. The critical wavelengths A. below which the alkali metals become trans-
parent, and above which they are opague and highly reflecting.

Metal Lithium Sodium Paotassium Rubidium Cesium
(A )obs 2050 A 2100 A 3150 A 3600 A 4400 A
(Acdeate 1500 A 2100 A 2900 A 3200 A 3600 A
%‘f 0.54 1.00 0.85 0.79 0.67

action of a high-frequency electromagnetic field with a metal, it is not possible to
extend appreciably the range of validity of the elementary classical theory that we
outlined in this section by a simple modification. A completely satisfactory theory of
the optical properties of metals can only be obtained on the basis of quantum
mechanics.

14.4 Wave propagation in a stratified conducting medium. Theory of metallic films

In §1.6 we have studied the propagation of electromagnetic waves in stratified
dielectric media, that is, in dielectric media with optical properties dependmg on one
Cartesian coordinate only. We shall now briefly discuss the extension of the theory to
stratified media that contain absorbing elements. Thus we assume that in addition to ¢
and p being functions of only one coordinate, there may be a finite conductivity o
which likewise is a function of this coordinate alone.

As explained at the begmmnfJ of §14.2, the formulae of Chapter I as far as
they involve only linear relations between the components of the field vectors of a
time-harmonic wave retain their validity for conducting media, provided that
the real dielectric constant & and the real wave number k are replaced by the complex
dielectric constant &= e¢-+i4wo/w and by the complex wave number
k= w»\/u(e + i47o [w)/ e, respectively. Hence we may take over the basic formulae
of the theory of stratified dielectric media as developed in §1.6, prov1ded we make this
formal change in the appropriate formulae. It follows, in particular, that a stratified
absorbing medium may be characterized by a two-by-two matrix. In contrast to the
case of a dielectric stratified medium, the elements of this matrix are no longer real or
pure imaginary numbers but are complex numbers that contain both real and
imaginary parts.

We shall illustrate the theory by studying in detail two cases of practical interest.

14.4.1 An absorbing film on a transparent substrate

Consider a plane-parallel absorbing film situated between two dielectric media (Fig.
14.4). The formulae relating to the reflection and transmission of a plane monochro-
matic wave by the film are obtained from §1.6 (55)—(58) on replacing ny by
fiz = mp(1l + 11cp). It is convenient to set

i1 COS 92 = Uy + iUz, (1)
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Fig. 14.4 An absorbing film situated between two dielectric media.

where u, and v, are real. We can easily express up and U2 in terms of the angle of
incidence and the constants which characterize the optical properties of the first and
the second medium. It follows, on squaring (1) and using the law of refraction
fip sin By = ny sin 8,, that

(ur + i) = % - ”1 sin® 6;. (2)

On equating real and imaginary parts this gives

b 3 2 2 2 gip?
w2 — v = ni(1 - 1) — 1y s’ 6,
3)

Uy = 1512

From (3) we find that

23 = my(1 — 13) — i sin? 6; + /131 —18) — m T2 61 + 4njis, } @

205 = —[n3(1 - 13y — i 2gin? 6]+ /[m5(1 — e n? sin® 07 + 4ndic.

Next we must evaluate the reflection and transmission coefficients for the interfaces
1-2 and 2-3 respectively, for these coefficients enter the formulae for the reflection
and transmission coefficients of the film. We consider separately the cases when the
electric vector of the incident wave is perpendicular, or parallel, to the plane of
incidence.

il
P
H

Electric vector perpendicular to the plane of incidence (TE wave)
In this case we have, on replacing n; €08 6, by i1 cos Oy = 1z + iv, in §1.6 (55),

i _ 1 cos 0, — (up +ib2)

= 5
ny cos O + (uz +102) )

ri2 = P12©

We shall later need explicit expressions for the amplitude p12 and the phase change
¢12. From (5) we have:

5 (ny cos Oy — W) + U7 20,1y €08 Oy

< tan =535 " 6
P2 = (1 cos 01 + 1) + u7 P12 u7 -+ U“ - n1 cos? 0, ©)

For transmission at the first interface, we have from §1 .6 (56)
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i 2ny cos 6y
fy =T e = " (7
1y €08 8y + uy +iv,
which gives
21y cos 6,)? Uy
T%z = ( ) tanyyp; = — ————me (8)

(nycos B + w)? +uv3’ 1y cos @y +uy

In a strictly analogous way we obtain the following expressions relating to reflection
and transmission at the second interface:

o, (n3cos60; —wp)* +v3 20,13 cOS 63
23 5 5 3 tan (/)23 =3 9 ) 5 P (9)
“ (n3cos03 + up)? 4 U35 u; + vy — nj cos? O3
4(13 + v3) Uy 3 COS 6
2 2 2 _ 273 3
Ty = tanyas = (10)

" (n3c0s 65 + 1) + v3’ U3 + U3+ uyny cos B3
Since, according to the law of refraction n; sin @y = 73 sin 6, 71, sin 63 = n3 sin 65, the
angle 6; is determined from 6, by means of the formula

ns sinf; = ny sin 6. (1

Electric vector parallel to the plane of incidence (TM wave)

As explained in §1.6.3 the formulae for the reflection and transmission coefficients for
a TM wave can be obtained from those for a TE wave simply by replacing the
quantities p; = n;cos0; by g; = cos6;/n;, it being assumed that the media are
nonmagnetic. The quantities » and ¢ now refer to the ratios of the magnetic, not the
electric vectors. In particular we have from §1.6 (55),

1 1
— c080; ——cosf, ., N
711 iy 715 cos 8] — Ry i3 cos B,

. igy _
Fla = pp¢€ - 1 1 — A ~
75 cos 6y + nyin cos O
— cos @ +—cosf, 2 LM 2
ny ]

831 — 13) + 2indrz]cos By — ni(up + ivy)

= . 12
[m3(1 ~ k%) + 2in3rz]cos O) + ny(us + ivy) (12)
From (12) we find after a straightforward calculation
» (A1 — 1B)cos Oy — nyup]? + [2ndKs cos 6) — myva]?
231 ~ id)cos ), + nmuy? + [2ndi; cos 0 + nv 2’ 13)

210Uy — (1 — IC?z‘)Uz
ny(1 4 13)? cos? Oy — nd(ud + v3)°

tan @12 = 2ny 3 cos 6,

For the ratio #), we obtain from §1.6 (56) on replacing n; cos 6; by cos 6;/n;,
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2 cosBh

ixlg —_ ny

tp = T12¢€ i
- cos By +—— cos 0,
m 12
B 21 — 1) + 2imK;]cos O1 (14
[me(1 —15) + 2inicz]cos 6y + mi2 + i)
From (14) we find that

61

4n3(1 + 12)? cos®
4 ) + (2n3iy cos B + mv2)?’

2
T =
127 Th2(1 — 15)c0s 0,

(15)

fany = 711[2162112 - (1~ h’%)l)z]

127521 4 1) cos By + (1 — KB)us + 21212 '
2 2 2

e reflection and transmission

obtain the following formulae for th

Tn a similar way we
the second interface:

coefficients relating to
T + [2n3K2 COS 6; — n302)

31— 13)cos B3 — n3it2
T 4 [2m3%2 cOS 0, + mual?’

Pos = [m(1 - 1&)cos B3 -+ 312
(16)
Dyt — (1 = K5)02

t = 2n3nj cos 0 . 2 ,

an ¢y = 2 E05E3 m(1 + 13)” cos? 03 — my(u3 + v3)
and

2= 4r2(15 + 13)
BT Tnaup + m5(1 — 12)cos 031 + (1307 -+ 21512 COS 64)2°
a7

an s = n3l(l = 162)2 U — 2212 ]COS s

B 0E + 03+ n2[(1 — 1) 1z + YiaD7]c0s B3

f the quantities P12, ¢12, €tc., the complex reflection and
luated. It will be useful to

From the knowledge ©
f the film may immediately be eva

transmission coefficients 0

set )
’ 27
= —h, (18
=7 )
so that
27, .
= " fhcos By = (12 + iv)n. 19
The equations §1 6 (57)—(58) now become
. ig12 —20y0 @il@a3+2i27)
r = peldr = W"’I’ , (20)
1+ prapz e i@t +2im)
—027] ei(X12+Xzs+xlz17)
3y

[ = reldr = 712723 €
f 14 pr12p23 e—2027 ei(¢’12+¢23+2uz?7) :
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From (20) we obtain, after straightforward calculation, the following expressions for
the reflectivity R and for the phase change 4, on reflection:

R=| = P2y &2 4 pds e P + 2p1apay 0S(P3 — P12 + 2u2m) 2
e20: + pl,p2y €720 + 2p12p3 COS(Pr2 + P23 + 2uym) 22)
tan s, = pa3(1 — phy)sin(2uan + P23) + p1a(e® — p3y e sin g1y 3)
T pos(1 + phy)eosQuan 4 Pa3) + p1(@V + ply e )cos Pz -

These formulae are valid for a TE wave as well as for a TM wave. In the former case
one must substitute for p and ¢ the values given by (6) and (9), in the latter case those
given by (13) and (16).

In a similar way we obtain from (21) the following expressions for the transmissivity

7 and for the phase change 6, on transmission: g
ny COS 93 9
T ===t
ny cos 6y
13 cos 65 2,13, 6727

= , (24
ny cos 0y 1 + piapz; €7 + 2p12p23 =20 cos(¢h12 + P23 + 21277) (4

2927 sin 2us7) — Pr2p2s Sin(P1z + $23)
tan[d, — X12 = il = ; 202 Py
an[d, — 12 — X3t 2] 2021 cos 2127 + p12p23 Co8(P12 + $23) )

For a TM wave the factor n3cos 63 /ny cos 6 must be replaced by (cos s /n3)/
(cos 6;/ny). For a TE wave the values given by (6), (8), (9) and (10) are substituted in
these formulae, and for a TM wave those given by (13), (15), (16) and (17).

It may be worthwhile to recall that the phase change on reflection (6,) is referred to
the first boundary (1—2), whereas the phase change on transmission (8,) is referred to
the second boundary.

Egs. (22)—(25) allow the computations of the four basic quantities that characterize
reflection and transmission by an absorbing film of known optical properties and of
prescribed thickness. Fig. 14.5 illustrates, for some typical cases, the dependence of
the reflectivity and transmissivity on the thickness of the film.

For a nonabsorbing film R and 7 are periodic functions of the film thickness A, with
a period of one wavelength. Absorption is seen to reduce the amplitude of the
successive maxima and to give rise to a displacement of the maxima in the direction of
smaller thickness. At optical wavelengths absorption of metals is so large that the
thickness at which there is appreciable transmission is well below a quarter wave-
length® (see Table 14.1, p. 739). With transmitted light maxima and minima are
therefore not observed.

In optics, metal films are chiefly used to attain high reflectivities, for example in
connection with the Fabry—Perot interferometer (§7.6.2). Such films used to be

* Simplified formulae relating to such thin films may be obtained by expanding the numerator and
denominator (22)—(25) into series in powers of the film thickness, and retaining terms in the first few
powers only (see F. Abelés, Rev. d’'Optique, 32 (1953), 257).

The optical properties of thin metallic films in the visible and infra-red spectral region are thoroughly
discussed by L. N. Hadley and D. M. Dennison, J. Opt. Soc. Amer., 37 (1947), 451, 38 (1948), 483.
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Fig. 14.5 The reflectivity R and transmissivity 7 of a metallic film as functions of
its optical thickness. [my=1,m= 3.5, 13 = 1.5 K =Kz = 0; 6, = 0.] (After K.
Hammer, Z. Tech. Phys., 24 (1943), 169.) :

produced by chemical deposition but this method has in more recent times been
superseded by the techniques of high-vacuum evaporation.*

Finally let us briefly consider reflection and transmission with a ‘thick’ film. If the
thickness » and consequently the parameter 77 are sufficiently large all the terms in
(22)—(25) which do not contain the multiplicative factor exp(20,77) may be neglected.
For example, if exp(2v217) = 100 this neglect does not, as a rule, involve an error
of more than a few per cent. For such a film, one has at normal incidence
4othnyia /A = In100 = 4.61, or (dropping the suffix 2),

h 0.37

e .
A onx
For a silver film, for example, nx ~ 3.67 at A = 5780 A, and (26) gives h = A/10
~ 5.8 X 107¢ cm.
For a thick film, we have from (22) and (24)

(26)

nycosts 5 o
= 2

R ~ p?z, T{yT3 g4, (27)

" nycos
We see that the reflectivity of a ‘thick’ film is almost that of an infinitely thick one, and

# GQee, for example, S. Tolansky, Multiple-beam Interferometry of Surfaces and Films (Oxford, Oxford
University Press, 1948), p. 26; or O. S. Heavens, Optical Properties of Thin Solid Films (London,
Butterworths, 1955).
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that its transmissivity decreases exponentially with the thickness. The phase changes
are immediately obtained from (23) and (25):

Oy ~ P12, 0 ~ y12 -+ X3 + 21 (28)

Formulae (27) and (28) interpret our definition of a ‘thick’ film in somewhat more
physical terms, implying that in such a film the effect of multiple beam interference is
negligible.

14.4.2 A transparent filin on an absorbing substrate

As a second example, consider reflection from a transparent film on an absorbing
substrate (Fig. 14.6).

In this case ry is real whilst 23 i8 complex. The amplitude ratio po3 and the phase
change @3 are given by (6) or (13), with suffixes 1 and 2 replaced by 2 and 3
respectively. According to §1 .6 (57) we now have

a2 + P ei(f/)23+2/3’)
poe= A .
1 r2p2 el(¢23+2ﬁ)

(29)

This expression is identical with §1.6 (57) if 28 is replaced by 2B + ¢z and ro3 by pas.
Thus without any calculation we may at once write down the expression for the
reflectivity and the phase change on reflection, simply by making this substitution in
§1.6 (59) and §1.6 (61); we then obtain

13, + P33 + 2r12p23 CO8(P23 + 2B)

R= :
1 -+ 13,p3; + 2r12p23 cos(@as + 2p)

(30)

and ;
pa3(1 — ry)sin(Pas + 26)
Fia(1 + p33) + paa(l + 73,)c08(p23 + 23)

Thin transparent films on absorbing substrates have many practical uses. They are
employed, for example, to protect metallic mirrors and to increase their reflectivity.
They may also be used to reduce the reflectivity of a metal surface. We have mentioned
on p. 68 that one may design a polarizer consisting of a dielectric film on a dielectric
substrate for which R = 0 and R, is quite large. With a metallic substrate one may

have either™ Ry=0or Ry =0

tand, =

(31

=5
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Fig. 14.6 A transparent film on an absorbing substrate.

* See H. Schopper, Optik, 10 (1953), 426.




