Test 1

1. Prove the following identities. You should just assume the fundamental theorems for grad, div, and curl (Stokes’s theorem).

 a. \[\oint_C u \nabla v \cdot dl = - \oint_C v \nabla u \cdot dl \]

 b. \[\int_V \nabla \times A \, d^3x = \oint_S n \times A \, da \]

 c. \[\int_S n \times \nabla \psi \, da = \oint_C \psi \, dl \]

2. a. In its own rest frame (in a frame K'), the potential of a point charge is

 \[\Phi' = \frac{q}{4\pi \varepsilon_0 r'} \]

 \[A' = 0 \]

 Find the 4-vector potential, $A^\alpha = (\Phi/c, A)$, of a moving charge by placing the charge at the origin of a frame K' moving at velocity v in the \hat{x} direction with respect to frame K and applying a Lorentz transformation. Show that the components are given by the formulas

 \[\Phi = \frac{\gamma q}{4\pi \varepsilon_0 \sqrt{\gamma^2 (x-vt)^2 + y^2 + z^2}} \]

 \[A_x = \frac{v}{c^2} \Phi \]

 \[A_y = A_z = 0 \]

 b. In its own rest frame (in a frame K'), the potential of a point electric dipole p is

 \[\Phi' = \frac{p \cdot r'}{4\pi \varepsilon_0 r'^3} \]

 \[A' = 0 \]

 Find the 4-vector potential, $A^\alpha = (\Phi/c, A)$, of a moving dipole by placing the dipole at the origin of a frame K' moving at velocity v in the \hat{x} direction with respect to frame K and applying a Lorentz transformation.

3. [Jackson 4.10]

 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges $\pm Q$. The empty space between the spheres is half-filled by a hemi-spherical shell of dielectric (of dielectric constant $\varepsilon/\varepsilon_0$), as shown in the figure.

 a. Find the electric field everywhere between the spheres.

 b. Calculate the surface-charge distribution on the inner sphere.

 c. Calculate the polarization-charge density induced on the surface of the dielectric $r = a$ (i.e. σ_b).

 Hints: (1) Guess that the E is radial. (2) The Gauss’s law is \(\oint_S E \cdot \hat{n} \, da = q^{\text{inside}}/\varepsilon_0 \) and also \(\oint_S D \cdot \hat{n} \, da = q^{\text{inside}}/\varepsilon_0 \).