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Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks

Alex Roxin, Nicolas Brunel, and David Hansel
Laboratory of Neurophysics and Physiology, UMR8119 CNRS - Université René Descartes, 45 Rue des Saints Pères,
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We study the effect of delays on the dynamics of large networks of neurons. We show that delays give
rise to a wealth of bifurcations and to a rich phase diagram, which includes oscillatory bumps, traveling
waves, lurching waves, standing waves arising via a period-doubling bifurcation, aperiodic regimes, and
regimes of multistability. We study the existence and the stability of the various dynamical patterns
analytically and numerically in a simplified rate model as a function of the interaction parameters. The
results derived in that framework allow us to understand the origin of the diversity of dynamical states
observed in large networks of spiking neurons.
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Electrophysiological and anatomical data indicate that
the cerebral cortex is spatially and functionally organized
[1–3]. These patterns of connectivity must influence the
intrinsic dynamics of cortical circuits which can now be
visualized using optical techniques [4]. The relationship
between the spatial profile of neural interactions and
spatio-temporal patterns of neuronal activity can be inves-
tigated in modeling studies. It has been shown that local-
ized bumps of neuronal activity emerge in neural circuits
with translationally invariant local excitation combined
with global inhibition. It has been proposed that orientation
selectivity in V1 is a functional counterpart of such pat-
terns [5–7]. It has been suggested that localized bumps
arising via a subcritical bifurcation may underlie spatial
short-term memory [8,9]. Traveling waves and localized
traveling bumps may also arise depending on connectivity
and on the neuronal and synaptic dynamics [6,10,11].

An important property of neural interactions is that they
involve delays. Delays, on the order of milliseconds, are
due to the finite-velocity propagation of action potentials
as well as to both dendritic and synaptic processing [12].
Effective delays can also be induced by the spike-
generation dynamics [13]. It has been shown elsewhere
that such delays may lead to homogeneous oscillations in
inhibitory networks with homogeneous, random connec-
tivity [14,15]. In this Letter we show that when interactions
are spatially structured, delays induce a wealth of dynami-
cal states with different spatio-temporal properties and
domains of multistability.

Insight into the dynamics of cortical tissue can be gained
using firing-rate models [5,6,16–19]. Most previous stud-
ies of firing-rate models have not considered the specific
effects of delays. In the first part of this work we consider
the following equation
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where m�x� is the activity of neurons at a 1D location on a
periodic ring x 2 ���;�	, � is the time constant of rate
dynamics (in the following, we take � � 1 without loss of
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generality), and � is the steady-state current-to-rate trans-
fer function. For simplicity, we assume that ��I� is thresh-
old linear, ��I� � I if I > 0, and ��I� � 0 otherwise. The
total synaptic input is split into an external current I�x� and
the synaptic current due to the presynaptic activity at a
location y with a weight J�jx� yj� and a delay D.

In the absence of delay (i.e., D � 0), the dynamics of
Eq. (1) for a stationary, homogeneous external input con-
verge to a stable fixed point for which the activity of the
neurons is either homogeneous or localized, depending on
the spatial modulation of the interactions [5,6].

Here we consider the case of D> 0. In this case the
stability of the stationary uniform state with respect to
perturbations of wave number n is given by the dispersion
relation � � �1� Jne

��D, where Jn �
1
2�

R
�
�� dyJ�y�


cosny. A steady instability of the nth mode occurs for
Jn � 1 while for Jn cos�D!� � 1 there is an oscillatory
instability with frequency ! � � tan�D!�. Hence, four
types of linear instability of the stationary uniform state
are possible, including: (i) a firing-rate instability (! � 0,
n � 0), (ii) a Hopf instability (! � 0, n � 0), (iii) a Turing
instability (! � 0, n � 0), and (iv) a Turing-Hopf insta-
bility (! � 0, n � 0). In the following we study the char-
acteristics and stability of the nonlinear firing patterns
arising from these instabilities. We assume for simplicity
that the interaction has only two nonzero Fourier compo-
nents: J�jx� yj� � J0 � J1 cos�x� y�. For J0 > jJ1j, the
interaction is purely excitatory, while for J0 <�jJ1j it is
purely inhibitory. For J1 > jJ0j the connectivity is locally
excitatory and inhibitory at larger distances, (Mexican hat),
while for J1 <�jJ0j the inverse is true.

Analytical and numerical investigation of Eq. (1) reveals
a phase diagram in the J0, J1 plane, Fig. 1, in which one can
discern eight states of activity: stationary uniform (SU),
stationary bump (SB), oscillatory bump (OB), oscillatory
uniform (OU), traveling waves (TW), standing waves
(SW), lurching waves (LW) and aperiodic dynamics (A).
In the following we discuss the three nonlinear solutions
(SB, OU, TW) which arise via primary bifurcations of the
SU state, and whose stability can be solved analytically
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FIG. 2. Space-time plots of typical patterns of activity in the
different regions of Fig. 1 shown over five units of time. Left-
hand column from top to bottom: J0 � �80 and J1 �
15; 5;�46;�86 corresponds to OB, OU, SW, and A in Fig. 1.
Right-hand column from top to bottom: J0 � �10 and J1 �
5;�38;�70;�80 corresponding to SB, TW, SW, and A. D �
0:1 and I is varied to maintain the mean firing rate at 0.1. Dark
regions indicate higher levels of activity in gray scale. Symbols
refer to the location of the patterns in the phase-diagram, Fig. 1.
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FIG. 1. Phase diagram of the rate model, Eq. (1), for D � 0:1.
The states are: stationary uniform (SU), stationary bump (SB),
oscillatory bump (OB), oscillatory uniform (OU), traveling
waves (TW), standing waves (SW), lurching waves (LW), and
aperiodic patterns (A). All solid lines have been determined
analytically. Stability lines of other states (dotted lines) have
been determined by numerical simulations. Regions of bista-
bility are indicated by hyphens, e.g., OU-SW. Symbols refer to
the patterns in Fig. 2. (For the case D � 0 see [6], Fig. 13.7.)
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[20]. Secondary instabilities of these states are investigated
numerically as are the dynamical patterns to which the
instabilities lead.

I. Stationary bumps.—As J1 crosses the value of two
from below a Turing instability of the SU state to a sta-
tionary bump of activity occurs, SB [Fig. 2(a0)]. The
stability boundary of such bumps can be calculated analyti-
cally in Eq. (1), revealing two mechanisms of destabiliza-
tion. For sufficiently strong local excitatory connectivity, a
rate instability occurs (m! 1 as t! 1). For sufficiently
strong inhibition, an oscillatory instability occurs. This
instability may lead to the OU state, or to an oscillatory
bump state, OB, for J1 sufficiently large [Fig. 2(a)].

II. Oscillatory uniform.—Sufficiently strong global in-
hibition (i.e., J0 negative enough), leads to a Hopf bifurca-
tion to an OU state [Fig. 2(b)]. For small D, this Hopf
bifurcation occurs for J0 ���=�2D�, and the frequency
of the unstable mode at the bifurcation is f� 1=�4D�. The
amplitude of the oscillatory instability grows until the
input current crosses the threshold of the transfer function
from above. The emerging limit cycle thus consists of a
period, e.g., 0< t < T1, in which the input current is
negative and during which m�x; t� / e�t. If the duration
of this initial period is greater than the delay, T1 >D, then
in the subsequent time period, T1 < t < T1 �D, the solu-
tion will consist of a homogeneous exponential solution
and a particular solution driven by the value of m in the
preceding epoch. The complete limit cycle can be con-
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structed by extending this reasoning to solve Eq. (1) for as
many epochs as are required to cover the full period of
oscillation, T. The latter is determined by the condition:
m�T� � m�0�. Once the limit cycle mlc�t� has been found,
its stability is determined by considering the ansatz m�t� �
mlc�t� � �m0�t� � �m1�t� cos�x�, where �m0 and �m1 are
small. The conditions �mi�T� � �i�mi�0� yield the
Floquet multipliers �i for i � 0, 1. If D< T � T1 < 2D,
then �0 � 1 and

�1 � e�T
�
1�

J1
2
ReD � J21

�R�D�2

8
e2D

�
; (2)

where R � T � T1. The homogeneous oscillations are
stable if j�1j< 1. For �1 � �1, a period-doubling insta-
bility of the spatially heterogeneous mode occurs, leading
to SW in which two distinct regions of the network oscil-
late out of phase with one another [Fig. 2(c)]. Numerical
simulations show that further decreasing J1 leads to addi-
tional instabilities to aperiodic patterns A [Fig. 2(d)]. A
phase instability occurs for �1 � 1. It can be shown that
this condition is met, in particular, for J1 � 2J0, leading to
SW. This condition is also met on an additional curve in the
region J1 > 0. The instability which occurs as one crosses
this line from below leads either to an OB or a SB state,
depending on J0.

III. Traveling waves.—When J1 is sufficiently negative
(J1 ���=D for small D), the SU state undergoes a bi-
furcation to TW. The profile of the wave can be derived,
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FIG. 3. Typical firing patterns in a NSN. See text for details.
Compare with Fig. 2. The network consists of two populations of
2000 neurons each. Left-hand column from top to bottom: a
localized bump with oscillations, homogeneous oscillations, a
period-doubled state of oscillating bumps, and a chaotic state.
Parameters: pE0 � 0:2, 0, 0, 0, pI0 � 0:2, 0.5, 0.5, 0.5, pE1 � 0:1,
0, 0, 0, pI1 � 0, 0, 0.2, 0.5, gE � 0:1, 0, 0, 0, gI � 0:28, 0.1, 0.1,
0.1, &ext � 2000, 15 000, 15 000, 15 000, and gext � 0:01. � �
0 ms. Right-hand column from top to bottom: a steady and
localized bump, the stationary uniform state, oscillating bumps
and a chaotic state. Parameters: pE0 � 0:2, pI0 � 0:2, pE1 � 0:2,
0, 0, 0, (top to bottom) pI1 � 0, 0, 0.2, 0.2, gE � 0:01, 0.01, 0.01,
0.1, gI � 0:028, 0.028, 0.028, 0.28, &ext � 500, 500, 5000, 500,
and gext � 0:01, 0.01, 0.001, 0.01. � � 0, 0, 0, 2.0 ms.
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yielding a relation for its velocity, v � � tan�vD�. The
TW state can destabilize along three curves in Fig. 1. If the
global inhibition increases, an oscillatory instability to an
OU state occurs. If local inhibition and long-range excita-
tion are strengthened (i.e., decreasing J1) an oscillatory
instability of the waves leads to a lurching wave state
[11,21], LW, in which the waves slow down and speed up
periodically [20]. Simulations reveal that LW becomes
unstable to SW as J1 decreases [Fig. 2(c0)]. Further de-
creasing J1 leads to additional bifurcations to more com-
plex patterns with aperiodic dynamics, A [Fig. 2(d0)].

The stability boundaries of bumps, homogeneous oscil-
lations, and waves indicate several regions of bistability
(indicated by a hyphen in Fig. 1, e.g., OU-SW). Additional
regions of bistability are found in numerical simulations
bringing the total to eight for the phase diagram in Fig. 1.

In the limit D! 0 all the bifurcation lines except the
Turing instability line at J1 � 2 and the rate instability
lines go to negative infinity. Hence, only the SU and SB
states survive in that limit. Beyond D � 0:155 the line
defining the period-doubling instability from the OU to
the SW state moves towards more negative values of J0 and
J1. This line goes to infinity as D approaches 0.365, at
which point the corresponding SW and A regions disappear
[20].

The results presented thus far are for a threshold-linear
transfer function and simplified connectivity. Simulations
of Eq. (1) with other nonlinear transfer functions � reveal a
qualitatively similar phase diagram in which all the dy-
namical regimes seen in Fig. 1 are present. Nonetheless,
the nonlinearity of the transfer function determines the
nature of the bifurcation and will thus alter the regions of
bistability. A general, symmetric function J may introduce
Turing and Turing-Hopf instabilities at higher wave num-
ber. While the simplicity of Eq. (1) allows for analysis,
firing-rate models do not necessarily provide an accurate
description of the dynamics of more realistic networks of
spiking neurons (NSN). To what extent are the dynamics in
Eq. (1) relevant for understanding the patterns of activity
observed in the NSN? We consider a 1D network of
conductance-based neurons with periodic boundary con-
ditions, composed of two populations of N neurons: ex-
citatory E and inhibitory I. All neurons are described by a
Hodgkin-Huxley type model [22] with one somatic com-
partment. Na and K currents shape the action potentials.
The probability of connection from a neuron in population
A�� E; I� to a neuron in population B is pBA, where p
depends on the distance r between them as pBA � pBA0 �
pBA1 cos�r�. Synaptic currents are modeled as Isyn;A �

�gAs�t��V � VA�, A 2 E, I, where V is the voltage of
the post-synaptic neuron, VA is the reversal potential of
the synapse (0 mV for A � E and �80 mV for A � I), gA
is the maximum conductance change, and s�t� is a variable
which, given a presynaptic spike at time t� � �, takes the
form s�t� � 1

�1��2
�e��t�t��=�1 � e��t�t��=�2�, where � is the

delay and �1 and �2 are the rise and decay times. Finally,
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each neuron receives external, excitatory synaptic input as
a Poisson process with a rate &ext, modeled as the synaptic
currents above with a maximum conductance change of
gext. To compare the dynamical patterns found in the NSN
and their dependence on the parameters with those of the
firing-rate model we choose pIE � pEE � pE, pEI �
pII � pI and identical synaptic time constants for excita-
tory and inhibitory connections (�1 � 1 ms and �2 �
3 ms). This creates an effective one-population network
with an effective coupling similar to that of the rate model.
Figure 3 shows eight typical firing patterns in the NSN. The
figures have been arranged to allow comparison with those
in Fig. 2. The patterns show good qualitative agreement,
and were obtained by altering the network parameters in a
way analogous to those changes made in the rate model to
produce Fig. 2. The only state that could not be seen in a
robust way in the NSN was the TW. However, transient
dynamics in the region where stable SW are found show
short-lived TW which eventually lose out to an oscillatory
mode, causing the waves to break up into distinct oscillat-
ing subgroups of neurons; see [20]. From the eight regions
of bistability displayed by Eq. (1), at least one (OU-SW) is
3-3
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FIG. 4. Bistability between uniform oscillations and an oscil-
lating bump state in a purely inhibitory network. A 30 ms inhib-
itory pulse is applied to neurons 500 through 1500 around time
200. This induces a state in which two groups of neurons oscil-
late out of phase with one another; cf. voltage trace of neuron
1000 (middle) and neuron 1 (bottom). Parameters are pI0 � 0:4,
pI1 � 0:2, gI � 0:1, &ext � 4500, gext � 0:033, and � � 0:5 ms.
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also present in the NSN in an analogous parameter regime;
see Fig. 4.

In summary, we have shown that the presence of delays
leads to a wide variety of spatio-temporal patterns and the
existence of various regions of multistability. For suffi-
ciently strong spatial modulation of inhibition, a period-
doubling bifurcation from homogeneous oscillations to
SW occurs. This SW state is achievable in purely inhibitory
networks. Interestingly, a similar bifurcation occurs in
spatially extended systems near a homoclinic orbit [23].
Further bifurcations of the SW state to aperiodic and
chaotic dynamics occur as the spatial modulation becomes
stronger. Delays are furthermore responsible for the emer-
gence of waves given neural interactions which are locally
inhibitory and excitatory at longer distances (region 0>
J0 > J1 in Fig. 1). Introducing a distribution of delays in
Eq. (1) does not, in general, alter our results qualitatively
([20]). The dynamical states displayed by Eq. (1) are found
in the NSN also in the absence of synaptic delays (� � 0)
(Fig. 3) and even if �1 � 0 (not shown here). This is
because action potential initiation dynamics in Hodgkin-
Huxley-type neurons introduce an effective delay [13],
which is captured in the reduced model Eq. (1) if D � 0.
Hence, in the NSN, explicit delays are not required to
reproduce the dynamical regimes seen in Fig. 1.
Localized waves and bumps have been studied in rate
models with delays that depend on the distance between
neurons, e.g., [24]. An extension of this work with such
delays is in progress.

Finally, we showed that mutual inhibition with spatially
decaying connectivity, if sufficiently modulated in space,
can lead to bistability. We suggest that such states could
play a role in memory storage. This would be in contrast to
traditional scenarios for short-term memory in which bi-
stability is due to recurrent excitation.
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